GRASP and IPCEF Promote ARF-to-Rac Signaling and Cell Migration by Coordinating the Association of ARNO/cytohesin 2 with Dock180
ARFs are small GTPases that regulate vesicular trafficking, cell shape, and movement. ARFs are subject to extensive regulation by a large number of accessory proteins. The many different accessory proteins are likely specialized to regulate ARF signaling during particular processes. ARNO/cytohesin 2...
Saved in:
Published in | Molecular biology of the cell Vol. 21; no. 4; pp. 562 - 571 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Society for Cell Biology
15.02.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ARFs are small GTPases that regulate vesicular trafficking, cell shape, and movement. ARFs are subject to extensive regulation by a large number of accessory proteins. The many different accessory proteins are likely specialized to regulate ARF signaling during particular processes. ARNO/cytohesin 2 is an ARF-activating protein that promotes cell migration and cell shape changes. We report here that protein–protein interactions mediated by the coiled-coil domain of ARNO are required for ARNO induced motility. ARNO lacking the coiled-coil domain does not promote migration and does not induce ARF-dependent Rac activation. We find that the coiled-coil domain promotes the assembly of a multiprotein complex containing both ARNO and the Rac-activating protein Dock180. Knockdown of either GRASP/Tamalin or IPCEF, two proteins known to bind to the coiled-coil of ARNO, prevents the association of ARNO and Dock180 and prevents ARNO-induced Rac activation. These data suggest that scaffold proteins can regulate ARF dependent processes by biasing ARF signaling toward particular outputs. |
---|---|
AbstractList | ARFs are small GTPases that regulate vesicular trafficking, cell shape, and movement. ARFs are subject to extensive regulation by a large number of accessory proteins. The many different accessory proteins are likely specialized to regulate ARF signaling during particular processes. ARNO/cytohesin 2 is an ARF-activating protein that promotes cell migration and cell shape changes. We report here that protein-protein interactions mediated by the coiled-coil domain of ARNO are required for ARNO induced motility. ARNO lacking the coiled-coil domain does not promote migration and does not induce ARF-dependent Rac activation. We find that the coiled-coil domain promotes the assembly of a multiprotein complex containing both ARNO and the Rac-activating protein Dock180. Knockdown of either GRASP/Tamalin or IPCEF, two proteins known to bind to the coiled-coil of ARNO, prevents the association of ARNO and Dock180 and prevents ARNO-induced Rac activation. These data suggest that scaffold proteins can regulate ARF dependent processes by biasing ARF signaling toward particular outputs.ARFs are small GTPases that regulate vesicular trafficking, cell shape, and movement. ARFs are subject to extensive regulation by a large number of accessory proteins. The many different accessory proteins are likely specialized to regulate ARF signaling during particular processes. ARNO/cytohesin 2 is an ARF-activating protein that promotes cell migration and cell shape changes. We report here that protein-protein interactions mediated by the coiled-coil domain of ARNO are required for ARNO induced motility. ARNO lacking the coiled-coil domain does not promote migration and does not induce ARF-dependent Rac activation. We find that the coiled-coil domain promotes the assembly of a multiprotein complex containing both ARNO and the Rac-activating protein Dock180. Knockdown of either GRASP/Tamalin or IPCEF, two proteins known to bind to the coiled-coil of ARNO, prevents the association of ARNO and Dock180 and prevents ARNO-induced Rac activation. These data suggest that scaffold proteins can regulate ARF dependent processes by biasing ARF signaling toward particular outputs. ARFs are small GTPases that regulate vesicular trafficking, cell shape, and movement. ARFs are subject to extensive regulation by a large number of accessory proteins. The many different accessory proteins are likely specialized to regulate ARF signaling during particular processes. ARNO/cytohesin 2 is an ARF-activating protein that promotes cell migration and cell shape changes. We report here that protein–protein interactions mediated by the coiled-coil domain of ARNO are required for ARNO induced motility. ARNO lacking the coiled-coil domain does not promote migration and does not induce ARF-dependent Rac activation. We find that the coiled-coil domain promotes the assembly of a multiprotein complex containing both ARNO and the Rac-activating protein Dock180. Knockdown of either GRASP/Tamalin or IPCEF, two proteins known to bind to the coiled-coil of ARNO, prevents the association of ARNO and Dock180 and prevents ARNO-induced Rac activation. These data suggest that scaffold proteins can regulate ARF dependent processes by biasing ARF signaling toward particular outputs. The ARF-GEF ARNO promotes motility by activating ARF6 and a subsequent downstream activation of Rac. ARNO is shown to associate with the Rac GEF Dock180 via its coiled-coil domain. Knockdown of scaffold proteins that bind ARNO disrupts the formation of this complex and disrupts ARF-to-Rac signaling. ARFs are small GTPases that regulate vesicular trafficking, cell shape, and movement. ARFs are subject to extensive regulation by a large number of accessory proteins. The many different accessory proteins are likely specialized to regulate ARF signaling during particular processes. ARNO/cytohesin 2 is an ARF-activating protein that promotes cell migration and cell shape changes. We report here that protein–protein interactions mediated by the coiled-coil domain of ARNO are required for ARNO induced motility. ARNO lacking the coiled-coil domain does not promote migration and does not induce ARF-dependent Rac activation. We find that the coiled-coil domain promotes the assembly of a multiprotein complex containing both ARNO and the Rac-activating protein Dock180. Knockdown of either GRASP/Tamalin or IPCEF, two proteins known to bind to the coiled-coil of ARNO, prevents the association of ARNO and Dock180 and prevents ARNO-induced Rac activation. These data suggest that scaffold proteins can regulate ARF dependent processes by biasing ARF signaling toward particular outputs. |
Author | Attar, Myriam A. Santy, Lorraine C. McShea, Katie M. White, David T. |
Author_xml | – sequence: 1 givenname: David T. surname: White fullname: White, David T. organization: Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802 – sequence: 2 givenname: Katie M. surname: McShea fullname: McShea, Katie M. organization: Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802 – sequence: 3 givenname: Myriam A. surname: Attar fullname: Attar, Myriam A. organization: Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802 – sequence: 4 givenname: Lorraine C. surname: Santy fullname: Santy, Lorraine C. organization: Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20016009$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UctuEzEUtVARfcCaHfKOlRs_xjPjDVI0NG2lQqMU1pbHYyeGGbu1HVB2fHrdpkWAxMrX956HdM4xOPDBGwDeEnxKsCCzqdenBguEGcKUNC_AERFMoIq39UGZMReIcFodguOUvmFMqqpuXoFDWsYaY3EEfp2v5jdLqPwAL5fd2QIuY5hCNnC-WqAc0EppeOPWXo3Orx9hnRlH-Mmto8oueNjvYBdCHJwv_wLJm8JNKWi3vwdbpD5fz_Quh41JzkMKf7q8gR-D_k5a_Bq8tGpM5s3TewK-Ls6-dBfo6vr8sptfIc04ycgO1HJac4sJJb0erOCqrW1ja960htma9My0jaFFUmhTKVuLtjeDrkQjBqXZCfiw173d9lPZG5-jGuVtdJOKOxmUk39fvNvIdfghaUtxRUkReP8kEMPd1qQsJ5d0CUN5E7ZJNoyJghNVQb770-q3x3PqBcD3AB1DStFYqV1-jKs4u1ESLB_alaVdWdqVmMmHdgtv9g_vWfp_jHuFmKe_ |
CitedBy_id | crossref_primary_10_1073_pnas_1107666108 crossref_primary_10_1091_mbc_e16_06_0412 crossref_primary_10_1038_nrm3117 crossref_primary_10_1084_jem_20220038 crossref_primary_10_1091_mbc_E18_12_0820 crossref_primary_10_1074_jbc_M111_274191 crossref_primary_10_3390_cells11223565 crossref_primary_10_1016_j_celrep_2021_109303 crossref_primary_10_1091_mbc_e15_05_0278 crossref_primary_10_1371_journal_pone_0239357 crossref_primary_10_1007_s40487_021_00172_2 crossref_primary_10_1074_jbc_M110_145532 crossref_primary_10_1091_mbc_e13_10_0600 crossref_primary_10_1016_j_bbrc_2014_10_114 crossref_primary_10_1091_mbc_e17_02_0112 crossref_primary_10_3390_cancers12030665 crossref_primary_10_1021_tx500485v crossref_primary_10_4049_jimmunol_1500630 crossref_primary_10_1038_s41467_023_39281_z crossref_primary_10_7554_eLife_38539 crossref_primary_10_3389_fimmu_2023_1223653 |
Cites_doi | 10.1038/nrm1743 10.1042/bj3350139 10.1038/ncb824 10.1128/JVI.71.3.1842-1849.1997 10.1038/ncb1657 10.1016/j.molcel.2007.09.017 10.1016/j.cellsig.2007.04.012 10.1074/jbc.273.1.23 10.1101/gad.12.21.3337 10.1074/jbc.C200481200 10.1091/mbc.9.11.3133 10.1126/science.275.5308.1927 10.1074/jbc.M513723200 10.1016/j.cub.2005.08.052 10.1016/S0960-9822(98)70181-2 10.1074/jbc.272.25.15579 10.1016/S0092-8674(00)81540-8 10.1038/384481a0 10.1242/jcs.112.6.855 10.1111/j.1600-0854.2007.00634.x 10.1146/annurev.cellbio.19.111401.091942 10.1093/emboj/20.17.4973 10.1016/S0092-8674(01)00520-7 10.1242/dev.010983 10.1038/nature05412 10.1083/jcb.200512013 10.1242/jcs.111.15.2257 10.1073/pnas.052712999 10.1128/MCB.20.10.3685-3694.2000 10.1074/jbc.275.22.16827 10.1074/jbc.M307087200 10.1186/1471-2121-8-29 10.1038/33163 10.1083/jcb.134.4.935 10.1128/MCB.16.4.1770 10.1074/jbc.M300184200 10.1016/j.ab.2007.11.032 10.1128/MCB.19.12.8158 10.1091/mbc.e06-11-0998 10.1074/jbc.M202898200 10.1091/mbc.e04-12-1042 10.1128/MCB.00298-06 10.1371/journal.pbio.0040162 10.1042/BST0330639 10.1083/jcb.138.3.589 10.1074/jbc.M300998200 10.1074/jbc.M304078200 10.1523/JNEUROSCI.22-04-01280.2002 10.1074/jbc.273.4.1859 10.1002/bies.20351 10.1016/j.imbio.2008.07.021 10.1074/jbc.273.32.19977 10.1093/emboj/cdg101 10.1038/35004000 10.1083/jcb.200104019 |
ContentType | Journal Article |
Copyright | 2010 by The American Society for Cell Biology |
Copyright_xml | – notice: 2010 by The American Society for Cell Biology |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1091/mbc.e09-03-0217 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1939-4586 |
EndPage | 571 |
ExternalDocumentID | PMC2820421 20016009 10_1091_mbc_e09_03_0217 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 123 18M 29M 2WC 34G 39C 4.4 5RE 5VS AAYXX ABDNZ ABSQV ACGFO ADBBV ADNWM AEILP AENEX AFHIN AFOSN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL C1A CITATION CS3 D0L DIK DU5 E3Z EBS EJD F5P F9R GX1 H13 HH5 HYE IH2 INIJC KQ8 R0Z RPM SJN TCB TR2 W8F WOQ YHG YKV YNT YQT YWH CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c351t-fd2f5265f0121bcdf95a86f7f6578e3f61b3e87e21809ce4af698bedc4979dac3 |
ISSN | 1059-1524 1939-4586 |
IngestDate | Thu Aug 21 14:13:29 EDT 2025 Fri Jul 11 10:49:46 EDT 2025 Thu Apr 03 06:59:13 EDT 2025 Thu Apr 24 23:02:53 EDT 2025 Tue Jul 01 01:34:52 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c351t-fd2f5265f0121bcdf95a86f7f6578e3f61b3e87e21809ce4af698bedc4979dac3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC2820421 |
PMID | 20016009 |
PQID | 733942194 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2820421 proquest_miscellaneous_733942194 pubmed_primary_20016009 crossref_citationtrail_10_1091_mbc_e09_03_0217 crossref_primary_10_1091_mbc_e09_03_0217 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-02-15 2010-Feb-15 20100215 |
PublicationDateYYYYMMDD | 2010-02-15 |
PublicationDate_xml | – month: 02 year: 2010 text: 2010-02-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular biology of the cell |
PublicationTitleAlternate | Mol Biol Cell |
PublicationYear | 2010 |
Publisher | The American Society for Cell Biology |
Publisher_xml | – name: The American Society for Cell Biology |
References | Hall B. (B22) 2008; 374 Wu Y. C. (B54) 1998; 392 Zhang Q. (B56) 1998; 273 Venkateswarlu K. (B50) 2003; 278 Koo T. H. (B32) 2007; 8 Morrison D. K. (B34) 2003; 19 Grimsley C. M. (B20) 2004; 279 Casanova J. E. (B7) 2007; 8 Frank S. (B17) 1998; 273 Boshans R. L. (B5) 2000; 20 DiNitto J. P. (B11) 2007; 28 Radhakrishna H. (B41) 1996; 134 Exton J. H. (B16) 1997; 272 Venkateswarlu K. (B52) 1998; 8 Santy L. C. (B43) 2002; 277 Song J. (B47) 1998; 111 Gumienny T. L. (B21) 2001; 107 Suzuki T. (B48) 2006; 26 Hasegawa H. (B24) 1996; 16 Kolch W. (B31) 2005; 6 B9 Hardy S. (B23) 1997; 71 Kitano J. (B27) 2002; 22 Mansour M. (B33) 2002; 277 Erickson M. R. (B14) 1997; 138 Nolan K. M. (B36) 1998; 12 Shmuel M. (B46) 2006; 281 Tang P. (B49) 2002; 99 Dard N. (B10) 2006; 28 Heufler C. (B25) 2008; 213 Fuss B. (B19) 2006; 444 Radhakrishna H. (B40) 1999; 112 Balasubramanian N. (B2) 2007; 9 Santy L. C. (B44) 2001; 154 Donaldson J. G. (B12) 2005; 33 Abramoff M. D. (B1) 2004; 11 Venkateswarlu K. (B51) 1998; 335 Klarlund J. K. (B29) 1997; 275 Klarlund J. K. (B30) 1998; 273 Zhang Q. (B55) 1999; 19 B53 Esteban P. F. (B15) 2006; 173 Honda A. (B26) 1999; 99 Dyer N. (B13) 2007; 134 Reddien P. W. (B42) 2000; 2 Boehm T. (B4) 2003; 22 B18 Beemiller P. (B3) 2006; 4 Palacios F. (B38) 2001; 20 Santy L. C. (B45) 2005; 15 Chardin P. (B8) 1996; 384 Kitano J. (B28) 2003; 278 Palacios F. (B37) 2003; 278 Pullikuth A. K. (B39) 2007; 19 Brugnera E. (B6) 2002; 4 Nevrivy D. J. (B35) 2000; 275 |
References_xml | – volume: 6 start-page: 827 year: 2005 ident: B31 publication-title: Nat. Rev. Mol. Cell Biol doi: 10.1038/nrm1743 – volume: 335 start-page: 139 year: 1998 ident: B51 publication-title: Biochem. J doi: 10.1042/bj3350139 – volume: 4 start-page: 574 year: 2002 ident: B6 publication-title: Nat. Cell Biol doi: 10.1038/ncb824 – volume: 71 start-page: 1842 year: 1997 ident: B23 publication-title: J. Virol doi: 10.1128/JVI.71.3.1842-1849.1997 – volume: 9 start-page: 1381 year: 2007 ident: B2 publication-title: Nat. Cell Biol doi: 10.1038/ncb1657 – volume: 28 start-page: 569 year: 2007 ident: B11 publication-title: Mol. Cell doi: 10.1016/j.molcel.2007.09.017 – volume: 19 start-page: 1621 year: 2007 ident: B39 publication-title: Cell Signal doi: 10.1016/j.cellsig.2007.04.012 – volume: 273 start-page: 23 year: 1998 ident: B17 publication-title: J. Biol. Chem doi: 10.1074/jbc.273.1.23 – volume: 12 start-page: 3337 year: 1998 ident: B36 publication-title: Genes Dev doi: 10.1101/gad.12.21.3337 – volume: 277 start-page: 40185 year: 2002 ident: B43 publication-title: J. Biol. Chem doi: 10.1074/jbc.C200481200 – ident: B18 doi: 10.1091/mbc.9.11.3133 – volume: 275 start-page: 1927 year: 1997 ident: B29 publication-title: Science doi: 10.1126/science.275.5308.1927 – volume: 281 start-page: 13300 year: 2006 ident: B46 publication-title: J. Biol. Chem doi: 10.1074/jbc.M513723200 – volume: 15 start-page: 1749 year: 2005 ident: B45 publication-title: Curr. Biol doi: 10.1016/j.cub.2005.08.052 – volume: 8 start-page: 463 year: 1998 ident: B52 publication-title: Curr. Biol doi: 10.1016/S0960-9822(98)70181-2 – volume: 272 start-page: 15579 year: 1997 ident: B16 publication-title: J. Biol. Chem doi: 10.1074/jbc.272.25.15579 – volume: 99 start-page: 521 year: 1999 ident: B26 publication-title: Cell doi: 10.1016/S0092-8674(00)81540-8 – volume: 384 start-page: 481 year: 1996 ident: B8 publication-title: Nature doi: 10.1038/384481a0 – volume: 112 start-page: 855 year: 1999 ident: B40 publication-title: J. Cell Sci doi: 10.1242/jcs.112.6.855 – volume: 8 start-page: 1476 year: 2007 ident: B7 publication-title: Traffic doi: 10.1111/j.1600-0854.2007.00634.x – volume: 19 start-page: 91 year: 2003 ident: B34 publication-title: Annu. Rev. Cell Dev. Biol doi: 10.1146/annurev.cellbio.19.111401.091942 – volume: 20 start-page: 4973 year: 2001 ident: B38 publication-title: EMBO J doi: 10.1093/emboj/20.17.4973 – volume: 107 start-page: 27 year: 2001 ident: B21 publication-title: Cell doi: 10.1016/S0092-8674(01)00520-7 – volume: 134 start-page: 4437 year: 2007 ident: B13 publication-title: Development doi: 10.1242/dev.010983 – volume: 444 start-page: 945 year: 2006 ident: B19 publication-title: Nature doi: 10.1038/nature05412 – volume: 173 start-page: 291 year: 2006 ident: B15 publication-title: J. Cell Biol doi: 10.1083/jcb.200512013 – volume: 111 start-page: 2257 year: 1998 ident: B47 publication-title: J. Cell Sci doi: 10.1242/jcs.111.15.2257 – volume: 99 start-page: 2625 year: 2002 ident: B49 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.052712999 – volume: 20 start-page: 3685 year: 2000 ident: B5 publication-title: Mol. Cell. Biol doi: 10.1128/MCB.20.10.3685-3694.2000 – volume: 275 start-page: 16827 year: 2000 ident: B35 publication-title: J. Biol. Chem doi: 10.1074/jbc.275.22.16827 – volume: 279 start-page: 6087 year: 2004 ident: B20 publication-title: J. Biol. Chem doi: 10.1074/jbc.M307087200 – volume: 8 start-page: 29 year: 2007 ident: B32 publication-title: BMC Cell Biol doi: 10.1186/1471-2121-8-29 – volume: 392 start-page: 501 year: 1998 ident: B54 publication-title: Nature doi: 10.1038/33163 – volume: 134 start-page: 935 year: 1996 ident: B41 publication-title: J. Cell Biol doi: 10.1083/jcb.134.4.935 – volume: 16 start-page: 1770 year: 1996 ident: B24 publication-title: Mol. Cell. Biol doi: 10.1128/MCB.16.4.1770 – volume: 278 start-page: 14762 year: 2003 ident: B28 publication-title: J. Biol. Chem doi: 10.1074/jbc.M300184200 – volume: 374 start-page: 243 year: 2008 ident: B22 publication-title: Anal. Biochem doi: 10.1016/j.ab.2007.11.032 – volume: 19 start-page: 8158 year: 1999 ident: B55 publication-title: Mol. Cell Biol doi: 10.1128/MCB.19.12.8158 – ident: B9 doi: 10.1091/mbc.e06-11-0998 – volume: 277 start-page: 32302 year: 2002 ident: B33 publication-title: J. Biol. Chem doi: 10.1074/jbc.M202898200 – ident: B53 doi: 10.1091/mbc.e04-12-1042 – volume: 11 start-page: 36 year: 2004 ident: B1 publication-title: J. Biophotonics Int – volume: 26 start-page: 6149 year: 2006 ident: B48 publication-title: Mol. Cell Biol doi: 10.1128/MCB.00298-06 – volume: 4 start-page: e162 year: 2006 ident: B3 publication-title: PLoS Biol doi: 10.1371/journal.pbio.0040162 – volume: 33 start-page: 639 year: 2005 ident: B12 publication-title: Biochem. Soc. Trans doi: 10.1042/BST0330639 – volume: 138 start-page: 589 year: 1997 ident: B14 publication-title: J. Cell Biol doi: 10.1083/jcb.138.3.589 – volume: 278 start-page: 17395 year: 2003 ident: B37 publication-title: J. Biol. Chem doi: 10.1074/jbc.M300998200 – volume: 278 start-page: 43460 year: 2003 ident: B50 publication-title: J. Biol. Chem doi: 10.1074/jbc.M304078200 – volume: 22 start-page: 1280 year: 2002 ident: B27 publication-title: J. Neurosci doi: 10.1523/JNEUROSCI.22-04-01280.2002 – volume: 273 start-page: 1859 year: 1998 ident: B30 publication-title: J. Biol. Chem doi: 10.1074/jbc.273.4.1859 – volume: 28 start-page: 146 year: 2006 ident: B10 publication-title: Bioessays doi: 10.1002/bies.20351 – volume: 213 start-page: 729 year: 2008 ident: B25 publication-title: Immunobiology doi: 10.1016/j.imbio.2008.07.021 – volume: 273 start-page: 19977 year: 1998 ident: B56 publication-title: J. Biol. Chem doi: 10.1074/jbc.273.32.19977 – volume: 22 start-page: 1014 year: 2003 ident: B4 publication-title: EMBO J doi: 10.1093/emboj/cdg101 – volume: 2 start-page: 131 year: 2000 ident: B42 publication-title: Nat. Cell Biol doi: 10.1038/35004000 – volume: 154 start-page: 599 year: 2001 ident: B44 publication-title: J. Cell Biol doi: 10.1083/jcb.200104019 |
SSID | ssj0014467 |
Score | 2.180295 |
Snippet | ARFs are small GTPases that regulate vesicular trafficking, cell shape, and movement. ARFs are subject to extensive regulation by a large number of accessory... The ARF-GEF ARNO promotes motility by activating ARF6 and a subsequent downstream activation of Rac. ARNO is shown to associate with the Rac GEF Dock180 via... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 562 |
SubjectTerms | ADP-Ribosylation Factors - genetics ADP-Ribosylation Factors - metabolism Animals Carrier Proteins - genetics Carrier Proteins - metabolism Cell Adhesion Molecules - genetics Cell Adhesion Molecules - metabolism Cell Line Cell Movement - physiology Dogs Enzyme Activation Gene Knockdown Techniques GTPase-Activating Proteins - chemistry GTPase-Activating Proteins - genetics GTPase-Activating Proteins - metabolism Humans Membrane Proteins - genetics Membrane Proteins - metabolism Multiprotein Complexes - chemistry Multiprotein Complexes - metabolism Protein Structure, Secondary rac GTP-Binding Proteins - genetics rac GTP-Binding Proteins - metabolism RNA, Small Interfering - genetics RNA, Small Interfering - metabolism Signal Transduction - physiology |
Title | GRASP and IPCEF Promote ARF-to-Rac Signaling and Cell Migration by Coordinating the Association of ARNO/cytohesin 2 with Dock180 |
URI | https://www.ncbi.nlm.nih.gov/pubmed/20016009 https://www.proquest.com/docview/733942194 https://pubmed.ncbi.nlm.nih.gov/PMC2820421 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9owFLdYp0m7TPse-5IPO0xCocEJMT6iClZNhVYUJG6RY-w1WkmmNhzYaef91XsvdhJoO-3jEqFgnMi_H8_vPb8PQj4otIxZyD0D-4MH-_HAk5HkHpNBFOlwpRODroHJNDpehJ-X_WWr9XMnamlTJF31_c68kv9BFe4Brpgl-w_I1pPCDfgM-MIVEIbrX2H8aTY8P7MRvWdHozEGW8HK685wNvaK3JtJ1cH4DHlZZSKim76zTr842EH1VDlYnym6BF3alGzwKrXU2fQUXlBti_xCX6dZh1nXLWxOX3u2O1Kl206qTrudqrKTiz_ApzbC3zXkK4PpmxDticLe2i6-I9WNk3ZYFDYGfLKFFV03vtdz4IR1t-dX2OdCO4evc2Hg6TvzbBKnk7oCj6P7VU3sO-45UW2TqR0lwx2527ci_dZ-ANoQrNE6Ud0RHgLhkbVNFd2vvD09jceLk5N4PlrO75H7DEyOoPL8uBMpMJu5jVCwr1WViRK9wxvT72s4t8yWm9G3O-rM_DF55OwQOrSkekJaOntKHtjOpNtn5EdJLQqcoSW1qKMWbahFa2qVwxBkWlOLJlu6Sy0KPKA71KK5oUitw5pYlFEkFnXEek4W49H86NhzzTo8FfR7hWdWzGCrBYNFAhO1MqIvB5HhJoI9QQcm6iWBHnDNsGCc0qE0kRgksAqh4GIlVfCCHGR5pl8R6ksJijJ6CspjeyFCA1P40SrgXEnO2qRbLXCsXCV7bKhyGduIil4MiMTaF7EfxIhIm3ysf_DNFnH5_VBaIRaDoMW1k5nON9cxDwKQaiDZ2uSlBbCei5Xd2n3RJnwP2noA1nDf_yZLL8pa7gw0cJj19Z8f-4Y8bP47b8lBcbXR70AhLpL3JVN_Ab75tdQ |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GRASP+and+IPCEF+promote+ARF-to-Rac+signaling+and+cell+migration+by+coordinating+the+association+of+ARNO%2Fcytohesin+2+with+Dock180&rft.jtitle=Molecular+biology+of+the+cell&rft.au=White%2C+David+T&rft.au=McShea%2C+Katie+M&rft.au=Attar%2C+Myriam+A&rft.au=Santy%2C+Lorraine+C&rft.date=2010-02-15&rft.issn=1939-4586&rft.eissn=1939-4586&rft.volume=21&rft.issue=4&rft.spage=562&rft_id=info:doi/10.1091%2Fmbc.E09-03-0217&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1059-1524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1059-1524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1059-1524&client=summon |