Data-driven hybrid remaining useful life estimation approach for spacecraft lithium-ion battery
Electrical power system (EPS) is one of the most critical sub-systems of the spacecraft. Lithium-ion battery is the vital component is the EPS. Remaining useful life (RUL) prediction is an effective mean to evaluate the battery reliability. Autoregressive model (AR) and particle filter (PF) are two...
Saved in:
Published in | Microelectronics and reliability Vol. 75; pp. 142 - 153 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.08.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electrical power system (EPS) is one of the most critical sub-systems of the spacecraft. Lithium-ion battery is the vital component is the EPS. Remaining useful life (RUL) prediction is an effective mean to evaluate the battery reliability. Autoregressive model (AR) and particle filter (PF) are two traditional approaches in battery prognosis. However, the parameters in a trained AR model cannot be updated which will cause the under-fitting in the long term prediction and further decrease the RUL prediction accuracy. On the other hand, the measurement function in the PF algorithm cannot be obtained in the long term prediction process. To address these two challenges, a hybrid method of IND-AR model and PF algorithm are proposed in this work. Compared with basic AR model, a nonlinear degradation factor and an iterative parameter updating method are utilized to improve the long term prediction performance. The capacity prediction results are applied as the measurement function for the PF algorithm. The nonlinear degradation factor can make the linear AR model suitable for nonlinear degradation estimation. And once the capacity is predicted, the state-space model in the PF is activated to obtain an optimized result. Optimized capacity prediction result of each cycle is utilized to re-train the regression model and update the parameters. The predictor keeps working iteratively until the capacity hit the failure threshold to calculate the RUL value. The uncertainty involved in the RUL prediction result is presented by PF algorithm as well. Experiments are conducted based on commercial lithium-ion batteries and real-applied satellite lithium-ion batteries. The results have high accuracy in capacity fade prediction and RUL prediction of the proposed method. The real applied lithium-ion battery can meet the requirement of spacecraft. All the experiments results show great potential of the proposed framework.
•IND-AR model and empirical model are fused via state-space model in RPF.•Iterative updating is used to improve the prediction capability of ND-AR.•The proposed method is used in real applied satellite battery RUL prediction. |
---|---|
AbstractList | Electrical power system (EPS) is one of the most critical sub-systems of the spacecraft. Lithium-ion battery is the vital component is the EPS. Remaining useful life (RUL) prediction is an effective mean to evaluate the battery reliability. Autoregressive model (AR) and particle filter (PF) are two traditional approaches in battery prognosis. However, the parameters in a trained AR model cannot be updated which will cause the under-fitting in the long term prediction and further decrease the RUL prediction accuracy. On the other hand, the measurement function in the PF algorithm cannot be obtained in the long term prediction process. To address these two challenges, a hybrid method of IND-AR model and PF algorithm are proposed in this work. Compared with basic AR model, a nonlinear degradation factor and an iterative parameter updating method are utilized to improve the long term prediction performance. The capacity prediction results are applied as the measurement function for the PF algorithm. The nonlinear degradation factor can make the linear AR model suitable for nonlinear degradation estimation. And once the capacity is predicted, the state-space model in the PF is activated to obtain an optimized result. Optimized capacity prediction result of each cycle is utilized to re-train the regression model and update the parameters. The predictor keeps working iteratively until the capacity hit the failure threshold to calculate the RUL value. The uncertainty involved in the RUL prediction result is presented by PF algorithm as well. Experiments are conducted based on commercial lithium-ion batteries and real-applied satellite lithium-ion batteries. The results have high accuracy in capacity fade prediction and RUL prediction of the proposed method. The real applied lithium-ion battery can meet the requirement of spacecraft. All the experiments results show great potential of the proposed framework.
•IND-AR model and empirical model are fused via state-space model in RPF.•Iterative updating is used to improve the prediction capability of ND-AR.•The proposed method is used in real applied satellite battery RUL prediction. |
Author | Song, Yuchen Liu, Datong Yang, Chen Peng, Yu |
Author_xml | – sequence: 1 givenname: Yuchen surname: Song fullname: Song, Yuchen organization: Department of Automatic test and control, Harbin Institute of Technology, Harbin 150080, China – sequence: 2 givenname: Datong surname: Liu fullname: Liu, Datong email: liudatong@hit.edu.cn organization: Department of Automatic test and control, Harbin Institute of Technology, Harbin 150080, China – sequence: 3 givenname: Chen surname: Yang fullname: Yang, Chen organization: Shanghai Institute of Space Power, Shanghai 200233, China – sequence: 4 givenname: Yu surname: Peng fullname: Peng, Yu organization: Department of Automatic test and control, Harbin Institute of Technology, Harbin 150080, China |
BookMark | eNqFkE1LAzEQhoNUsK3-Bckf2DWzu012wYNSP6HgRcFbmGYnNmU_SpIW-u_dWr146WXm8j4vM8-Ejbq-I8auQaQgQN6s09YZ33tq0kyASoVMRTE7Y2MoVZZUBXyO2FiITCaZguKCTUJYCyGUABgz_YARk9q7HXV8tV96V3NPLbrOdV98G8huG944S5xCdC1G13ccNxvfo1lx23seNmjIeLRxyMWV27bJIbPEGMnvL9m5xSbQ1e-eso-nx_f5S7J4e36d3y8Sk88gJramAovlzChrygzAqNLKzORG5CqvAFHgMMFCRtLkCEqZWiiqbVVhWdUyn7LbY-9gIgRPVhsXf66NHl2jQeiDLL3Wf7L0QZYWUg-yBlz-wzd--NbvT4N3R5CG53aOvA7GUWeodp5M1HXvTlV8A3sWjes |
CitedBy_id | crossref_primary_10_1016_j_pnsc_2023_02_001 crossref_primary_10_1109_ACCESS_2021_3079301 crossref_primary_10_3390_batteries7010020 crossref_primary_10_1016_j_knosys_2020_106555 crossref_primary_10_3390_en14165000 crossref_primary_10_1109_ACCESS_2018_2854224 crossref_primary_10_3233_JIFS_169551 crossref_primary_10_1016_j_jpowsour_2018_08_064 crossref_primary_10_1016_j_jpowsour_2022_231026 crossref_primary_10_1016_j_est_2023_106790 crossref_primary_10_1016_j_cie_2020_106600 crossref_primary_10_1016_j_microrel_2018_06_025 crossref_primary_10_1016_j_ssi_2023_116260 crossref_primary_10_1016_j_asr_2022_11_028 crossref_primary_10_1016_j_jpowsour_2018_11_072 crossref_primary_10_1016_j_egyr_2022_09_211 crossref_primary_10_1007_s00500_019_04343_2 crossref_primary_10_1016_j_egyr_2021_05_019 crossref_primary_10_1109_ACCESS_2019_2914221 crossref_primary_10_3390_electronics7050072 crossref_primary_10_1016_j_egyr_2022_08_095 crossref_primary_10_1109_ACCESS_2021_3116264 crossref_primary_10_1016_j_energy_2022_123366 crossref_primary_10_1109_TR_2019_2930195 crossref_primary_10_1016_j_est_2024_110780 crossref_primary_10_1109_ACCESS_2020_3005229 crossref_primary_10_3233_JIFS_169545 crossref_primary_10_3233_JIFS_169547 crossref_primary_10_3390_en13092380 crossref_primary_10_1109_ACCESS_2022_3151975 crossref_primary_10_1016_j_cam_2018_07_008 crossref_primary_10_1016_j_energy_2023_129681 crossref_primary_10_1016_j_jclepro_2019_119409 crossref_primary_10_1016_j_jpowsour_2020_229327 crossref_primary_10_1109_ACCESS_2023_3293726 crossref_primary_10_17531_ein_2021_1_18 crossref_primary_10_1016_j_segan_2022_100603 crossref_primary_10_1016_j_joule_2019_11_018 crossref_primary_10_1016_j_measurement_2021_109057 crossref_primary_10_1016_j_ijepes_2019_02_046 crossref_primary_10_3390_en13051085 crossref_primary_10_3233_JIFS_169531 crossref_primary_10_1016_j_measurement_2020_107904 crossref_primary_10_2139_ssrn_4191819 crossref_primary_10_1007_s40747_024_01773_w crossref_primary_10_1109_ACCESS_2017_2759094 crossref_primary_10_3390_en10111687 crossref_primary_10_1007_s40747_021_00639_9 crossref_primary_10_1109_TVT_2018_2864688 crossref_primary_10_1016_j_energy_2024_134229 crossref_primary_10_1109_ACCESS_2019_2930680 crossref_primary_10_1016_j_heliyon_2024_e35925 crossref_primary_10_1016_j_rser_2021_111408 crossref_primary_10_1108_IJICC_09_2020_0131 crossref_primary_10_3233_JIFS_169521 crossref_primary_10_1109_ACCESS_2022_3170438 crossref_primary_10_1016_j_est_2021_103487 crossref_primary_10_1109_JAS_2023_123024 crossref_primary_10_1016_j_microrel_2020_113857 crossref_primary_10_1109_ACCESS_2019_2937550 crossref_primary_10_1177_0142331220961576 crossref_primary_10_28948_ngumuh_1112985 crossref_primary_10_1016_j_est_2022_106193 crossref_primary_10_20964_2018_10_51 crossref_primary_10_1016_j_microrel_2018_01_010 crossref_primary_10_1109_TTE_2022_3209629 crossref_primary_10_1109_ACCESS_2020_2977429 crossref_primary_10_1088_1742_6596_2258_1_012042 crossref_primary_10_1007_s00521_019_04631_w crossref_primary_10_1016_j_est_2022_105952 crossref_primary_10_1016_j_apenergy_2019_114408 crossref_primary_10_1177_1748006X19871753 crossref_primary_10_1007_s00170_025_15169_8 crossref_primary_10_2139_ssrn_3997554 crossref_primary_10_1155_etep_2242749 crossref_primary_10_1016_j_microrel_2018_03_031 crossref_primary_10_1016_j_microrel_2018_05_019 crossref_primary_10_1039_D4SE01238K crossref_primary_10_1016_j_microrel_2018_03_032 crossref_primary_10_1109_TIE_2020_2973876 crossref_primary_10_1155_2022_1575303 crossref_primary_10_3390_en12122247 crossref_primary_10_1109_TIE_2018_2808918 crossref_primary_10_3390_su15021602 crossref_primary_10_1016_j_energy_2023_128956 crossref_primary_10_3390_app8112078 crossref_primary_10_3389_fenrg_2022_973487 crossref_primary_10_1109_JSEN_2024_3470231 crossref_primary_10_1109_ACCESS_2018_2858856 crossref_primary_10_3390_s20175000 crossref_primary_10_1016_j_est_2022_104869 crossref_primary_10_1088_1742_6596_2301_1_012015 crossref_primary_10_1109_TIM_2022_3142757 crossref_primary_10_1016_j_est_2021_103115 crossref_primary_10_1016_j_energy_2022_124538 crossref_primary_10_3389_fmtec_2022_886518 crossref_primary_10_3390_aerospace10040356 crossref_primary_10_1109_JSEN_2023_3330123 crossref_primary_10_3390_pr9122174 crossref_primary_10_3390_batteries8020019 crossref_primary_10_3390_s19061472 crossref_primary_10_1016_j_est_2022_106571 crossref_primary_10_1016_j_jclepro_2018_06_182 crossref_primary_10_1109_ACCESS_2019_2947294 crossref_primary_10_1002_adts_202000109 crossref_primary_10_1016_j_microrel_2018_03_002 crossref_primary_10_3389_fmech_2021_719718 crossref_primary_10_1039_D2TA07148G crossref_primary_10_1109_TMECH_2023_3244282 crossref_primary_10_1109_TNNLS_2021_3128514 crossref_primary_10_1016_j_jechem_2023_03_026 crossref_primary_10_1002_est2_611 crossref_primary_10_1002_tee_23287 crossref_primary_10_1007_s12065_022_00805_z crossref_primary_10_1016_j_apenergy_2019_113818 crossref_primary_10_1016_j_apenergy_2020_116167 crossref_primary_10_3390_wevj14060145 crossref_primary_10_1016_j_heliyon_2024_e39121 crossref_primary_10_1038_s41598_024_52151_y crossref_primary_10_1115_1_4051802 crossref_primary_10_1016_j_conengprac_2021_104969 crossref_primary_10_3390_en11061420 crossref_primary_10_1109_TR_2019_2896230 crossref_primary_10_1016_j_measurement_2021_110502 crossref_primary_10_3389_fenrg_2022_1058999 crossref_primary_10_1109_ACCESS_2021_3089032 crossref_primary_10_1016_j_microrel_2018_01_017 crossref_primary_10_1016_j_microrel_2021_114071 crossref_primary_10_1109_TIE_2020_3045745 crossref_primary_10_3389_fenrg_2023_1059701 crossref_primary_10_3390_electronics9091537 crossref_primary_10_1016_j_est_2018_12_011 crossref_primary_10_1007_s10845_023_02192_3 crossref_primary_10_1016_j_asoc_2020_106474 crossref_primary_10_1109_ACCESS_2017_2754447 |
Cites_doi | 10.1109/TAES.1984.310437 10.1016/j.jpowsour.2011.03.101 10.1016/j.microrel.2012.12.003 10.1016/S0378-7753(02)00363-4 10.1016/j.apenergy.2013.12.020 10.1016/j.measurement.2014.11.031 10.1016/j.jpowsour.2013.03.129 10.1016/j.microrel.2016.07.151 10.1016/j.microrel.2010.01.006 10.1109/PHM.2008.4711436 10.1007/s00521-013-1520-x 10.1016/j.jpowsour.2014.03.058 10.1016/j.jpowsour.2011.08.040 10.1080/01621459.1999.10474153 10.1016/j.microrel.2013.01.006 10.1109/TAC.1974.1100705 10.1016/j.jpowsour.2005.01.006 10.1016/j.jpowsour.2012.11.146 10.1016/j.microrel.2007.02.015 10.1016/j.ymssp.2016.08.029 10.1109/TIE.2015.2494529 10.1016/j.microrel.2013.03.010 10.1007/BF02532251 10.1016/j.jpowsour.2006.01.052 10.1080/0740817X.2012.705451 10.1149/1.1392512 10.1016/S0304-386X(02)00167-6 10.1016/j.jpowsour.2010.08.035 10.1016/j.engappai.2012.02.015 10.1016/j.microrel.2015.02.025 10.1016/j.microrel.2012.12.004 10.1016/j.microrel.2012.06.085 10.1149/1.1362541 10.1109/TIM.2016.2534258 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd |
Copyright_xml | – notice: 2017 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.microrel.2017.06.045 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-941X |
EndPage | 153 |
ExternalDocumentID | 10_1016_j_microrel_2017_06_045 S0026271417302330 |
GroupedDBID | --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 29M 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ RXW SDF SDG SES SET SEW SPC SPCBC SPD SSM SST SSV SSZ T5K T9H TAE UHS UNMZH WUQ XOL ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c351t-fde4a4b5c7fc8211c78f62c3c037391aa0a91a1f12e6c3a177cd07edf99a89d63 |
IEDL.DBID | .~1 |
ISSN | 0026-2714 |
IngestDate | Tue Jul 01 01:27:25 EDT 2025 Thu Apr 24 22:56:17 EDT 2025 Fri Feb 23 02:18:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lithium-ion battery Satellite Hybrid approach Remaining useful life Dynamic modeling |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-fde4a4b5c7fc8211c78f62c3c037391aa0a91a1f12e6c3a177cd07edf99a89d63 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1016_j_microrel_2017_06_045 crossref_primary_10_1016_j_microrel_2017_06_045 elsevier_sciencedirect_doi_10_1016_j_microrel_2017_06_045 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-08-01 |
PublicationDateYYYYMMDD | 2017-08-01 |
PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Microelectronics and reliability |
PublicationYear | 2017 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Nuhic, Terzimehic, Soczka-Guth, Buchholz, Dietmayer (bb0105) 2013; 239 Saha, Poll, Goebel, Christophersen (bb0170) September 2007 Online estimation of lithium-ion battery capacity using sparse Bayesian learning. Kozlowski (bb0185) March 2003; vol. 7 Hill (bb0005) March 1998; vol. 1 Lu, Tao, Fan (bb0070) 2014; 261 Friedlander, Porat (bb0210) 1984; 2 Eddahech, Briat, Woirgard, Vinassa (bb0045) 2012; 52 Shim, Kostecki, Richardson, Song, Striebel (bb0055) 2002; 112 Doucet, De Freitas, Murphy, Russell (bb0225) June 2000 Liu, Luo, Liu, Peng, Guo, Pecht (bb0240) 2014; 25 Li, Xu (bb0140) 2015; 55 Acuña, Orchard (bb0130) 2017; 85 Yoshio, Brodd, Kozawa (bb0015) 2009; Vol. 1 Edwards, Orchard, Tang, Goebel, Vachtsevanos (bb0125) 2010 Zhang, Ross, Kostecki (bb0065) 2001; 148 Vetter, Novák, Wagner (bb0030) 2005; 147 Saha, Goebel (bb0120) 2009 Liu, Luo, Liu, Peng, Guo, Pecht (bb0190) 2014; 25 Wang, Miao, Pecht (bb0150) 2013; 239 Zhou, Huang (bb0180) 2016; 65 Xing, Ma, Tsui, Pecht (bb0075) 2013; 53 Pattipati, Pattipati, Christopherson, Namburu, Prokhorov, Qiao (bb0100) 2008 Liu, Pang, Zhou, Peng, Pecht (bb0135) 2013; 53 Saxena, Celaya, Balaban, Saha, Saha, Goebel (bb0235) 2008; 1 Liu, Wang, Ma, Yang, Yang (bb0160) 2012; 25 Yan, Zhang, Wang, Dou, Wang (bb0080) 2016; 63 Hurvich, Shumway, Tsai (bb0215) 1990 Liu, Zhou, Pan, Peng, Peng (bb0145) 2015; 63 Liu, Saxena, Goebel, Saha, Wang (bb0155) 2010 Akaike (bb0200) 1969; 21 Wang, Yang, Tsui (bb0230) 2016; 65 Long, Xian, Jiang, Liu (bb0175) 2013; 53 Wang, Sone, Naito, Yamada, Segami, Kibe (bb0020) 2006; 160 Pecht, Jaai (bb0060) 2010; 50 Akaike (bb0205) 1974; 19 Lee, Rhee (bb0035) 2003; 68 Miao, Xie, Cui, Liang, Pecht (bb0115) 2013; 53 Fan, Yao (bb0195) 2003 Pitt, Shephard (bb0220) 1999; 94 Remmlinger, Buchholz, Meiler, Bernreuter, Dietmayer (bb0050) 2011; 196 He, Williard, Osterman, Pecht (bb0165) 2011; 196 Zhang, Lee (bb0010) 2011; 196 Arora, Doyle, White (bb0025) 1999; 146 Gu, Barker, Pecht (bb0040) 2007; 47 Liao, Tian (bb0095) 2013; 45 Fault diagnosis and prognostic of solid oxide fuel cells. Ng, Xing, Tsui (bb0090) 2014; 118 Wang (10.1016/j.microrel.2017.06.045_bb0230) 2016; 65 Nuhic (10.1016/j.microrel.2017.06.045_bb0105) 2013; 239 Kozlowski (10.1016/j.microrel.2017.06.045_bb0185) 2003; vol. 7 Liu (10.1016/j.microrel.2017.06.045_bb0240) 2014; 25 Arora (10.1016/j.microrel.2017.06.045_bb0025) 1999; 146 10.1016/j.microrel.2017.06.045_bb0085 Liu (10.1016/j.microrel.2017.06.045_bb0145) 2015; 63 Zhang (10.1016/j.microrel.2017.06.045_bb0010) 2011; 196 Fan (10.1016/j.microrel.2017.06.045_bb0195) 2003 Eddahech (10.1016/j.microrel.2017.06.045_bb0045) 2012; 52 Xing (10.1016/j.microrel.2017.06.045_bb0075) 2013; 53 Yan (10.1016/j.microrel.2017.06.045_bb0080) 2016; 63 Shim (10.1016/j.microrel.2017.06.045_bb0055) 2002; 112 Akaike (10.1016/j.microrel.2017.06.045_bb0205) 1974; 19 Friedlander (10.1016/j.microrel.2017.06.045_bb0210) 1984; 2 Remmlinger (10.1016/j.microrel.2017.06.045_bb0050) 2011; 196 Li (10.1016/j.microrel.2017.06.045_bb0140) 2015; 55 Akaike (10.1016/j.microrel.2017.06.045_bb0200) 1969; 21 Edwards (10.1016/j.microrel.2017.06.045_bb0125) 2010 Long (10.1016/j.microrel.2017.06.045_bb0175) 2013; 53 Gu (10.1016/j.microrel.2017.06.045_bb0040) 2007; 47 Ng (10.1016/j.microrel.2017.06.045_bb0090) 2014; 118 Miao (10.1016/j.microrel.2017.06.045_bb0115) 2013; 53 Liu (10.1016/j.microrel.2017.06.045_bb0190) 2014; 25 Wang (10.1016/j.microrel.2017.06.045_bb0020) 2006; 160 Lee (10.1016/j.microrel.2017.06.045_bb0035) 2003; 68 Saxena (10.1016/j.microrel.2017.06.045_bb0235) 2008; 1 Lu (10.1016/j.microrel.2017.06.045_bb0070) 2014; 261 Hill (10.1016/j.microrel.2017.06.045_bb0005) 1998; vol. 1 Pattipati (10.1016/j.microrel.2017.06.045_bb0100) 2008 10.1016/j.microrel.2017.06.045_bb0110 Liao (10.1016/j.microrel.2017.06.045_bb0095) 2013; 45 Wang (10.1016/j.microrel.2017.06.045_bb0150) 2013; 239 Doucet (10.1016/j.microrel.2017.06.045_bb0225) 2000 Vetter (10.1016/j.microrel.2017.06.045_bb0030) 2005; 147 Acuña (10.1016/j.microrel.2017.06.045_bb0130) 2017; 85 Liu (10.1016/j.microrel.2017.06.045_bb0160) 2012; 25 Yoshio (10.1016/j.microrel.2017.06.045_bb0015) 2009; Vol. 1 Liu (10.1016/j.microrel.2017.06.045_bb0135) 2013; 53 Pecht (10.1016/j.microrel.2017.06.045_bb0060) 2010; 50 Zhang (10.1016/j.microrel.2017.06.045_bb0065) 2001; 148 Zhou (10.1016/j.microrel.2017.06.045_bb0180) 2016; 65 Pitt (10.1016/j.microrel.2017.06.045_bb0220) 1999; 94 He (10.1016/j.microrel.2017.06.045_bb0165) 2011; 196 Saha (10.1016/j.microrel.2017.06.045_bb0120) 2009 Liu (10.1016/j.microrel.2017.06.045_bb0155) 2010 Hurvich (10.1016/j.microrel.2017.06.045_bb0215) 1990 Saha (10.1016/j.microrel.2017.06.045_bb0170) 2007 |
References_xml | – volume: 239 start-page: 680 year: 2013 end-page: 688 ident: bb0105 article-title: Health diagnosis and remaining useful life prognostics of lithiumion batteries using data-driven methods publication-title: J. Power Sources – volume: 53 start-page: 832 year: 2013 end-page: 839 ident: bb0135 article-title: Prognostics for state of health estimation of lithium-ion batteries based on combination gaussian process functional regression publication-title: Microelectron. Reliab. – volume: 50 start-page: 317 year: 2010 end-page: 323 ident: bb0060 article-title: A prognostics and health management roadmap for information and electronics-rich systems publication-title: Microelectron. Reliab. – volume: 25 start-page: 557 year: 2014 end-page: 572 ident: bb0190 article-title: Lithium-ion battery remaining useful life estimation based on fusion nonlinear degradation AR model and RPF algorithm publication-title: Neural Comput. & Applic. – volume: 118 start-page: 114 year: 2014 end-page: 123 ident: bb0090 article-title: A naive Bayes model for robust remaining useful life prediction of lithium-ion battery publication-title: Appl. Energy – start-page: 646 year: September 2007 end-page: 653 ident: bb0170 article-title: An integrated approach to battery health monitoring using Bayesian regression and state estimation publication-title: 2007 IEEE Autotestcon – volume: Vol. 1 year: 2009 ident: bb0015 article-title: Lithium-ion batteries – volume: 55 start-page: 1035 year: 2015 end-page: 1045 ident: bb0140 article-title: A new prognostics method for state of health estimation of lithium-ion batteries based on a mixture of Gaussian process models and particle filter publication-title: Microelectron. Reliab. – volume: 53 start-page: 821 year: 2013 end-page: 831 ident: bb0175 article-title: An improved autoregressive model by particle swarm optimization for prognostics of lithium-ion batteries publication-title: Microelectron. Reliab. – reference: Online estimation of lithium-ion battery capacity using sparse Bayesian learning. – volume: 148 start-page: A463 year: 2001 ident: bb0065 publication-title: J. Electrochem. Soc. – volume: 47 start-page: 1849 year: 2007 end-page: 1856 ident: bb0040 article-title: Prognostics implementation of electronics under vibration loading publication-title: Microelectron. Reliab. – volume: 147 start-page: 269 year: 2005 end-page: 281 ident: bb0030 article-title: Ageing mechanisms in lithium-ion batteries publication-title: J. Power Sources – volume: 261 start-page: 141 year: 2014 end-page: 147 ident: bb0070 article-title: Li-ion battery capacity estimation: a geometrical approach publication-title: J. Power Sources – volume: 239 start-page: 253 year: 2013 end-page: 264 ident: bb0150 article-title: Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model publication-title: J. Power Sources – volume: 112 start-page: 222 year: 2002 end-page: 230 ident: bb0055 article-title: Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature publication-title: J. Power Sources – volume: 94 start-page: 590 year: 1999 end-page: 599 ident: bb0220 article-title: Filtering via simulation: auxiliary particle filters publication-title: J. Am. Stat. Assoc. – volume: 2 start-page: 158 year: 1984 end-page: 173 ident: bb0210 article-title: The modified Yule-Walker method of ARMA spectral estimation publication-title: IEEE Trans. Aerosp. Electron. Syst. – volume: 68 start-page: 5 year: 2003 end-page: 10 ident: bb0035 article-title: Reductive leaching of cathodic active materials from lithium ion battery wastes publication-title: Hydrometallurgy – volume: vol. 7 start-page: 3257 year: March 2003 end-page: 3270 ident: bb0185 article-title: Electrochemical cell prognostics using online impedance measurements and model-based data fusion techniques publication-title: Aerospace Conference, 2003. Proceedings. 2003 IEEE – start-page: 8 year: 2008 end-page: 11 ident: bb0100 article-title: Automotive battery management systems publication-title: Proceedings of 2008 IEEE AUTOTESTCON, Salt Lake City, UT – volume: 53 start-page: 811 year: 2013 end-page: 820 ident: bb0075 article-title: An ensemble model for predicting the remaining useful performance of lithium-ion batteries publication-title: Microelectron. Reliab. – start-page: 176 year: June 2000 end-page: 183 ident: bb0225 article-title: Rao-Blackwellised particle filtering for dynamic Bayesian networks publication-title: Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence – volume: 146 start-page: 3543 year: 1999 end-page: 3553 ident: bb0025 article-title: Mathematical modeling of the lithium deposition overcharge reaction in lithium-ion batteries using carbon-based negative electrodes publication-title: J. Electrochem. Soc. – volume: 196 start-page: 5357 year: 2011 end-page: 5363 ident: bb0050 article-title: State-ofhealth monitoring of lithium-ion batteries in electric vehicles by on-board internal resistance estimation publication-title: J. Power Sources – volume: 1 year: 2008 ident: bb0235 article-title: Metrics for evaluating performance of prognostic techniques publication-title: Int. Conf. Prognostics Health Manag. (PHM08) – volume: 52 start-page: 2438 year: 2012 end-page: 2442 ident: bb0045 article-title: Remaining useful life prediction of lithium batteries in calendar ageing for automotive applications publication-title: Microelectron. Reliab. – volume: 25 start-page: 557 year: 2014 end-page: 572 ident: bb0240 article-title: Lithium-ion battery remaining useful life estimation based on fusion nonlinear degradation AR model and RPF algorithm publication-title: Neural Comput. & Applic. – volume: 196 start-page: 6007 year: 2011 end-page: 6014 ident: bb0010 article-title: A review on prognostics and health monitoring of li-ion battery publication-title: J. Power Sources – year: 2003 ident: bb0195 article-title: Nonlinear Time Series: Nonparametric and Parametric Methods – volume: 85 start-page: 827 year: 2017 end-page: 848 ident: bb0130 article-title: Particle-filtering-based failure prognosis via sigma-points: application to lithium-ion battery state-of-charge monitoring publication-title: Mech. Syst. Signal Process. – volume: 25 start-page: 814 year: 2012 end-page: 823 ident: bb0160 article-title: A data-model-fusion prognostic framework for dynamic system state forecasting publication-title: Eng. Appl. Artif. Intell. – volume: 65 start-page: 265 year: 2016 end-page: 273 ident: bb0180 article-title: Lithium-ion batteries remaining useful life prediction based on a mixture of empirical mode decomposition and ARIMA model publication-title: Microelectron. Reliab. – volume: 65 start-page: 1282 year: 2016 end-page: 1291 ident: bb0230 article-title: Remaining useful life prediction of lithium-ion batteries based on spherical cubature particle filter publication-title: IEEE Trans. Instrum. Meas. – volume: 160 start-page: 602 year: 2006 end-page: 608 ident: bb0020 article-title: Cycle-life testing of 100-Ah class lithium-ion battery in a simulated geosynchronous-Earth-orbit satellite operation publication-title: J. Power Sources – volume: vol. 1 start-page: 153 year: March 1998 end-page: 158 ident: bb0005 article-title: Satellite battery technology-a tutorial and overview publication-title: Aerospace Conference, 1998 IEEE – volume: 21 start-page: 243 year: 1969 end-page: 247 ident: bb0200 article-title: Fitting autoregressive models for prediction publication-title: Ann. Inst. Stat. Math. – start-page: 709 year: 1990 end-page: 719 ident: bb0215 article-title: Improved estimators of Kullback-Leibler information for autoregressive model selection in small samples publication-title: Biometrika – volume: 53 start-page: 805 year: 2013 end-page: 810 ident: bb0115 article-title: Remaining useful life prediction of lithium-ion battery with unscented particle filter technique publication-title: Microelectron. Reliab. – volume: 63 start-page: 1804 year: 2016 end-page: 1812 ident: bb0080 article-title: Lebesgue-sampling-based diagnosis and prognosis for lithium-ion batteries publication-title: IEEE Trans. Ind. Electron. – volume: 45 start-page: 964 year: 2013 end-page: 980 ident: bb0095 article-title: A framework for predicting the remaining useful life of a single unit under time-varying operating conditions publication-title: IIE Trans. – volume: 19 start-page: 716 year: 1974 end-page: 723 ident: bb0205 article-title: A new look at the statistical model identification publication-title: IEEE Trans. Autom. Control – year: 2010 ident: bb0125 article-title: Impact of Input Uncertainty on Failure Prognostic Algorithms: Extending the Remaining Useful Life of Nonlinear Systems – volume: 63 start-page: 143 year: 2015 end-page: 151 ident: bb0145 article-title: Lithium-ion battery remaining useful life estimation with an optimized Relevance Vector Machine algorithm with incremental learning publication-title: Measurement – start-page: 1 year: 2010 end-page: 9 ident: bb0155 article-title: An adaptive recurrent neural network for remaining useful life prediction of lithium-ion batteries publication-title: Proceedings of Annual Conference of the Prognostics and Health Management Society – volume: 196 start-page: 10314 year: 2011 end-page: 10321 ident: bb0165 article-title: Prognostics of lithium-ion batteries based on Dempster–Shafer theory and the Bayesian Monte Carlo method publication-title: J. Power Sources – start-page: 1 year: 2009 end-page: 10 ident: bb0120 article-title: Modeling li-ion battery capacity depletion in a particle filtering framework publication-title: Proceedings of Annual Conference of the Prognostics and Health Management Society 2009, San Diego, CA – reference: Fault diagnosis and prognostic of solid oxide fuel cells. – volume: 2 start-page: 158 year: 1984 ident: 10.1016/j.microrel.2017.06.045_bb0210 article-title: The modified Yule-Walker method of ARMA spectral estimation publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.1984.310437 – start-page: 1 year: 2010 ident: 10.1016/j.microrel.2017.06.045_bb0155 article-title: An adaptive recurrent neural network for remaining useful life prediction of lithium-ion batteries – volume: 196 start-page: 6007 issue: 15 year: 2011 ident: 10.1016/j.microrel.2017.06.045_bb0010 article-title: A review on prognostics and health monitoring of li-ion battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2011.03.101 – volume: 53 start-page: 811 issue: 6 year: 2013 ident: 10.1016/j.microrel.2017.06.045_bb0075 article-title: An ensemble model for predicting the remaining useful performance of lithium-ion batteries publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2012.12.003 – volume: 112 start-page: 222 issue: 1 year: 2002 ident: 10.1016/j.microrel.2017.06.045_bb0055 article-title: Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature publication-title: J. Power Sources doi: 10.1016/S0378-7753(02)00363-4 – volume: 118 start-page: 114 year: 2014 ident: 10.1016/j.microrel.2017.06.045_bb0090 article-title: A naive Bayes model for robust remaining useful life prediction of lithium-ion battery publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.12.020 – volume: 63 start-page: 143 year: 2015 ident: 10.1016/j.microrel.2017.06.045_bb0145 article-title: Lithium-ion battery remaining useful life estimation with an optimized Relevance Vector Machine algorithm with incremental learning publication-title: Measurement doi: 10.1016/j.measurement.2014.11.031 – volume: Vol. 1 year: 2009 ident: 10.1016/j.microrel.2017.06.045_bb0015 – year: 2003 ident: 10.1016/j.microrel.2017.06.045_bb0195 – volume: 239 start-page: 253 year: 2013 ident: 10.1016/j.microrel.2017.06.045_bb0150 article-title: Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.03.129 – volume: 65 start-page: 265 year: 2016 ident: 10.1016/j.microrel.2017.06.045_bb0180 article-title: Lithium-ion batteries remaining useful life prediction based on a mixture of empirical mode decomposition and ARIMA model publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2016.07.151 – volume: 50 start-page: 317 year: 2010 ident: 10.1016/j.microrel.2017.06.045_bb0060 article-title: A prognostics and health management roadmap for information and electronics-rich systems publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2010.01.006 – volume: 1 issue: 17 year: 2008 ident: 10.1016/j.microrel.2017.06.045_bb0235 article-title: Metrics for evaluating performance of prognostic techniques publication-title: Int. Conf. Prognostics Health Manag. (PHM08) doi: 10.1109/PHM.2008.4711436 – volume: 25 start-page: 557 issue: 3–4 year: 2014 ident: 10.1016/j.microrel.2017.06.045_bb0240 article-title: Lithium-ion battery remaining useful life estimation based on fusion nonlinear degradation AR model and RPF algorithm publication-title: Neural Comput. & Applic. doi: 10.1007/s00521-013-1520-x – volume: 261 start-page: 141 year: 2014 ident: 10.1016/j.microrel.2017.06.045_bb0070 article-title: Li-ion battery capacity estimation: a geometrical approach publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.03.058 – volume: 196 start-page: 10314 issue: 23 year: 2011 ident: 10.1016/j.microrel.2017.06.045_bb0165 article-title: Prognostics of lithium-ion batteries based on Dempster–Shafer theory and the Bayesian Monte Carlo method publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2011.08.040 – volume: vol. 1 start-page: 153 year: 1998 ident: 10.1016/j.microrel.2017.06.045_bb0005 article-title: Satellite battery technology-a tutorial and overview – volume: 94 start-page: 590 issue: 446 year: 1999 ident: 10.1016/j.microrel.2017.06.045_bb0220 article-title: Filtering via simulation: auxiliary particle filters publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1999.10474153 – start-page: 1 year: 2009 ident: 10.1016/j.microrel.2017.06.045_bb0120 article-title: Modeling li-ion battery capacity depletion in a particle filtering framework – volume: 53 start-page: 821 issue: 6 year: 2013 ident: 10.1016/j.microrel.2017.06.045_bb0175 article-title: An improved autoregressive model by particle swarm optimization for prognostics of lithium-ion batteries publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2013.01.006 – volume: 19 start-page: 716 year: 1974 ident: 10.1016/j.microrel.2017.06.045_bb0205 article-title: A new look at the statistical model identification publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.1974.1100705 – volume: 147 start-page: 269 issue: 1 year: 2005 ident: 10.1016/j.microrel.2017.06.045_bb0030 article-title: Ageing mechanisms in lithium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2005.01.006 – ident: 10.1016/j.microrel.2017.06.045_bb0110 – start-page: 646 year: 2007 ident: 10.1016/j.microrel.2017.06.045_bb0170 article-title: An integrated approach to battery health monitoring using Bayesian regression and state estimation – volume: 239 start-page: 680 year: 2013 ident: 10.1016/j.microrel.2017.06.045_bb0105 article-title: Health diagnosis and remaining useful life prognostics of lithiumion batteries using data-driven methods publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.11.146 – start-page: 709 year: 1990 ident: 10.1016/j.microrel.2017.06.045_bb0215 article-title: Improved estimators of Kullback-Leibler information for autoregressive model selection in small samples publication-title: Biometrika – volume: 47 start-page: 1849 issue: 12 year: 2007 ident: 10.1016/j.microrel.2017.06.045_bb0040 article-title: Prognostics implementation of electronics under vibration loading publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2007.02.015 – volume: 85 start-page: 827 year: 2017 ident: 10.1016/j.microrel.2017.06.045_bb0130 article-title: Particle-filtering-based failure prognosis via sigma-points: application to lithium-ion battery state-of-charge monitoring publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2016.08.029 – volume: 63 start-page: 1804 issue: 3 year: 2016 ident: 10.1016/j.microrel.2017.06.045_bb0080 article-title: Lebesgue-sampling-based diagnosis and prognosis for lithium-ion batteries publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2015.2494529 – start-page: 8 year: 2008 ident: 10.1016/j.microrel.2017.06.045_bb0100 article-title: Automotive battery management systems – start-page: 176 year: 2000 ident: 10.1016/j.microrel.2017.06.045_bb0225 article-title: Rao-Blackwellised particle filtering for dynamic Bayesian networks – ident: 10.1016/j.microrel.2017.06.045_bb0085 – volume: 53 start-page: 832 issue: 6 year: 2013 ident: 10.1016/j.microrel.2017.06.045_bb0135 article-title: Prognostics for state of health estimation of lithium-ion batteries based on combination gaussian process functional regression publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2013.03.010 – volume: 21 start-page: 243 issue: 1 year: 1969 ident: 10.1016/j.microrel.2017.06.045_bb0200 article-title: Fitting autoregressive models for prediction publication-title: Ann. Inst. Stat. Math. doi: 10.1007/BF02532251 – volume: 160 start-page: 602 issue: 1 year: 2006 ident: 10.1016/j.microrel.2017.06.045_bb0020 article-title: Cycle-life testing of 100-Ah class lithium-ion battery in a simulated geosynchronous-Earth-orbit satellite operation publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2006.01.052 – volume: 45 start-page: 964 issue: 9 year: 2013 ident: 10.1016/j.microrel.2017.06.045_bb0095 article-title: A framework for predicting the remaining useful life of a single unit under time-varying operating conditions publication-title: IIE Trans. doi: 10.1080/0740817X.2012.705451 – volume: 146 start-page: 3543 issue: 10 year: 1999 ident: 10.1016/j.microrel.2017.06.045_bb0025 article-title: Mathematical modeling of the lithium deposition overcharge reaction in lithium-ion batteries using carbon-based negative electrodes publication-title: J. Electrochem. Soc. doi: 10.1149/1.1392512 – volume: vol. 7 start-page: 3257 year: 2003 ident: 10.1016/j.microrel.2017.06.045_bb0185 article-title: Electrochemical cell prognostics using online impedance measurements and model-based data fusion techniques – volume: 68 start-page: 5 issue: 1 year: 2003 ident: 10.1016/j.microrel.2017.06.045_bb0035 article-title: Reductive leaching of cathodic active materials from lithium ion battery wastes publication-title: Hydrometallurgy doi: 10.1016/S0304-386X(02)00167-6 – volume: 196 start-page: 5357 year: 2011 ident: 10.1016/j.microrel.2017.06.045_bb0050 article-title: State-ofhealth monitoring of lithium-ion batteries in electric vehicles by on-board internal resistance estimation publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.08.035 – volume: 25 start-page: 814 issue: 4 year: 2012 ident: 10.1016/j.microrel.2017.06.045_bb0160 article-title: A data-model-fusion prognostic framework for dynamic system state forecasting publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2012.02.015 – volume: 55 start-page: 1035 issue: 7 year: 2015 ident: 10.1016/j.microrel.2017.06.045_bb0140 article-title: A new prognostics method for state of health estimation of lithium-ion batteries based on a mixture of Gaussian process models and particle filter publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2015.02.025 – volume: 25 start-page: 557 issue: 3–4 year: 2014 ident: 10.1016/j.microrel.2017.06.045_bb0190 article-title: Lithium-ion battery remaining useful life estimation based on fusion nonlinear degradation AR model and RPF algorithm publication-title: Neural Comput. & Applic. doi: 10.1007/s00521-013-1520-x – volume: 53 start-page: 805 issue: 6 year: 2013 ident: 10.1016/j.microrel.2017.06.045_bb0115 article-title: Remaining useful life prediction of lithium-ion battery with unscented particle filter technique publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2012.12.004 – volume: 52 start-page: 2438 issue: 9 year: 2012 ident: 10.1016/j.microrel.2017.06.045_bb0045 article-title: Remaining useful life prediction of lithium batteries in calendar ageing for automotive applications publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2012.06.085 – volume: 148 start-page: A463 year: 2001 ident: 10.1016/j.microrel.2017.06.045_bb0065 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1362541 – volume: 65 start-page: 1282 issue: 6 year: 2016 ident: 10.1016/j.microrel.2017.06.045_bb0230 article-title: Remaining useful life prediction of lithium-ion batteries based on spherical cubature particle filter publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2016.2534258 – year: 2010 ident: 10.1016/j.microrel.2017.06.045_bb0125 |
SSID | ssj0007011 |
Score | 2.5442019 |
Snippet | Electrical power system (EPS) is one of the most critical sub-systems of the spacecraft. Lithium-ion battery is the vital component is the EPS. Remaining... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 142 |
SubjectTerms | Dynamic modeling Hybrid approach Lithium-ion battery Remaining useful life Satellite |
Title | Data-driven hybrid remaining useful life estimation approach for spacecraft lithium-ion battery |
URI | https://dx.doi.org/10.1016/j.microrel.2017.06.045 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KXvQgPvFZ9uB1bTbZR3IUtVTFniz0Fjb7wEhbS0wOvfjb3clDKwgeJLCQMANhMszOku_7BqFLqnyTKjgjzAq_JDwgcew4EYHKMn_G5aYGjz-NxWjCHqZ82kM3HRcGYJVt7W9qel2t2yeDNpqDZZ4DxzcUoaSMShh8E8G5nTEJWX718Q3zkAFtpuaFgoD1Gkv49WoOoLfCwi8IKmsdT6A1_bZBrW06w12003aL-Lp5oT3Us4t9tL2mIXiA0ltVKmIKqFr4ZQUELFzYeTP4AVfv1lUzPMudxaCn0RAVcackjn3Lin1N0b55VK70duVLXs0J2GS18ubqEE2Gd883I9JOTSA64rQkzlimWMa1dDr2xzstYydCHekgklFClQqUX6mjoRU6UlRKbQJpjUsSFSdGREdoY_G2sMcIaxEnOpAmA1k45v14bLSR_rIZC1l0gngXqlS3kuIw2WKWdtix17QLcQohTgFEx_gJGnz5LRtRjT89ku5LpD_SI_WV_w_f03_4nqEtuGsQf-dooywqe-G7kDLr12nWR5vX94-j8SdUTd7X |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEC2FcAAOiFVJ2PoAx8647V7sAwdEiCZkOSVSbk27F2WimSGaeBTNhZ_iB6nyAoOElAOKLPXB7rKs6lIt8qtXAO-FwyRVK8ll1LhUKuNlmRTXmatrrHFVaMHjxyd6fCa_nqvzDfg59MIQrLL3_Z1Pb711f2fUa3N0NZlQj2-ucyOkMDT4psh6ZOVhXN1g3Xb98WAPD_lDnu9_Of085v1oAe4LJRqeQpRO1sqb5Eusgbwpk8594bPCFJVwLnO4iiTyqH3hhDE-ZCaGVFWurIIu8L334L5Ed0FjE3Z__MGVmEx0Y_pyzenz1tqSL3dnhLJbRPrnIUxLHEp9VP-KiGtRbv8JPO7TU_ap08BT2IjzZ_BojbTwOdg91zgeFuQm2cWKOr7YIs66SRNseR3TcsqmkxQZEXh0nZFsoC5nmCMzdGIes1WXGtzXXEyWM0576pbqc_UCzu5Ely9hc_59HreAeV1WPjOhJh46iXKqDD4YvGItc1lsgxpUZX3PYU6jNKZ2AKtd2kHFllRsCbUn1TaMfstddSwet0pUw0nYv-zRYqi5RXbnP2TfwYPx6fGRPTo4OXwFD-lJBzd8DZvNYhnfYArU1G9bk2Pw7a5t_BdBAhtg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+hybrid+remaining+useful+life+estimation+approach+for+spacecraft+lithium-ion+battery&rft.jtitle=Microelectronics+and+reliability&rft.au=Song%2C+Yuchen&rft.au=Liu%2C+Datong&rft.au=Yang%2C+Chen&rft.au=Peng%2C+Yu&rft.date=2017-08-01&rft.issn=0026-2714&rft.volume=75&rft.spage=142&rft.epage=153&rft_id=info:doi/10.1016%2Fj.microrel.2017.06.045&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_microrel_2017_06_045 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-2714&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-2714&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-2714&client=summon |