Bicriteria Sparse Nonnegative Matrix Factorization via Two-Timescale Duplex Neurodynamic Optimization
In this article, sparse nonnegative matrix factorization (SNMF) is formulated as a mixed-integer bicriteria optimization problem for minimizing matrix factorization errors and maximizing factorized matrix sparsity based on an exact binary representation of <inline-formula> <tex-math notatio...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 34; no. 8; pp. 4881 - 4891 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this article, sparse nonnegative matrix factorization (SNMF) is formulated as a mixed-integer bicriteria optimization problem for minimizing matrix factorization errors and maximizing factorized matrix sparsity based on an exact binary representation of <inline-formula> <tex-math notation="LaTeX">l_{0} </tex-math></inline-formula> matrix norm. The binary constraints of the problem are then equivalently replaced with bilinear constraints to convert the problem to a biconvex problem. The reformulated biconvex problem is finally solved by using a two-timescale duplex neurodynamic approach consisting of two recurrent neural networks (RNNs) operating collaboratively at two timescales. A Gaussian score (GS) is defined as to integrate the bicriteria of factorization errors and sparsity of resulting matrices. The performance of the proposed neurodynamic approach is substantiated in terms of low factorization errors, high sparsity, and high GS on four benchmark datasets. |
---|---|
AbstractList | In this article, sparse nonnegative matrix factorization (SNMF) is formulated as a mixed-integer bicriteria optimization problem for minimizing matrix factorization errors and maximizing factorized matrix sparsity based on an exact binary representation of <inline-formula> <tex-math notation="LaTeX">l_{0} </tex-math></inline-formula> matrix norm. The binary constraints of the problem are then equivalently replaced with bilinear constraints to convert the problem to a biconvex problem. The reformulated biconvex problem is finally solved by using a two-timescale duplex neurodynamic approach consisting of two recurrent neural networks (RNNs) operating collaboratively at two timescales. A Gaussian score (GS) is defined as to integrate the bicriteria of factorization errors and sparsity of resulting matrices. The performance of the proposed neurodynamic approach is substantiated in terms of low factorization errors, high sparsity, and high GS on four benchmark datasets. In this article, sparse nonnegative matrix factorization (SNMF) is formulated as a mixed-integer bicriteria optimization problem for minimizing matrix factorization errors and maximizing factorized matrix sparsity based on an exact binary representation of [Formula Omitted] matrix norm. The binary constraints of the problem are then equivalently replaced with bilinear constraints to convert the problem to a biconvex problem. The reformulated biconvex problem is finally solved by using a two-timescale duplex neurodynamic approach consisting of two recurrent neural networks (RNNs) operating collaboratively at two timescales. A Gaussian score (GS) is defined as to integrate the bicriteria of factorization errors and sparsity of resulting matrices. The performance of the proposed neurodynamic approach is substantiated in terms of low factorization errors, high sparsity, and high GS on four benchmark datasets. In this article, sparse nonnegative matrix factorization (SNMF) is formulated as a mixed-integer bicriteria optimization problem for minimizing matrix factorization errors and maximizing factorized matrix sparsity based on an exact binary representation of l matrix norm. The binary constraints of the problem are then equivalently replaced with bilinear constraints to convert the problem to a biconvex problem. The reformulated biconvex problem is finally solved by using a two-timescale duplex neurodynamic approach consisting of two recurrent neural networks (RNNs) operating collaboratively at two timescales. A Gaussian score (GS) is defined as to integrate the bicriteria of factorization errors and sparsity of resulting matrices. The performance of the proposed neurodynamic approach is substantiated in terms of low factorization errors, high sparsity, and high GS on four benchmark datasets. In this article, sparse nonnegative matrix factorization (SNMF) is formulated as a mixed-integer bicriteria optimization problem for minimizing matrix factorization errors and maximizing factorized matrix sparsity based on an exact binary representation of l0 matrix norm. The binary constraints of the problem are then equivalently replaced with bilinear constraints to convert the problem to a biconvex problem. The reformulated biconvex problem is finally solved by using a two-timescale duplex neurodynamic approach consisting of two recurrent neural networks (RNNs) operating collaboratively at two timescales. A Gaussian score (GS) is defined as to integrate the bicriteria of factorization errors and sparsity of resulting matrices. The performance of the proposed neurodynamic approach is substantiated in terms of low factorization errors, high sparsity, and high GS on four benchmark datasets.In this article, sparse nonnegative matrix factorization (SNMF) is formulated as a mixed-integer bicriteria optimization problem for minimizing matrix factorization errors and maximizing factorized matrix sparsity based on an exact binary representation of l0 matrix norm. The binary constraints of the problem are then equivalently replaced with bilinear constraints to convert the problem to a biconvex problem. The reformulated biconvex problem is finally solved by using a two-timescale duplex neurodynamic approach consisting of two recurrent neural networks (RNNs) operating collaboratively at two timescales. A Gaussian score (GS) is defined as to integrate the bicriteria of factorization errors and sparsity of resulting matrices. The performance of the proposed neurodynamic approach is substantiated in terms of low factorization errors, high sparsity, and high GS on four benchmark datasets. |
Author | Wang, Jun Cichocki, Andrzej Che, Hangjun |
Author_xml | – sequence: 1 givenname: Hangjun orcidid: 0000-0002-8930-0039 surname: Che fullname: Che, Hangjun email: hjche123@swu.edu.cn organization: College of Electronic and Information Engineering, Southwest University, Chongqing, China – sequence: 2 givenname: Jun orcidid: 0000-0002-1305-5735 surname: Wang fullname: Wang, Jun email: jwang.cs@cityu.edu.hk organization: Department of Computer Science, and the School of Data Science, City University of Hong Kong, Hong Kong – sequence: 3 givenname: Andrzej orcidid: 0000-0002-8364-7226 surname: Cichocki fullname: Cichocki, Andrzej email: a.cichocki@skoltech.ru organization: Skolkovo Institute of Science and Technology, Moscow, Russia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34788223$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctu1DAYRi1UREvpC4CEIrFhk6lv8WUJLQWk6XTRQWJneZw_yFUSB9vphafH7Qyz6AJvbFnn-PJ9r9HBGEZA6C3BC0KwPl2vVsvrBcWULBihDW_kC3REiaA1ZUod7Nfy5yE6SekGlyFwI7h-hQ4Zl0pRyo4QfPYu-gzR2-p6sjFBtQrjCL9s9rdQXdoc_X11YV0O0f8pm2Gsbgu7vgv12g-QnO2hOp-nHu6rFcwxtA-jHbyrrqbsh53yBr3sbJ_gZDcfox8XX9Zn3-rl1dfvZ5-WtWMNyXWnNCcb0mLBG05aabHmLeeOceJaoBpEayXXSjvZ2AZbx5jsLAe9UbbDAtgx-rg9d4rh9wwpm8EnB31vRwhzMrTRGgullSzoh2foTZjjWF5nqCppCs0VKdT7HTVvBmjNFP1g44P5F2AB6BZwMaQUodsjBJvHosxTUeaxKLMrqkjqmeR8fgoqR-v7_6vvtqoHgP1dWpDyJcn-AhQ7oNk |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1155_2022_3765169 crossref_primary_10_1007_s00034_022_02216_y crossref_primary_10_3390_fintech2010011 crossref_primary_10_3390_math11132940 crossref_primary_10_1155_2022_8323083 crossref_primary_10_1515_jiip_2023_0077 crossref_primary_10_1109_TCYB_2024_3525413 crossref_primary_10_3389_fncom_2022_1019776 crossref_primary_10_1016_j_ins_2025_121899 crossref_primary_10_1016_j_ins_2023_119876 crossref_primary_10_1155_2022_7314887 crossref_primary_10_1016_j_compeleceng_2024_109827 crossref_primary_10_1109_TCSI_2024_3349542 crossref_primary_10_1016_j_cnsns_2024_108414 crossref_primary_10_3934_mbe_2023556 crossref_primary_10_1016_j_neunet_2024_106348 crossref_primary_10_1155_2022_4282569 crossref_primary_10_1016_j_neunet_2023_10_022 crossref_primary_10_1109_TETCI_2024_3400852 crossref_primary_10_1155_2022_4509434 crossref_primary_10_1007_s00521_022_07200_w crossref_primary_10_1016_j_sigpro_2023_109341 crossref_primary_10_3390_electronics13030659 crossref_primary_10_1155_2022_7104750 crossref_primary_10_1016_j_neunet_2024_106123 crossref_primary_10_26599_BDMA_2024_9020055 |
Cites_doi | 10.1109/81.754846 10.1109/TNNLS.2017.2676817 10.1109/TMAG.2010.2087317 10.1109/TSP.2015.2496367 10.1016/j.amc.2009.02.044 10.1016/j.patcog.2009.11.013 10.1109/ICACI49185.2020.9177499 10.1117/12.832005 10.1109/TSMCB.2008.921005 10.1109/TNNLS.2017.2652478 10.1109/TNNLS.2018.2830761 10.1109/TAC.2018.2862471 10.1109/TMC.2008.60 10.1587/transfun.E92.A.708 10.1109/ICACI49185.2020.9177819 10.1109/TNNLS.2019.2918984 10.1109/TSMCB.2010.2044788 10.1109/TNNLS.2020.2973760 10.1126/science.3755256 10.1109/TNNLS.2015.2496658 10.1023/A:1004611224835 10.1093/bioinformatics/bti653 10.1016/j.neunet.2019.02.002 10.1016/j.neunet.2013.11.007 10.1109/NNSP.2002.1030067 10.1109/TCSI.2004.830694 10.1109/ICIST.2019.8836758 10.1109/TSG.2021.3054763 10.1109/TNNLS.2016.2538288 10.1109/TCYB.2018.2834898 10.1109/TAC.2015.2416927 10.1016/j.neunet.2014.03.006 10.1007/978-3-030-22796-8_48 10.1109/TKDE.2012.51 10.1109/TCOMM.2004.826250 10.1109/TNNLS.2018.2884788 10.1109/TNNLS.2014.2341654 10.1109/TNNLS.2016.2524619 10.1109/IJCNN.2010.5596553 10.1109/TNNLS.2015.2481006 10.1109/TCYB.2016.2585355 10.1016/j.neunet.2018.03.003 10.1109/TNNLS.2015.2425301 10.1109/TNNLS.2019.2957105 10.1016/j.ipm.2004.11.005 10.1109/TNNLS.2018.2806481 10.1109/IJCNN.2004.1381036 10.1109/TNNLS.2017.2691760 10.1162/neco.2007.19.10.2756 10.1007/978-3-642-39159-0_9 10.1109/TSP.2012.2190406 10.1109/TNNLS.2016.2595489 10.1016/j.neunet.2019.10.006 10.1109/TGRS.2020.2996688 10.1162/neco_a_01294 10.1109/TNNLS.2013.2280905 10.1109/TGRS.2014.2363101 10.1016/j.neucom.2011.09.024 10.1109/TSMCB.2006.873185 10.1109/78.995057 10.1109/TNNLS.2016.2582381 10.1007/BF00339943 10.1007/s00186-007-0161-1 10.1002/9780470747278 10.1109/MLSP.2008.4685458 10.1038/44565 10.1109/TNN.2011.2169682 10.1109/TNNLS.2020.3027471 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2021.3125457 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 4891 |
ExternalDocumentID | 34788223 10_1109_TNNLS_2021_3125457 9618737 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62003281 funderid: 10.13039/501100001809 – fundername: Research Grants Council of the Hong Kong Special Administrative Region of China grantid: 11202318 funderid: 10.13039/501100002920 – fundername: Fundamental Research Funds for the Central Universities grantid: SWU020006 funderid: 10.13039/501100012226 – fundername: Ministry of Science and Higher Education of the Russian Federation grantid: 075-10-2021-068 funderid: 10.13039/501100012190 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c351t-f8941b1d064541d7a094d44c341cde29e6da74989c75a50ac337fa4e9b8af06e3 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Fri Jul 11 09:42:04 EDT 2025 Mon Jun 30 04:48:12 EDT 2025 Mon Jul 21 05:59:53 EDT 2025 Thu Apr 24 23:04:30 EDT 2025 Tue Jul 01 00:27:43 EDT 2025 Wed Aug 27 02:55:13 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-f8941b1d064541d7a094d44c341cde29e6da74989c75a50ac337fa4e9b8af06e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8930-0039 0000-0002-8364-7226 0000-0002-1305-5735 |
PMID | 34788223 |
PQID | 2845769481 |
PQPubID | 85436 |
PageCount | 11 |
ParticipantIDs | pubmed_primary_34788223 proquest_journals_2845769481 crossref_citationtrail_10_1109_TNNLS_2021_3125457 crossref_primary_10_1109_TNNLS_2021_3125457 ieee_primary_9618737 proquest_miscellaneous_2599068987 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 Lee (ref2) ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref1 ref39 ref38 Hoyer (ref17) 2004; 5 ref70 Le Roux (ref71) 2015; 11 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref26 doi: 10.1109/81.754846 – volume: 11 start-page: 13 year: 2015 ident: ref71 article-title: Sparse NMF–half-baked or well done? – ident: ref12 doi: 10.1109/TNNLS.2017.2676817 – ident: ref65 doi: 10.1109/TMAG.2010.2087317 – ident: ref62 doi: 10.1109/TSP.2015.2496367 – ident: ref70 doi: 10.1016/j.amc.2009.02.044 – ident: ref14 doi: 10.1016/j.patcog.2009.11.013 – ident: ref48 doi: 10.1109/ICACI49185.2020.9177499 – ident: ref54 doi: 10.1117/12.832005 – ident: ref61 doi: 10.1109/TSMCB.2008.921005 – ident: ref36 doi: 10.1109/TNNLS.2017.2652478 – ident: ref10 doi: 10.1109/TNNLS.2018.2830761 – ident: ref38 doi: 10.1109/TAC.2018.2862471 – ident: ref66 doi: 10.1109/TMC.2008.60 – ident: ref7 doi: 10.1587/transfun.E92.A.708 – ident: ref23 doi: 10.1109/ICACI49185.2020.9177819 – ident: ref59 doi: 10.1109/TNNLS.2019.2918984 – ident: ref15 doi: 10.1109/TSMCB.2010.2044788 – ident: ref43 doi: 10.1109/TNNLS.2020.2973760 – ident: ref25 doi: 10.1126/science.3755256 – ident: ref28 doi: 10.1109/TNNLS.2015.2496658 – ident: ref60 doi: 10.1023/A:1004611224835 – ident: ref3 doi: 10.1093/bioinformatics/bti653 – ident: ref42 doi: 10.1016/j.neunet.2019.02.002 – ident: ref30 doi: 10.1016/j.neunet.2013.11.007 – ident: ref16 doi: 10.1109/NNSP.2002.1030067 – ident: ref27 doi: 10.1109/TCSI.2004.830694 – ident: ref20 doi: 10.1109/ICIST.2019.8836758 – ident: ref13 doi: 10.1109/TSG.2021.3054763 – ident: ref32 doi: 10.1109/TNNLS.2016.2538288 – ident: ref21 doi: 10.1109/TCYB.2018.2834898 – ident: ref35 doi: 10.1109/TAC.2015.2416927 – ident: ref40 doi: 10.1016/j.neunet.2014.03.006 – ident: ref47 doi: 10.1007/978-3-030-22796-8_48 – ident: ref51 doi: 10.1109/TKDE.2012.51 – ident: ref67 doi: 10.1109/TCOMM.2004.826250 – ident: ref41 doi: 10.1109/TNNLS.2018.2884788 – ident: ref45 doi: 10.1109/TNNLS.2014.2341654 – volume: 5 start-page: 1457 year: 2004 ident: ref17 article-title: Non-negative matrix factorization with sparseness constraints publication-title: J. Mach. Learn. Res. – ident: ref39 doi: 10.1109/TNNLS.2016.2524619 – ident: ref44 doi: 10.1109/IJCNN.2010.5596553 – ident: ref46 doi: 10.1109/TNNLS.2015.2481006 – ident: ref9 doi: 10.1109/TCYB.2016.2585355 – ident: ref52 doi: 10.1016/j.neunet.2018.03.003 – ident: ref31 doi: 10.1109/TNNLS.2015.2425301 – ident: ref57 doi: 10.1109/TNNLS.2019.2957105 – ident: ref4 doi: 10.1016/j.ipm.2004.11.005 – ident: ref58 doi: 10.1109/TNNLS.2018.2806481 – ident: ref69 doi: 10.1109/IJCNN.2004.1381036 – ident: ref37 doi: 10.1109/TNNLS.2017.2691760 – ident: ref63 doi: 10.1162/neco.2007.19.10.2756 – ident: ref55 doi: 10.1007/978-3-642-39159-0_9 – ident: ref53 doi: 10.1109/TSP.2012.2190406 – ident: ref34 doi: 10.1109/TNNLS.2016.2595489 – ident: ref49 doi: 10.1016/j.neunet.2019.10.006 – ident: ref11 doi: 10.1109/TGRS.2020.2996688 – ident: ref22 doi: 10.1162/neco_a_01294 – ident: ref33 doi: 10.1109/TNNLS.2013.2280905 – ident: ref8 doi: 10.1109/TGRS.2014.2363101 – start-page: 556 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref2 article-title: Algorithms for non-negative matrix factorization – ident: ref19 doi: 10.1016/j.neucom.2011.09.024 – ident: ref64 doi: 10.1109/TSMCB.2006.873185 – ident: ref5 doi: 10.1109/78.995057 – ident: ref68 doi: 10.1109/TNNLS.2016.2582381 – ident: ref24 doi: 10.1007/BF00339943 – ident: ref50 doi: 10.1007/s00186-007-0161-1 – ident: ref6 doi: 10.1002/9780470747278 – ident: ref18 doi: 10.1109/MLSP.2008.4685458 – ident: ref1 doi: 10.1038/44565 – ident: ref29 doi: 10.1109/TNN.2011.2169682 – ident: ref56 doi: 10.1109/TNNLS.2020.3027471 |
SSID | ssj0000605649 |
Score | 2.5711532 |
Snippet | In this article, sparse nonnegative matrix factorization (SNMF) is formulated as a mixed-integer bicriteria optimization problem for minimizing matrix... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4881 |
SubjectTerms | Errors Factorization Linear programming Matrix converters Mixed integer Mixed-integer optimization Neural networks Neurodynamics Optimization Recurrent neural networks Search problems Sparse matrices sparse nonnegative matrix factorization (SNMF) Time two-timescale duplex neurodynamics |
Title | Bicriteria Sparse Nonnegative Matrix Factorization via Two-Timescale Duplex Neurodynamic Optimization |
URI | https://ieeexplore.ieee.org/document/9618737 https://www.ncbi.nlm.nih.gov/pubmed/34788223 https://www.proquest.com/docview/2845769481 https://www.proquest.com/docview/2599068987 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanrjQQnlsKchI3MDb-JHYPrbAqkLscuhW2lvk2BNU0WZXsIHCr2fsPCQQIG6RMnYSzTgznz3zDSEvQsgLLaVg1lXA0EN7ZtHNs8zrOrNgi7qOQHG-KM4v1btVvtohr8ZaGABIyWcwjZfpLD-sfRu3yk5idxIt9S7ZReDW1WqN-ykZxuVFinYFLwQTUq-GGpnMniwXi_cXiAYFR5CKmCiPzfdkpI4XQv7iklKPlb-Hm8ntzPbJfHjhLtvk07TdVlP_4zcux__9ogNyt48_6WlnMPfIDjT3yf7Q24H2S_2QwNkV_k8ikbOjFxtEv0AXMSfmYyIKp_PI7H9LZ6lbT1_KSb-i7PLbmqWyEtQ90Dft5hpuaWIACd8bd3Pl6Qf8Sd30Qx6Qy9nb5etz1rdkYF7mfMtqYxWveIgsd4oH7RAdBqU8-kIfQFgogtPKGut17vLMeSl17RTYyrg6K0A-JHvNuoHHhBpVGQMcIxRlVBAYuea20D7wWmjhMzshfNBK6Xu-8tg247pMuCWzZVJqGZVa9kqdkJfjmE3H1vFP6cOokVGyV8aEHA_KL_sF_aVEL47ILFLbTMjz8TYuxXi-4hpYtyiTo2svjDU4xaPOaMa5B1s7-vMzn5A7sY99l1l4TPa2n1t4itHOtnqWzPwnENz4lQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKOcClLRTahRaMxA2yjR-J4yMtrBbYDYdupb1Fjj1BFW12BRso_HrGzkMCAeIWKWMn0YwzM_bM9xHy3LkkVULwSJsSIvTQNtLo5qPYqirWoNOq8oniPE-nF_LdMllukZdDLwwAhOIzGPvLcJbvVrbxW2Unnp1ECXWL3Ea_n7C2W2vYUYkxMk9DvMtZyiMu1LLvkon1ySLPZ-eYD3KGaSpmRYmn3xMePJ5z8YtTCiwrfw84g-OZ7JJ5_8ptvcmncbMpx_bHb2iO__tNe2Sni0Dpq9Zk7pEtqO-T3Z7dgXaLfZ_A6SX-UTyUs6Hna8x_gea-KuZjgAqnc4_tf0Mnga-na-akX1F28W0VhcYS1D7Q1836Cm5owABx32tzfWnpB_xNXXdDHpCLyZvF2TTqSBkiKxK2iapMS1Yy53HuJHPKYH7opLToDa0DriF1RkmdaasSk8TGCqEqI0GXmaniFMRDsl2vajgkNJNllgHDGEVm0nGMXROdKutYxRW3sR4R1mulsB1iuSfOuCpC5hLrIii18EotOqWOyIthzLrF6_in9L7XyCDZKWNEjnrlF92S_lKgH8fczIPbjMiz4TYuRn_CYmpYNSiToHNPM53hFAet0Qxz97b26M_PfEruTBfzWTF7m79_TO56Vvu2zvCIbG8-N3CMsc-mfBJM_ictaPve |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bicriteria+Sparse+Nonnegative+Matrix+Factorization+via+Two-Timescale+Duplex+Neurodynamic+Optimization&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Che%2C+Hangjun&rft.au=Wang%2C+Jun&rft.au=Cichocki%2C+Andrzej&rft.date=2023-08-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=34&rft.issue=8&rft.spage=4881&rft.epage=4891&rft_id=info:doi/10.1109%2FTNNLS.2021.3125457&rft_id=info%3Apmid%2F34788223&rft.externalDocID=9618737 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |