A Survey of Modulation Classification Using Deep Learning: Signal Representation and Data Preprocessing
Modulation classification is one of the key tasks for communications systems monitoring, management, and control for addressing technical issues, including spectrum awareness, adaptive transmissions, and interference avoidance. Recently, deep learning (DL)-based modulation classification has attract...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 33; no. 12; pp. 7020 - 7038 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2162-237X 2162-2388 2162-2388 |
DOI | 10.1109/TNNLS.2021.3085433 |
Cover
Abstract | Modulation classification is one of the key tasks for communications systems monitoring, management, and control for addressing technical issues, including spectrum awareness, adaptive transmissions, and interference avoidance. Recently, deep learning (DL)-based modulation classification has attracted significant attention due to its superiority in feature extraction and classification accuracy. In DL-based modulation classification, one major challenge is to preprocess a received signal and represent it in a proper format before feeding the signal into deep neural networks. This article provides a comprehensive survey of the state-of-the-art DL-based modulation classification algorithms, especially the techniques of signal representation and data preprocessing utilized in these algorithms. Since a received signal can be represented by either features, images, sequences, or a combination of them, existing algorithms of DL-based modulation classification can be categorized into four groups and are reviewed accordingly in this article. Furthermore, the advantages as well as disadvantages of each signal representation method are summarized and discussed. |
---|---|
AbstractList | Modulation classification is one of the key tasks for communications systems monitoring, management, and control for addressing technical issues, including spectrum awareness, adaptive transmissions, and interference avoidance. Recently, deep learning (DL)-based modulation classification has attracted significant attention due to its superiority in feature extraction and classification accuracy. In DL-based modulation classification, one major challenge is to preprocess a received signal and represent it in a proper format before feeding the signal into deep neural networks. This article provides a comprehensive survey of the state-of-the-art DL-based modulation classification algorithms, especially the techniques of signal representation and data preprocessing utilized in these algorithms. Since a received signal can be represented by either features, images, sequences, or a combination of them, existing algorithms of DL-based modulation classification can be categorized into four groups and are reviewed accordingly in this article. Furthermore, the advantages as well as disadvantages of each signal representation method are summarized and discussed.Modulation classification is one of the key tasks for communications systems monitoring, management, and control for addressing technical issues, including spectrum awareness, adaptive transmissions, and interference avoidance. Recently, deep learning (DL)-based modulation classification has attracted significant attention due to its superiority in feature extraction and classification accuracy. In DL-based modulation classification, one major challenge is to preprocess a received signal and represent it in a proper format before feeding the signal into deep neural networks. This article provides a comprehensive survey of the state-of-the-art DL-based modulation classification algorithms, especially the techniques of signal representation and data preprocessing utilized in these algorithms. Since a received signal can be represented by either features, images, sequences, or a combination of them, existing algorithms of DL-based modulation classification can be categorized into four groups and are reviewed accordingly in this article. Furthermore, the advantages as well as disadvantages of each signal representation method are summarized and discussed. Modulation classification is one of the key tasks for communications systems monitoring, management, and control for addressing technical issues, including spectrum awareness, adaptive transmissions, and interference avoidance. Recently, deep learning (DL)-based modulation classification has attracted significant attention due to its superiority in feature extraction and classification accuracy. In DL-based modulation classification, one major challenge is to preprocess a received signal and represent it in a proper format before feeding the signal into deep neural networks. This article provides a comprehensive survey of the state-of-the-art DL-based modulation classification algorithms, especially the techniques of signal representation and data preprocessing utilized in these algorithms. Since a received signal can be represented by either features, images, sequences, or a combination of them, existing algorithms of DL-based modulation classification can be categorized into four groups and are reviewed accordingly in this article. Furthermore, the advantages as well as disadvantages of each signal representation method are summarized and discussed. |
Author | Yao, Yu-Dong Peng, Shengliang Sun, Shujun |
Author_xml | – sequence: 1 givenname: Shengliang orcidid: 0000-0001-6837-1754 surname: Peng fullname: Peng, Shengliang organization: College of Information Science and Technology, Huaqiao University, Xiamen, China – sequence: 2 givenname: Shujun orcidid: 0000-0003-4086-4834 surname: Sun fullname: Sun, Shujun organization: College of Information Science and Technology, Huaqiao University, Xiamen, China – sequence: 3 givenname: Yu-Dong orcidid: 0000-0003-3868-0593 surname: Yao fullname: Yao, Yu-Dong email: yyao@stevens.edu organization: Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, NJ, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34125689$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtrGzEURkVJaB7NH2ihCLrpxq7e0nQXnD4CTlrqBLoTGs0dozDWONJMIf8-csfJIotoI110zhW63wk6iH0EhN5TMqeUVF9urq-XqzkjjM45MVJw_gYdM6rYjHFjDp7P-u8ROsv5jpSliFSieouOuKBMKlMdo_U5Xo3pHzzgvsVXfTN2bgh9xIvO5Rza4KfyNoe4xhcAW7wEl2KpvuJVWEfX4T-wTZAhDhPqYoMv3ODw71Queg95575Dh63rMpzt91N0-_3bzeLnbPnrx-XifDnzXNJh1taKsNoILYjnwhnDlW6pl40wvmJEQ628qRnVBqAm2tNGUEFaqAzQ1ijPT9HnqW95-n6EPNhNyB66zkXox2yZFJQzooQp6KcX6F0_pvKjQmnBNOFU80J93FNjvYHGblPYuPRgn0ZYADMBPvU5J2itD9MohuRCZymxu8Ds_8DsLjC7D6yo7IX61P1V6cMkBQB4FiohBZOSPwKNFqAT |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1109_TVT_2022_3164908 crossref_primary_10_1109_TWC_2024_3399067 crossref_primary_10_1109_JIOT_2024_3488118 crossref_primary_10_1109_LCOMM_2023_3242281 crossref_primary_10_1016_j_dcan_2022_10_010 crossref_primary_10_1109_TIFS_2024_3372798 crossref_primary_10_1109_TCCN_2022_3171792 crossref_primary_10_1007_s41060_024_00603_z crossref_primary_10_1109_COMST_2022_3205184 crossref_primary_10_1631_FITEE_2200253 crossref_primary_10_26599_TST_2023_9010150 crossref_primary_10_3390_rs16224204 crossref_primary_10_1038_s41598_023_48467_w crossref_primary_10_1007_s11760_024_03486_6 crossref_primary_10_1109_ACCESS_2024_3485190 crossref_primary_10_1109_JIOT_2024_3350927 crossref_primary_10_1007_s11082_023_05095_y crossref_primary_10_1109_TVT_2024_3486079 crossref_primary_10_1109_TNNLS_2024_3350609 crossref_primary_10_3390_electronics13193948 crossref_primary_10_1049_cmu2_12588 crossref_primary_10_1109_ACCESS_2023_3313393 crossref_primary_10_1109_JIOT_2023_3338147 crossref_primary_10_1109_TII_2024_3452274 crossref_primary_10_1109_TPAMI_2023_3294505 crossref_primary_10_1016_j_eswa_2024_125985 crossref_primary_10_1109_TIM_2024_3381706 crossref_primary_10_1109_ACCESS_2023_3250644 crossref_primary_10_1109_LWC_2024_3476137 crossref_primary_10_3390_electronics13173408 crossref_primary_10_1109_TII_2023_3296871 crossref_primary_10_1155_2022_8676124 crossref_primary_10_3390_su14106373 crossref_primary_10_1109_ACCESS_2022_3197224 crossref_primary_10_1109_TIFS_2024_3414249 crossref_primary_10_1109_TCCN_2024_3375521 crossref_primary_10_1109_TVT_2024_3361928 crossref_primary_10_1109_LCOMM_2024_3474519 crossref_primary_10_1109_JPROC_2024_3472501 crossref_primary_10_1109_TCSII_2022_3177760 crossref_primary_10_1109_TCCN_2024_3360514 crossref_primary_10_1109_TWC_2024_3458980 crossref_primary_10_1007_s11571_023_10015_7 crossref_primary_10_1109_TWC_2022_3168884 crossref_primary_10_3390_rs15153886 crossref_primary_10_1016_j_dsp_2024_104744 crossref_primary_10_3390_jmse12050810 crossref_primary_10_3390_electronics12071631 crossref_primary_10_3390_electronics14030430 crossref_primary_10_1109_ACCESS_2024_3417408 crossref_primary_10_1016_j_cose_2024_104097 crossref_primary_10_1109_TCCN_2022_3179450 crossref_primary_10_1109_TSUSC_2023_3292404 crossref_primary_10_1109_JIOT_2024_3377916 crossref_primary_10_1016_j_procs_2024_09_008 crossref_primary_10_1109_TAES_2023_3266409 crossref_primary_10_1007_s11277_023_10826_1 crossref_primary_10_1109_TWC_2023_3316197 crossref_primary_10_1007_s12524_023_01793_y crossref_primary_10_3390_computers11110162 crossref_primary_10_3390_electronics13193969 crossref_primary_10_1080_17445302_2023_2169066 crossref_primary_10_1109_TCCN_2024_3360527 crossref_primary_10_1109_TVT_2024_3406515 crossref_primary_10_1109_TR_2024_3367780 crossref_primary_10_1109_TWC_2023_3281896 crossref_primary_10_1109_ACCESS_2024_3352634 crossref_primary_10_21603_2308_4057_2021_2_387_396 crossref_primary_10_3390_electronics13101872 crossref_primary_10_1109_LSP_2024_3491013 crossref_primary_10_3390_electronics12143002 crossref_primary_10_1109_OJCOMS_2025_3534626 crossref_primary_10_1109_TVT_2023_3267455 crossref_primary_10_32628_CSEIT2410319 crossref_primary_10_26599_TST_2024_9010045 crossref_primary_10_3390_s24247908 crossref_primary_10_1109_ACCESS_2024_3400448 crossref_primary_10_1109_ACCESS_2024_3440350 crossref_primary_10_1109_TCCN_2021_3114154 crossref_primary_10_1109_TWC_2024_3492496 crossref_primary_10_1109_TWC_2024_3386762 crossref_primary_10_24237_djes_2024_17301 crossref_primary_10_1016_j_knosys_2024_112191 crossref_primary_10_3390_s24227390 crossref_primary_10_1109_ACCESS_2022_3144475 crossref_primary_10_1007_s00521_022_07850_w crossref_primary_10_1109_TWC_2024_3450972 crossref_primary_10_1109_TWC_2024_3496813 |
Cites_doi | 10.1109/LCOMM.2020.2970922 10.1109/COMST.2018.2846401 10.1016/j.dsp.2006.04.006 10.1049/el.2014.2700 10.1109/TNNLS.2018.2850703 10.1109/LCOMM.2020.2980840 10.1109/JSTSP.2018.2797022 10.1109/ACCESS.2019.2916833 10.1049/iet-com.2015.1124 10.1109/TAES.2019.2891155 10.1109/MCAS.2008.931739 10.1109/VTCSpring.2017.8108670 10.1109/ACCESS.2018.2818794 10.1109/ACCESS.2019.2934976 10.1109/TIFS.2011.2159000 10.1109/WOCC48579.2020.9114912 10.1007/978-3-319-44188-7_16 10.1109/ICASSP.2015.7178838 10.1162/neco.2006.18.7.1527 10.1109/LWC.2018.2855749 10.1109/ICTC.2017.8191038 10.1109/WOCC48579.2020.9114911 10.1109/ACCESS.2019.2921988 10.1049/ip-rsn:20000492 10.1049/iet-com:20050176 10.1109/TSMCC.2010.2076347 10.1109/26.664294 10.1109/TWC.2012.060412.110460 10.1109/TVT.2019.2951594 10.1109/LSP.2017.2752459 10.1109/ICC.2012.6364436 10.1109/ICCS.2016.7833571 10.1109/ACCESS.2020.2988727 10.1109/LCOMM.2017.2717821 10.1109/ICAIIC.2019.8669036 10.1109/IWCMC.2019.8766665 10.1109/ICC.2012.6364881 10.1109/DySPAN.2019.8935805 10.1109/TVT.2018.2868698 10.1109/ACCESS.2018.2815741 10.1109/TVT.2020.2976942 10.1109/ICSP.2016.7877834 10.1109/ACSSC.2017.8335483 10.1109/WCL.2013.111113.130655 10.1109/TSIPN.2019.2900201 10.1109/MWC.2014.6757897 10.1109/ACCESS.2019.2918136 10.1109/WOCC.2019.8770700 10.1109/26.837045 10.1109/TWC.2008.070015 10.1109/LCOMM.2019.2927348 10.1109/LPT.2016.2574800 10.1109/WOCC.2017.7929000 10.1109/DySPAN.2019.8935857 10.1109/TCOMM.2012.021712.100638 10.1109/ACCESS.2019.2932266 10.1109/TVT.2019.2900460 10.1109/CVPR.2016.90 10.1109/CVPR.2017.243 10.1049/iet-rsn.2018.5549 10.1109/CVPR.2015.7298594 10.1109/MCOM.2017.1700200 10.1109/MCOM.2012.6178840 10.1109/ACCESS.2019.2934354 10.1109/TNNLS.2016.2582924 10.1049/el.2019.1789 10.1109/LWC.2019.2904956 10.1109/WOCC48579.2020.9114948 10.1109/LWC.2017.2764078 10.1109/ACCESS.2019.2913945 10.1109/NCC.2019.8732258 10.1016/0165-1684(95)00099-2 10.1109/ICC.2019.8761426 10.1109/ACCESS.2019.2960775 10.1109/LPT.2017.2742553 10.1109/TCCN.2018.2835460 10.1109/ACCESS.2020.2978094 10.1109/WOCC.2019.8770611 10.1364/OE.25.017767 10.1109/ITAIC.2019.8785692 10.1109/TVT.2018.2796024 10.1109/MILCOM.2004.1494895 10.1109/ICAIIC.2019.8669002 10.1109/WOCC48579.2020.9114930 10.1109/SPAWC.2018.8446021 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2021.3085433 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 7038 |
ExternalDocumentID | 34125689 10_1109_TNNLS_2021_3085433 9454255 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: ZQN-708 funderid: 10.13039/501100012226 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c351t-fb602b84740c34a88367f1c5d48c9207eb6c8b2178eeb07c1d4140fe98e1f86c3 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Thu Jul 10 23:54:07 EDT 2025 Mon Jun 30 04:13:40 EDT 2025 Thu Jan 02 22:53:12 EST 2025 Thu Apr 24 23:13:01 EDT 2025 Tue Jul 01 00:27:39 EDT 2025 Wed Aug 27 02:18:29 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-fb602b84740c34a88367f1c5d48c9207eb6c8b2178eeb07c1d4140fe98e1f86c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6837-1754 0000-0003-4086-4834 0000-0003-3868-0593 |
PMID | 34125689 |
PQID | 2742703173 |
PQPubID | 85436 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_2541320648 crossref_citationtrail_10_1109_TNNLS_2021_3085433 crossref_primary_10_1109_TNNLS_2021_3085433 pubmed_primary_34125689 proquest_journals_2742703173 ieee_primary_9454255 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ref19 ref18 ref51 ref50 goodfellow (ref28) 2016 ref90 ref46 ref89 ref45 ref48 ref47 ref86 ref42 ref85 ref41 o’shea (ref60) 2016 ref88 ref44 ref87 zhu (ref35) 2015 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref82 ref81 ref40 ref84 ref83 ref80 ref79 ref78 ref34 ref37 ref36 ref75 ref31 ref74 ref30 ref77 ref33 ref76 ref32 ref2 ref1 ref39 ref38 simonyan (ref62) 2015 wu (ref20) 2008; 7 ref71 ref70 ref73 ref72 ref68 ref24 ref67 ref23 ref26 ref69 ref25 ref64 ref63 ref66 ref22 ref65 ref21 krizhevsky (ref43) 2012 ref27 ref29 ref61 |
References_xml | – ident: ref71 doi: 10.1109/LCOMM.2020.2970922 – ident: ref29 doi: 10.1109/COMST.2018.2846401 – ident: ref89 doi: 10.1016/j.dsp.2006.04.006 – ident: ref23 doi: 10.1049/el.2014.2700 – ident: ref10 doi: 10.1109/TNNLS.2018.2850703 – ident: ref52 doi: 10.1109/LCOMM.2020.2980840 – year: 2015 ident: ref35 publication-title: Autom Modulation Classification Principles Algorithms and Applications – ident: ref8 doi: 10.1109/JSTSP.2018.2797022 – ident: ref33 doi: 10.1109/ACCESS.2019.2916833 – ident: ref25 doi: 10.1049/iet-com.2015.1124 – ident: ref56 doi: 10.1109/TAES.2019.2891155 – start-page: 1 year: 2016 ident: ref60 article-title: Radio machine learning dataset generation with GNU radio publication-title: Proc GNU Radio Conf – ident: ref21 doi: 10.1109/MCAS.2008.931739 – year: 2015 ident: ref62 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv 1409 1556 – ident: ref44 doi: 10.1109/VTCSpring.2017.8108670 – ident: ref61 doi: 10.1109/ACCESS.2018.2818794 – ident: ref73 doi: 10.1109/ACCESS.2019.2934976 – ident: ref22 doi: 10.1109/TIFS.2011.2159000 – ident: ref17 doi: 10.1109/WOCC48579.2020.9114912 – ident: ref7 doi: 10.1007/978-3-319-44188-7_16 – ident: ref65 doi: 10.1109/ICASSP.2015.7178838 – ident: ref45 doi: 10.1162/neco.2006.18.7.1527 – ident: ref70 doi: 10.1109/LWC.2018.2855749 – ident: ref31 doi: 10.1109/ICTC.2017.8191038 – ident: ref4 doi: 10.1109/WOCC48579.2020.9114911 – ident: ref48 doi: 10.1109/ACCESS.2019.2921988 – ident: ref42 doi: 10.1049/ip-rsn:20000492 – ident: ref6 doi: 10.1049/iet-com:20050176 – ident: ref18 doi: 10.1109/TSMCC.2010.2076347 – ident: ref39 doi: 10.1109/26.664294 – ident: ref27 doi: 10.1109/TWC.2012.060412.110460 – ident: ref78 doi: 10.1109/TVT.2019.2951594 – ident: ref32 doi: 10.1109/LSP.2017.2752459 – ident: ref14 doi: 10.1109/ICC.2012.6364436 – ident: ref55 doi: 10.1109/ICCS.2016.7833571 – ident: ref69 doi: 10.1109/ACCESS.2020.2988727 – ident: ref72 doi: 10.1109/LCOMM.2017.2717821 – ident: ref34 doi: 10.1109/ICAIIC.2019.8669036 – ident: ref81 doi: 10.1109/IWCMC.2019.8766665 – ident: ref11 doi: 10.1109/ICC.2012.6364881 – ident: ref5 doi: 10.1109/DySPAN.2019.8935805 – ident: ref75 doi: 10.1109/TVT.2018.2868698 – ident: ref47 doi: 10.1109/ACCESS.2018.2815741 – ident: ref79 doi: 10.1109/TVT.2020.2976942 – ident: ref54 doi: 10.1109/ICSP.2016.7877834 – ident: ref66 doi: 10.1109/ACSSC.2017.8335483 – ident: ref26 doi: 10.1109/WCL.2013.111113.130655 – start-page: 1097 year: 2012 ident: ref43 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref88 doi: 10.1109/TSIPN.2019.2900201 – ident: ref12 doi: 10.1109/MWC.2014.6757897 – ident: ref76 doi: 10.1109/ACCESS.2019.2918136 – ident: ref15 doi: 10.1109/WOCC.2019.8770700 – ident: ref30 doi: 10.1109/26.837045 – volume: 7 start-page: 3098 year: 2008 ident: ref20 article-title: Novel automatic modulation classification using cumulant features for communications via multipath channels publication-title: IEEE Trans Wireless Commun doi: 10.1109/TWC.2008.070015 – ident: ref36 doi: 10.1109/LCOMM.2019.2927348 – ident: ref83 doi: 10.1109/LPT.2016.2574800 – ident: ref9 doi: 10.1109/WOCC.2017.7929000 – ident: ref16 doi: 10.1109/DySPAN.2019.8935857 – ident: ref19 doi: 10.1109/TCOMM.2012.021712.100638 – ident: ref37 doi: 10.1109/ACCESS.2019.2932266 – ident: ref85 doi: 10.1109/TVT.2019.2900460 – ident: ref58 doi: 10.1109/CVPR.2016.90 – ident: ref64 doi: 10.1109/CVPR.2017.243 – ident: ref87 doi: 10.1049/iet-rsn.2018.5549 – year: 2016 ident: ref28 publication-title: Deep Learning – ident: ref46 doi: 10.1109/CVPR.2015.7298594 – ident: ref82 doi: 10.1109/MCOM.2017.1700200 – ident: ref1 doi: 10.1109/MCOM.2012.6178840 – ident: ref77 doi: 10.1109/ACCESS.2019.2934354 – ident: ref67 doi: 10.1109/TNNLS.2016.2582924 – ident: ref86 doi: 10.1049/el.2019.1789 – ident: ref49 doi: 10.1109/LWC.2019.2904956 – ident: ref3 doi: 10.1109/WOCC48579.2020.9114948 – ident: ref24 doi: 10.1109/LWC.2017.2764078 – ident: ref51 doi: 10.1109/ACCESS.2019.2913945 – ident: ref90 doi: 10.1109/NCC.2019.8732258 – ident: ref38 doi: 10.1016/0165-1684(95)00099-2 – ident: ref57 doi: 10.1109/ICC.2019.8761426 – ident: ref63 doi: 10.1109/ACCESS.2019.2960775 – ident: ref53 doi: 10.1109/LPT.2017.2742553 – ident: ref80 doi: 10.1109/TCCN.2018.2835460 – ident: ref74 doi: 10.1109/ACCESS.2020.2978094 – ident: ref50 doi: 10.1109/WOCC.2019.8770611 – ident: ref84 doi: 10.1364/OE.25.017767 – ident: ref59 doi: 10.1109/ITAIC.2019.8785692 – ident: ref2 doi: 10.1109/TVT.2018.2796024 – ident: ref41 doi: 10.1109/MILCOM.2004.1494895 – ident: ref40 doi: 10.1109/ICAIIC.2019.8669002 – ident: ref13 doi: 10.1109/WOCC48579.2020.9114930 – ident: ref68 doi: 10.1109/SPAWC.2018.8446021 |
SSID | ssj0000605649 |
Score | 2.6717656 |
Snippet | Modulation classification is one of the key tasks for communications systems monitoring, management, and control for addressing technical issues, including... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7020 |
SubjectTerms | Adaptive control Algorithms Artificial neural networks Attention Avoidance learning Binary phase shift keying Classification Communications systems Data preprocessing Deep Learning Deep learning (DL) Feature extraction feature representation image representation Machine learning Modulation modulation classification Neural networks Neural Networks, Computer Preprocessing Representations sequence representation Signal representation Surveys Task analysis |
Title | A Survey of Modulation Classification Using Deep Learning: Signal Representation and Data Preprocessing |
URI | https://ieeexplore.ieee.org/document/9454255 https://www.ncbi.nlm.nih.gov/pubmed/34125689 https://www.proquest.com/docview/2742703173 https://www.proquest.com/docview/2541320648 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PXGhQHksFGQkbpCtEz_icKsoVYXYFWJbaW9R7ExWCJRUJUGCX4_HcSKEAHFLFD8SzTgzY883H8ALLlxqsC4SRdQBstImqTRhZQqkYr7eaIU6Bau1vriS77ZquwevZiwMIobkM1zSZTjLrzs30FbZSSGVVzG1D_tezUas1ryfwr1froO3m6U6SzKRbyeMDC9OLtfr9xsfDWbpUngnQwriz_E_cG_wieD9F5MUOFb-7m4Gs3N-CKvphcdsk8_LobdL9-O3Wo7_-0V34Hb0P9npqDB3YQ_be3A4cTuwuNSPYHfKNsPNN_zOuoatujqyfLFAoknpReNtyDhgZ4jXLFZq3b1mm087muNjSLKN2KaWVW3Nzqq-Yh-okGaAJ_jW9-Hq_O3lm4skkjIkTqi0TxqreWa9TZPcCVkZI3TepE7V0rgi40Sx4oz1gY5BtDx3aS19DNdgYTBtjHbiARy0XYuPgIlaYcOdqTET0laFtVz6kfI8bZQxLl9AOsmldLFiORFnfClD5MKLMoi1JLGWUawLeDn3uR7rdfyz9RHJZG4ZxbGA40n8ZVzSX0s606Zi_7nv9Xx-7BcjnbBULXaDb6MkQdK1NAt4OKrNPPakbY__POcTuJURsiJkyhzDQX8z4FPv7_T2WVD0n7Tq-F0 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VcoALLRTKQgtG4gbZOrGdOL1VLdUCuyvEbqW9RYkzWSFQUpUECX49HseJEALELVH8kWjGmRl75j2Al1yYUGOZBoqoA2Qe6yCPqVYmRQLztUbL4RQslvHsSr7bqM0OvB5rYRDRJZ_hlC7dWX7ZmI62yk5SqayKqVtw29p9qfpqrXFHhVvPPHb-bhTGURCJZDNUyfD0ZL1czlc2HozCqbBuhhTEoGN_4dbkE8X7L0bJsaz83eF0hudyDxbDK_f5Jp-nXVtMzY_f0Bz_95v24Z73QNlZrzL3YQfrB7A3sDswv9gPYHvGVt3NN_zOmootmtLzfDFHo0kJRv2tyzlgF4jXzGO1bk_Z6tOW5vjo0mx9dVPN8rpkF3mbsw8EpekKFGzrh3B1-WZ9Pgs8LUNghArboCpiHhXWqkluhMy1FnFShUaVUps04kSyYnRhQx2NWPDEhKW0UVyFqcaw0rERj2C3bmp8DEyUCitudImRkEWeFgWXdqQkCSultUkmEA5yyYzHLCfqjC-Zi114mjmxZiTWzIt1Aq_GPtc9Ysc_Wx-QTMaWXhwTOBrEn_lF_TWjU22C-09srxfjY7sc6Ywlr7HpbBslqSg9lnoCh73ajGMP2vbkz3M-hzuz9WKezd8u3z-FuxHVWbi8mSPYbW86PLbeT1s8c0r_E9rt-6o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+of+Modulation+Classification+Using+Deep+Learning%3A+Signal+Representation+and+Data+Preprocessing&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Peng%2C+Shengliang&rft.au=Sun%2C+Shujun&rft.au=Yao%2C+Yu-Dong&rft.date=2022-12-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=33&rft.issue=12&rft.spage=7020&rft_id=info:doi/10.1109%2FTNNLS.2021.3085433&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |