Analysis of User Control Attainment in SMR-based Brain Computer Interfaces
Sensorimotor rhythms (SMR) have been the neuronal phenomena of choice in non-invasive EEG-based endogenous brain computer interfaces (BCIs) for more than two decades and SMR-based BCIs have achieved the highest degree of freedom control so far. Nevertheless, they are subject to long periods of train...
Saved in:
Published in | Ingénierie et recherche biomédicale Vol. 39; no. 5; pp. 324 - 333 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Masson SAS
01.11.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1959-0318 |
DOI | 10.1016/j.irbm.2018.08.001 |
Cover
Abstract | Sensorimotor rhythms (SMR) have been the neuronal phenomena of choice in non-invasive EEG-based endogenous brain computer interfaces (BCIs) for more than two decades and SMR-based BCIs have achieved the highest degree of freedom control so far. Nevertheless, they are subject to long periods of training prior to attaining a satisfactory level of control requiring users to learn to modulate their rhythms. The goal of this work is to analyse this problem, discuss the causes of the slow rise in performance and provide recommendations on alternative solutions to quicken control attainment.
The study has been conducted by both theoretical and empirical analysis. A theoretical model has been developed that explains the principle operation of SMR-based BCIs focusing on major performance contributors respectively the user, periodic feature selection and the translation model thus contrasting user adaptation and machine learning. Five able-bodied subjects (age: 26±2.55) participated in six sessions of online computer cursor control experiments over three weeks to evaluate control attainment performances and gather data for statistical analysis (∼1152 trials per subject). Correlation (r2) between user control features and target position over sessions was assessed as an estimate of neural adaptation and the predictive power of the translation algorithm (10 × 10 fold cross-validation) was calculated over sessions as an estimate of machine adaptation. Auxiliary performance metrics were evaluated.
Features-target correlation increased over sessions, while at the same time the predictive accuracy (R2) of the translation model remained averagely steady and very low (Rbest2=0.04) demonstrating continuous user adaptation and low model predictive accuracy. Periodic feature selection was theoretically discussed to be very instrumental and its relevance was empirically illustrated.
The study concludes that the slow control attainment in SMR-based BCIs is due to its reliance on user training (neural adaptation) which is adaptive but too slow in the context of SMR modulations and due to the weak decoding of the neuronal phenomenon utilised by the user. As a recommendation, the optimality of the feature selection algorithm could be looked at to guarantee the use of the most relevant features. However and most importantly the predictive power of the translation model should be significantly improved in order to quicken control attainment as thereafter the control attainment effort could be shifted from neural adaptation to machine learning.
•SMR-based BCIs are co-adaptive systems with user–machine close interaction.•Control attainment is mainly dictated by user adaptation than machine learning (ML).•Neural adaptation in SMR-based BCIs design is slow causing slow control attainment.•SMR-based BCIs ML components are simple in nature and have less predictive accuracy.•Design should be centred on online decoding of user patterns to quicken control attainment. |
---|---|
AbstractList | Sensorimotor rhythms (SMR) have been the neuronal phenomena of choice in non-invasive EEG-based endogenous brain computer interfaces (BCIs) for more than two decades and SMR-based BCIs have achieved the highest degree of freedom control so far. Nevertheless, they are subject to long periods of training prior to attaining a satisfactory level of control requiring users to learn to modulate their rhythms. The goal of this work is to analyse this problem, discuss the causes of the slow rise in performance and provide recommendations on alternative solutions to quicken control attainment.
The study has been conducted by both theoretical and empirical analysis. A theoretical model has been developed that explains the principle operation of SMR-based BCIs focusing on major performance contributors respectively the user, periodic feature selection and the translation model thus contrasting user adaptation and machine learning. Five able-bodied subjects (age: 26±2.55) participated in six sessions of online computer cursor control experiments over three weeks to evaluate control attainment performances and gather data for statistical analysis (∼1152 trials per subject). Correlation (r2) between user control features and target position over sessions was assessed as an estimate of neural adaptation and the predictive power of the translation algorithm (10 × 10 fold cross-validation) was calculated over sessions as an estimate of machine adaptation. Auxiliary performance metrics were evaluated.
Features-target correlation increased over sessions, while at the same time the predictive accuracy (R2) of the translation model remained averagely steady and very low (Rbest2=0.04) demonstrating continuous user adaptation and low model predictive accuracy. Periodic feature selection was theoretically discussed to be very instrumental and its relevance was empirically illustrated.
The study concludes that the slow control attainment in SMR-based BCIs is due to its reliance on user training (neural adaptation) which is adaptive but too slow in the context of SMR modulations and due to the weak decoding of the neuronal phenomenon utilised by the user. As a recommendation, the optimality of the feature selection algorithm could be looked at to guarantee the use of the most relevant features. However and most importantly the predictive power of the translation model should be significantly improved in order to quicken control attainment as thereafter the control attainment effort could be shifted from neural adaptation to machine learning.
•SMR-based BCIs are co-adaptive systems with user–machine close interaction.•Control attainment is mainly dictated by user adaptation than machine learning (ML).•Neural adaptation in SMR-based BCIs design is slow causing slow control attainment.•SMR-based BCIs ML components are simple in nature and have less predictive accuracy.•Design should be centred on online decoding of user patterns to quicken control attainment. |
Author | Kurien, A. Djouani, K. Matanga, Y. |
Author_xml | – sequence: 1 givenname: Y. orcidid: 0000-0002-0766-5000 surname: Matanga fullname: Matanga, Y. email: yves.matanga@gmail.com – sequence: 2 givenname: K. orcidid: 0000-0001-6060-8200 surname: Djouani fullname: Djouani, K. – sequence: 3 givenname: A. surname: Kurien fullname: Kurien, A. |
BookMark | eNqFkF9LwzAUxfMwwW36BXzqF-hMmrRNxZc5_DOZCOqeQ5rcQGabjiQK-_amzCcfJhzuhcv5XThnhiZucIDQFcELgkl1vVtY3_aLAhO-wEmYTNCUNGWTY0r4OZqFsMO4ogUlU_S8dLI7BBuywWTbAD5bDS76ocuWMUrrenAxsy57f3nLWxlAZ3c-nZOr33_FZF-7NI1UEC7QmZFdgMvfPUfbh_uP1VO-eX1cr5abXNGSxNwoQzRjhFHQsmVNUzGKZQGK1xqYamhdQ83K2jSsNVXdKMVbrusSa14WFeN0jorjX-WHEDwYsfe2l_4gCBZjA2InxgbE2IDASZgkiP-BlI0y2jGstN1p9PaIQgr1bcGLoCw4Bdp6UFHowZ7Gb_7gqrPOKtl9wuE_-AdNNo6- |
CitedBy_id | crossref_primary_10_1016_j_jneumeth_2019_108434 crossref_primary_10_1515_bams_2019_0053 |
Cites_doi | 10.3758/BF03200585 10.1016/j.ijpsycho.2014.07.009 10.1109/TBME.2014.2312397 10.1088/1741-2560/10/4/046003 10.3390/s120201211 10.1016/0013-4694(94)90135-X 10.1088/1741-2560/7/3/036007 10.1016/S0079-6123(06)59026-0 10.1073/pnas.0403504101 10.1016/S0013-4694(97)00022-2 10.1371/journal.pone.0026322 10.1186/1743-0003-9-50 10.1109/MEMB.2009.935475 10.1016/j.clinph.2006.10.019 10.1111/j.1469-7610.2006.01665.x 10.1016/S1388-2457(03)00093-2 10.1088/1741-2560/5/1/008 10.1016/0013-4694(91)90040-B |
ContentType | Journal Article |
Copyright | 2018 AGBM |
Copyright_xml | – notice: 2018 AGBM |
DBID | AAYXX CITATION |
DOI | 10.1016/j.irbm.2018.08.001 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EndPage | 333 |
ExternalDocumentID | 10_1016_j_irbm_2018_08_001 S1959031818300514 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 1B1 1P~ 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AATTM AAXKI AAXUO AAYWO ABBQC ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGUBO AGYEJ AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EP2 EP3 F0J FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 ROL SDF SDG SEM SES SPC SPCBC SSH SST SSZ T5K Z5R ~G- AACTN AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW EFLBG LCYCR RIG AAYXX AGRNS CITATION |
ID | FETCH-LOGICAL-c351t-fcf1d44143edab4996430a2ec87de4c9377e7457f94bf679cc8b8d750d8526483 |
IEDL.DBID | AIKHN |
ISSN | 1959-0318 |
IngestDate | Thu Apr 24 22:53:44 EDT 2025 Tue Jul 01 00:52:24 EDT 2025 Fri Feb 23 02:27:53 EST 2024 Tue Aug 26 16:33:47 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Electroencephalogram (EEG) Sensorimotor rhythms (SMR) Control attainment Brain Computer Interface (BCI) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-fcf1d44143edab4996430a2ec87de4c9377e7457f94bf679cc8b8d750d8526483 |
ORCID | 0000-0002-0766-5000 0000-0001-6060-8200 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1016_j_irbm_2018_08_001 crossref_citationtrail_10_1016_j_irbm_2018_08_001 elsevier_sciencedirect_doi_10_1016_j_irbm_2018_08_001 elsevier_clinicalkey_doi_10_1016_j_irbm_2018_08_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2018 2018-11-00 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: November 2018 |
PublicationDecade | 2010 |
PublicationTitle | Ingénierie et recherche biomédicale |
PublicationYear | 2018 |
Publisher | Elsevier Masson SAS |
Publisher_xml | – name: Elsevier Masson SAS |
References | Guillot, Di Rienzo, Collet (br0160) 2014 Wolpaw, McFarland (br0080) 1994; 90 McFarland, Krusienski, Wolpaw (br0130) 2006; 159 Wolpaw, McFarland (br0070) 2004; 101 McFarland, Lefkowicz, Wolpaw (br0150) 1997; 29 Matanga, Djouani, Anish (br0180) 2017 McFarland, McCane, David, Wolpaw (br0120) 1997; 103 Wolpaw, McFarland, Neat, Forneris (br0090) 1991; 78 BCI2000 (br0240) McFarland, Sarnacki, Wolpaw (br0040) 2010; 7 Matanga (br0010) Milan, Carmena (br0100) 2010; 29 BCI2000 (br0210) LaFleur, Cassady, Doud, Shades, Rogin, He (br0050) 2013; 10 BCI2000 (br0200) Nicolas-Alonso, Gomez-Gil (br0110) 2012; 12 BCI2000 (br0170) Schalk, Miller, Anderson, Wilson, Smyth, Ojemann (br0190) 2008; 5 Goncharova, McFarland, Vaughan, Wolpaw (br0220) 2003; 114 Yong, Fatourechi, Ward, Birch (br0260) 2012; 9 Fatourechi, Bashashati, Ward, Birch (br0230) 2007; 118 Doud, Lucas, Pisansky, He (br0060) 2011; 6 Yuan, He (br0020) 2014; 61 McFarland (br0250) 2015; 97 Heinrich, Gevensleben, Strehl (br0140) 2007; 48 Wolpaw, Wolpaw (br0030) 2012 Doud (10.1016/j.irbm.2018.08.001_br0060) 2011; 6 McFarland (10.1016/j.irbm.2018.08.001_br0130) 2006; 159 McFarland (10.1016/j.irbm.2018.08.001_br0150) 1997; 29 Matanga (10.1016/j.irbm.2018.08.001_br0010) Goncharova (10.1016/j.irbm.2018.08.001_br0220) 2003; 114 Wolpaw (10.1016/j.irbm.2018.08.001_br0030) 2012 Yong (10.1016/j.irbm.2018.08.001_br0260) 2012; 9 Wolpaw (10.1016/j.irbm.2018.08.001_br0090) 1991; 78 Heinrich (10.1016/j.irbm.2018.08.001_br0140) 2007; 48 Nicolas-Alonso (10.1016/j.irbm.2018.08.001_br0110) 2012; 12 Milan (10.1016/j.irbm.2018.08.001_br0100) 2010; 29 BCI2000 (10.1016/j.irbm.2018.08.001_br0170) McFarland (10.1016/j.irbm.2018.08.001_br0040) 2010; 7 Yuan (10.1016/j.irbm.2018.08.001_br0020) 2014; 61 Matanga (10.1016/j.irbm.2018.08.001_br0180) 2017 Schalk (10.1016/j.irbm.2018.08.001_br0190) 2008; 5 Wolpaw (10.1016/j.irbm.2018.08.001_br0070) 2004; 101 Fatourechi (10.1016/j.irbm.2018.08.001_br0230) 2007; 118 Wolpaw (10.1016/j.irbm.2018.08.001_br0080) 1994; 90 BCI2000 (10.1016/j.irbm.2018.08.001_br0240) McFarland (10.1016/j.irbm.2018.08.001_br0120) 1997; 103 LaFleur (10.1016/j.irbm.2018.08.001_br0050) 2013; 10 Guillot (10.1016/j.irbm.2018.08.001_br0160) 2014 BCI2000 (10.1016/j.irbm.2018.08.001_br0200) McFarland (10.1016/j.irbm.2018.08.001_br0250) 2015; 97 BCI2000 (10.1016/j.irbm.2018.08.001_br0210) |
References_xml | – volume: 7 year: 2010 ident: br0040 article-title: Electroencephalographic (EEG) control of three-dimensional movement publication-title: J Neural Eng – volume: 10 year: 2013 ident: br0050 article-title: Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain–computer interface publication-title: J Neural Eng – volume: 9 start-page: 50 year: 2012 ident: br0260 article-title: Automatic artefact removal in a self-paced hybrid brain–computer interface system publication-title: J NeuroEng Rehabil – volume: 6 year: 2011 ident: br0060 article-title: Continuous three-dimensional control of a virtual helicopter using a motor imagery based brain–computer interface publication-title: PLoS ONE – ident: br0010 article-title: Endogenous BCI platform – year: 2014 ident: br0160 article-title: The neurofunctional architecture of motor imagery publication-title: Advanced brain neuroimaging topics in health and disease – methods and applications – volume: 118 start-page: 480 year: 2007 end-page: 494 ident: br0230 article-title: EMG and EOG artifacts in brain computer interface systems: a survey publication-title: Clin Neurophysiol – year: 2012 ident: br0030 article-title: Brain–computer interfaces: principles and practice – volume: 48 start-page: 3 year: 2007 end-page: 16 ident: br0140 article-title: Annotation: neurofeedback – train your brain to train behaviour publication-title: J Child Psychol Psychiatry – start-page: 100 year: 2017 end-page: 105 ident: br0180 article-title: A Matlab/Simulink framework for real time implementation of endogenous brain computer interfaces publication-title: AFRICON – ident: br0200 article-title: User tutorial: performing a mu rhythm feedback session – volume: 5 start-page: 75 year: 2008 ident: br0190 article-title: Two-dimensional movement control using electrocorticographic signals in humans publication-title: J Neural Eng – ident: br0210 article-title: User tutorial: introduction to the mu rhythm – volume: 103 start-page: 386 year: 1997 end-page: 394 ident: br0120 article-title: Spatial filter selection for EEG-based communication publication-title: Electroencephalogr Clin Neurophysiol – volume: 114 start-page: 1580 year: 2003 end-page: 1593 ident: br0220 article-title: EMG contamination of EEG: spectral and topographical characteristics publication-title: Clin Neurophysiol – volume: 90 start-page: 444 year: 1994 end-page: 449 ident: br0080 article-title: Multichannel EEG-based brain–computer communication publication-title: Electroencephalogr Clin Neurophysiol – volume: 159 start-page: 411 year: 2006 end-page: 419 ident: br0130 article-title: Brain–computer interface signal processing at the Wadsworth Center: mu and sensorimotor beta rhythms publication-title: Prog Brain Res – ident: br0240 article-title: User tutorial: obtaining mu rhythms parameters in an initial session – volume: 29 start-page: 16 year: 2010 end-page: 22 ident: br0100 article-title: Invasive or noninvasive: understanding brain–machine interface technology [conversations in BME] publication-title: IEEE Eng Med Biol Mag – volume: 61 start-page: 1425 year: 2014 end-page: 1435 ident: br0020 article-title: Brain–computer interfaces using sensorimotor rhythms: current state and future perspectives publication-title: IEEE Trans Biomed Eng – volume: 29 start-page: 337 year: 1997 end-page: 345 ident: br0150 article-title: Design and operation of an EEG-based brain–computer interface with digital signal processing technology publication-title: Behav Res Methods Instrum Comput – volume: 97 start-page: 271 year: 2015 end-page: 276 ident: br0250 article-title: The advantages of the surface Laplacian in brain–computer interface research publication-title: Int J Psychophysiol – ident: br0170 article-title: Coefficient of determination r2 – volume: 101 start-page: 17849 year: 2004 end-page: 17854 ident: br0070 article-title: Control of a two-dimensional movement signal by a noninvasive brain–computer interface in humans publication-title: Proc Natl Acad Sci USA – volume: 12 start-page: 1211 year: 2012 end-page: 1279 ident: br0110 article-title: Brain computer interfaces, a review publication-title: Sensors – volume: 78 start-page: 252 year: 1991 end-page: 259 ident: br0090 article-title: An EEG-based brain–computer interface for cursor control publication-title: Electroencephalogr Clin Neurophysiol – volume: 29 start-page: 337 issue: 3 year: 1997 ident: 10.1016/j.irbm.2018.08.001_br0150 article-title: Design and operation of an EEG-based brain–computer interface with digital signal processing technology publication-title: Behav Res Methods Instrum Comput doi: 10.3758/BF03200585 – volume: 97 start-page: 271 issue: 3 year: 2015 ident: 10.1016/j.irbm.2018.08.001_br0250 article-title: The advantages of the surface Laplacian in brain–computer interface research publication-title: Int J Psychophysiol doi: 10.1016/j.ijpsycho.2014.07.009 – ident: 10.1016/j.irbm.2018.08.001_br0170 – volume: 61 start-page: 1425 issue: 5 year: 2014 ident: 10.1016/j.irbm.2018.08.001_br0020 article-title: Brain–computer interfaces using sensorimotor rhythms: current state and future perspectives publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2014.2312397 – volume: 10 issue: 4 year: 2013 ident: 10.1016/j.irbm.2018.08.001_br0050 article-title: Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain–computer interface publication-title: J Neural Eng doi: 10.1088/1741-2560/10/4/046003 – volume: 12 start-page: 1211 issue: 2 year: 2012 ident: 10.1016/j.irbm.2018.08.001_br0110 article-title: Brain computer interfaces, a review publication-title: Sensors doi: 10.3390/s120201211 – volume: 90 start-page: 444 issue: 6 year: 1994 ident: 10.1016/j.irbm.2018.08.001_br0080 article-title: Multichannel EEG-based brain–computer communication publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(94)90135-X – volume: 7 issue: 3 year: 2010 ident: 10.1016/j.irbm.2018.08.001_br0040 article-title: Electroencephalographic (EEG) control of three-dimensional movement publication-title: J Neural Eng doi: 10.1088/1741-2560/7/3/036007 – volume: 159 start-page: 411 year: 2006 ident: 10.1016/j.irbm.2018.08.001_br0130 article-title: Brain–computer interface signal processing at the Wadsworth Center: mu and sensorimotor beta rhythms publication-title: Prog Brain Res doi: 10.1016/S0079-6123(06)59026-0 – start-page: 100 year: 2017 ident: 10.1016/j.irbm.2018.08.001_br0180 article-title: A Matlab/Simulink framework for real time implementation of endogenous brain computer interfaces – volume: 101 start-page: 17849 issue: 51 year: 2004 ident: 10.1016/j.irbm.2018.08.001_br0070 article-title: Control of a two-dimensional movement signal by a noninvasive brain–computer interface in humans publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0403504101 – volume: 103 start-page: 386 issue: 3 year: 1997 ident: 10.1016/j.irbm.2018.08.001_br0120 article-title: Spatial filter selection for EEG-based communication publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/S0013-4694(97)00022-2 – volume: 6 issue: 10 year: 2011 ident: 10.1016/j.irbm.2018.08.001_br0060 article-title: Continuous three-dimensional control of a virtual helicopter using a motor imagery based brain–computer interface publication-title: PLoS ONE doi: 10.1371/journal.pone.0026322 – volume: 9 start-page: 50 issue: 1 year: 2012 ident: 10.1016/j.irbm.2018.08.001_br0260 article-title: Automatic artefact removal in a self-paced hybrid brain–computer interface system publication-title: J NeuroEng Rehabil doi: 10.1186/1743-0003-9-50 – volume: 29 start-page: 16 issue: 1 year: 2010 ident: 10.1016/j.irbm.2018.08.001_br0100 article-title: Invasive or noninvasive: understanding brain–machine interface technology [conversations in BME] publication-title: IEEE Eng Med Biol Mag doi: 10.1109/MEMB.2009.935475 – ident: 10.1016/j.irbm.2018.08.001_br0240 – volume: 118 start-page: 480 issue: 3 year: 2007 ident: 10.1016/j.irbm.2018.08.001_br0230 article-title: EMG and EOG artifacts in brain computer interface systems: a survey publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2006.10.019 – volume: 48 start-page: 3 issue: 1 year: 2007 ident: 10.1016/j.irbm.2018.08.001_br0140 article-title: Annotation: neurofeedback – train your brain to train behaviour publication-title: J Child Psychol Psychiatry doi: 10.1111/j.1469-7610.2006.01665.x – volume: 114 start-page: 1580 issue: 9 year: 2003 ident: 10.1016/j.irbm.2018.08.001_br0220 article-title: EMG contamination of EEG: spectral and topographical characteristics publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(03)00093-2 – volume: 5 start-page: 75 issue: 1 year: 2008 ident: 10.1016/j.irbm.2018.08.001_br0190 article-title: Two-dimensional movement control using electrocorticographic signals in humans publication-title: J Neural Eng doi: 10.1088/1741-2560/5/1/008 – year: 2012 ident: 10.1016/j.irbm.2018.08.001_br0030 – volume: 78 start-page: 252 issue: 3 year: 1991 ident: 10.1016/j.irbm.2018.08.001_br0090 article-title: An EEG-based brain–computer interface for cursor control publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(91)90040-B – year: 2014 ident: 10.1016/j.irbm.2018.08.001_br0160 article-title: The neurofunctional architecture of motor imagery – ident: 10.1016/j.irbm.2018.08.001_br0010 – ident: 10.1016/j.irbm.2018.08.001_br0210 – ident: 10.1016/j.irbm.2018.08.001_br0200 |
SSID | ssj0063231 |
Score | 2.1147633 |
Snippet | Sensorimotor rhythms (SMR) have been the neuronal phenomena of choice in non-invasive EEG-based endogenous brain computer interfaces (BCIs) for more than two... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 324 |
SubjectTerms | Brain Computer Interface (BCI) Control attainment Electroencephalogram (EEG) Sensorimotor rhythms (SMR) |
Title | Analysis of User Control Attainment in SMR-based Brain Computer Interfaces |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1959031818300514 https://dx.doi.org/10.1016/j.irbm.2018.08.001 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF36cfEiior1o-zBm8R2s7vZ5FiLpVbag7XQW8h-BCISS4lXf7s7yW5RhAresmEHwjDMviTvzUPoJlbamCSLAsZjHTDNZSCJofYqUZrRSGkBQuH5Ipqu2GzN1y009loYoFW63t_09LpbuzsDl83BpigGSxiLAiVpi7Ke4t1G3ZAmEe-g7ujxabrwDTmiYW1LCPsDCHDamYbmVWwlCNJJXE_ydN4wv86nb2fO5AgdOrCIR83zHKOWKU_QzM8Rwe85XtkKwuOGbo5Hlf-7j4sSL-fPAZxRGt-DDQT2_g24_giYAxXrFK0mDy_jaeAcEQJFOamCXOVEWwDDqNGZtC8rFk8Ms9CoWGjDlIUawgjGRZ4wmUciUSqWsbagQMccqGz0DHXK99KcIxxGoESTiioqmKKJRQY5JfnQZIQKqUUPEZ-HVLlx4eBa8ZZ6XthrCrlLIXcpWFkOSQ_d7mI2zbCMvbupT2_qZaC2caW2l--N4ruoH4XyR9zFP-Mu0QGsGvnhFepU2w9zbXFIJfuoffdJ-q7avgClZ9ur |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF1qPehFFBW_3YM3iW26u9nkWIul1rYH20JvS_YLIpKWEq_-dneSTVGECt7CZgfCMMy-JO_NQ-guVtqYJI0CymIdUM1kIEND3FWiNCWR0hyEwuNJNJjT4YItGqhXa2GAVul7f9XTy27tV1o-m61VlrWmMBYFStIVZTnFewftUkY48PoePjc8j4h0SlNC2B3Adq-cqUhe2VqCHD2Myzme3hnm1-n07cTpH6IDDxVxt3qaI9Qw-TEa1lNE8NLiuasf3KvI5rhb1P_2cZbj6fg1gBNK40cwgcC1ewMuPwFaIGKdoHn_adYbBN4PIVCEhUVglQ21gy-UGJ1K96ri0EQ77RgVc22ockCDG04ZtwmVNuKJUrGMtYMEOmZAZCOnqJkvc3OGcCcCHZpURBFOFUkcLrAktG2ThoRLzc9RWOdBKD8sHDwr3kXNCnsTkDsBuRNgZNkOz9H9JmZVjcrYupvU6RW1CNS1LeE6-dYoton6USZ_xF38M-4W7Q1m45EYPU9eLtE-3KmEiFeoWaw_zLVDJIW8KSvuC3p43HY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+User+Control+Attainment+in+SMR-based+Brain+Computer+Interfaces&rft.jtitle=Ing%C3%A9nierie+et+recherche+biom%C3%A9dicale&rft.au=Matanga%2C+Y.&rft.au=Djouani%2C+K.&rft.au=Kurien%2C+A.&rft.date=2018-11-01&rft.pub=Elsevier+Masson+SAS&rft.issn=1959-0318&rft.volume=39&rft.issue=5&rft.spage=324&rft.epage=333&rft_id=info:doi/10.1016%2Fj.irbm.2018.08.001&rft.externalDocID=S1959031818300514 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1959-0318&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1959-0318&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1959-0318&client=summon |