Exploiting Unsupervised and Supervised Constraints for Subspace Clustering
Data in many image and video analysis tasks can be viewed as points drawn from multiple low-dimensional subspaces with each subspace corresponding to one category or class. One basic task for processing such kind of data is to separate the points according to the underlying subspace, referred to as...
Saved in:
Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 37; no. 8; pp. 1542 - 1557 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.08.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Data in many image and video analysis tasks can be viewed as points drawn from multiple low-dimensional subspaces with each subspace corresponding to one category or class. One basic task for processing such kind of data is to separate the points according to the underlying subspace, referred to as subspace clustering. Extensive studies have been made on this subject, and nearly all of them use unconstrained subspace models, meaning the points can be drawn from everywhere of a subspace, to represent the data. In this paper, we attempt to do subspace clustering based on a constrained subspace assumption that the data is further restricted in the corresponding subspaces, e.g., belonging to a submanifold or satisfying the spatial regularity constraint. This assumption usually describes the real data better, such as differently moving objects in a video scene and face images of different subjects under varying illumination. A unified integer linear programming optimization framework is used to approach subspace clustering, which can be efficiently solved by a branch-and-bound (BB) method. We also show that various kinds of supervised information, such as subspace number, outlier ratio, pairwise constraints, size prior and etc., can be conveniently incorporated into the proposed framework. Experiments on real data show that the proposed method outperforms the state-of-the-art algorithms significantly in clustering accuracy. The effectiveness of the proposed method in exploiting supervised information is also demonstrated. |
---|---|
AbstractList | Data in many image and video analysis tasks can be viewed as points drawn from multiple low-dimensional subspaces with each subspace corresponding to one category or class. One basic task for processing such kind of data is to separate the points according to the underlying subspace, referred to as subspace clustering. Extensive studies have been made on this subject, and nearly all of them use unconstrained subspace models, meaning the points can be drawn from everywhere of a subspace, to represent the data. In this paper, we attempt to do subspace clustering based on a constrained subspace assumption that the data is further restricted in the corresponding subspaces, e.g., belonging to a submanifold or satisfying the spatial regularity constraint. This assumption usually describes the real data better, such as differently moving objects in a video scene and face images of different subjects under varying illumination. A unified integer linear programming optimization framework is used to approach subspace clustering, which can be efficiently solved by a branch-and-bound (BB) method. We also show that various kinds of supervised information, such as subspace number, outlier ratio, pairwise constraints, size prior and etc., can be conveniently incorporated into the proposed framework. Experiments on real data show that the proposed method outperforms the state-of-the-art algorithms significantly in clustering accuracy. The effectiveness of the proposed method in exploiting supervised information is also demonstrated. |
Author | Jie Zhou Jianjiang Feng Han Hu |
Author_xml | – sequence: 1 givenname: Han surname: Hu fullname: Hu, Han – sequence: 2 givenname: Jianjiang surname: Feng fullname: Feng, Jianjiang – sequence: 3 givenname: Jie surname: Zhou fullname: Zhou, Jie |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26352994$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1r3DAQhkVJyG62_QMtFEMuvXgjjWxLOoYlXyUhhWbPQrKkosUruZId0n9fb3eTQA49DcM8zzDMe4qOQgwWoc8ELwnB4vzxx8X97RIwqZZAGWMV_oDmQBpcChBwhOaYNFByDnyGTnPe4ImsMT1BM2hoDUJUc_T98rnvoh98-FWsQx57m558tqZQwRQ_39pVDHlIyochFy6maaRzr1pbrLoxDzZN_kd07FSX7adDXaD11eXj6qa8e7i-XV3clS2tyVA6piuNqQMC1NSOg2acMceFdq1xRHDbMsqZ0pXBChxrgFXC6FZoYXltDF2gb_u9fYq_R5sHufW5tV2ngo1jloQRUtOqIXhCz96hmzimMF0nSSMENAK4mKivB2rUW2tkn_xWpT_y5UsTwPdAm2LOyTrZ-kENPobdSzpJsNwFIv8FIneByEMgkwrv1Jft_5W-7CVvrX0VGsGYoDX9CxVjlo4 |
CODEN | ITPIDJ |
CitedBy_id | crossref_primary_10_1007_s10489_021_02276_8 crossref_primary_10_1109_TITS_2016_2596296 crossref_primary_10_1016_j_eswa_2024_124699 crossref_primary_10_1016_j_patcog_2019_05_005 crossref_primary_10_1016_j_knosys_2019_105029 crossref_primary_10_1109_TPAMI_2019_2929146 crossref_primary_10_1287_ijoo_2023_0020 crossref_primary_10_1109_TCSVT_2018_2805838 crossref_primary_10_1109_TNNLS_2017_2691725 crossref_primary_10_1145_3457218 crossref_primary_10_1145_3330138 crossref_primary_10_1111_coin_12254 crossref_primary_10_1007_s10115_017_1031_7 crossref_primary_10_1007_s10462_024_11103_8 crossref_primary_10_1007_s12530_019_09308_2 crossref_primary_10_1007_s11042_017_5408_0 crossref_primary_10_1117_1_JEI_26_1_013003 |
Cites_doi | 10.1109/TPAMI.2012.88 10.1109/TPAMI.2011.238 10.1109/CVPR.2007.382974 10.1109/ICCV.2007.4408958 10.5244/C.23.61 10.1109/CVPR.2001.990985 10.1109/CVPR.2009.5206547 10.1007/BF00129684 10.1109/ICCV.2009.5459302 10.1023/A:1008000628999 10.1109/TPAMI.2009.191 10.1109/CVPR.2007.383235 10.1109/CVPR.2013.274 10.1109/34.868688 10.1109/TPAMI.2005.244 10.1109/ICCV.2009.5459173 10.1109/CVPR.2003.1211482 10.1109/ICCV.2011.6126528 10.1109/34.927464 10.1109/TIP.2013.2271865 10.1109/34.969114 10.1109/CVPR.2007.383203 10.1016/j.patcog.2010.08.015 10.1016/j.cviu.2008.09.004 10.1023/A:1007975506780 10.1109/TPAMI.2006.16 10.1287/opre.14.3.361 10.1016/S0377-2217(98)00008-3 10.1109/TPAMI.2005.92 10.1002/nav.3800020109 10.1007/978-3-642-33786-4_26 10.1007/s11263-008-0178-9 10.1109/LSP.2012.2214211 10.1145/358669.358692 10.1023/B:VISI.0000022287.61260.b0 10.1109/CVPR.2010.5539866 10.1109/TPAMI.2007.1061 10.1109/MSP.2010.939739 10.1109/TPAMI.2013.57 10.1109/TPAMI.2003.1177153 10.1109/TPAMI.2007.1085 10.1109/ICCV.2011.6126422 10.1109/ICCVW.2009.5457695 10.1109/TPAMI.2004.1262179 10.1287/opre.14.4.699 10.1111/j.1475-3995.1998.tb00111.x 10.1023/A:1007948927139 10.1109/ICCV.2013.200 10.1109/CVPR.2010.5539931 10.1287/mnsc.12.3.253 10.1023/A:1008026310903 10.1109/TPAMI.2012.52 10.1007/s11263-007-0099-z 10.1109/34.291440 10.1109/ICCV.2007.4409185 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TPAMI.2014.2377740 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 2160-9292 1939-3539 |
EndPage | 1557 |
ExternalDocumentID | 3760325611 26352994 10_1109_TPAMI_2014_2377740 6977935 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61225008; 61020106004; 61373074; 61373090 funderid: 10.13039/501100001809 – fundername: Ministry of Education of China grantid: 20120002110033 – fundername: Tsinghua University funderid: 10.13039/501100004147 – fundername: National Basic Research Program of China grantid: 2014CB349304 |
GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AGSQL AHBIQ AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB ~02 AAYXX CITATION RIG 5VS 9M8 ABFSI ADRHT AETEA AETIX AI. AIBXA AKJIK ALLEH FA8 H~9 IBMZZ ICLAB IFJZH NPM RNI RZB VH1 XJT 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c351t-f7b4b03f2123d5f82b7877f89bfcdf198ec7387ab4d0a2f762749dbc9b9e85dd3 |
IEDL.DBID | RIE |
ISSN | 0162-8828 |
IngestDate | Fri Jul 11 05:37:40 EDT 2025 Sun Jun 29 16:26:35 EDT 2025 Mon Jul 21 05:51:16 EDT 2025 Tue Jul 01 03:18:22 EDT 2025 Thu Apr 24 22:54:49 EDT 2025 Wed Aug 27 02:47:51 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Subspace clustering motion segmentation branch and bound linear programming face clustering constrained clustering |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-f7b4b03f2123d5f82b7877f89bfcdf198ec7387ab4d0a2f762749dbc9b9e85dd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 26352994 |
PQID | 1699269289 |
PQPubID | 85458 |
PageCount | 16 |
ParticipantIDs | pubmed_primary_26352994 crossref_citationtrail_10_1109_TPAMI_2014_2377740 ieee_primary_6977935 proquest_journals_1699269289 crossref_primary_10_1109_TPAMI_2014_2377740 proquest_miscellaneous_1711534610 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-Aug.-1 2015-8-1 2015-Aug 20150801 |
PublicationDateYYYYMMDD | 2015-08-01 |
PublicationDate_xml | – month: 08 year: 2015 text: 2015-Aug.-1 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
PublicationTitleAbbrev | TPAMI |
PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
PublicationYear | 2015 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref56 ref12 ref59 ref58 ref14 fan (ref24) 2006; 28 ref53 ref55 ref11 ref10 kanatani (ref64) 0 ref17 ref16 ref19 lazic (ref46) 0 h (ref27) 0 ref51 ref50 ref45 ref48 ref47 ref41 ref44 ref43 hartley (ref54) 0 ref49 ref8 ref7 ref9 ref4 ref3 ref6 wang (ref33) 0 hinton (ref5) 0 (ref61) 0 lee (ref18) 0; 27 li (ref31) 0 ref35 elhamifar (ref70) 0 ref34 ref37 ref36 schrijver (ref52) 0 chin (ref42) 0 ref30 ref32 yan (ref28) 0 ref2 ref1 ref39 ref38 ref71 ref72 ref68 ref67 ref23 ref26 ref69 ref25 ref20 ref63 ref66 ref22 ref65 ref21 kanatani (ref40) 0 (ref73) 0 ref29 horn (ref15) 0 ref60 liu (ref13) 0 ref62 |
References_xml | – ident: ref11 doi: 10.1109/TPAMI.2012.88 – ident: ref56 doi: 10.1109/TPAMI.2011.238 – ident: ref35 doi: 10.1109/CVPR.2007.382974 – ident: ref60 doi: 10.1109/ICCV.2007.4408958 – ident: ref71 doi: 10.5244/C.23.61 – year: 0 ident: ref40 article-title: Multi-state optimization for multi-body motion segmentation publication-title: Proc Australia-Japan Advanced Workshop Computer Vision – ident: ref2 doi: 10.1109/CVPR.2001.990985 – ident: ref30 doi: 10.1109/CVPR.2009.5206547 – ident: ref1 doi: 10.1007/BF00129684 – ident: ref45 doi: 10.1109/ICCV.2009.5459302 – ident: ref12 doi: 10.1023/A:1008000628999 – year: 0 ident: ref52 publication-title: Theory of Linear and Integer Programming – ident: ref44 doi: 10.1109/TPAMI.2009.191 – ident: ref69 doi: 10.1109/CVPR.2007.383235 – ident: ref34 doi: 10.1109/CVPR.2013.274 – ident: ref26 doi: 10.1109/34.868688 – volume: 27 start-page: 684 year: 0 ident: ref18 article-title: Acquiring linear subspaces for face recognition under variable lighting publication-title: IEEE Trans Pattern Anal Mach Intell – ident: ref25 doi: 10.1109/TPAMI.2005.244 – ident: ref37 doi: 10.1109/ICCV.2009.5459173 – start-page: 429 year: 0 ident: ref46 article-title: Solving the uncapacitated facility location problem using message passing algorithms publication-title: Proc 13th Int Conf Artif Intell Statist – ident: ref23 doi: 10.1109/CVPR.2003.1211482 – ident: ref7 doi: 10.1109/ICCV.2011.6126528 – year: 0 ident: ref73 – year: 0 ident: ref64 article-title: Estimating the number independent motions for multibody segmentation publication-title: Proc 5th Asian Conf Comput Vis – ident: ref17 doi: 10.1109/34.927464 – ident: ref21 doi: 10.1109/TIP.2013.2271865 – ident: ref14 doi: 10.1109/34.969114 – ident: ref59 doi: 10.1109/CVPR.2007.383203 – ident: ref38 doi: 10.1016/j.patcog.2010.08.015 – ident: ref55 doi: 10.1016/j.cviu.2008.09.004 – ident: ref57 doi: 10.1023/A:1007975506780 – volume: 28 start-page: 91 year: 2006 ident: ref24 article-title: Multibody grouping by inference of multiple subspaces from high-dimensional data using oriented frames publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2006.16 – ident: ref49 doi: 10.1287/opre.14.3.361 – ident: ref51 doi: 10.1016/S0377-2217(98)00008-3 – ident: ref36 doi: 10.1109/TPAMI.2005.92 – start-page: 333 year: 0 ident: ref42 article-title: The ordered residual kernel for robust motion subspace clustering publication-title: Proc Adv Neural Inf Proc Syst 22 – ident: ref62 doi: 10.1002/nav.3800020109 – ident: ref9 doi: 10.1007/978-3-642-33786-4_26 – ident: ref29 doi: 10.1007/s11263-008-0178-9 – ident: ref68 doi: 10.1109/LSP.2012.2214211 – year: 0 ident: ref61 – start-page: 94 year: 0 ident: ref28 article-title: A general framework for motion segmentation: Independent, articulated, rigid, non-rigid, degenerate and non-degenerate publication-title: Proc 9th Eur Conf Comput Vis – ident: ref39 doi: 10.1145/358669.358692 – ident: ref65 doi: 10.1023/B:VISI.0000022287.61260.b0 – ident: ref32 doi: 10.1109/CVPR.2010.5539866 – ident: ref58 doi: 10.1109/TPAMI.2007.1061 – start-page: 663 year: 0 ident: ref13 article-title: Robust subspace segmentation by low-rank representation publication-title: Proc Int Conf Mach Learn – ident: ref8 doi: 10.1109/MSP.2010.939739 – ident: ref66 doi: 10.1109/TPAMI.2013.57 – year: 0 ident: ref54 publication-title: Multiple View Geometry in Computer Vision – ident: ref3 doi: 10.1109/TPAMI.2003.1177153 – start-page: 55 year: 0 ident: ref70 article-title: Sparse manifold clustering and embedding publication-title: Proc Adv Neural Inform Process Syst 24 – ident: ref6 doi: 10.1109/TPAMI.2007.1085 – year: 0 ident: ref5 article-title: Recognizing handwritten digits using mixtures of linear models publication-title: Proc Adv Neural Inf Process Syst – ident: ref67 doi: 10.1109/ICCV.2011.6126422 – year: 0 ident: ref15 publication-title: Matrix Analysis – start-page: 519 year: 0 ident: ref33 article-title: Efficient subspace segmentation via quadratic programming publication-title: Proc Conf Artif Intell – ident: ref41 doi: 10.1109/ICCVW.2009.5457695 – ident: ref20 doi: 10.1109/TPAMI.2004.1262179 – ident: ref53 doi: 10.1287/opre.14.4.699 – ident: ref50 doi: 10.1111/j.1475-3995.1998.tb00111.x – ident: ref63 doi: 10.1023/A:1007948927139 – start-page: 390 year: 0 ident: ref27 article-title: Spectral clustering for robust motion segmentation publication-title: Proc Eur Conf Comput Vis – ident: ref16 doi: 10.1109/CVPR.2007.382974 – ident: ref47 doi: 10.1109/ICCV.2013.200 – ident: ref72 doi: 10.1109/CVPR.2010.5539931 – ident: ref48 doi: 10.1287/mnsc.12.3.253 – ident: ref22 doi: 10.1023/A:1008026310903 – ident: ref43 doi: 10.1109/TPAMI.2012.52 – ident: ref10 doi: 10.1007/s11263-007-0099-z – ident: ref19 doi: 10.1109/34.291440 – ident: ref4 doi: 10.1109/ICCV.2007.4409185 – start-page: 377 year: 0 ident: ref31 article-title: Groupwise constrained reconstruction for subspace clustering publication-title: Proc 29th Int Conf Mach Learn |
SSID | ssj0014503 |
Score | 2.3200681 |
Snippet | Data in many image and video analysis tasks can be viewed as points drawn from multiple low-dimensional subspaces with each subspace corresponding to one... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1542 |
SubjectTerms | branch and bound Cameras Computer vision constrained clustering Data models Face face clustering Linear programming Manifolds Motion segmentation Optimization subspace clustering Trajectory |
Title | Exploiting Unsupervised and Supervised Constraints for Subspace Clustering |
URI | https://ieeexplore.ieee.org/document/6977935 https://www.ncbi.nlm.nih.gov/pubmed/26352994 https://www.proquest.com/docview/1699269289 https://www.proquest.com/docview/1711534610 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9UwEB61PcGBQgs0UJCRuEFes9mJj1VFVSoVIdEn9RZ5GUuIKq_iJRd-PTPOwiJA3BLFTpzM4m_i8XwAr5VEmylP3k9jSCuXmdTm2qTGO4WYB5NjTJD9oC7W1eWNvNmBt8teGESMyWe44sO4lu83buBfZSeKwIou5S7sUuA27tVaVgwqGVmQCcGQhVMYMW-QyfTJ9cfTq_ecxVWtirImvMP0b1yEhVxx9ct8FAlW_o4145xzvg9X82jHVJMvq6G3K_ftt0KO__s6D-HBBD7F6agtj2AHuwPYn4kdxGTnB3D_pyqFh3AZ8_Q-c360WHfb4Y7dyxa9MJ0Xn36cMvdnZJzot4KgsGCfRBE5irPbgcsxUP_HsD5_d312kU4UDKkrZd6nobaVzcrAE5yXoSksGXgdGm2D8yHXDbq6bGpjK5-ZItTM5KO9ddpqbKT35RPY6zYdHoEIFDwpZU3c_NoUvikJjUjpAlKQ7LFKIJ8F0bqpPjkP-raNcUqm2yjHluXYTnJM4M3S526szvHP1ocshKXl9P0TOJ7l3U4GvG1zpXWhNIWjCbxaLpPp8XqK6XAzUJua4HTJBesTeDrqyXLvWb2e_fmZz-EejUyOmYTHsNd_HfAFoZvevoxq_R3jHfRa |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9QwFH4q5QAcWmhZAgWMxA0yzWYnPlYV1bR0KiRmpN4iL88SospUTHLh1_fZWYCqIG6JYidO3va9-C0A7wVHnQhL2k-iiwuTqFinUsXKGoGYOpViCJC9EPNVcXbJL7fg45QLg4gh-Axn_jDs5du16fyvskNBYEXm_B7cJ7vP0z5ba9ozKHjog0wYhmScHIkxRSaRh8svR4tTH8dVzLK8JMTjG8D5MiykjIs_LFJosfJ3tBmszskuLMb19sEm32ddq2fm561Sjv_7Qo9hZ4Cf7Kjnlyewhc0e7I6tHdgg6Xvw6Lc6hftwFiL1vvkIabZqNt21VzAbtEw1ln39deq7f4aeE-2GERhmXiuRT47s-KrzBRlo_lNYnXxaHs_joQlDbHKetrErdaGT3HkTZ7mrMk0iXrpKamesS2WFpsyrUunCJipzpe_lI602UkusuLX5M9hu1g2-AObIfRJCq5D-WmW2ygmPcG4ckptssYggHQlRm6FCuV_0VR08lUTWgY61p2M90DGCD9Oc674-xz9H73siTCOH7x_BwUjvehDhTZ0KKTMhySGN4N10mYTP76ioBtcdjSkJUOe-ZH0Ez3s-me49stfLu5_5Fh7Ml4vz-vz04vMreEir5H1c4QFstz86fE1Yp9VvAovfAMkX96M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploiting+Unsupervised+and+Supervised+Constraints+for+Subspace+Clustering&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Hu%2C+Han&rft.au=Feng%2C+Jianjiang&rft.au=Zhou%2C+Jie&rft.date=2015-08-01&rft.eissn=1939-3539&rft.volume=37&rft.issue=8&rft.spage=1542&rft.epage=1557&rft_id=info:doi/10.1109%2FTPAMI.2014.2377740&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |