A Survey of Modulation Classification Using Deep Learning: Signal Representation and Data Preprocessing

Modulation classification is one of the key tasks for communications systems monitoring, management, and control for addressing technical issues, including spectrum awareness, adaptive transmissions, and interference avoidance. Recently, deep learning (DL)-based modulation classification has attract...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 33; no. 12; pp. 7020 - 7038
Main Authors Peng, Shengliang, Sun, Shujun, Yao, Yu-Dong
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2021.3085433

Cover

Abstract Modulation classification is one of the key tasks for communications systems monitoring, management, and control for addressing technical issues, including spectrum awareness, adaptive transmissions, and interference avoidance. Recently, deep learning (DL)-based modulation classification has attracted significant attention due to its superiority in feature extraction and classification accuracy. In DL-based modulation classification, one major challenge is to preprocess a received signal and represent it in a proper format before feeding the signal into deep neural networks. This article provides a comprehensive survey of the state-of-the-art DL-based modulation classification algorithms, especially the techniques of signal representation and data preprocessing utilized in these algorithms. Since a received signal can be represented by either features, images, sequences, or a combination of them, existing algorithms of DL-based modulation classification can be categorized into four groups and are reviewed accordingly in this article. Furthermore, the advantages as well as disadvantages of each signal representation method are summarized and discussed.
AbstractList Modulation classification is one of the key tasks for communications systems monitoring, management, and control for addressing technical issues, including spectrum awareness, adaptive transmissions, and interference avoidance. Recently, deep learning (DL)-based modulation classification has attracted significant attention due to its superiority in feature extraction and classification accuracy. In DL-based modulation classification, one major challenge is to preprocess a received signal and represent it in a proper format before feeding the signal into deep neural networks. This article provides a comprehensive survey of the state-of-the-art DL-based modulation classification algorithms, especially the techniques of signal representation and data preprocessing utilized in these algorithms. Since a received signal can be represented by either features, images, sequences, or a combination of them, existing algorithms of DL-based modulation classification can be categorized into four groups and are reviewed accordingly in this article. Furthermore, the advantages as well as disadvantages of each signal representation method are summarized and discussed.Modulation classification is one of the key tasks for communications systems monitoring, management, and control for addressing technical issues, including spectrum awareness, adaptive transmissions, and interference avoidance. Recently, deep learning (DL)-based modulation classification has attracted significant attention due to its superiority in feature extraction and classification accuracy. In DL-based modulation classification, one major challenge is to preprocess a received signal and represent it in a proper format before feeding the signal into deep neural networks. This article provides a comprehensive survey of the state-of-the-art DL-based modulation classification algorithms, especially the techniques of signal representation and data preprocessing utilized in these algorithms. Since a received signal can be represented by either features, images, sequences, or a combination of them, existing algorithms of DL-based modulation classification can be categorized into four groups and are reviewed accordingly in this article. Furthermore, the advantages as well as disadvantages of each signal representation method are summarized and discussed.
Modulation classification is one of the key tasks for communications systems monitoring, management, and control for addressing technical issues, including spectrum awareness, adaptive transmissions, and interference avoidance. Recently, deep learning (DL)-based modulation classification has attracted significant attention due to its superiority in feature extraction and classification accuracy. In DL-based modulation classification, one major challenge is to preprocess a received signal and represent it in a proper format before feeding the signal into deep neural networks. This article provides a comprehensive survey of the state-of-the-art DL-based modulation classification algorithms, especially the techniques of signal representation and data preprocessing utilized in these algorithms. Since a received signal can be represented by either features, images, sequences, or a combination of them, existing algorithms of DL-based modulation classification can be categorized into four groups and are reviewed accordingly in this article. Furthermore, the advantages as well as disadvantages of each signal representation method are summarized and discussed.
Author Yao, Yu-Dong
Peng, Shengliang
Sun, Shujun
Author_xml – sequence: 1
  givenname: Shengliang
  orcidid: 0000-0001-6837-1754
  surname: Peng
  fullname: Peng, Shengliang
  organization: College of Information Science and Technology, Huaqiao University, Xiamen, China
– sequence: 2
  givenname: Shujun
  orcidid: 0000-0003-4086-4834
  surname: Sun
  fullname: Sun, Shujun
  organization: College of Information Science and Technology, Huaqiao University, Xiamen, China
– sequence: 3
  givenname: Yu-Dong
  orcidid: 0000-0003-3868-0593
  surname: Yao
  fullname: Yao, Yu-Dong
  email: yyao@stevens.edu
  organization: Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, NJ, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34125689$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtrGzEURkVJaB7NH2ihCLrpxq7e0nQXnD4CTlrqBLoTGs0dozDWONJMIf8-csfJIotoI110zhW63wk6iH0EhN5TMqeUVF9urq-XqzkjjM45MVJw_gYdM6rYjHFjDp7P-u8ROsv5jpSliFSieouOuKBMKlMdo_U5Xo3pHzzgvsVXfTN2bgh9xIvO5Rza4KfyNoe4xhcAW7wEl2KpvuJVWEfX4T-wTZAhDhPqYoMv3ODw71Queg95575Dh63rMpzt91N0-_3bzeLnbPnrx-XifDnzXNJh1taKsNoILYjnwhnDlW6pl40wvmJEQ628qRnVBqAm2tNGUEFaqAzQ1ijPT9HnqW95-n6EPNhNyB66zkXox2yZFJQzooQp6KcX6F0_pvKjQmnBNOFU80J93FNjvYHGblPYuPRgn0ZYADMBPvU5J2itD9MohuRCZymxu8Ds_8DsLjC7D6yo7IX61P1V6cMkBQB4FiohBZOSPwKNFqAT
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_TVT_2022_3164908
crossref_primary_10_1109_TWC_2024_3399067
crossref_primary_10_1109_JIOT_2024_3488118
crossref_primary_10_1109_LCOMM_2023_3242281
crossref_primary_10_1016_j_dcan_2022_10_010
crossref_primary_10_1109_TIFS_2024_3372798
crossref_primary_10_1109_TCCN_2022_3171792
crossref_primary_10_1007_s41060_024_00603_z
crossref_primary_10_1109_COMST_2022_3205184
crossref_primary_10_1631_FITEE_2200253
crossref_primary_10_26599_TST_2023_9010150
crossref_primary_10_3390_rs16224204
crossref_primary_10_1038_s41598_023_48467_w
crossref_primary_10_1007_s11760_024_03486_6
crossref_primary_10_1109_ACCESS_2024_3485190
crossref_primary_10_1109_JIOT_2024_3350927
crossref_primary_10_1007_s11082_023_05095_y
crossref_primary_10_1109_TVT_2024_3486079
crossref_primary_10_1109_TNNLS_2024_3350609
crossref_primary_10_3390_electronics13193948
crossref_primary_10_1049_cmu2_12588
crossref_primary_10_1109_ACCESS_2023_3313393
crossref_primary_10_1109_JIOT_2023_3338147
crossref_primary_10_1109_TII_2024_3452274
crossref_primary_10_1109_TPAMI_2023_3294505
crossref_primary_10_1016_j_eswa_2024_125985
crossref_primary_10_1109_TIM_2024_3381706
crossref_primary_10_1109_ACCESS_2023_3250644
crossref_primary_10_1109_LWC_2024_3476137
crossref_primary_10_3390_electronics13173408
crossref_primary_10_1109_TII_2023_3296871
crossref_primary_10_1155_2022_8676124
crossref_primary_10_3390_su14106373
crossref_primary_10_1109_ACCESS_2022_3197224
crossref_primary_10_1109_TIFS_2024_3414249
crossref_primary_10_1109_TCCN_2024_3375521
crossref_primary_10_1109_TVT_2024_3361928
crossref_primary_10_1109_LCOMM_2024_3474519
crossref_primary_10_1109_JPROC_2024_3472501
crossref_primary_10_1109_TCSII_2022_3177760
crossref_primary_10_1109_TCCN_2024_3360514
crossref_primary_10_1109_TWC_2024_3458980
crossref_primary_10_1007_s11571_023_10015_7
crossref_primary_10_1109_TWC_2022_3168884
crossref_primary_10_3390_rs15153886
crossref_primary_10_1016_j_dsp_2024_104744
crossref_primary_10_3390_jmse12050810
crossref_primary_10_3390_electronics12071631
crossref_primary_10_3390_electronics14030430
crossref_primary_10_1109_ACCESS_2024_3417408
crossref_primary_10_1016_j_cose_2024_104097
crossref_primary_10_1109_TCCN_2022_3179450
crossref_primary_10_1109_TSUSC_2023_3292404
crossref_primary_10_1109_JIOT_2024_3377916
crossref_primary_10_1016_j_procs_2024_09_008
crossref_primary_10_1109_TAES_2023_3266409
crossref_primary_10_1007_s11277_023_10826_1
crossref_primary_10_1109_TWC_2023_3316197
crossref_primary_10_1007_s12524_023_01793_y
crossref_primary_10_3390_computers11110162
crossref_primary_10_3390_electronics13193969
crossref_primary_10_1080_17445302_2023_2169066
crossref_primary_10_1109_TCCN_2024_3360527
crossref_primary_10_1109_TVT_2024_3406515
crossref_primary_10_1109_TR_2024_3367780
crossref_primary_10_1109_TWC_2023_3281896
crossref_primary_10_1109_ACCESS_2024_3352634
crossref_primary_10_21603_2308_4057_2021_2_387_396
crossref_primary_10_3390_electronics13101872
crossref_primary_10_1109_LSP_2024_3491013
crossref_primary_10_3390_electronics12143002
crossref_primary_10_1109_OJCOMS_2025_3534626
crossref_primary_10_1109_TVT_2023_3267455
crossref_primary_10_32628_CSEIT2410319
crossref_primary_10_26599_TST_2024_9010045
crossref_primary_10_3390_s24247908
crossref_primary_10_1109_ACCESS_2024_3400448
crossref_primary_10_1109_ACCESS_2024_3440350
crossref_primary_10_1109_TCCN_2021_3114154
crossref_primary_10_1109_TWC_2024_3492496
crossref_primary_10_1109_TWC_2024_3386762
crossref_primary_10_24237_djes_2024_17301
crossref_primary_10_1016_j_knosys_2024_112191
crossref_primary_10_3390_s24227390
crossref_primary_10_1109_ACCESS_2022_3144475
crossref_primary_10_1007_s00521_022_07850_w
crossref_primary_10_1109_TWC_2024_3450972
crossref_primary_10_1109_TWC_2024_3496813
Cites_doi 10.1109/LCOMM.2020.2970922
10.1109/COMST.2018.2846401
10.1016/j.dsp.2006.04.006
10.1049/el.2014.2700
10.1109/TNNLS.2018.2850703
10.1109/LCOMM.2020.2980840
10.1109/JSTSP.2018.2797022
10.1109/ACCESS.2019.2916833
10.1049/iet-com.2015.1124
10.1109/TAES.2019.2891155
10.1109/MCAS.2008.931739
10.1109/VTCSpring.2017.8108670
10.1109/ACCESS.2018.2818794
10.1109/ACCESS.2019.2934976
10.1109/TIFS.2011.2159000
10.1109/WOCC48579.2020.9114912
10.1007/978-3-319-44188-7_16
10.1109/ICASSP.2015.7178838
10.1162/neco.2006.18.7.1527
10.1109/LWC.2018.2855749
10.1109/ICTC.2017.8191038
10.1109/WOCC48579.2020.9114911
10.1109/ACCESS.2019.2921988
10.1049/ip-rsn:20000492
10.1049/iet-com:20050176
10.1109/TSMCC.2010.2076347
10.1109/26.664294
10.1109/TWC.2012.060412.110460
10.1109/TVT.2019.2951594
10.1109/LSP.2017.2752459
10.1109/ICC.2012.6364436
10.1109/ICCS.2016.7833571
10.1109/ACCESS.2020.2988727
10.1109/LCOMM.2017.2717821
10.1109/ICAIIC.2019.8669036
10.1109/IWCMC.2019.8766665
10.1109/ICC.2012.6364881
10.1109/DySPAN.2019.8935805
10.1109/TVT.2018.2868698
10.1109/ACCESS.2018.2815741
10.1109/TVT.2020.2976942
10.1109/ICSP.2016.7877834
10.1109/ACSSC.2017.8335483
10.1109/WCL.2013.111113.130655
10.1109/TSIPN.2019.2900201
10.1109/MWC.2014.6757897
10.1109/ACCESS.2019.2918136
10.1109/WOCC.2019.8770700
10.1109/26.837045
10.1109/TWC.2008.070015
10.1109/LCOMM.2019.2927348
10.1109/LPT.2016.2574800
10.1109/WOCC.2017.7929000
10.1109/DySPAN.2019.8935857
10.1109/TCOMM.2012.021712.100638
10.1109/ACCESS.2019.2932266
10.1109/TVT.2019.2900460
10.1109/CVPR.2016.90
10.1109/CVPR.2017.243
10.1049/iet-rsn.2018.5549
10.1109/CVPR.2015.7298594
10.1109/MCOM.2017.1700200
10.1109/MCOM.2012.6178840
10.1109/ACCESS.2019.2934354
10.1109/TNNLS.2016.2582924
10.1049/el.2019.1789
10.1109/LWC.2019.2904956
10.1109/WOCC48579.2020.9114948
10.1109/LWC.2017.2764078
10.1109/ACCESS.2019.2913945
10.1109/NCC.2019.8732258
10.1016/0165-1684(95)00099-2
10.1109/ICC.2019.8761426
10.1109/ACCESS.2019.2960775
10.1109/LPT.2017.2742553
10.1109/TCCN.2018.2835460
10.1109/ACCESS.2020.2978094
10.1109/WOCC.2019.8770611
10.1364/OE.25.017767
10.1109/ITAIC.2019.8785692
10.1109/TVT.2018.2796024
10.1109/MILCOM.2004.1494895
10.1109/ICAIIC.2019.8669002
10.1109/WOCC48579.2020.9114930
10.1109/SPAWC.2018.8446021
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2021.3085433
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 7038
ExternalDocumentID 34125689
10_1109_TNNLS_2021_3085433
9454255
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: ZQN-708
  funderid: 10.13039/501100012226
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-fb602b84740c34a88367f1c5d48c9207eb6c8b2178eeb07c1d4140fe98e1f86c3
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Thu Jul 10 23:54:07 EDT 2025
Mon Jun 30 04:13:40 EDT 2025
Thu Jan 02 22:53:12 EST 2025
Thu Apr 24 23:13:01 EDT 2025
Tue Jul 01 00:27:39 EDT 2025
Wed Aug 27 02:18:29 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-fb602b84740c34a88367f1c5d48c9207eb6c8b2178eeb07c1d4140fe98e1f86c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6837-1754
0000-0003-4086-4834
0000-0003-3868-0593
PMID 34125689
PQID 2742703173
PQPubID 85436
PageCount 19
ParticipantIDs proquest_miscellaneous_2541320648
crossref_citationtrail_10_1109_TNNLS_2021_3085433
crossref_primary_10_1109_TNNLS_2021_3085433
pubmed_primary_34125689
proquest_journals_2742703173
ieee_primary_9454255
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref18
ref51
ref50
goodfellow (ref28) 2016
ref90
ref46
ref89
ref45
ref48
ref47
ref86
ref42
ref85
ref41
o’shea (ref60) 2016
ref88
ref44
ref87
zhu (ref35) 2015
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref82
ref81
ref40
ref84
ref83
ref80
ref79
ref78
ref34
ref37
ref36
ref75
ref31
ref74
ref30
ref77
ref33
ref76
ref32
ref2
ref1
ref39
ref38
simonyan (ref62) 2015
wu (ref20) 2008; 7
ref71
ref70
ref73
ref72
ref68
ref24
ref67
ref23
ref26
ref69
ref25
ref64
ref63
ref66
ref22
ref65
ref21
krizhevsky (ref43) 2012
ref27
ref29
ref61
References_xml – ident: ref71
  doi: 10.1109/LCOMM.2020.2970922
– ident: ref29
  doi: 10.1109/COMST.2018.2846401
– ident: ref89
  doi: 10.1016/j.dsp.2006.04.006
– ident: ref23
  doi: 10.1049/el.2014.2700
– ident: ref10
  doi: 10.1109/TNNLS.2018.2850703
– ident: ref52
  doi: 10.1109/LCOMM.2020.2980840
– year: 2015
  ident: ref35
  publication-title: Autom Modulation Classification Principles Algorithms and Applications
– ident: ref8
  doi: 10.1109/JSTSP.2018.2797022
– ident: ref33
  doi: 10.1109/ACCESS.2019.2916833
– ident: ref25
  doi: 10.1049/iet-com.2015.1124
– ident: ref56
  doi: 10.1109/TAES.2019.2891155
– start-page: 1
  year: 2016
  ident: ref60
  article-title: Radio machine learning dataset generation with GNU radio
  publication-title: Proc GNU Radio Conf
– ident: ref21
  doi: 10.1109/MCAS.2008.931739
– year: 2015
  ident: ref62
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv 1409 1556
– ident: ref44
  doi: 10.1109/VTCSpring.2017.8108670
– ident: ref61
  doi: 10.1109/ACCESS.2018.2818794
– ident: ref73
  doi: 10.1109/ACCESS.2019.2934976
– ident: ref22
  doi: 10.1109/TIFS.2011.2159000
– ident: ref17
  doi: 10.1109/WOCC48579.2020.9114912
– ident: ref7
  doi: 10.1007/978-3-319-44188-7_16
– ident: ref65
  doi: 10.1109/ICASSP.2015.7178838
– ident: ref45
  doi: 10.1162/neco.2006.18.7.1527
– ident: ref70
  doi: 10.1109/LWC.2018.2855749
– ident: ref31
  doi: 10.1109/ICTC.2017.8191038
– ident: ref4
  doi: 10.1109/WOCC48579.2020.9114911
– ident: ref48
  doi: 10.1109/ACCESS.2019.2921988
– ident: ref42
  doi: 10.1049/ip-rsn:20000492
– ident: ref6
  doi: 10.1049/iet-com:20050176
– ident: ref18
  doi: 10.1109/TSMCC.2010.2076347
– ident: ref39
  doi: 10.1109/26.664294
– ident: ref27
  doi: 10.1109/TWC.2012.060412.110460
– ident: ref78
  doi: 10.1109/TVT.2019.2951594
– ident: ref32
  doi: 10.1109/LSP.2017.2752459
– ident: ref14
  doi: 10.1109/ICC.2012.6364436
– ident: ref55
  doi: 10.1109/ICCS.2016.7833571
– ident: ref69
  doi: 10.1109/ACCESS.2020.2988727
– ident: ref72
  doi: 10.1109/LCOMM.2017.2717821
– ident: ref34
  doi: 10.1109/ICAIIC.2019.8669036
– ident: ref81
  doi: 10.1109/IWCMC.2019.8766665
– ident: ref11
  doi: 10.1109/ICC.2012.6364881
– ident: ref5
  doi: 10.1109/DySPAN.2019.8935805
– ident: ref75
  doi: 10.1109/TVT.2018.2868698
– ident: ref47
  doi: 10.1109/ACCESS.2018.2815741
– ident: ref79
  doi: 10.1109/TVT.2020.2976942
– ident: ref54
  doi: 10.1109/ICSP.2016.7877834
– ident: ref66
  doi: 10.1109/ACSSC.2017.8335483
– ident: ref26
  doi: 10.1109/WCL.2013.111113.130655
– start-page: 1097
  year: 2012
  ident: ref43
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref88
  doi: 10.1109/TSIPN.2019.2900201
– ident: ref12
  doi: 10.1109/MWC.2014.6757897
– ident: ref76
  doi: 10.1109/ACCESS.2019.2918136
– ident: ref15
  doi: 10.1109/WOCC.2019.8770700
– ident: ref30
  doi: 10.1109/26.837045
– volume: 7
  start-page: 3098
  year: 2008
  ident: ref20
  article-title: Novel automatic modulation classification using cumulant features for communications via multipath channels
  publication-title: IEEE Trans Wireless Commun
  doi: 10.1109/TWC.2008.070015
– ident: ref36
  doi: 10.1109/LCOMM.2019.2927348
– ident: ref83
  doi: 10.1109/LPT.2016.2574800
– ident: ref9
  doi: 10.1109/WOCC.2017.7929000
– ident: ref16
  doi: 10.1109/DySPAN.2019.8935857
– ident: ref19
  doi: 10.1109/TCOMM.2012.021712.100638
– ident: ref37
  doi: 10.1109/ACCESS.2019.2932266
– ident: ref85
  doi: 10.1109/TVT.2019.2900460
– ident: ref58
  doi: 10.1109/CVPR.2016.90
– ident: ref64
  doi: 10.1109/CVPR.2017.243
– ident: ref87
  doi: 10.1049/iet-rsn.2018.5549
– year: 2016
  ident: ref28
  publication-title: Deep Learning
– ident: ref46
  doi: 10.1109/CVPR.2015.7298594
– ident: ref82
  doi: 10.1109/MCOM.2017.1700200
– ident: ref1
  doi: 10.1109/MCOM.2012.6178840
– ident: ref77
  doi: 10.1109/ACCESS.2019.2934354
– ident: ref67
  doi: 10.1109/TNNLS.2016.2582924
– ident: ref86
  doi: 10.1049/el.2019.1789
– ident: ref49
  doi: 10.1109/LWC.2019.2904956
– ident: ref3
  doi: 10.1109/WOCC48579.2020.9114948
– ident: ref24
  doi: 10.1109/LWC.2017.2764078
– ident: ref51
  doi: 10.1109/ACCESS.2019.2913945
– ident: ref90
  doi: 10.1109/NCC.2019.8732258
– ident: ref38
  doi: 10.1016/0165-1684(95)00099-2
– ident: ref57
  doi: 10.1109/ICC.2019.8761426
– ident: ref63
  doi: 10.1109/ACCESS.2019.2960775
– ident: ref53
  doi: 10.1109/LPT.2017.2742553
– ident: ref80
  doi: 10.1109/TCCN.2018.2835460
– ident: ref74
  doi: 10.1109/ACCESS.2020.2978094
– ident: ref50
  doi: 10.1109/WOCC.2019.8770611
– ident: ref84
  doi: 10.1364/OE.25.017767
– ident: ref59
  doi: 10.1109/ITAIC.2019.8785692
– ident: ref2
  doi: 10.1109/TVT.2018.2796024
– ident: ref41
  doi: 10.1109/MILCOM.2004.1494895
– ident: ref40
  doi: 10.1109/ICAIIC.2019.8669002
– ident: ref13
  doi: 10.1109/WOCC48579.2020.9114930
– ident: ref68
  doi: 10.1109/SPAWC.2018.8446021
SSID ssj0000605649
Score 2.6717656
Snippet Modulation classification is one of the key tasks for communications systems monitoring, management, and control for addressing technical issues, including...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7020
SubjectTerms Adaptive control
Algorithms
Artificial neural networks
Attention
Avoidance learning
Binary phase shift keying
Classification
Communications systems
Data preprocessing
Deep Learning
Deep learning (DL)
Feature extraction
feature representation
image representation
Machine learning
Modulation
modulation classification
Neural networks
Neural Networks, Computer
Preprocessing
Representations
sequence representation
Signal representation
Surveys
Task analysis
Title A Survey of Modulation Classification Using Deep Learning: Signal Representation and Data Preprocessing
URI https://ieeexplore.ieee.org/document/9454255
https://www.ncbi.nlm.nih.gov/pubmed/34125689
https://www.proquest.com/docview/2742703173
https://www.proquest.com/docview/2541320648
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PXGhQHksFGQkbpCtEz_icKsoVYXYFWJbaW9R7ExWCJRUJUGCX4_HcSKEAHFLFD8SzTgzY883H8ALLlxqsC4SRdQBstImqTRhZQqkYr7eaIU6Bau1vriS77ZquwevZiwMIobkM1zSZTjLrzs30FbZSSGVVzG1D_tezUas1ryfwr1froO3m6U6SzKRbyeMDC9OLtfr9xsfDWbpUngnQwriz_E_cG_wieD9F5MUOFb-7m4Gs3N-CKvphcdsk8_LobdL9-O3Wo7_-0V34Hb0P9npqDB3YQ_be3A4cTuwuNSPYHfKNsPNN_zOuoatujqyfLFAoknpReNtyDhgZ4jXLFZq3b1mm087muNjSLKN2KaWVW3Nzqq-Yh-okGaAJ_jW9-Hq_O3lm4skkjIkTqi0TxqreWa9TZPcCVkZI3TepE7V0rgi40Sx4oz1gY5BtDx3aS19DNdgYTBtjHbiARy0XYuPgIlaYcOdqTET0laFtVz6kfI8bZQxLl9AOsmldLFiORFnfClD5MKLMoi1JLGWUawLeDn3uR7rdfyz9RHJZG4ZxbGA40n8ZVzSX0s606Zi_7nv9Xx-7BcjnbBULXaDb6MkQdK1NAt4OKrNPPakbY__POcTuJURsiJkyhzDQX8z4FPv7_T2WVD0n7Tq-F0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VcoALLRTKQgtG4gbZOrGdOL1VLdUCuyvEbqW9RYkzWSFQUpUECX49HseJEALELVH8kWjGmRl75j2Al1yYUGOZBoqoA2Qe6yCPqVYmRQLztUbL4RQslvHsSr7bqM0OvB5rYRDRJZ_hlC7dWX7ZmI62yk5SqayKqVtw29p9qfpqrXFHhVvPPHb-bhTGURCJZDNUyfD0ZL1czlc2HozCqbBuhhTEoGN_4dbkE8X7L0bJsaz83eF0hudyDxbDK_f5Jp-nXVtMzY_f0Bz_95v24Z73QNlZrzL3YQfrB7A3sDswv9gPYHvGVt3NN_zOmootmtLzfDFHo0kJRv2tyzlgF4jXzGO1bk_Z6tOW5vjo0mx9dVPN8rpkF3mbsw8EpekKFGzrh3B1-WZ9Pgs8LUNghArboCpiHhXWqkluhMy1FnFShUaVUps04kSyYnRhQx2NWPDEhKW0UVyFqcaw0rERj2C3bmp8DEyUCitudImRkEWeFgWXdqQkCSultUkmEA5yyYzHLCfqjC-Zi114mjmxZiTWzIt1Aq_GPtc9Ysc_Wx-QTMaWXhwTOBrEn_lF_TWjU22C-09srxfjY7sc6Ywlr7HpbBslqSg9lnoCh73ajGMP2vbkz3M-hzuz9WKezd8u3z-FuxHVWbi8mSPYbW86PLbeT1s8c0r_E9rt-6o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+of+Modulation+Classification+Using+Deep+Learning%3A+Signal+Representation+and+Data+Preprocessing&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Peng%2C+Shengliang&rft.au=Sun%2C+Shujun&rft.au=Yao%2C+Yu-Dong&rft.date=2022-12-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=33&rft.issue=12&rft.spage=7020&rft_id=info:doi/10.1109%2FTNNLS.2021.3085433&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon