Data-driven hybrid remaining useful life estimation approach for spacecraft lithium-ion battery

Electrical power system (EPS) is one of the most critical sub-systems of the spacecraft. Lithium-ion battery is the vital component is the EPS. Remaining useful life (RUL) prediction is an effective mean to evaluate the battery reliability. Autoregressive model (AR) and particle filter (PF) are two...

Full description

Saved in:
Bibliographic Details
Published inMicroelectronics and reliability Vol. 75; pp. 142 - 153
Main Authors Song, Yuchen, Liu, Datong, Yang, Chen, Peng, Yu
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrical power system (EPS) is one of the most critical sub-systems of the spacecraft. Lithium-ion battery is the vital component is the EPS. Remaining useful life (RUL) prediction is an effective mean to evaluate the battery reliability. Autoregressive model (AR) and particle filter (PF) are two traditional approaches in battery prognosis. However, the parameters in a trained AR model cannot be updated which will cause the under-fitting in the long term prediction and further decrease the RUL prediction accuracy. On the other hand, the measurement function in the PF algorithm cannot be obtained in the long term prediction process. To address these two challenges, a hybrid method of IND-AR model and PF algorithm are proposed in this work. Compared with basic AR model, a nonlinear degradation factor and an iterative parameter updating method are utilized to improve the long term prediction performance. The capacity prediction results are applied as the measurement function for the PF algorithm. The nonlinear degradation factor can make the linear AR model suitable for nonlinear degradation estimation. And once the capacity is predicted, the state-space model in the PF is activated to obtain an optimized result. Optimized capacity prediction result of each cycle is utilized to re-train the regression model and update the parameters. The predictor keeps working iteratively until the capacity hit the failure threshold to calculate the RUL value. The uncertainty involved in the RUL prediction result is presented by PF algorithm as well. Experiments are conducted based on commercial lithium-ion batteries and real-applied satellite lithium-ion batteries. The results have high accuracy in capacity fade prediction and RUL prediction of the proposed method. The real applied lithium-ion battery can meet the requirement of spacecraft. All the experiments results show great potential of the proposed framework. •IND-AR model and empirical model are fused via state-space model in RPF.•Iterative updating is used to improve the prediction capability of ND-AR.•The proposed method is used in real applied satellite battery RUL prediction.
AbstractList Electrical power system (EPS) is one of the most critical sub-systems of the spacecraft. Lithium-ion battery is the vital component is the EPS. Remaining useful life (RUL) prediction is an effective mean to evaluate the battery reliability. Autoregressive model (AR) and particle filter (PF) are two traditional approaches in battery prognosis. However, the parameters in a trained AR model cannot be updated which will cause the under-fitting in the long term prediction and further decrease the RUL prediction accuracy. On the other hand, the measurement function in the PF algorithm cannot be obtained in the long term prediction process. To address these two challenges, a hybrid method of IND-AR model and PF algorithm are proposed in this work. Compared with basic AR model, a nonlinear degradation factor and an iterative parameter updating method are utilized to improve the long term prediction performance. The capacity prediction results are applied as the measurement function for the PF algorithm. The nonlinear degradation factor can make the linear AR model suitable for nonlinear degradation estimation. And once the capacity is predicted, the state-space model in the PF is activated to obtain an optimized result. Optimized capacity prediction result of each cycle is utilized to re-train the regression model and update the parameters. The predictor keeps working iteratively until the capacity hit the failure threshold to calculate the RUL value. The uncertainty involved in the RUL prediction result is presented by PF algorithm as well. Experiments are conducted based on commercial lithium-ion batteries and real-applied satellite lithium-ion batteries. The results have high accuracy in capacity fade prediction and RUL prediction of the proposed method. The real applied lithium-ion battery can meet the requirement of spacecraft. All the experiments results show great potential of the proposed framework. •IND-AR model and empirical model are fused via state-space model in RPF.•Iterative updating is used to improve the prediction capability of ND-AR.•The proposed method is used in real applied satellite battery RUL prediction.
Author Song, Yuchen
Liu, Datong
Yang, Chen
Peng, Yu
Author_xml – sequence: 1
  givenname: Yuchen
  surname: Song
  fullname: Song, Yuchen
  organization: Department of Automatic test and control, Harbin Institute of Technology, Harbin 150080, China
– sequence: 2
  givenname: Datong
  surname: Liu
  fullname: Liu, Datong
  email: liudatong@hit.edu.cn
  organization: Department of Automatic test and control, Harbin Institute of Technology, Harbin 150080, China
– sequence: 3
  givenname: Chen
  surname: Yang
  fullname: Yang, Chen
  organization: Shanghai Institute of Space Power, Shanghai 200233, China
– sequence: 4
  givenname: Yu
  surname: Peng
  fullname: Peng, Yu
  organization: Department of Automatic test and control, Harbin Institute of Technology, Harbin 150080, China
BookMark eNqFkE1LAzEQhoNUsK3-Bckf2DWzu012wYNSP6HgRcFbmGYnNmU_SpIW-u_dWr146WXm8j4vM8-Ejbq-I8auQaQgQN6s09YZ33tq0kyASoVMRTE7Y2MoVZZUBXyO2FiITCaZguKCTUJYCyGUABgz_YARk9q7HXV8tV96V3NPLbrOdV98G8huG944S5xCdC1G13ccNxvfo1lx23seNmjIeLRxyMWV27bJIbPEGMnvL9m5xSbQ1e-eso-nx_f5S7J4e36d3y8Sk88gJramAovlzChrygzAqNLKzORG5CqvAFHgMMFCRtLkCEqZWiiqbVVhWdUyn7LbY-9gIgRPVhsXf66NHl2jQeiDLL3Wf7L0QZYWUg-yBlz-wzd--NbvT4N3R5CG53aOvA7GUWeodp5M1HXvTlV8A3sWjes
CitedBy_id crossref_primary_10_1016_j_pnsc_2023_02_001
crossref_primary_10_1109_ACCESS_2021_3079301
crossref_primary_10_3390_batteries7010020
crossref_primary_10_1016_j_knosys_2020_106555
crossref_primary_10_3390_en14165000
crossref_primary_10_1109_ACCESS_2018_2854224
crossref_primary_10_3233_JIFS_169551
crossref_primary_10_1016_j_jpowsour_2018_08_064
crossref_primary_10_1016_j_jpowsour_2022_231026
crossref_primary_10_1016_j_est_2023_106790
crossref_primary_10_1016_j_cie_2020_106600
crossref_primary_10_1016_j_microrel_2018_06_025
crossref_primary_10_1016_j_ssi_2023_116260
crossref_primary_10_1016_j_asr_2022_11_028
crossref_primary_10_1016_j_jpowsour_2018_11_072
crossref_primary_10_1016_j_egyr_2022_09_211
crossref_primary_10_1007_s00500_019_04343_2
crossref_primary_10_1016_j_egyr_2021_05_019
crossref_primary_10_1109_ACCESS_2019_2914221
crossref_primary_10_3390_electronics7050072
crossref_primary_10_1016_j_egyr_2022_08_095
crossref_primary_10_1109_ACCESS_2021_3116264
crossref_primary_10_1016_j_energy_2022_123366
crossref_primary_10_1109_TR_2019_2930195
crossref_primary_10_1016_j_est_2024_110780
crossref_primary_10_1109_ACCESS_2020_3005229
crossref_primary_10_3233_JIFS_169545
crossref_primary_10_3233_JIFS_169547
crossref_primary_10_3390_en13092380
crossref_primary_10_1109_ACCESS_2022_3151975
crossref_primary_10_1016_j_cam_2018_07_008
crossref_primary_10_1016_j_energy_2023_129681
crossref_primary_10_1016_j_jclepro_2019_119409
crossref_primary_10_1016_j_jpowsour_2020_229327
crossref_primary_10_1109_ACCESS_2023_3293726
crossref_primary_10_17531_ein_2021_1_18
crossref_primary_10_1016_j_segan_2022_100603
crossref_primary_10_1016_j_joule_2019_11_018
crossref_primary_10_1016_j_measurement_2021_109057
crossref_primary_10_1016_j_ijepes_2019_02_046
crossref_primary_10_3390_en13051085
crossref_primary_10_3233_JIFS_169531
crossref_primary_10_1016_j_measurement_2020_107904
crossref_primary_10_2139_ssrn_4191819
crossref_primary_10_1007_s40747_024_01773_w
crossref_primary_10_1109_ACCESS_2017_2759094
crossref_primary_10_3390_en10111687
crossref_primary_10_1007_s40747_021_00639_9
crossref_primary_10_1109_TVT_2018_2864688
crossref_primary_10_1016_j_energy_2024_134229
crossref_primary_10_1109_ACCESS_2019_2930680
crossref_primary_10_1016_j_heliyon_2024_e35925
crossref_primary_10_1016_j_rser_2021_111408
crossref_primary_10_1108_IJICC_09_2020_0131
crossref_primary_10_3233_JIFS_169521
crossref_primary_10_1109_ACCESS_2022_3170438
crossref_primary_10_1016_j_est_2021_103487
crossref_primary_10_1109_JAS_2023_123024
crossref_primary_10_1016_j_microrel_2020_113857
crossref_primary_10_1109_ACCESS_2019_2937550
crossref_primary_10_1177_0142331220961576
crossref_primary_10_28948_ngumuh_1112985
crossref_primary_10_1016_j_est_2022_106193
crossref_primary_10_20964_2018_10_51
crossref_primary_10_1016_j_microrel_2018_01_010
crossref_primary_10_1109_TTE_2022_3209629
crossref_primary_10_1109_ACCESS_2020_2977429
crossref_primary_10_1088_1742_6596_2258_1_012042
crossref_primary_10_1007_s00521_019_04631_w
crossref_primary_10_1016_j_est_2022_105952
crossref_primary_10_1016_j_apenergy_2019_114408
crossref_primary_10_1177_1748006X19871753
crossref_primary_10_1007_s00170_025_15169_8
crossref_primary_10_2139_ssrn_3997554
crossref_primary_10_1155_etep_2242749
crossref_primary_10_1016_j_microrel_2018_03_031
crossref_primary_10_1016_j_microrel_2018_05_019
crossref_primary_10_1039_D4SE01238K
crossref_primary_10_1016_j_microrel_2018_03_032
crossref_primary_10_1109_TIE_2020_2973876
crossref_primary_10_1155_2022_1575303
crossref_primary_10_3390_en12122247
crossref_primary_10_1109_TIE_2018_2808918
crossref_primary_10_3390_su15021602
crossref_primary_10_1016_j_energy_2023_128956
crossref_primary_10_3390_app8112078
crossref_primary_10_3389_fenrg_2022_973487
crossref_primary_10_1109_JSEN_2024_3470231
crossref_primary_10_1109_ACCESS_2018_2858856
crossref_primary_10_3390_s20175000
crossref_primary_10_1016_j_est_2022_104869
crossref_primary_10_1088_1742_6596_2301_1_012015
crossref_primary_10_1109_TIM_2022_3142757
crossref_primary_10_1016_j_est_2021_103115
crossref_primary_10_1016_j_energy_2022_124538
crossref_primary_10_3389_fmtec_2022_886518
crossref_primary_10_3390_aerospace10040356
crossref_primary_10_1109_JSEN_2023_3330123
crossref_primary_10_3390_pr9122174
crossref_primary_10_3390_batteries8020019
crossref_primary_10_3390_s19061472
crossref_primary_10_1016_j_est_2022_106571
crossref_primary_10_1016_j_jclepro_2018_06_182
crossref_primary_10_1109_ACCESS_2019_2947294
crossref_primary_10_1002_adts_202000109
crossref_primary_10_1016_j_microrel_2018_03_002
crossref_primary_10_3389_fmech_2021_719718
crossref_primary_10_1039_D2TA07148G
crossref_primary_10_1109_TMECH_2023_3244282
crossref_primary_10_1109_TNNLS_2021_3128514
crossref_primary_10_1016_j_jechem_2023_03_026
crossref_primary_10_1002_est2_611
crossref_primary_10_1002_tee_23287
crossref_primary_10_1007_s12065_022_00805_z
crossref_primary_10_1016_j_apenergy_2019_113818
crossref_primary_10_1016_j_apenergy_2020_116167
crossref_primary_10_3390_wevj14060145
crossref_primary_10_1016_j_heliyon_2024_e39121
crossref_primary_10_1038_s41598_024_52151_y
crossref_primary_10_1115_1_4051802
crossref_primary_10_1016_j_conengprac_2021_104969
crossref_primary_10_3390_en11061420
crossref_primary_10_1109_TR_2019_2896230
crossref_primary_10_1016_j_measurement_2021_110502
crossref_primary_10_3389_fenrg_2022_1058999
crossref_primary_10_1109_ACCESS_2021_3089032
crossref_primary_10_1016_j_microrel_2018_01_017
crossref_primary_10_1016_j_microrel_2021_114071
crossref_primary_10_1109_TIE_2020_3045745
crossref_primary_10_3389_fenrg_2023_1059701
crossref_primary_10_3390_electronics9091537
crossref_primary_10_1016_j_est_2018_12_011
crossref_primary_10_1007_s10845_023_02192_3
crossref_primary_10_1016_j_asoc_2020_106474
crossref_primary_10_1109_ACCESS_2017_2754447
Cites_doi 10.1109/TAES.1984.310437
10.1016/j.jpowsour.2011.03.101
10.1016/j.microrel.2012.12.003
10.1016/S0378-7753(02)00363-4
10.1016/j.apenergy.2013.12.020
10.1016/j.measurement.2014.11.031
10.1016/j.jpowsour.2013.03.129
10.1016/j.microrel.2016.07.151
10.1016/j.microrel.2010.01.006
10.1109/PHM.2008.4711436
10.1007/s00521-013-1520-x
10.1016/j.jpowsour.2014.03.058
10.1016/j.jpowsour.2011.08.040
10.1080/01621459.1999.10474153
10.1016/j.microrel.2013.01.006
10.1109/TAC.1974.1100705
10.1016/j.jpowsour.2005.01.006
10.1016/j.jpowsour.2012.11.146
10.1016/j.microrel.2007.02.015
10.1016/j.ymssp.2016.08.029
10.1109/TIE.2015.2494529
10.1016/j.microrel.2013.03.010
10.1007/BF02532251
10.1016/j.jpowsour.2006.01.052
10.1080/0740817X.2012.705451
10.1149/1.1392512
10.1016/S0304-386X(02)00167-6
10.1016/j.jpowsour.2010.08.035
10.1016/j.engappai.2012.02.015
10.1016/j.microrel.2015.02.025
10.1016/j.microrel.2012.12.004
10.1016/j.microrel.2012.06.085
10.1149/1.1362541
10.1109/TIM.2016.2534258
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright_xml – notice: 2017 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.microrel.2017.06.045
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-941X
EndPage 153
ExternalDocumentID 10_1016_j_microrel_2017_06_045
S0026271417302330
GroupedDBID --K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
29M
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSM
SST
SSV
SSZ
T5K
T9H
TAE
UHS
UNMZH
WUQ
XOL
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c351t-fde4a4b5c7fc8211c78f62c3c037391aa0a91a1f12e6c3a177cd07edf99a89d63
IEDL.DBID .~1
ISSN 0026-2714
IngestDate Tue Jul 01 01:27:25 EDT 2025
Thu Apr 24 22:56:17 EDT 2025
Fri Feb 23 02:18:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lithium-ion battery
Satellite
Hybrid approach
Remaining useful life
Dynamic modeling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-fde4a4b5c7fc8211c78f62c3c037391aa0a91a1f12e6c3a177cd07edf99a89d63
PageCount 12
ParticipantIDs crossref_citationtrail_10_1016_j_microrel_2017_06_045
crossref_primary_10_1016_j_microrel_2017_06_045
elsevier_sciencedirect_doi_10_1016_j_microrel_2017_06_045
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-08-01
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-01
  day: 01
PublicationDecade 2010
PublicationTitle Microelectronics and reliability
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Nuhic, Terzimehic, Soczka-Guth, Buchholz, Dietmayer (bb0105) 2013; 239
Saha, Poll, Goebel, Christophersen (bb0170) September 2007
Online estimation of lithium-ion battery capacity using sparse Bayesian learning.
Kozlowski (bb0185) March 2003; vol. 7
Hill (bb0005) March 1998; vol. 1
Lu, Tao, Fan (bb0070) 2014; 261
Friedlander, Porat (bb0210) 1984; 2
Eddahech, Briat, Woirgard, Vinassa (bb0045) 2012; 52
Shim, Kostecki, Richardson, Song, Striebel (bb0055) 2002; 112
Doucet, De Freitas, Murphy, Russell (bb0225) June 2000
Liu, Luo, Liu, Peng, Guo, Pecht (bb0240) 2014; 25
Li, Xu (bb0140) 2015; 55
Acuña, Orchard (bb0130) 2017; 85
Yoshio, Brodd, Kozawa (bb0015) 2009; Vol. 1
Edwards, Orchard, Tang, Goebel, Vachtsevanos (bb0125) 2010
Zhang, Ross, Kostecki (bb0065) 2001; 148
Vetter, Novák, Wagner (bb0030) 2005; 147
Saha, Goebel (bb0120) 2009
Liu, Luo, Liu, Peng, Guo, Pecht (bb0190) 2014; 25
Wang, Miao, Pecht (bb0150) 2013; 239
Zhou, Huang (bb0180) 2016; 65
Xing, Ma, Tsui, Pecht (bb0075) 2013; 53
Pattipati, Pattipati, Christopherson, Namburu, Prokhorov, Qiao (bb0100) 2008
Liu, Pang, Zhou, Peng, Pecht (bb0135) 2013; 53
Saxena, Celaya, Balaban, Saha, Saha, Goebel (bb0235) 2008; 1
Liu, Wang, Ma, Yang, Yang (bb0160) 2012; 25
Yan, Zhang, Wang, Dou, Wang (bb0080) 2016; 63
Hurvich, Shumway, Tsai (bb0215) 1990
Liu, Zhou, Pan, Peng, Peng (bb0145) 2015; 63
Liu, Saxena, Goebel, Saha, Wang (bb0155) 2010
Akaike (bb0200) 1969; 21
Wang, Yang, Tsui (bb0230) 2016; 65
Long, Xian, Jiang, Liu (bb0175) 2013; 53
Wang, Sone, Naito, Yamada, Segami, Kibe (bb0020) 2006; 160
Pecht, Jaai (bb0060) 2010; 50
Akaike (bb0205) 1974; 19
Lee, Rhee (bb0035) 2003; 68
Miao, Xie, Cui, Liang, Pecht (bb0115) 2013; 53
Fan, Yao (bb0195) 2003
Pitt, Shephard (bb0220) 1999; 94
Remmlinger, Buchholz, Meiler, Bernreuter, Dietmayer (bb0050) 2011; 196
He, Williard, Osterman, Pecht (bb0165) 2011; 196
Zhang, Lee (bb0010) 2011; 196
Arora, Doyle, White (bb0025) 1999; 146
Gu, Barker, Pecht (bb0040) 2007; 47
Liao, Tian (bb0095) 2013; 45
Fault diagnosis and prognostic of solid oxide fuel cells.
Ng, Xing, Tsui (bb0090) 2014; 118
Wang (10.1016/j.microrel.2017.06.045_bb0230) 2016; 65
Nuhic (10.1016/j.microrel.2017.06.045_bb0105) 2013; 239
Kozlowski (10.1016/j.microrel.2017.06.045_bb0185) 2003; vol. 7
Liu (10.1016/j.microrel.2017.06.045_bb0240) 2014; 25
Arora (10.1016/j.microrel.2017.06.045_bb0025) 1999; 146
10.1016/j.microrel.2017.06.045_bb0085
Liu (10.1016/j.microrel.2017.06.045_bb0145) 2015; 63
Zhang (10.1016/j.microrel.2017.06.045_bb0010) 2011; 196
Fan (10.1016/j.microrel.2017.06.045_bb0195) 2003
Eddahech (10.1016/j.microrel.2017.06.045_bb0045) 2012; 52
Xing (10.1016/j.microrel.2017.06.045_bb0075) 2013; 53
Yan (10.1016/j.microrel.2017.06.045_bb0080) 2016; 63
Shim (10.1016/j.microrel.2017.06.045_bb0055) 2002; 112
Akaike (10.1016/j.microrel.2017.06.045_bb0205) 1974; 19
Friedlander (10.1016/j.microrel.2017.06.045_bb0210) 1984; 2
Remmlinger (10.1016/j.microrel.2017.06.045_bb0050) 2011; 196
Li (10.1016/j.microrel.2017.06.045_bb0140) 2015; 55
Akaike (10.1016/j.microrel.2017.06.045_bb0200) 1969; 21
Edwards (10.1016/j.microrel.2017.06.045_bb0125) 2010
Long (10.1016/j.microrel.2017.06.045_bb0175) 2013; 53
Gu (10.1016/j.microrel.2017.06.045_bb0040) 2007; 47
Ng (10.1016/j.microrel.2017.06.045_bb0090) 2014; 118
Miao (10.1016/j.microrel.2017.06.045_bb0115) 2013; 53
Liu (10.1016/j.microrel.2017.06.045_bb0190) 2014; 25
Wang (10.1016/j.microrel.2017.06.045_bb0020) 2006; 160
Lee (10.1016/j.microrel.2017.06.045_bb0035) 2003; 68
Saxena (10.1016/j.microrel.2017.06.045_bb0235) 2008; 1
Lu (10.1016/j.microrel.2017.06.045_bb0070) 2014; 261
Hill (10.1016/j.microrel.2017.06.045_bb0005) 1998; vol. 1
Pattipati (10.1016/j.microrel.2017.06.045_bb0100) 2008
10.1016/j.microrel.2017.06.045_bb0110
Liao (10.1016/j.microrel.2017.06.045_bb0095) 2013; 45
Wang (10.1016/j.microrel.2017.06.045_bb0150) 2013; 239
Doucet (10.1016/j.microrel.2017.06.045_bb0225) 2000
Vetter (10.1016/j.microrel.2017.06.045_bb0030) 2005; 147
Acuña (10.1016/j.microrel.2017.06.045_bb0130) 2017; 85
Liu (10.1016/j.microrel.2017.06.045_bb0160) 2012; 25
Yoshio (10.1016/j.microrel.2017.06.045_bb0015) 2009; Vol. 1
Liu (10.1016/j.microrel.2017.06.045_bb0135) 2013; 53
Pecht (10.1016/j.microrel.2017.06.045_bb0060) 2010; 50
Zhang (10.1016/j.microrel.2017.06.045_bb0065) 2001; 148
Zhou (10.1016/j.microrel.2017.06.045_bb0180) 2016; 65
Pitt (10.1016/j.microrel.2017.06.045_bb0220) 1999; 94
He (10.1016/j.microrel.2017.06.045_bb0165) 2011; 196
Saha (10.1016/j.microrel.2017.06.045_bb0120) 2009
Liu (10.1016/j.microrel.2017.06.045_bb0155) 2010
Hurvich (10.1016/j.microrel.2017.06.045_bb0215) 1990
Saha (10.1016/j.microrel.2017.06.045_bb0170) 2007
References_xml – volume: 239
  start-page: 680
  year: 2013
  end-page: 688
  ident: bb0105
  article-title: Health diagnosis and remaining useful life prognostics of lithiumion batteries using data-driven methods
  publication-title: J. Power Sources
– volume: 53
  start-page: 832
  year: 2013
  end-page: 839
  ident: bb0135
  article-title: Prognostics for state of health estimation of lithium-ion batteries based on combination gaussian process functional regression
  publication-title: Microelectron. Reliab.
– volume: 50
  start-page: 317
  year: 2010
  end-page: 323
  ident: bb0060
  article-title: A prognostics and health management roadmap for information and electronics-rich systems
  publication-title: Microelectron. Reliab.
– volume: 25
  start-page: 557
  year: 2014
  end-page: 572
  ident: bb0190
  article-title: Lithium-ion battery remaining useful life estimation based on fusion nonlinear degradation AR model and RPF algorithm
  publication-title: Neural Comput. & Applic.
– volume: 118
  start-page: 114
  year: 2014
  end-page: 123
  ident: bb0090
  article-title: A naive Bayes model for robust remaining useful life prediction of lithium-ion battery
  publication-title: Appl. Energy
– start-page: 646
  year: September 2007
  end-page: 653
  ident: bb0170
  article-title: An integrated approach to battery health monitoring using Bayesian regression and state estimation
  publication-title: 2007 IEEE Autotestcon
– volume: Vol. 1
  year: 2009
  ident: bb0015
  article-title: Lithium-ion batteries
– volume: 55
  start-page: 1035
  year: 2015
  end-page: 1045
  ident: bb0140
  article-title: A new prognostics method for state of health estimation of lithium-ion batteries based on a mixture of Gaussian process models and particle filter
  publication-title: Microelectron. Reliab.
– volume: 53
  start-page: 821
  year: 2013
  end-page: 831
  ident: bb0175
  article-title: An improved autoregressive model by particle swarm optimization for prognostics of lithium-ion batteries
  publication-title: Microelectron. Reliab.
– reference: Online estimation of lithium-ion battery capacity using sparse Bayesian learning.
– volume: 148
  start-page: A463
  year: 2001
  ident: bb0065
  publication-title: J. Electrochem. Soc.
– volume: 47
  start-page: 1849
  year: 2007
  end-page: 1856
  ident: bb0040
  article-title: Prognostics implementation of electronics under vibration loading
  publication-title: Microelectron. Reliab.
– volume: 147
  start-page: 269
  year: 2005
  end-page: 281
  ident: bb0030
  article-title: Ageing mechanisms in lithium-ion batteries
  publication-title: J. Power Sources
– volume: 261
  start-page: 141
  year: 2014
  end-page: 147
  ident: bb0070
  article-title: Li-ion battery capacity estimation: a geometrical approach
  publication-title: J. Power Sources
– volume: 239
  start-page: 253
  year: 2013
  end-page: 264
  ident: bb0150
  article-title: Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model
  publication-title: J. Power Sources
– volume: 112
  start-page: 222
  year: 2002
  end-page: 230
  ident: bb0055
  article-title: Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature
  publication-title: J. Power Sources
– volume: 94
  start-page: 590
  year: 1999
  end-page: 599
  ident: bb0220
  article-title: Filtering via simulation: auxiliary particle filters
  publication-title: J. Am. Stat. Assoc.
– volume: 2
  start-page: 158
  year: 1984
  end-page: 173
  ident: bb0210
  article-title: The modified Yule-Walker method of ARMA spectral estimation
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
– volume: 68
  start-page: 5
  year: 2003
  end-page: 10
  ident: bb0035
  article-title: Reductive leaching of cathodic active materials from lithium ion battery wastes
  publication-title: Hydrometallurgy
– volume: vol. 7
  start-page: 3257
  year: March 2003
  end-page: 3270
  ident: bb0185
  article-title: Electrochemical cell prognostics using online impedance measurements and model-based data fusion techniques
  publication-title: Aerospace Conference, 2003. Proceedings. 2003 IEEE
– start-page: 8
  year: 2008
  end-page: 11
  ident: bb0100
  article-title: Automotive battery management systems
  publication-title: Proceedings of 2008 IEEE AUTOTESTCON, Salt Lake City, UT
– volume: 53
  start-page: 811
  year: 2013
  end-page: 820
  ident: bb0075
  article-title: An ensemble model for predicting the remaining useful performance of lithium-ion batteries
  publication-title: Microelectron. Reliab.
– start-page: 176
  year: June 2000
  end-page: 183
  ident: bb0225
  article-title: Rao-Blackwellised particle filtering for dynamic Bayesian networks
  publication-title: Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence
– volume: 146
  start-page: 3543
  year: 1999
  end-page: 3553
  ident: bb0025
  article-title: Mathematical modeling of the lithium deposition overcharge reaction in lithium-ion batteries using carbon-based negative electrodes
  publication-title: J. Electrochem. Soc.
– volume: 196
  start-page: 5357
  year: 2011
  end-page: 5363
  ident: bb0050
  article-title: State-ofhealth monitoring of lithium-ion batteries in electric vehicles by on-board internal resistance estimation
  publication-title: J. Power Sources
– volume: 1
  year: 2008
  ident: bb0235
  article-title: Metrics for evaluating performance of prognostic techniques
  publication-title: Int. Conf. Prognostics Health Manag. (PHM08)
– volume: 52
  start-page: 2438
  year: 2012
  end-page: 2442
  ident: bb0045
  article-title: Remaining useful life prediction of lithium batteries in calendar ageing for automotive applications
  publication-title: Microelectron. Reliab.
– volume: 25
  start-page: 557
  year: 2014
  end-page: 572
  ident: bb0240
  article-title: Lithium-ion battery remaining useful life estimation based on fusion nonlinear degradation AR model and RPF algorithm
  publication-title: Neural Comput. & Applic.
– volume: 196
  start-page: 6007
  year: 2011
  end-page: 6014
  ident: bb0010
  article-title: A review on prognostics and health monitoring of li-ion battery
  publication-title: J. Power Sources
– year: 2003
  ident: bb0195
  article-title: Nonlinear Time Series: Nonparametric and Parametric Methods
– volume: 85
  start-page: 827
  year: 2017
  end-page: 848
  ident: bb0130
  article-title: Particle-filtering-based failure prognosis via sigma-points: application to lithium-ion battery state-of-charge monitoring
  publication-title: Mech. Syst. Signal Process.
– volume: 25
  start-page: 814
  year: 2012
  end-page: 823
  ident: bb0160
  article-title: A data-model-fusion prognostic framework for dynamic system state forecasting
  publication-title: Eng. Appl. Artif. Intell.
– volume: 65
  start-page: 265
  year: 2016
  end-page: 273
  ident: bb0180
  article-title: Lithium-ion batteries remaining useful life prediction based on a mixture of empirical mode decomposition and ARIMA model
  publication-title: Microelectron. Reliab.
– volume: 65
  start-page: 1282
  year: 2016
  end-page: 1291
  ident: bb0230
  article-title: Remaining useful life prediction of lithium-ion batteries based on spherical cubature particle filter
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 160
  start-page: 602
  year: 2006
  end-page: 608
  ident: bb0020
  article-title: Cycle-life testing of 100-Ah class lithium-ion battery in a simulated geosynchronous-Earth-orbit satellite operation
  publication-title: J. Power Sources
– volume: vol. 1
  start-page: 153
  year: March 1998
  end-page: 158
  ident: bb0005
  article-title: Satellite battery technology-a tutorial and overview
  publication-title: Aerospace Conference, 1998 IEEE
– volume: 21
  start-page: 243
  year: 1969
  end-page: 247
  ident: bb0200
  article-title: Fitting autoregressive models for prediction
  publication-title: Ann. Inst. Stat. Math.
– start-page: 709
  year: 1990
  end-page: 719
  ident: bb0215
  article-title: Improved estimators of Kullback-Leibler information for autoregressive model selection in small samples
  publication-title: Biometrika
– volume: 53
  start-page: 805
  year: 2013
  end-page: 810
  ident: bb0115
  article-title: Remaining useful life prediction of lithium-ion battery with unscented particle filter technique
  publication-title: Microelectron. Reliab.
– volume: 63
  start-page: 1804
  year: 2016
  end-page: 1812
  ident: bb0080
  article-title: Lebesgue-sampling-based diagnosis and prognosis for lithium-ion batteries
  publication-title: IEEE Trans. Ind. Electron.
– volume: 45
  start-page: 964
  year: 2013
  end-page: 980
  ident: bb0095
  article-title: A framework for predicting the remaining useful life of a single unit under time-varying operating conditions
  publication-title: IIE Trans.
– volume: 19
  start-page: 716
  year: 1974
  end-page: 723
  ident: bb0205
  article-title: A new look at the statistical model identification
  publication-title: IEEE Trans. Autom. Control
– year: 2010
  ident: bb0125
  article-title: Impact of Input Uncertainty on Failure Prognostic Algorithms: Extending the Remaining Useful Life of Nonlinear Systems
– volume: 63
  start-page: 143
  year: 2015
  end-page: 151
  ident: bb0145
  article-title: Lithium-ion battery remaining useful life estimation with an optimized Relevance Vector Machine algorithm with incremental learning
  publication-title: Measurement
– start-page: 1
  year: 2010
  end-page: 9
  ident: bb0155
  article-title: An adaptive recurrent neural network for remaining useful life prediction of lithium-ion batteries
  publication-title: Proceedings of Annual Conference of the Prognostics and Health Management Society
– volume: 196
  start-page: 10314
  year: 2011
  end-page: 10321
  ident: bb0165
  article-title: Prognostics of lithium-ion batteries based on Dempster–Shafer theory and the Bayesian Monte Carlo method
  publication-title: J. Power Sources
– start-page: 1
  year: 2009
  end-page: 10
  ident: bb0120
  article-title: Modeling li-ion battery capacity depletion in a particle filtering framework
  publication-title: Proceedings of Annual Conference of the Prognostics and Health Management Society 2009, San Diego, CA
– reference: Fault diagnosis and prognostic of solid oxide fuel cells.
– volume: 2
  start-page: 158
  year: 1984
  ident: 10.1016/j.microrel.2017.06.045_bb0210
  article-title: The modified Yule-Walker method of ARMA spectral estimation
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.1984.310437
– start-page: 1
  year: 2010
  ident: 10.1016/j.microrel.2017.06.045_bb0155
  article-title: An adaptive recurrent neural network for remaining useful life prediction of lithium-ion batteries
– volume: 196
  start-page: 6007
  issue: 15
  year: 2011
  ident: 10.1016/j.microrel.2017.06.045_bb0010
  article-title: A review on prognostics and health monitoring of li-ion battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.03.101
– volume: 53
  start-page: 811
  issue: 6
  year: 2013
  ident: 10.1016/j.microrel.2017.06.045_bb0075
  article-title: An ensemble model for predicting the remaining useful performance of lithium-ion batteries
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2012.12.003
– volume: 112
  start-page: 222
  issue: 1
  year: 2002
  ident: 10.1016/j.microrel.2017.06.045_bb0055
  article-title: Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(02)00363-4
– volume: 118
  start-page: 114
  year: 2014
  ident: 10.1016/j.microrel.2017.06.045_bb0090
  article-title: A naive Bayes model for robust remaining useful life prediction of lithium-ion battery
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.12.020
– volume: 63
  start-page: 143
  year: 2015
  ident: 10.1016/j.microrel.2017.06.045_bb0145
  article-title: Lithium-ion battery remaining useful life estimation with an optimized Relevance Vector Machine algorithm with incremental learning
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.11.031
– volume: Vol. 1
  year: 2009
  ident: 10.1016/j.microrel.2017.06.045_bb0015
– year: 2003
  ident: 10.1016/j.microrel.2017.06.045_bb0195
– volume: 239
  start-page: 253
  year: 2013
  ident: 10.1016/j.microrel.2017.06.045_bb0150
  article-title: Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.03.129
– volume: 65
  start-page: 265
  year: 2016
  ident: 10.1016/j.microrel.2017.06.045_bb0180
  article-title: Lithium-ion batteries remaining useful life prediction based on a mixture of empirical mode decomposition and ARIMA model
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2016.07.151
– volume: 50
  start-page: 317
  year: 2010
  ident: 10.1016/j.microrel.2017.06.045_bb0060
  article-title: A prognostics and health management roadmap for information and electronics-rich systems
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2010.01.006
– volume: 1
  issue: 17
  year: 2008
  ident: 10.1016/j.microrel.2017.06.045_bb0235
  article-title: Metrics for evaluating performance of prognostic techniques
  publication-title: Int. Conf. Prognostics Health Manag. (PHM08)
  doi: 10.1109/PHM.2008.4711436
– volume: 25
  start-page: 557
  issue: 3–4
  year: 2014
  ident: 10.1016/j.microrel.2017.06.045_bb0240
  article-title: Lithium-ion battery remaining useful life estimation based on fusion nonlinear degradation AR model and RPF algorithm
  publication-title: Neural Comput. & Applic.
  doi: 10.1007/s00521-013-1520-x
– volume: 261
  start-page: 141
  year: 2014
  ident: 10.1016/j.microrel.2017.06.045_bb0070
  article-title: Li-ion battery capacity estimation: a geometrical approach
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.03.058
– volume: 196
  start-page: 10314
  issue: 23
  year: 2011
  ident: 10.1016/j.microrel.2017.06.045_bb0165
  article-title: Prognostics of lithium-ion batteries based on Dempster–Shafer theory and the Bayesian Monte Carlo method
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.08.040
– volume: vol. 1
  start-page: 153
  year: 1998
  ident: 10.1016/j.microrel.2017.06.045_bb0005
  article-title: Satellite battery technology-a tutorial and overview
– volume: 94
  start-page: 590
  issue: 446
  year: 1999
  ident: 10.1016/j.microrel.2017.06.045_bb0220
  article-title: Filtering via simulation: auxiliary particle filters
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1999.10474153
– start-page: 1
  year: 2009
  ident: 10.1016/j.microrel.2017.06.045_bb0120
  article-title: Modeling li-ion battery capacity depletion in a particle filtering framework
– volume: 53
  start-page: 821
  issue: 6
  year: 2013
  ident: 10.1016/j.microrel.2017.06.045_bb0175
  article-title: An improved autoregressive model by particle swarm optimization for prognostics of lithium-ion batteries
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2013.01.006
– volume: 19
  start-page: 716
  year: 1974
  ident: 10.1016/j.microrel.2017.06.045_bb0205
  article-title: A new look at the statistical model identification
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.1974.1100705
– volume: 147
  start-page: 269
  issue: 1
  year: 2005
  ident: 10.1016/j.microrel.2017.06.045_bb0030
  article-title: Ageing mechanisms in lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.01.006
– ident: 10.1016/j.microrel.2017.06.045_bb0110
– start-page: 646
  year: 2007
  ident: 10.1016/j.microrel.2017.06.045_bb0170
  article-title: An integrated approach to battery health monitoring using Bayesian regression and state estimation
– volume: 239
  start-page: 680
  year: 2013
  ident: 10.1016/j.microrel.2017.06.045_bb0105
  article-title: Health diagnosis and remaining useful life prognostics of lithiumion batteries using data-driven methods
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.11.146
– start-page: 709
  year: 1990
  ident: 10.1016/j.microrel.2017.06.045_bb0215
  article-title: Improved estimators of Kullback-Leibler information for autoregressive model selection in small samples
  publication-title: Biometrika
– volume: 47
  start-page: 1849
  issue: 12
  year: 2007
  ident: 10.1016/j.microrel.2017.06.045_bb0040
  article-title: Prognostics implementation of electronics under vibration loading
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2007.02.015
– volume: 85
  start-page: 827
  year: 2017
  ident: 10.1016/j.microrel.2017.06.045_bb0130
  article-title: Particle-filtering-based failure prognosis via sigma-points: application to lithium-ion battery state-of-charge monitoring
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2016.08.029
– volume: 63
  start-page: 1804
  issue: 3
  year: 2016
  ident: 10.1016/j.microrel.2017.06.045_bb0080
  article-title: Lebesgue-sampling-based diagnosis and prognosis for lithium-ion batteries
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2015.2494529
– start-page: 8
  year: 2008
  ident: 10.1016/j.microrel.2017.06.045_bb0100
  article-title: Automotive battery management systems
– start-page: 176
  year: 2000
  ident: 10.1016/j.microrel.2017.06.045_bb0225
  article-title: Rao-Blackwellised particle filtering for dynamic Bayesian networks
– ident: 10.1016/j.microrel.2017.06.045_bb0085
– volume: 53
  start-page: 832
  issue: 6
  year: 2013
  ident: 10.1016/j.microrel.2017.06.045_bb0135
  article-title: Prognostics for state of health estimation of lithium-ion batteries based on combination gaussian process functional regression
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2013.03.010
– volume: 21
  start-page: 243
  issue: 1
  year: 1969
  ident: 10.1016/j.microrel.2017.06.045_bb0200
  article-title: Fitting autoregressive models for prediction
  publication-title: Ann. Inst. Stat. Math.
  doi: 10.1007/BF02532251
– volume: 160
  start-page: 602
  issue: 1
  year: 2006
  ident: 10.1016/j.microrel.2017.06.045_bb0020
  article-title: Cycle-life testing of 100-Ah class lithium-ion battery in a simulated geosynchronous-Earth-orbit satellite operation
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.01.052
– volume: 45
  start-page: 964
  issue: 9
  year: 2013
  ident: 10.1016/j.microrel.2017.06.045_bb0095
  article-title: A framework for predicting the remaining useful life of a single unit under time-varying operating conditions
  publication-title: IIE Trans.
  doi: 10.1080/0740817X.2012.705451
– volume: 146
  start-page: 3543
  issue: 10
  year: 1999
  ident: 10.1016/j.microrel.2017.06.045_bb0025
  article-title: Mathematical modeling of the lithium deposition overcharge reaction in lithium-ion batteries using carbon-based negative electrodes
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1392512
– volume: vol. 7
  start-page: 3257
  year: 2003
  ident: 10.1016/j.microrel.2017.06.045_bb0185
  article-title: Electrochemical cell prognostics using online impedance measurements and model-based data fusion techniques
– volume: 68
  start-page: 5
  issue: 1
  year: 2003
  ident: 10.1016/j.microrel.2017.06.045_bb0035
  article-title: Reductive leaching of cathodic active materials from lithium ion battery wastes
  publication-title: Hydrometallurgy
  doi: 10.1016/S0304-386X(02)00167-6
– volume: 196
  start-page: 5357
  year: 2011
  ident: 10.1016/j.microrel.2017.06.045_bb0050
  article-title: State-ofhealth monitoring of lithium-ion batteries in electric vehicles by on-board internal resistance estimation
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.08.035
– volume: 25
  start-page: 814
  issue: 4
  year: 2012
  ident: 10.1016/j.microrel.2017.06.045_bb0160
  article-title: A data-model-fusion prognostic framework for dynamic system state forecasting
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2012.02.015
– volume: 55
  start-page: 1035
  issue: 7
  year: 2015
  ident: 10.1016/j.microrel.2017.06.045_bb0140
  article-title: A new prognostics method for state of health estimation of lithium-ion batteries based on a mixture of Gaussian process models and particle filter
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2015.02.025
– volume: 25
  start-page: 557
  issue: 3–4
  year: 2014
  ident: 10.1016/j.microrel.2017.06.045_bb0190
  article-title: Lithium-ion battery remaining useful life estimation based on fusion nonlinear degradation AR model and RPF algorithm
  publication-title: Neural Comput. & Applic.
  doi: 10.1007/s00521-013-1520-x
– volume: 53
  start-page: 805
  issue: 6
  year: 2013
  ident: 10.1016/j.microrel.2017.06.045_bb0115
  article-title: Remaining useful life prediction of lithium-ion battery with unscented particle filter technique
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2012.12.004
– volume: 52
  start-page: 2438
  issue: 9
  year: 2012
  ident: 10.1016/j.microrel.2017.06.045_bb0045
  article-title: Remaining useful life prediction of lithium batteries in calendar ageing for automotive applications
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2012.06.085
– volume: 148
  start-page: A463
  year: 2001
  ident: 10.1016/j.microrel.2017.06.045_bb0065
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1362541
– volume: 65
  start-page: 1282
  issue: 6
  year: 2016
  ident: 10.1016/j.microrel.2017.06.045_bb0230
  article-title: Remaining useful life prediction of lithium-ion batteries based on spherical cubature particle filter
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2016.2534258
– year: 2010
  ident: 10.1016/j.microrel.2017.06.045_bb0125
SSID ssj0007011
Score 2.5442019
Snippet Electrical power system (EPS) is one of the most critical sub-systems of the spacecraft. Lithium-ion battery is the vital component is the EPS. Remaining...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 142
SubjectTerms Dynamic modeling
Hybrid approach
Lithium-ion battery
Remaining useful life
Satellite
Title Data-driven hybrid remaining useful life estimation approach for spacecraft lithium-ion battery
URI https://dx.doi.org/10.1016/j.microrel.2017.06.045
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KXvQgPvFZ9uB1bTbZR3IUtVTFniz0Fjb7wEhbS0wOvfjb3clDKwgeJLCQMANhMszOku_7BqFLqnyTKjgjzAq_JDwgcew4EYHKMn_G5aYGjz-NxWjCHqZ82kM3HRcGYJVt7W9qel2t2yeDNpqDZZ4DxzcUoaSMShh8E8G5nTEJWX718Q3zkAFtpuaFgoD1Gkv49WoOoLfCwi8IKmsdT6A1_bZBrW06w12003aL-Lp5oT3Us4t9tL2mIXiA0ltVKmIKqFr4ZQUELFzYeTP4AVfv1lUzPMudxaCn0RAVcackjn3Lin1N0b55VK70duVLXs0J2GS18ubqEE2Gd883I9JOTSA64rQkzlimWMa1dDr2xzstYydCHekgklFClQqUX6mjoRU6UlRKbQJpjUsSFSdGREdoY_G2sMcIaxEnOpAmA1k45v14bLSR_rIZC1l0gngXqlS3kuIw2WKWdtix17QLcQohTgFEx_gJGnz5LRtRjT89ku5LpD_SI_WV_w_f03_4nqEtuGsQf-dooywqe-G7kDLr12nWR5vX94-j8SdUTd7X
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEC2FcAAOiFVJ2PoAx8647V7sAwdEiCZkOSVSbk27F2WimSGaeBTNhZ_iB6nyAoOElAOKLPXB7rKs6lIt8qtXAO-FwyRVK8ll1LhUKuNlmRTXmatrrHFVaMHjxyd6fCa_nqvzDfg59MIQrLL3_Z1Pb711f2fUa3N0NZlQj2-ucyOkMDT4psh6ZOVhXN1g3Xb98WAPD_lDnu9_Of085v1oAe4LJRqeQpRO1sqb5Eusgbwpk8594bPCFJVwLnO4iiTyqH3hhDE-ZCaGVFWurIIu8L334L5Ed0FjE3Z__MGVmEx0Y_pyzenz1tqSL3dnhLJbRPrnIUxLHEp9VP-KiGtRbv8JPO7TU_ap08BT2IjzZ_BojbTwOdg91zgeFuQm2cWKOr7YIs66SRNseR3TcsqmkxQZEXh0nZFsoC5nmCMzdGIes1WXGtzXXEyWM0576pbqc_UCzu5Ely9hc_59HreAeV1WPjOhJh46iXKqDD4YvGItc1lsgxpUZX3PYU6jNKZ2AKtd2kHFllRsCbUn1TaMfstddSwet0pUw0nYv-zRYqi5RXbnP2TfwYPx6fGRPTo4OXwFD-lJBzd8DZvNYhnfYArU1G9bk2Pw7a5t_BdBAhtg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+hybrid+remaining+useful+life+estimation+approach+for+spacecraft+lithium-ion+battery&rft.jtitle=Microelectronics+and+reliability&rft.au=Song%2C+Yuchen&rft.au=Liu%2C+Datong&rft.au=Yang%2C+Chen&rft.au=Peng%2C+Yu&rft.date=2017-08-01&rft.issn=0026-2714&rft.volume=75&rft.spage=142&rft.epage=153&rft_id=info:doi/10.1016%2Fj.microrel.2017.06.045&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_microrel_2017_06_045
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-2714&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-2714&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-2714&client=summon