Bicriteria Sparse Nonnegative Matrix Factorization via Two-Timescale Duplex Neurodynamic Optimization

In this article, sparse nonnegative matrix factorization (SNMF) is formulated as a mixed-integer bicriteria optimization problem for minimizing matrix factorization errors and maximizing factorized matrix sparsity based on an exact binary representation of <inline-formula> <tex-math notatio...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 34; no. 8; pp. 4881 - 4891
Main Authors Che, Hangjun, Wang, Jun, Cichocki, Andrzej
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this article, sparse nonnegative matrix factorization (SNMF) is formulated as a mixed-integer bicriteria optimization problem for minimizing matrix factorization errors and maximizing factorized matrix sparsity based on an exact binary representation of <inline-formula> <tex-math notation="LaTeX">l_{0} </tex-math></inline-formula> matrix norm. The binary constraints of the problem are then equivalently replaced with bilinear constraints to convert the problem to a biconvex problem. The reformulated biconvex problem is finally solved by using a two-timescale duplex neurodynamic approach consisting of two recurrent neural networks (RNNs) operating collaboratively at two timescales. A Gaussian score (GS) is defined as to integrate the bicriteria of factorization errors and sparsity of resulting matrices. The performance of the proposed neurodynamic approach is substantiated in terms of low factorization errors, high sparsity, and high GS on four benchmark datasets.
AbstractList In this article, sparse nonnegative matrix factorization (SNMF) is formulated as a mixed-integer bicriteria optimization problem for minimizing matrix factorization errors and maximizing factorized matrix sparsity based on an exact binary representation of <inline-formula> <tex-math notation="LaTeX">l_{0} </tex-math></inline-formula> matrix norm. The binary constraints of the problem are then equivalently replaced with bilinear constraints to convert the problem to a biconvex problem. The reformulated biconvex problem is finally solved by using a two-timescale duplex neurodynamic approach consisting of two recurrent neural networks (RNNs) operating collaboratively at two timescales. A Gaussian score (GS) is defined as to integrate the bicriteria of factorization errors and sparsity of resulting matrices. The performance of the proposed neurodynamic approach is substantiated in terms of low factorization errors, high sparsity, and high GS on four benchmark datasets.
In this article, sparse nonnegative matrix factorization (SNMF) is formulated as a mixed-integer bicriteria optimization problem for minimizing matrix factorization errors and maximizing factorized matrix sparsity based on an exact binary representation of [Formula Omitted] matrix norm. The binary constraints of the problem are then equivalently replaced with bilinear constraints to convert the problem to a biconvex problem. The reformulated biconvex problem is finally solved by using a two-timescale duplex neurodynamic approach consisting of two recurrent neural networks (RNNs) operating collaboratively at two timescales. A Gaussian score (GS) is defined as to integrate the bicriteria of factorization errors and sparsity of resulting matrices. The performance of the proposed neurodynamic approach is substantiated in terms of low factorization errors, high sparsity, and high GS on four benchmark datasets.
In this article, sparse nonnegative matrix factorization (SNMF) is formulated as a mixed-integer bicriteria optimization problem for minimizing matrix factorization errors and maximizing factorized matrix sparsity based on an exact binary representation of l matrix norm. The binary constraints of the problem are then equivalently replaced with bilinear constraints to convert the problem to a biconvex problem. The reformulated biconvex problem is finally solved by using a two-timescale duplex neurodynamic approach consisting of two recurrent neural networks (RNNs) operating collaboratively at two timescales. A Gaussian score (GS) is defined as to integrate the bicriteria of factorization errors and sparsity of resulting matrices. The performance of the proposed neurodynamic approach is substantiated in terms of low factorization errors, high sparsity, and high GS on four benchmark datasets.
In this article, sparse nonnegative matrix factorization (SNMF) is formulated as a mixed-integer bicriteria optimization problem for minimizing matrix factorization errors and maximizing factorized matrix sparsity based on an exact binary representation of l0 matrix norm. The binary constraints of the problem are then equivalently replaced with bilinear constraints to convert the problem to a biconvex problem. The reformulated biconvex problem is finally solved by using a two-timescale duplex neurodynamic approach consisting of two recurrent neural networks (RNNs) operating collaboratively at two timescales. A Gaussian score (GS) is defined as to integrate the bicriteria of factorization errors and sparsity of resulting matrices. The performance of the proposed neurodynamic approach is substantiated in terms of low factorization errors, high sparsity, and high GS on four benchmark datasets.In this article, sparse nonnegative matrix factorization (SNMF) is formulated as a mixed-integer bicriteria optimization problem for minimizing matrix factorization errors and maximizing factorized matrix sparsity based on an exact binary representation of l0 matrix norm. The binary constraints of the problem are then equivalently replaced with bilinear constraints to convert the problem to a biconvex problem. The reformulated biconvex problem is finally solved by using a two-timescale duplex neurodynamic approach consisting of two recurrent neural networks (RNNs) operating collaboratively at two timescales. A Gaussian score (GS) is defined as to integrate the bicriteria of factorization errors and sparsity of resulting matrices. The performance of the proposed neurodynamic approach is substantiated in terms of low factorization errors, high sparsity, and high GS on four benchmark datasets.
Author Wang, Jun
Cichocki, Andrzej
Che, Hangjun
Author_xml – sequence: 1
  givenname: Hangjun
  orcidid: 0000-0002-8930-0039
  surname: Che
  fullname: Che, Hangjun
  email: hjche123@swu.edu.cn
  organization: College of Electronic and Information Engineering, Southwest University, Chongqing, China
– sequence: 2
  givenname: Jun
  orcidid: 0000-0002-1305-5735
  surname: Wang
  fullname: Wang, Jun
  email: jwang.cs@cityu.edu.hk
  organization: Department of Computer Science, and the School of Data Science, City University of Hong Kong, Hong Kong
– sequence: 3
  givenname: Andrzej
  orcidid: 0000-0002-8364-7226
  surname: Cichocki
  fullname: Cichocki, Andrzej
  email: a.cichocki@skoltech.ru
  organization: Skolkovo Institute of Science and Technology, Moscow, Russia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34788223$$D View this record in MEDLINE/PubMed
BookMark eNp9kctu1DAYRi1UREvpC4CEIrFhk6lv8WUJLQWk6XTRQWJneZw_yFUSB9vphafH7Qyz6AJvbFnn-PJ9r9HBGEZA6C3BC0KwPl2vVsvrBcWULBihDW_kC3REiaA1ZUod7Nfy5yE6SekGlyFwI7h-hQ4Zl0pRyo4QfPYu-gzR2-p6sjFBtQrjCL9s9rdQXdoc_X11YV0O0f8pm2Gsbgu7vgv12g-QnO2hOp-nHu6rFcwxtA-jHbyrrqbsh53yBr3sbJ_gZDcfox8XX9Zn3-rl1dfvZ5-WtWMNyXWnNCcb0mLBG05aabHmLeeOceJaoBpEayXXSjvZ2AZbx5jsLAe9UbbDAtgx-rg9d4rh9wwpm8EnB31vRwhzMrTRGgullSzoh2foTZjjWF5nqCppCs0VKdT7HTVvBmjNFP1g44P5F2AB6BZwMaQUodsjBJvHosxTUeaxKLMrqkjqmeR8fgoqR-v7_6vvtqoHgP1dWpDyJcn-AhQ7oNk
CODEN ITNNAL
CitedBy_id crossref_primary_10_1155_2022_3765169
crossref_primary_10_1007_s00034_022_02216_y
crossref_primary_10_3390_fintech2010011
crossref_primary_10_3390_math11132940
crossref_primary_10_1155_2022_8323083
crossref_primary_10_1515_jiip_2023_0077
crossref_primary_10_1109_TCYB_2024_3525413
crossref_primary_10_3389_fncom_2022_1019776
crossref_primary_10_1016_j_ins_2025_121899
crossref_primary_10_1016_j_ins_2023_119876
crossref_primary_10_1155_2022_7314887
crossref_primary_10_1016_j_compeleceng_2024_109827
crossref_primary_10_1109_TCSI_2024_3349542
crossref_primary_10_1016_j_cnsns_2024_108414
crossref_primary_10_3934_mbe_2023556
crossref_primary_10_1016_j_neunet_2024_106348
crossref_primary_10_1155_2022_4282569
crossref_primary_10_1016_j_neunet_2023_10_022
crossref_primary_10_1109_TETCI_2024_3400852
crossref_primary_10_1155_2022_4509434
crossref_primary_10_1007_s00521_022_07200_w
crossref_primary_10_1016_j_sigpro_2023_109341
crossref_primary_10_3390_electronics13030659
crossref_primary_10_1155_2022_7104750
crossref_primary_10_1016_j_neunet_2024_106123
crossref_primary_10_26599_BDMA_2024_9020055
Cites_doi 10.1109/81.754846
10.1109/TNNLS.2017.2676817
10.1109/TMAG.2010.2087317
10.1109/TSP.2015.2496367
10.1016/j.amc.2009.02.044
10.1016/j.patcog.2009.11.013
10.1109/ICACI49185.2020.9177499
10.1117/12.832005
10.1109/TSMCB.2008.921005
10.1109/TNNLS.2017.2652478
10.1109/TNNLS.2018.2830761
10.1109/TAC.2018.2862471
10.1109/TMC.2008.60
10.1587/transfun.E92.A.708
10.1109/ICACI49185.2020.9177819
10.1109/TNNLS.2019.2918984
10.1109/TSMCB.2010.2044788
10.1109/TNNLS.2020.2973760
10.1126/science.3755256
10.1109/TNNLS.2015.2496658
10.1023/A:1004611224835
10.1093/bioinformatics/bti653
10.1016/j.neunet.2019.02.002
10.1016/j.neunet.2013.11.007
10.1109/NNSP.2002.1030067
10.1109/TCSI.2004.830694
10.1109/ICIST.2019.8836758
10.1109/TSG.2021.3054763
10.1109/TNNLS.2016.2538288
10.1109/TCYB.2018.2834898
10.1109/TAC.2015.2416927
10.1016/j.neunet.2014.03.006
10.1007/978-3-030-22796-8_48
10.1109/TKDE.2012.51
10.1109/TCOMM.2004.826250
10.1109/TNNLS.2018.2884788
10.1109/TNNLS.2014.2341654
10.1109/TNNLS.2016.2524619
10.1109/IJCNN.2010.5596553
10.1109/TNNLS.2015.2481006
10.1109/TCYB.2016.2585355
10.1016/j.neunet.2018.03.003
10.1109/TNNLS.2015.2425301
10.1109/TNNLS.2019.2957105
10.1016/j.ipm.2004.11.005
10.1109/TNNLS.2018.2806481
10.1109/IJCNN.2004.1381036
10.1109/TNNLS.2017.2691760
10.1162/neco.2007.19.10.2756
10.1007/978-3-642-39159-0_9
10.1109/TSP.2012.2190406
10.1109/TNNLS.2016.2595489
10.1016/j.neunet.2019.10.006
10.1109/TGRS.2020.2996688
10.1162/neco_a_01294
10.1109/TNNLS.2013.2280905
10.1109/TGRS.2014.2363101
10.1016/j.neucom.2011.09.024
10.1109/TSMCB.2006.873185
10.1109/78.995057
10.1109/TNNLS.2016.2582381
10.1007/BF00339943
10.1007/s00186-007-0161-1
10.1002/9780470747278
10.1109/MLSP.2008.4685458
10.1038/44565
10.1109/TNN.2011.2169682
10.1109/TNNLS.2020.3027471
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2021.3125457
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 4891
ExternalDocumentID 34788223
10_1109_TNNLS_2021_3125457
9618737
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62003281
  funderid: 10.13039/501100001809
– fundername: Research Grants Council of the Hong Kong Special Administrative Region of China
  grantid: 11202318
  funderid: 10.13039/501100002920
– fundername: Fundamental Research Funds for the Central Universities
  grantid: SWU020006
  funderid: 10.13039/501100012226
– fundername: Ministry of Science and Higher Education of the Russian Federation
  grantid: 075-10-2021-068
  funderid: 10.13039/501100012190
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-f8941b1d064541d7a094d44c341cde29e6da74989c75a50ac337fa4e9b8af06e3
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Fri Jul 11 09:42:04 EDT 2025
Mon Jun 30 04:48:12 EDT 2025
Mon Jul 21 05:59:53 EDT 2025
Thu Apr 24 23:04:30 EDT 2025
Tue Jul 01 00:27:43 EDT 2025
Wed Aug 27 02:55:13 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-f8941b1d064541d7a094d44c341cde29e6da74989c75a50ac337fa4e9b8af06e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8930-0039
0000-0002-8364-7226
0000-0002-1305-5735
PMID 34788223
PQID 2845769481
PQPubID 85436
PageCount 11
ParticipantIDs pubmed_primary_34788223
proquest_journals_2845769481
crossref_citationtrail_10_1109_TNNLS_2021_3125457
crossref_primary_10_1109_TNNLS_2021_3125457
ieee_primary_9618737
proquest_miscellaneous_2599068987
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
Lee (ref2)
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref1
ref39
ref38
Hoyer (ref17) 2004; 5
ref70
Le Roux (ref71) 2015; 11
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref26
  doi: 10.1109/81.754846
– volume: 11
  start-page: 13
  year: 2015
  ident: ref71
  article-title: Sparse NMF–half-baked or well done?
– ident: ref12
  doi: 10.1109/TNNLS.2017.2676817
– ident: ref65
  doi: 10.1109/TMAG.2010.2087317
– ident: ref62
  doi: 10.1109/TSP.2015.2496367
– ident: ref70
  doi: 10.1016/j.amc.2009.02.044
– ident: ref14
  doi: 10.1016/j.patcog.2009.11.013
– ident: ref48
  doi: 10.1109/ICACI49185.2020.9177499
– ident: ref54
  doi: 10.1117/12.832005
– ident: ref61
  doi: 10.1109/TSMCB.2008.921005
– ident: ref36
  doi: 10.1109/TNNLS.2017.2652478
– ident: ref10
  doi: 10.1109/TNNLS.2018.2830761
– ident: ref38
  doi: 10.1109/TAC.2018.2862471
– ident: ref66
  doi: 10.1109/TMC.2008.60
– ident: ref7
  doi: 10.1587/transfun.E92.A.708
– ident: ref23
  doi: 10.1109/ICACI49185.2020.9177819
– ident: ref59
  doi: 10.1109/TNNLS.2019.2918984
– ident: ref15
  doi: 10.1109/TSMCB.2010.2044788
– ident: ref43
  doi: 10.1109/TNNLS.2020.2973760
– ident: ref25
  doi: 10.1126/science.3755256
– ident: ref28
  doi: 10.1109/TNNLS.2015.2496658
– ident: ref60
  doi: 10.1023/A:1004611224835
– ident: ref3
  doi: 10.1093/bioinformatics/bti653
– ident: ref42
  doi: 10.1016/j.neunet.2019.02.002
– ident: ref30
  doi: 10.1016/j.neunet.2013.11.007
– ident: ref16
  doi: 10.1109/NNSP.2002.1030067
– ident: ref27
  doi: 10.1109/TCSI.2004.830694
– ident: ref20
  doi: 10.1109/ICIST.2019.8836758
– ident: ref13
  doi: 10.1109/TSG.2021.3054763
– ident: ref32
  doi: 10.1109/TNNLS.2016.2538288
– ident: ref21
  doi: 10.1109/TCYB.2018.2834898
– ident: ref35
  doi: 10.1109/TAC.2015.2416927
– ident: ref40
  doi: 10.1016/j.neunet.2014.03.006
– ident: ref47
  doi: 10.1007/978-3-030-22796-8_48
– ident: ref51
  doi: 10.1109/TKDE.2012.51
– ident: ref67
  doi: 10.1109/TCOMM.2004.826250
– ident: ref41
  doi: 10.1109/TNNLS.2018.2884788
– ident: ref45
  doi: 10.1109/TNNLS.2014.2341654
– volume: 5
  start-page: 1457
  year: 2004
  ident: ref17
  article-title: Non-negative matrix factorization with sparseness constraints
  publication-title: J. Mach. Learn. Res.
– ident: ref39
  doi: 10.1109/TNNLS.2016.2524619
– ident: ref44
  doi: 10.1109/IJCNN.2010.5596553
– ident: ref46
  doi: 10.1109/TNNLS.2015.2481006
– ident: ref9
  doi: 10.1109/TCYB.2016.2585355
– ident: ref52
  doi: 10.1016/j.neunet.2018.03.003
– ident: ref31
  doi: 10.1109/TNNLS.2015.2425301
– ident: ref57
  doi: 10.1109/TNNLS.2019.2957105
– ident: ref4
  doi: 10.1016/j.ipm.2004.11.005
– ident: ref58
  doi: 10.1109/TNNLS.2018.2806481
– ident: ref69
  doi: 10.1109/IJCNN.2004.1381036
– ident: ref37
  doi: 10.1109/TNNLS.2017.2691760
– ident: ref63
  doi: 10.1162/neco.2007.19.10.2756
– ident: ref55
  doi: 10.1007/978-3-642-39159-0_9
– ident: ref53
  doi: 10.1109/TSP.2012.2190406
– ident: ref34
  doi: 10.1109/TNNLS.2016.2595489
– ident: ref49
  doi: 10.1016/j.neunet.2019.10.006
– ident: ref11
  doi: 10.1109/TGRS.2020.2996688
– ident: ref22
  doi: 10.1162/neco_a_01294
– ident: ref33
  doi: 10.1109/TNNLS.2013.2280905
– ident: ref8
  doi: 10.1109/TGRS.2014.2363101
– start-page: 556
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref2
  article-title: Algorithms for non-negative matrix factorization
– ident: ref19
  doi: 10.1016/j.neucom.2011.09.024
– ident: ref64
  doi: 10.1109/TSMCB.2006.873185
– ident: ref5
  doi: 10.1109/78.995057
– ident: ref68
  doi: 10.1109/TNNLS.2016.2582381
– ident: ref24
  doi: 10.1007/BF00339943
– ident: ref50
  doi: 10.1007/s00186-007-0161-1
– ident: ref6
  doi: 10.1002/9780470747278
– ident: ref18
  doi: 10.1109/MLSP.2008.4685458
– ident: ref1
  doi: 10.1038/44565
– ident: ref29
  doi: 10.1109/TNN.2011.2169682
– ident: ref56
  doi: 10.1109/TNNLS.2020.3027471
SSID ssj0000605649
Score 2.5711532
Snippet In this article, sparse nonnegative matrix factorization (SNMF) is formulated as a mixed-integer bicriteria optimization problem for minimizing matrix...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4881
SubjectTerms Errors
Factorization
Linear programming
Matrix converters
Mixed integer
Mixed-integer optimization
Neural networks
Neurodynamics
Optimization
Recurrent neural networks
Search problems
Sparse matrices
sparse nonnegative matrix factorization (SNMF)
Time
two-timescale duplex neurodynamics
Title Bicriteria Sparse Nonnegative Matrix Factorization via Two-Timescale Duplex Neurodynamic Optimization
URI https://ieeexplore.ieee.org/document/9618737
https://www.ncbi.nlm.nih.gov/pubmed/34788223
https://www.proquest.com/docview/2845769481
https://www.proquest.com/docview/2599068987
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanrjQQnlsKchI3MDb-JHYPrbAqkLscuhW2lvk2BNU0WZXsIHCr2fsPCQQIG6RMnYSzTgznz3zDSEvQsgLLaVg1lXA0EN7ZtHNs8zrOrNgi7qOQHG-KM4v1btVvtohr8ZaGABIyWcwjZfpLD-sfRu3yk5idxIt9S7ZReDW1WqN-ykZxuVFinYFLwQTUq-GGpnMniwXi_cXiAYFR5CKmCiPzfdkpI4XQv7iklKPlb-Hm8ntzPbJfHjhLtvk07TdVlP_4zcux__9ogNyt48_6WlnMPfIDjT3yf7Q24H2S_2QwNkV_k8ikbOjFxtEv0AXMSfmYyIKp_PI7H9LZ6lbT1_KSb-i7PLbmqWyEtQ90Dft5hpuaWIACd8bd3Pl6Qf8Sd30Qx6Qy9nb5etz1rdkYF7mfMtqYxWveIgsd4oH7RAdBqU8-kIfQFgogtPKGut17vLMeSl17RTYyrg6K0A-JHvNuoHHhBpVGQMcIxRlVBAYuea20D7wWmjhMzshfNBK6Xu-8tg247pMuCWzZVJqGZVa9kqdkJfjmE3H1vFP6cOokVGyV8aEHA_KL_sF_aVEL47ILFLbTMjz8TYuxXi-4hpYtyiTo2svjDU4xaPOaMa5B1s7-vMzn5A7sY99l1l4TPa2n1t4itHOtnqWzPwnENz4lQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKOcClLRTahRaMxA2yjR-J4yMtrBbYDYdupb1Fjj1BFW12BRso_HrGzkMCAeIWKWMn0YwzM_bM9xHy3LkkVULwSJsSIvTQNtLo5qPYqirWoNOq8oniPE-nF_LdMllukZdDLwwAhOIzGPvLcJbvVrbxW2Unnp1ECXWL3Ea_n7C2W2vYUYkxMk9DvMtZyiMu1LLvkon1ySLPZ-eYD3KGaSpmRYmn3xMePJ5z8YtTCiwrfw84g-OZ7JJ5_8ptvcmncbMpx_bHb2iO__tNe2Sni0Dpq9Zk7pEtqO-T3Z7dgXaLfZ_A6SX-UTyUs6Hna8x_gea-KuZjgAqnc4_tf0Mnga-na-akX1F28W0VhcYS1D7Q1836Cm5owABx32tzfWnpB_xNXXdDHpCLyZvF2TTqSBkiKxK2iapMS1Yy53HuJHPKYH7opLToDa0DriF1RkmdaasSk8TGCqEqI0GXmaniFMRDsl2vajgkNJNllgHDGEVm0nGMXROdKutYxRW3sR4R1mulsB1iuSfOuCpC5hLrIii18EotOqWOyIthzLrF6_in9L7XyCDZKWNEjnrlF92S_lKgH8fczIPbjMiz4TYuRn_CYmpYNSiToHNPM53hFAet0Qxz97b26M_PfEruTBfzWTF7m79_TO56Vvu2zvCIbG8-N3CMsc-mfBJM_ictaPve
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bicriteria+Sparse+Nonnegative+Matrix+Factorization+via+Two-Timescale+Duplex+Neurodynamic+Optimization&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Che%2C+Hangjun&rft.au=Wang%2C+Jun&rft.au=Cichocki%2C+Andrzej&rft.date=2023-08-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=34&rft.issue=8&rft.spage=4881&rft.epage=4891&rft_id=info:doi/10.1109%2FTNNLS.2021.3125457&rft_id=info%3Apmid%2F34788223&rft.externalDocID=9618737
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon