Exploiting Unsupervised and Supervised Constraints for Subspace Clustering

Data in many image and video analysis tasks can be viewed as points drawn from multiple low-dimensional subspaces with each subspace corresponding to one category or class. One basic task for processing such kind of data is to separate the points according to the underlying subspace, referred to as...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 37; no. 8; pp. 1542 - 1557
Main Authors Hu, Han, Feng, Jianjiang, Zhou, Jie
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Data in many image and video analysis tasks can be viewed as points drawn from multiple low-dimensional subspaces with each subspace corresponding to one category or class. One basic task for processing such kind of data is to separate the points according to the underlying subspace, referred to as subspace clustering. Extensive studies have been made on this subject, and nearly all of them use unconstrained subspace models, meaning the points can be drawn from everywhere of a subspace, to represent the data. In this paper, we attempt to do subspace clustering based on a constrained subspace assumption that the data is further restricted in the corresponding subspaces, e.g., belonging to a submanifold or satisfying the spatial regularity constraint. This assumption usually describes the real data better, such as differently moving objects in a video scene and face images of different subjects under varying illumination. A unified integer linear programming optimization framework is used to approach subspace clustering, which can be efficiently solved by a branch-and-bound (BB) method. We also show that various kinds of supervised information, such as subspace number, outlier ratio, pairwise constraints, size prior and etc., can be conveniently incorporated into the proposed framework. Experiments on real data show that the proposed method outperforms the state-of-the-art algorithms significantly in clustering accuracy. The effectiveness of the proposed method in exploiting supervised information is also demonstrated.
AbstractList Data in many image and video analysis tasks can be viewed as points drawn from multiple low-dimensional subspaces with each subspace corresponding to one category or class. One basic task for processing such kind of data is to separate the points according to the underlying subspace, referred to as subspace clustering. Extensive studies have been made on this subject, and nearly all of them use unconstrained subspace models, meaning the points can be drawn from everywhere of a subspace, to represent the data. In this paper, we attempt to do subspace clustering based on a constrained subspace assumption that the data is further restricted in the corresponding subspaces, e.g., belonging to a submanifold or satisfying the spatial regularity constraint. This assumption usually describes the real data better, such as differently moving objects in a video scene and face images of different subjects under varying illumination. A unified integer linear programming optimization framework is used to approach subspace clustering, which can be efficiently solved by a branch-and-bound (BB) method. We also show that various kinds of supervised information, such as subspace number, outlier ratio, pairwise constraints, size prior and etc., can be conveniently incorporated into the proposed framework. Experiments on real data show that the proposed method outperforms the state-of-the-art algorithms significantly in clustering accuracy. The effectiveness of the proposed method in exploiting supervised information is also demonstrated.
Author Jie Zhou
Jianjiang Feng
Han Hu
Author_xml – sequence: 1
  givenname: Han
  surname: Hu
  fullname: Hu, Han
– sequence: 2
  givenname: Jianjiang
  surname: Feng
  fullname: Feng, Jianjiang
– sequence: 3
  givenname: Jie
  surname: Zhou
  fullname: Zhou, Jie
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26352994$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1r3DAQhkVJyG62_QMtFEMuvXgjjWxLOoYlXyUhhWbPQrKkosUruZId0n9fb3eTQA49DcM8zzDMe4qOQgwWoc8ELwnB4vzxx8X97RIwqZZAGWMV_oDmQBpcChBwhOaYNFByDnyGTnPe4ImsMT1BM2hoDUJUc_T98rnvoh98-FWsQx57m558tqZQwRQ_39pVDHlIyochFy6maaRzr1pbrLoxDzZN_kd07FSX7adDXaD11eXj6qa8e7i-XV3clS2tyVA6piuNqQMC1NSOg2acMceFdq1xRHDbMsqZ0pXBChxrgFXC6FZoYXltDF2gb_u9fYq_R5sHufW5tV2ngo1jloQRUtOqIXhCz96hmzimMF0nSSMENAK4mKivB2rUW2tkn_xWpT_y5UsTwPdAm2LOyTrZ-kENPobdSzpJsNwFIv8FIneByEMgkwrv1Jft_5W-7CVvrX0VGsGYoDX9CxVjlo4
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1007_s10489_021_02276_8
crossref_primary_10_1109_TITS_2016_2596296
crossref_primary_10_1016_j_eswa_2024_124699
crossref_primary_10_1016_j_patcog_2019_05_005
crossref_primary_10_1016_j_knosys_2019_105029
crossref_primary_10_1109_TPAMI_2019_2929146
crossref_primary_10_1287_ijoo_2023_0020
crossref_primary_10_1109_TCSVT_2018_2805838
crossref_primary_10_1109_TNNLS_2017_2691725
crossref_primary_10_1145_3457218
crossref_primary_10_1145_3330138
crossref_primary_10_1111_coin_12254
crossref_primary_10_1007_s10115_017_1031_7
crossref_primary_10_1007_s10462_024_11103_8
crossref_primary_10_1007_s12530_019_09308_2
crossref_primary_10_1007_s11042_017_5408_0
crossref_primary_10_1117_1_JEI_26_1_013003
Cites_doi 10.1109/TPAMI.2012.88
10.1109/TPAMI.2011.238
10.1109/CVPR.2007.382974
10.1109/ICCV.2007.4408958
10.5244/C.23.61
10.1109/CVPR.2001.990985
10.1109/CVPR.2009.5206547
10.1007/BF00129684
10.1109/ICCV.2009.5459302
10.1023/A:1008000628999
10.1109/TPAMI.2009.191
10.1109/CVPR.2007.383235
10.1109/CVPR.2013.274
10.1109/34.868688
10.1109/TPAMI.2005.244
10.1109/ICCV.2009.5459173
10.1109/CVPR.2003.1211482
10.1109/ICCV.2011.6126528
10.1109/34.927464
10.1109/TIP.2013.2271865
10.1109/34.969114
10.1109/CVPR.2007.383203
10.1016/j.patcog.2010.08.015
10.1016/j.cviu.2008.09.004
10.1023/A:1007975506780
10.1109/TPAMI.2006.16
10.1287/opre.14.3.361
10.1016/S0377-2217(98)00008-3
10.1109/TPAMI.2005.92
10.1002/nav.3800020109
10.1007/978-3-642-33786-4_26
10.1007/s11263-008-0178-9
10.1109/LSP.2012.2214211
10.1145/358669.358692
10.1023/B:VISI.0000022287.61260.b0
10.1109/CVPR.2010.5539866
10.1109/TPAMI.2007.1061
10.1109/MSP.2010.939739
10.1109/TPAMI.2013.57
10.1109/TPAMI.2003.1177153
10.1109/TPAMI.2007.1085
10.1109/ICCV.2011.6126422
10.1109/ICCVW.2009.5457695
10.1109/TPAMI.2004.1262179
10.1287/opre.14.4.699
10.1111/j.1475-3995.1998.tb00111.x
10.1023/A:1007948927139
10.1109/ICCV.2013.200
10.1109/CVPR.2010.5539931
10.1287/mnsc.12.3.253
10.1023/A:1008026310903
10.1109/TPAMI.2012.52
10.1007/s11263-007-0099-z
10.1109/34.291440
10.1109/ICCV.2007.4409185
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2014.2377740
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 1557
ExternalDocumentID 3760325611
26352994
10_1109_TPAMI_2014_2377740
6977935
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61225008; 61020106004; 61373074; 61373090
  funderid: 10.13039/501100001809
– fundername: Ministry of Education of China
  grantid: 20120002110033
– fundername: Tsinghua University
  funderid: 10.13039/501100004147
– fundername: National Basic Research Program of China
  grantid: 2014CB349304
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AGSQL
AHBIQ
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
RIG
5VS
9M8
ABFSI
ADRHT
AETEA
AETIX
AI.
AIBXA
AKJIK
ALLEH
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
RNI
RZB
VH1
XJT
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c351t-f7b4b03f2123d5f82b7877f89bfcdf198ec7387ab4d0a2f762749dbc9b9e85dd3
IEDL.DBID RIE
ISSN 0162-8828
IngestDate Fri Jul 11 05:37:40 EDT 2025
Sun Jun 29 16:26:35 EDT 2025
Mon Jul 21 05:51:16 EDT 2025
Tue Jul 01 03:18:22 EDT 2025
Thu Apr 24 22:54:49 EDT 2025
Wed Aug 27 02:47:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Subspace clustering
motion segmentation
branch and bound
linear programming
face clustering
constrained clustering
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-f7b4b03f2123d5f82b7877f89bfcdf198ec7387ab4d0a2f762749dbc9b9e85dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26352994
PQID 1699269289
PQPubID 85458
PageCount 16
ParticipantIDs pubmed_primary_26352994
crossref_citationtrail_10_1109_TPAMI_2014_2377740
ieee_primary_6977935
proquest_journals_1699269289
crossref_primary_10_1109_TPAMI_2014_2377740
proquest_miscellaneous_1711534610
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-Aug.-1
2015-8-1
2015-Aug
20150801
PublicationDateYYYYMMDD 2015-08-01
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-Aug.-1
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2015
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref12
ref59
ref58
ref14
fan (ref24) 2006; 28
ref53
ref55
ref11
ref10
kanatani (ref64) 0
ref17
ref16
ref19
lazic (ref46) 0
h (ref27) 0
ref51
ref50
ref45
ref48
ref47
ref41
ref44
ref43
hartley (ref54) 0
ref49
ref8
ref7
ref9
ref4
ref3
ref6
wang (ref33) 0
hinton (ref5) 0
(ref61) 0
lee (ref18) 0; 27
li (ref31) 0
ref35
elhamifar (ref70) 0
ref34
ref37
ref36
schrijver (ref52) 0
chin (ref42) 0
ref30
ref32
yan (ref28) 0
ref2
ref1
ref39
ref38
ref71
ref72
ref68
ref67
ref23
ref26
ref69
ref25
ref20
ref63
ref66
ref22
ref65
ref21
kanatani (ref40) 0
(ref73) 0
ref29
horn (ref15) 0
ref60
liu (ref13) 0
ref62
References_xml – ident: ref11
  doi: 10.1109/TPAMI.2012.88
– ident: ref56
  doi: 10.1109/TPAMI.2011.238
– ident: ref35
  doi: 10.1109/CVPR.2007.382974
– ident: ref60
  doi: 10.1109/ICCV.2007.4408958
– ident: ref71
  doi: 10.5244/C.23.61
– year: 0
  ident: ref40
  article-title: Multi-state optimization for multi-body motion segmentation
  publication-title: Proc Australia-Japan Advanced Workshop Computer Vision
– ident: ref2
  doi: 10.1109/CVPR.2001.990985
– ident: ref30
  doi: 10.1109/CVPR.2009.5206547
– ident: ref1
  doi: 10.1007/BF00129684
– ident: ref45
  doi: 10.1109/ICCV.2009.5459302
– ident: ref12
  doi: 10.1023/A:1008000628999
– year: 0
  ident: ref52
  publication-title: Theory of Linear and Integer Programming
– ident: ref44
  doi: 10.1109/TPAMI.2009.191
– ident: ref69
  doi: 10.1109/CVPR.2007.383235
– ident: ref34
  doi: 10.1109/CVPR.2013.274
– ident: ref26
  doi: 10.1109/34.868688
– volume: 27
  start-page: 684
  year: 0
  ident: ref18
  article-title: Acquiring linear subspaces for face recognition under variable lighting
  publication-title: IEEE Trans Pattern Anal Mach Intell
– ident: ref25
  doi: 10.1109/TPAMI.2005.244
– ident: ref37
  doi: 10.1109/ICCV.2009.5459173
– start-page: 429
  year: 0
  ident: ref46
  article-title: Solving the uncapacitated facility location problem using message passing algorithms
  publication-title: Proc 13th Int Conf Artif Intell Statist
– ident: ref23
  doi: 10.1109/CVPR.2003.1211482
– ident: ref7
  doi: 10.1109/ICCV.2011.6126528
– year: 0
  ident: ref73
– year: 0
  ident: ref64
  article-title: Estimating the number independent motions for multibody segmentation
  publication-title: Proc 5th Asian Conf Comput Vis
– ident: ref17
  doi: 10.1109/34.927464
– ident: ref21
  doi: 10.1109/TIP.2013.2271865
– ident: ref14
  doi: 10.1109/34.969114
– ident: ref59
  doi: 10.1109/CVPR.2007.383203
– ident: ref38
  doi: 10.1016/j.patcog.2010.08.015
– ident: ref55
  doi: 10.1016/j.cviu.2008.09.004
– ident: ref57
  doi: 10.1023/A:1007975506780
– volume: 28
  start-page: 91
  year: 2006
  ident: ref24
  article-title: Multibody grouping by inference of multiple subspaces from high-dimensional data using oriented frames
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2006.16
– ident: ref49
  doi: 10.1287/opre.14.3.361
– ident: ref51
  doi: 10.1016/S0377-2217(98)00008-3
– ident: ref36
  doi: 10.1109/TPAMI.2005.92
– start-page: 333
  year: 0
  ident: ref42
  article-title: The ordered residual kernel for robust motion subspace clustering
  publication-title: Proc Adv Neural Inf Proc Syst 22
– ident: ref62
  doi: 10.1002/nav.3800020109
– ident: ref9
  doi: 10.1007/978-3-642-33786-4_26
– ident: ref29
  doi: 10.1007/s11263-008-0178-9
– ident: ref68
  doi: 10.1109/LSP.2012.2214211
– year: 0
  ident: ref61
– start-page: 94
  year: 0
  ident: ref28
  article-title: A general framework for motion segmentation: Independent, articulated, rigid, non-rigid, degenerate and non-degenerate
  publication-title: Proc 9th Eur Conf Comput Vis
– ident: ref39
  doi: 10.1145/358669.358692
– ident: ref65
  doi: 10.1023/B:VISI.0000022287.61260.b0
– ident: ref32
  doi: 10.1109/CVPR.2010.5539866
– ident: ref58
  doi: 10.1109/TPAMI.2007.1061
– start-page: 663
  year: 0
  ident: ref13
  article-title: Robust subspace segmentation by low-rank representation
  publication-title: Proc Int Conf Mach Learn
– ident: ref8
  doi: 10.1109/MSP.2010.939739
– ident: ref66
  doi: 10.1109/TPAMI.2013.57
– year: 0
  ident: ref54
  publication-title: Multiple View Geometry in Computer Vision
– ident: ref3
  doi: 10.1109/TPAMI.2003.1177153
– start-page: 55
  year: 0
  ident: ref70
  article-title: Sparse manifold clustering and embedding
  publication-title: Proc Adv Neural Inform Process Syst 24
– ident: ref6
  doi: 10.1109/TPAMI.2007.1085
– year: 0
  ident: ref5
  article-title: Recognizing handwritten digits using mixtures of linear models
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref67
  doi: 10.1109/ICCV.2011.6126422
– year: 0
  ident: ref15
  publication-title: Matrix Analysis
– start-page: 519
  year: 0
  ident: ref33
  article-title: Efficient subspace segmentation via quadratic programming
  publication-title: Proc Conf Artif Intell
– ident: ref41
  doi: 10.1109/ICCVW.2009.5457695
– ident: ref20
  doi: 10.1109/TPAMI.2004.1262179
– ident: ref53
  doi: 10.1287/opre.14.4.699
– ident: ref50
  doi: 10.1111/j.1475-3995.1998.tb00111.x
– ident: ref63
  doi: 10.1023/A:1007948927139
– start-page: 390
  year: 0
  ident: ref27
  article-title: Spectral clustering for robust motion segmentation
  publication-title: Proc Eur Conf Comput Vis
– ident: ref16
  doi: 10.1109/CVPR.2007.382974
– ident: ref47
  doi: 10.1109/ICCV.2013.200
– ident: ref72
  doi: 10.1109/CVPR.2010.5539931
– ident: ref48
  doi: 10.1287/mnsc.12.3.253
– ident: ref22
  doi: 10.1023/A:1008026310903
– ident: ref43
  doi: 10.1109/TPAMI.2012.52
– ident: ref10
  doi: 10.1007/s11263-007-0099-z
– ident: ref19
  doi: 10.1109/34.291440
– ident: ref4
  doi: 10.1109/ICCV.2007.4409185
– start-page: 377
  year: 0
  ident: ref31
  article-title: Groupwise constrained reconstruction for subspace clustering
  publication-title: Proc 29th Int Conf Mach Learn
SSID ssj0014503
Score 2.3200681
Snippet Data in many image and video analysis tasks can be viewed as points drawn from multiple low-dimensional subspaces with each subspace corresponding to one...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1542
SubjectTerms branch and bound
Cameras
Computer vision
constrained clustering
Data models
Face
face clustering
Linear programming
Manifolds
Motion segmentation
Optimization
subspace clustering
Trajectory
Title Exploiting Unsupervised and Supervised Constraints for Subspace Clustering
URI https://ieeexplore.ieee.org/document/6977935
https://www.ncbi.nlm.nih.gov/pubmed/26352994
https://www.proquest.com/docview/1699269289
https://www.proquest.com/docview/1711534610
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9UwEB61PcGBQgs0UJCRuEFes9mJj1VFVSoVIdEn9RZ5GUuIKq_iJRd-PTPOwiJA3BLFTpzM4m_i8XwAr5VEmylP3k9jSCuXmdTm2qTGO4WYB5NjTJD9oC7W1eWNvNmBt8teGESMyWe44sO4lu83buBfZSeKwIou5S7sUuA27tVaVgwqGVmQCcGQhVMYMW-QyfTJ9cfTq_ecxVWtirImvMP0b1yEhVxx9ct8FAlW_o4145xzvg9X82jHVJMvq6G3K_ftt0KO__s6D-HBBD7F6agtj2AHuwPYn4kdxGTnB3D_pyqFh3AZ8_Q-c360WHfb4Y7dyxa9MJ0Xn36cMvdnZJzot4KgsGCfRBE5irPbgcsxUP_HsD5_d312kU4UDKkrZd6nobaVzcrAE5yXoSksGXgdGm2D8yHXDbq6bGpjK5-ZItTM5KO9ddpqbKT35RPY6zYdHoEIFDwpZU3c_NoUvikJjUjpAlKQ7LFKIJ8F0bqpPjkP-raNcUqm2yjHluXYTnJM4M3S526szvHP1ocshKXl9P0TOJ7l3U4GvG1zpXWhNIWjCbxaLpPp8XqK6XAzUJua4HTJBesTeDrqyXLvWb2e_fmZz-EejUyOmYTHsNd_HfAFoZvevoxq_R3jHfRa
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9QwFH4q5QAcWmhZAgWMxA0yzWYnPlYV1bR0KiRmpN4iL88SospUTHLh1_fZWYCqIG6JYidO3va9-C0A7wVHnQhL2k-iiwuTqFinUsXKGoGYOpViCJC9EPNVcXbJL7fg45QLg4gh-Axn_jDs5du16fyvskNBYEXm_B7cJ7vP0z5ba9ozKHjog0wYhmScHIkxRSaRh8svR4tTH8dVzLK8JMTjG8D5MiykjIs_LFJosfJ3tBmszskuLMb19sEm32ddq2fm561Sjv_7Qo9hZ4Cf7Kjnlyewhc0e7I6tHdgg6Xvw6Lc6hftwFiL1vvkIabZqNt21VzAbtEw1ln39deq7f4aeE-2GERhmXiuRT47s-KrzBRlo_lNYnXxaHs_joQlDbHKetrErdaGT3HkTZ7mrMk0iXrpKamesS2WFpsyrUunCJipzpe_lI602UkusuLX5M9hu1g2-AObIfRJCq5D-WmW2ygmPcG4ckptssYggHQlRm6FCuV_0VR08lUTWgY61p2M90DGCD9Oc674-xz9H73siTCOH7x_BwUjvehDhTZ0KKTMhySGN4N10mYTP76ioBtcdjSkJUOe-ZH0Ez3s-me49stfLu5_5Fh7Ml4vz-vz04vMreEir5H1c4QFstz86fE1Yp9VvAovfAMkX96M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploiting+Unsupervised+and+Supervised+Constraints+for+Subspace+Clustering&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Hu%2C+Han&rft.au=Feng%2C+Jianjiang&rft.au=Zhou%2C+Jie&rft.date=2015-08-01&rft.eissn=1939-3539&rft.volume=37&rft.issue=8&rft.spage=1542&rft.epage=1557&rft_id=info:doi/10.1109%2FTPAMI.2014.2377740&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon