Analysis of User Control Attainment in SMR-based Brain Computer Interfaces

Sensorimotor rhythms (SMR) have been the neuronal phenomena of choice in non-invasive EEG-based endogenous brain computer interfaces (BCIs) for more than two decades and SMR-based BCIs have achieved the highest degree of freedom control so far. Nevertheless, they are subject to long periods of train...

Full description

Saved in:
Bibliographic Details
Published inIngénierie et recherche biomédicale Vol. 39; no. 5; pp. 324 - 333
Main Authors Matanga, Y., Djouani, K., Kurien, A.
Format Journal Article
LanguageEnglish
Published Elsevier Masson SAS 01.11.2018
Subjects
Online AccessGet full text
ISSN1959-0318
DOI10.1016/j.irbm.2018.08.001

Cover

Abstract Sensorimotor rhythms (SMR) have been the neuronal phenomena of choice in non-invasive EEG-based endogenous brain computer interfaces (BCIs) for more than two decades and SMR-based BCIs have achieved the highest degree of freedom control so far. Nevertheless, they are subject to long periods of training prior to attaining a satisfactory level of control requiring users to learn to modulate their rhythms. The goal of this work is to analyse this problem, discuss the causes of the slow rise in performance and provide recommendations on alternative solutions to quicken control attainment. The study has been conducted by both theoretical and empirical analysis. A theoretical model has been developed that explains the principle operation of SMR-based BCIs focusing on major performance contributors respectively the user, periodic feature selection and the translation model thus contrasting user adaptation and machine learning. Five able-bodied subjects (age: 26±2.55) participated in six sessions of online computer cursor control experiments over three weeks to evaluate control attainment performances and gather data for statistical analysis (∼1152 trials per subject). Correlation (r2) between user control features and target position over sessions was assessed as an estimate of neural adaptation and the predictive power of the translation algorithm (10 × 10 fold cross-validation) was calculated over sessions as an estimate of machine adaptation. Auxiliary performance metrics were evaluated. Features-target correlation increased over sessions, while at the same time the predictive accuracy (R2) of the translation model remained averagely steady and very low (Rbest2=0.04) demonstrating continuous user adaptation and low model predictive accuracy. Periodic feature selection was theoretically discussed to be very instrumental and its relevance was empirically illustrated. The study concludes that the slow control attainment in SMR-based BCIs is due to its reliance on user training (neural adaptation) which is adaptive but too slow in the context of SMR modulations and due to the weak decoding of the neuronal phenomenon utilised by the user. As a recommendation, the optimality of the feature selection algorithm could be looked at to guarantee the use of the most relevant features. However and most importantly the predictive power of the translation model should be significantly improved in order to quicken control attainment as thereafter the control attainment effort could be shifted from neural adaptation to machine learning. •SMR-based BCIs are co-adaptive systems with user–machine close interaction.•Control attainment is mainly dictated by user adaptation than machine learning (ML).•Neural adaptation in SMR-based BCIs design is slow causing slow control attainment.•SMR-based BCIs ML components are simple in nature and have less predictive accuracy.•Design should be centred on online decoding of user patterns to quicken control attainment.
AbstractList Sensorimotor rhythms (SMR) have been the neuronal phenomena of choice in non-invasive EEG-based endogenous brain computer interfaces (BCIs) for more than two decades and SMR-based BCIs have achieved the highest degree of freedom control so far. Nevertheless, they are subject to long periods of training prior to attaining a satisfactory level of control requiring users to learn to modulate their rhythms. The goal of this work is to analyse this problem, discuss the causes of the slow rise in performance and provide recommendations on alternative solutions to quicken control attainment. The study has been conducted by both theoretical and empirical analysis. A theoretical model has been developed that explains the principle operation of SMR-based BCIs focusing on major performance contributors respectively the user, periodic feature selection and the translation model thus contrasting user adaptation and machine learning. Five able-bodied subjects (age: 26±2.55) participated in six sessions of online computer cursor control experiments over three weeks to evaluate control attainment performances and gather data for statistical analysis (∼1152 trials per subject). Correlation (r2) between user control features and target position over sessions was assessed as an estimate of neural adaptation and the predictive power of the translation algorithm (10 × 10 fold cross-validation) was calculated over sessions as an estimate of machine adaptation. Auxiliary performance metrics were evaluated. Features-target correlation increased over sessions, while at the same time the predictive accuracy (R2) of the translation model remained averagely steady and very low (Rbest2=0.04) demonstrating continuous user adaptation and low model predictive accuracy. Periodic feature selection was theoretically discussed to be very instrumental and its relevance was empirically illustrated. The study concludes that the slow control attainment in SMR-based BCIs is due to its reliance on user training (neural adaptation) which is adaptive but too slow in the context of SMR modulations and due to the weak decoding of the neuronal phenomenon utilised by the user. As a recommendation, the optimality of the feature selection algorithm could be looked at to guarantee the use of the most relevant features. However and most importantly the predictive power of the translation model should be significantly improved in order to quicken control attainment as thereafter the control attainment effort could be shifted from neural adaptation to machine learning. •SMR-based BCIs are co-adaptive systems with user–machine close interaction.•Control attainment is mainly dictated by user adaptation than machine learning (ML).•Neural adaptation in SMR-based BCIs design is slow causing slow control attainment.•SMR-based BCIs ML components are simple in nature and have less predictive accuracy.•Design should be centred on online decoding of user patterns to quicken control attainment.
Author Kurien, A.
Djouani, K.
Matanga, Y.
Author_xml – sequence: 1
  givenname: Y.
  orcidid: 0000-0002-0766-5000
  surname: Matanga
  fullname: Matanga, Y.
  email: yves.matanga@gmail.com
– sequence: 2
  givenname: K.
  orcidid: 0000-0001-6060-8200
  surname: Djouani
  fullname: Djouani, K.
– sequence: 3
  givenname: A.
  surname: Kurien
  fullname: Kurien, A.
BookMark eNqFkF9LwzAUxfMwwW36BXzqF-hMmrRNxZc5_DOZCOqeQ5rcQGabjiQK-_amzCcfJhzuhcv5XThnhiZucIDQFcELgkl1vVtY3_aLAhO-wEmYTNCUNGWTY0r4OZqFsMO4ogUlU_S8dLI7BBuywWTbAD5bDS76ocuWMUrrenAxsy57f3nLWxlAZ3c-nZOr33_FZF-7NI1UEC7QmZFdgMvfPUfbh_uP1VO-eX1cr5abXNGSxNwoQzRjhFHQsmVNUzGKZQGK1xqYamhdQ83K2jSsNVXdKMVbrusSa14WFeN0jorjX-WHEDwYsfe2l_4gCBZjA2InxgbE2IDASZgkiP-BlI0y2jGstN1p9PaIQgr1bcGLoCw4Bdp6UFHowZ7Gb_7gqrPOKtl9wuE_-AdNNo6-
CitedBy_id crossref_primary_10_1016_j_jneumeth_2019_108434
crossref_primary_10_1515_bams_2019_0053
Cites_doi 10.3758/BF03200585
10.1016/j.ijpsycho.2014.07.009
10.1109/TBME.2014.2312397
10.1088/1741-2560/10/4/046003
10.3390/s120201211
10.1016/0013-4694(94)90135-X
10.1088/1741-2560/7/3/036007
10.1016/S0079-6123(06)59026-0
10.1073/pnas.0403504101
10.1016/S0013-4694(97)00022-2
10.1371/journal.pone.0026322
10.1186/1743-0003-9-50
10.1109/MEMB.2009.935475
10.1016/j.clinph.2006.10.019
10.1111/j.1469-7610.2006.01665.x
10.1016/S1388-2457(03)00093-2
10.1088/1741-2560/5/1/008
10.1016/0013-4694(91)90040-B
ContentType Journal Article
Copyright 2018 AGBM
Copyright_xml – notice: 2018 AGBM
DBID AAYXX
CITATION
DOI 10.1016/j.irbm.2018.08.001
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
EndPage 333
ExternalDocumentID 10_1016_j_irbm_2018_08_001
S1959031818300514
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
1B1
1P~
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EP2
EP3
F0J
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
ROL
SDF
SDG
SEM
SES
SPC
SPCBC
SSH
SST
SSZ
T5K
Z5R
~G-
AACTN
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
RIG
AAYXX
AGRNS
CITATION
ID FETCH-LOGICAL-c351t-fcf1d44143edab4996430a2ec87de4c9377e7457f94bf679cc8b8d750d8526483
IEDL.DBID AIKHN
ISSN 1959-0318
IngestDate Thu Apr 24 22:53:44 EDT 2025
Tue Jul 01 00:52:24 EDT 2025
Fri Feb 23 02:27:53 EST 2024
Tue Aug 26 16:33:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Electroencephalogram (EEG)
Sensorimotor rhythms (SMR)
Control attainment
Brain Computer Interface (BCI)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-fcf1d44143edab4996430a2ec87de4c9377e7457f94bf679cc8b8d750d8526483
ORCID 0000-0002-0766-5000
0000-0001-6060-8200
PageCount 10
ParticipantIDs crossref_primary_10_1016_j_irbm_2018_08_001
crossref_citationtrail_10_1016_j_irbm_2018_08_001
elsevier_sciencedirect_doi_10_1016_j_irbm_2018_08_001
elsevier_clinicalkey_doi_10_1016_j_irbm_2018_08_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2018
2018-11-00
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: November 2018
PublicationDecade 2010
PublicationTitle Ingénierie et recherche biomédicale
PublicationYear 2018
Publisher Elsevier Masson SAS
Publisher_xml – name: Elsevier Masson SAS
References Guillot, Di Rienzo, Collet (br0160) 2014
Wolpaw, McFarland (br0080) 1994; 90
McFarland, Krusienski, Wolpaw (br0130) 2006; 159
Wolpaw, McFarland (br0070) 2004; 101
McFarland, Lefkowicz, Wolpaw (br0150) 1997; 29
Matanga, Djouani, Anish (br0180) 2017
McFarland, McCane, David, Wolpaw (br0120) 1997; 103
Wolpaw, McFarland, Neat, Forneris (br0090) 1991; 78
BCI2000 (br0240)
McFarland, Sarnacki, Wolpaw (br0040) 2010; 7
Matanga (br0010)
Milan, Carmena (br0100) 2010; 29
BCI2000 (br0210)
LaFleur, Cassady, Doud, Shades, Rogin, He (br0050) 2013; 10
BCI2000 (br0200)
Nicolas-Alonso, Gomez-Gil (br0110) 2012; 12
BCI2000 (br0170)
Schalk, Miller, Anderson, Wilson, Smyth, Ojemann (br0190) 2008; 5
Goncharova, McFarland, Vaughan, Wolpaw (br0220) 2003; 114
Yong, Fatourechi, Ward, Birch (br0260) 2012; 9
Fatourechi, Bashashati, Ward, Birch (br0230) 2007; 118
Doud, Lucas, Pisansky, He (br0060) 2011; 6
Yuan, He (br0020) 2014; 61
McFarland (br0250) 2015; 97
Heinrich, Gevensleben, Strehl (br0140) 2007; 48
Wolpaw, Wolpaw (br0030) 2012
Doud (10.1016/j.irbm.2018.08.001_br0060) 2011; 6
McFarland (10.1016/j.irbm.2018.08.001_br0130) 2006; 159
McFarland (10.1016/j.irbm.2018.08.001_br0150) 1997; 29
Matanga (10.1016/j.irbm.2018.08.001_br0010)
Goncharova (10.1016/j.irbm.2018.08.001_br0220) 2003; 114
Wolpaw (10.1016/j.irbm.2018.08.001_br0030) 2012
Yong (10.1016/j.irbm.2018.08.001_br0260) 2012; 9
Wolpaw (10.1016/j.irbm.2018.08.001_br0090) 1991; 78
Heinrich (10.1016/j.irbm.2018.08.001_br0140) 2007; 48
Nicolas-Alonso (10.1016/j.irbm.2018.08.001_br0110) 2012; 12
Milan (10.1016/j.irbm.2018.08.001_br0100) 2010; 29
BCI2000 (10.1016/j.irbm.2018.08.001_br0170)
McFarland (10.1016/j.irbm.2018.08.001_br0040) 2010; 7
Yuan (10.1016/j.irbm.2018.08.001_br0020) 2014; 61
Matanga (10.1016/j.irbm.2018.08.001_br0180) 2017
Schalk (10.1016/j.irbm.2018.08.001_br0190) 2008; 5
Wolpaw (10.1016/j.irbm.2018.08.001_br0070) 2004; 101
Fatourechi (10.1016/j.irbm.2018.08.001_br0230) 2007; 118
Wolpaw (10.1016/j.irbm.2018.08.001_br0080) 1994; 90
BCI2000 (10.1016/j.irbm.2018.08.001_br0240)
McFarland (10.1016/j.irbm.2018.08.001_br0120) 1997; 103
LaFleur (10.1016/j.irbm.2018.08.001_br0050) 2013; 10
Guillot (10.1016/j.irbm.2018.08.001_br0160) 2014
BCI2000 (10.1016/j.irbm.2018.08.001_br0200)
McFarland (10.1016/j.irbm.2018.08.001_br0250) 2015; 97
BCI2000 (10.1016/j.irbm.2018.08.001_br0210)
References_xml – volume: 7
  year: 2010
  ident: br0040
  article-title: Electroencephalographic (EEG) control of three-dimensional movement
  publication-title: J Neural Eng
– volume: 10
  year: 2013
  ident: br0050
  article-title: Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain–computer interface
  publication-title: J Neural Eng
– volume: 9
  start-page: 50
  year: 2012
  ident: br0260
  article-title: Automatic artefact removal in a self-paced hybrid brain–computer interface system
  publication-title: J NeuroEng Rehabil
– volume: 6
  year: 2011
  ident: br0060
  article-title: Continuous three-dimensional control of a virtual helicopter using a motor imagery based brain–computer interface
  publication-title: PLoS ONE
– ident: br0010
  article-title: Endogenous BCI platform
– year: 2014
  ident: br0160
  article-title: The neurofunctional architecture of motor imagery
  publication-title: Advanced brain neuroimaging topics in health and disease – methods and applications
– volume: 118
  start-page: 480
  year: 2007
  end-page: 494
  ident: br0230
  article-title: EMG and EOG artifacts in brain computer interface systems: a survey
  publication-title: Clin Neurophysiol
– year: 2012
  ident: br0030
  article-title: Brain–computer interfaces: principles and practice
– volume: 48
  start-page: 3
  year: 2007
  end-page: 16
  ident: br0140
  article-title: Annotation: neurofeedback – train your brain to train behaviour
  publication-title: J Child Psychol Psychiatry
– start-page: 100
  year: 2017
  end-page: 105
  ident: br0180
  article-title: A Matlab/Simulink framework for real time implementation of endogenous brain computer interfaces
  publication-title: AFRICON
– ident: br0200
  article-title: User tutorial: performing a mu rhythm feedback session
– volume: 5
  start-page: 75
  year: 2008
  ident: br0190
  article-title: Two-dimensional movement control using electrocorticographic signals in humans
  publication-title: J Neural Eng
– ident: br0210
  article-title: User tutorial: introduction to the mu rhythm
– volume: 103
  start-page: 386
  year: 1997
  end-page: 394
  ident: br0120
  article-title: Spatial filter selection for EEG-based communication
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 114
  start-page: 1580
  year: 2003
  end-page: 1593
  ident: br0220
  article-title: EMG contamination of EEG: spectral and topographical characteristics
  publication-title: Clin Neurophysiol
– volume: 90
  start-page: 444
  year: 1994
  end-page: 449
  ident: br0080
  article-title: Multichannel EEG-based brain–computer communication
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 159
  start-page: 411
  year: 2006
  end-page: 419
  ident: br0130
  article-title: Brain–computer interface signal processing at the Wadsworth Center: mu and sensorimotor beta rhythms
  publication-title: Prog Brain Res
– ident: br0240
  article-title: User tutorial: obtaining mu rhythms parameters in an initial session
– volume: 29
  start-page: 16
  year: 2010
  end-page: 22
  ident: br0100
  article-title: Invasive or noninvasive: understanding brain–machine interface technology [conversations in BME]
  publication-title: IEEE Eng Med Biol Mag
– volume: 61
  start-page: 1425
  year: 2014
  end-page: 1435
  ident: br0020
  article-title: Brain–computer interfaces using sensorimotor rhythms: current state and future perspectives
  publication-title: IEEE Trans Biomed Eng
– volume: 29
  start-page: 337
  year: 1997
  end-page: 345
  ident: br0150
  article-title: Design and operation of an EEG-based brain–computer interface with digital signal processing technology
  publication-title: Behav Res Methods Instrum Comput
– volume: 97
  start-page: 271
  year: 2015
  end-page: 276
  ident: br0250
  article-title: The advantages of the surface Laplacian in brain–computer interface research
  publication-title: Int J Psychophysiol
– ident: br0170
  article-title: Coefficient of determination r2
– volume: 101
  start-page: 17849
  year: 2004
  end-page: 17854
  ident: br0070
  article-title: Control of a two-dimensional movement signal by a noninvasive brain–computer interface in humans
  publication-title: Proc Natl Acad Sci USA
– volume: 12
  start-page: 1211
  year: 2012
  end-page: 1279
  ident: br0110
  article-title: Brain computer interfaces, a review
  publication-title: Sensors
– volume: 78
  start-page: 252
  year: 1991
  end-page: 259
  ident: br0090
  article-title: An EEG-based brain–computer interface for cursor control
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 29
  start-page: 337
  issue: 3
  year: 1997
  ident: 10.1016/j.irbm.2018.08.001_br0150
  article-title: Design and operation of an EEG-based brain–computer interface with digital signal processing technology
  publication-title: Behav Res Methods Instrum Comput
  doi: 10.3758/BF03200585
– volume: 97
  start-page: 271
  issue: 3
  year: 2015
  ident: 10.1016/j.irbm.2018.08.001_br0250
  article-title: The advantages of the surface Laplacian in brain–computer interface research
  publication-title: Int J Psychophysiol
  doi: 10.1016/j.ijpsycho.2014.07.009
– ident: 10.1016/j.irbm.2018.08.001_br0170
– volume: 61
  start-page: 1425
  issue: 5
  year: 2014
  ident: 10.1016/j.irbm.2018.08.001_br0020
  article-title: Brain–computer interfaces using sensorimotor rhythms: current state and future perspectives
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2014.2312397
– volume: 10
  issue: 4
  year: 2013
  ident: 10.1016/j.irbm.2018.08.001_br0050
  article-title: Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain–computer interface
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/10/4/046003
– volume: 12
  start-page: 1211
  issue: 2
  year: 2012
  ident: 10.1016/j.irbm.2018.08.001_br0110
  article-title: Brain computer interfaces, a review
  publication-title: Sensors
  doi: 10.3390/s120201211
– volume: 90
  start-page: 444
  issue: 6
  year: 1994
  ident: 10.1016/j.irbm.2018.08.001_br0080
  article-title: Multichannel EEG-based brain–computer communication
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(94)90135-X
– volume: 7
  issue: 3
  year: 2010
  ident: 10.1016/j.irbm.2018.08.001_br0040
  article-title: Electroencephalographic (EEG) control of three-dimensional movement
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/7/3/036007
– volume: 159
  start-page: 411
  year: 2006
  ident: 10.1016/j.irbm.2018.08.001_br0130
  article-title: Brain–computer interface signal processing at the Wadsworth Center: mu and sensorimotor beta rhythms
  publication-title: Prog Brain Res
  doi: 10.1016/S0079-6123(06)59026-0
– start-page: 100
  year: 2017
  ident: 10.1016/j.irbm.2018.08.001_br0180
  article-title: A Matlab/Simulink framework for real time implementation of endogenous brain computer interfaces
– volume: 101
  start-page: 17849
  issue: 51
  year: 2004
  ident: 10.1016/j.irbm.2018.08.001_br0070
  article-title: Control of a two-dimensional movement signal by a noninvasive brain–computer interface in humans
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0403504101
– volume: 103
  start-page: 386
  issue: 3
  year: 1997
  ident: 10.1016/j.irbm.2018.08.001_br0120
  article-title: Spatial filter selection for EEG-based communication
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/S0013-4694(97)00022-2
– volume: 6
  issue: 10
  year: 2011
  ident: 10.1016/j.irbm.2018.08.001_br0060
  article-title: Continuous three-dimensional control of a virtual helicopter using a motor imagery based brain–computer interface
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0026322
– volume: 9
  start-page: 50
  issue: 1
  year: 2012
  ident: 10.1016/j.irbm.2018.08.001_br0260
  article-title: Automatic artefact removal in a self-paced hybrid brain–computer interface system
  publication-title: J NeuroEng Rehabil
  doi: 10.1186/1743-0003-9-50
– volume: 29
  start-page: 16
  issue: 1
  year: 2010
  ident: 10.1016/j.irbm.2018.08.001_br0100
  article-title: Invasive or noninvasive: understanding brain–machine interface technology [conversations in BME]
  publication-title: IEEE Eng Med Biol Mag
  doi: 10.1109/MEMB.2009.935475
– ident: 10.1016/j.irbm.2018.08.001_br0240
– volume: 118
  start-page: 480
  issue: 3
  year: 2007
  ident: 10.1016/j.irbm.2018.08.001_br0230
  article-title: EMG and EOG artifacts in brain computer interface systems: a survey
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2006.10.019
– volume: 48
  start-page: 3
  issue: 1
  year: 2007
  ident: 10.1016/j.irbm.2018.08.001_br0140
  article-title: Annotation: neurofeedback – train your brain to train behaviour
  publication-title: J Child Psychol Psychiatry
  doi: 10.1111/j.1469-7610.2006.01665.x
– volume: 114
  start-page: 1580
  issue: 9
  year: 2003
  ident: 10.1016/j.irbm.2018.08.001_br0220
  article-title: EMG contamination of EEG: spectral and topographical characteristics
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(03)00093-2
– volume: 5
  start-page: 75
  issue: 1
  year: 2008
  ident: 10.1016/j.irbm.2018.08.001_br0190
  article-title: Two-dimensional movement control using electrocorticographic signals in humans
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/5/1/008
– year: 2012
  ident: 10.1016/j.irbm.2018.08.001_br0030
– volume: 78
  start-page: 252
  issue: 3
  year: 1991
  ident: 10.1016/j.irbm.2018.08.001_br0090
  article-title: An EEG-based brain–computer interface for cursor control
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(91)90040-B
– year: 2014
  ident: 10.1016/j.irbm.2018.08.001_br0160
  article-title: The neurofunctional architecture of motor imagery
– ident: 10.1016/j.irbm.2018.08.001_br0010
– ident: 10.1016/j.irbm.2018.08.001_br0210
– ident: 10.1016/j.irbm.2018.08.001_br0200
SSID ssj0063231
Score 2.1147633
Snippet Sensorimotor rhythms (SMR) have been the neuronal phenomena of choice in non-invasive EEG-based endogenous brain computer interfaces (BCIs) for more than two...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 324
SubjectTerms Brain Computer Interface (BCI)
Control attainment
Electroencephalogram (EEG)
Sensorimotor rhythms (SMR)
Title Analysis of User Control Attainment in SMR-based Brain Computer Interfaces
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1959031818300514
https://dx.doi.org/10.1016/j.irbm.2018.08.001
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF36cfEiior1o-zBm8R2s7vZ5FiLpVbag7XQW8h-BCISS4lXf7s7yW5RhAresmEHwjDMviTvzUPoJlbamCSLAsZjHTDNZSCJofYqUZrRSGkBQuH5Ipqu2GzN1y009loYoFW63t_09LpbuzsDl83BpigGSxiLAiVpi7Ke4t1G3ZAmEe-g7ujxabrwDTmiYW1LCPsDCHDamYbmVWwlCNJJXE_ydN4wv86nb2fO5AgdOrCIR83zHKOWKU_QzM8Rwe85XtkKwuOGbo5Hlf-7j4sSL-fPAZxRGt-DDQT2_g24_giYAxXrFK0mDy_jaeAcEQJFOamCXOVEWwDDqNGZtC8rFk8Ms9CoWGjDlIUawgjGRZ4wmUciUSqWsbagQMccqGz0DHXK99KcIxxGoESTiioqmKKJRQY5JfnQZIQKqUUPEZ-HVLlx4eBa8ZZ6XthrCrlLIXcpWFkOSQ_d7mI2zbCMvbupT2_qZaC2caW2l--N4ruoH4XyR9zFP-Mu0QGsGvnhFepU2w9zbXFIJfuoffdJ-q7avgClZ9ur
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF1qPehFFBW_3YM3iW26u9nkWIul1rYH20JvS_YLIpKWEq_-dneSTVGECt7CZgfCMMy-JO_NQ-guVtqYJI0CymIdUM1kIEND3FWiNCWR0hyEwuNJNJjT4YItGqhXa2GAVul7f9XTy27tV1o-m61VlrWmMBYFStIVZTnFewftUkY48PoePjc8j4h0SlNC2B3Adq-cqUhe2VqCHD2Myzme3hnm1-n07cTpH6IDDxVxt3qaI9Qw-TEa1lNE8NLiuasf3KvI5rhb1P_2cZbj6fg1gBNK40cwgcC1ewMuPwFaIGKdoHn_adYbBN4PIVCEhUVglQ21gy-UGJ1K96ri0EQ77RgVc22ockCDG04ZtwmVNuKJUrGMtYMEOmZAZCOnqJkvc3OGcCcCHZpURBFOFUkcLrAktG2ThoRLzc9RWOdBKD8sHDwr3kXNCnsTkDsBuRNgZNkOz9H9JmZVjcrYupvU6RW1CNS1LeE6-dYoton6USZ_xF38M-4W7Q1m45EYPU9eLtE-3KmEiFeoWaw_zLVDJIW8KSvuC3p43HY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+User+Control+Attainment+in+SMR-based+Brain+Computer+Interfaces&rft.jtitle=Ing%C3%A9nierie+et+recherche+biom%C3%A9dicale&rft.au=Matanga%2C+Y.&rft.au=Djouani%2C+K.&rft.au=Kurien%2C+A.&rft.date=2018-11-01&rft.pub=Elsevier+Masson+SAS&rft.issn=1959-0318&rft.volume=39&rft.issue=5&rft.spage=324&rft.epage=333&rft_id=info:doi/10.1016%2Fj.irbm.2018.08.001&rft.externalDocID=S1959031818300514
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1959-0318&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1959-0318&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1959-0318&client=summon