A single-variable method for solving min–max programming problem with addition-min fuzzy relational inequalities
In this paper, we study the min–max programming problem with n addition-min fuzzy relational inequality constraints. We prove that when the problem is feasible, an optimal solution always exists with all variables being of the same value. Based on this result, the min–max programming problem can be...
Saved in:
Published in | Fuzzy optimization and decision making Vol. 18; no. 4; pp. 433 - 449 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.12.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1568-4539 1573-2908 |
DOI | 10.1007/s10700-019-09305-9 |
Cover
Loading…
Abstract | In this paper, we study the min–max programming problem with
n
addition-min fuzzy relational inequality constraints. We prove that when the problem is feasible, an optimal solution always exists with all variables being of the same value. Based on this result, the min–max programming problem can be simplified as a single-variable optimization problem with the same optimal objective value. To solve the corresponding single-variable optimization problem, we propose an analytical method and an iterative method by successively approximating the lower bound of the optimal value. Numerical examples are given to illustrate our methods. |
---|---|
AbstractList | In this paper, we study the min–max programming problem with
n
addition-min fuzzy relational inequality constraints. We prove that when the problem is feasible, an optimal solution always exists with all variables being of the same value. Based on this result, the min–max programming problem can be simplified as a single-variable optimization problem with the same optimal objective value. To solve the corresponding single-variable optimization problem, we propose an analytical method and an iterative method by successively approximating the lower bound of the optimal value. Numerical examples are given to illustrate our methods. In this paper, we study the min–max programming problem with n addition-min fuzzy relational inequality constraints. We prove that when the problem is feasible, an optimal solution always exists with all variables being of the same value. Based on this result, the min–max programming problem can be simplified as a single-variable optimization problem with the same optimal objective value. To solve the corresponding single-variable optimization problem, we propose an analytical method and an iterative method by successively approximating the lower bound of the optimal value. Numerical examples are given to illustrate our methods. |
Author | Guu, Sy-Ming Chiu, Ya-Ling Wu, Yan-Kuen Yu, Jiajun |
Author_xml | – sequence: 1 givenname: Ya-Ling surname: Chiu fullname: Chiu, Ya-Ling organization: College of International Business, Zhejiang Yuexiu University of Foreign Languages – sequence: 2 givenname: Sy-Ming surname: Guu fullname: Guu, Sy-Ming email: iesmguu@gmail.com organization: College of Management, Chang Gung University, Department of Neurology, Chang Gung Memorial Hospital LinKou – sequence: 3 givenname: Jiajun surname: Yu fullname: Yu, Jiajun organization: College of Management, Chang Gung University, School of Innovation and Entrepreneurship, Huashang College, Guangdong University of Finance & Economics – sequence: 4 givenname: Yan-Kuen surname: Wu fullname: Wu, Yan-Kuen organization: Department of Business Administration, Vanung University |
BookMark | eNp9kM1KAzEUhYNUsK2-gKuA62gy6UySZSn-QcGNrsPtTNKmzE-bTKvtynfwDX0SM60guOjqXs79zuVwBqhXN7VB6JrRW0apuAuMCkoJZYpQxWlK1Bnqs1Rwkigqe92eSTJKubpAgxCWlLIsSWUf-TEOrp6XhmzBO5iVBlemXTQFto3HoSm38YorV39_flXwgVe-mXuoqk6Ne-Qr_O7aBYaicK1rahJP2G72-x32poROghK72qw3UEbChEt0bqEM5up3DtHbw_3r5IlMXx6fJ-MpyXnKWmJHdmRSIWWaZEkGCszI8iIXVuU0M7kFmkjIijQKhZ0JYZlUMMsizhRnIPgQ3Rz_xpzrjQmtXjYbH9MEnSRMMCm46Ch5pHLfhOCN1blrD7FbD67UjOquYX1sWMeG9aFhraI1-WddeVeB35028aMpRLieG_-X6oTrB-VBk6o |
CitedBy_id | crossref_primary_10_1007_s40314_024_02945_7 crossref_primary_10_1109_ACCESS_2020_3034279 crossref_primary_10_1109_TFUZZ_2022_3213884 crossref_primary_10_1016_j_fss_2022_03_017 crossref_primary_10_1109_TFUZZ_2021_3078529 crossref_primary_10_1016_j_fss_2024_109011 crossref_primary_10_1109_ACCESS_2022_3197611 crossref_primary_10_3233_JIFS_191565 crossref_primary_10_3934_math_2024665 crossref_primary_10_1007_s40815_022_01316_w crossref_primary_10_1016_j_cie_2020_106644 crossref_primary_10_1016_j_fss_2023_108825 crossref_primary_10_1080_27690911_2024_2335319 crossref_primary_10_3390_math12203183 crossref_primary_10_1007_s10700_021_09368_7 crossref_primary_10_1109_ACCESS_2021_3092745 crossref_primary_10_1109_TFUZZ_2024_3514746 crossref_primary_10_1007_s10700_022_09390_3 crossref_primary_10_1109_TFUZZ_2023_3284392 crossref_primary_10_1016_j_fss_2025_109369 crossref_primary_10_1109_ACCESS_2020_2984095 crossref_primary_10_1016_j_fss_2022_02_005 crossref_primary_10_1016_j_aej_2022_09_009 crossref_primary_10_1016_j_fss_2024_109067 crossref_primary_10_1007_s10700_021_09371_y crossref_primary_10_1109_TFUZZ_2022_3201982 crossref_primary_10_1109_ACCESS_2024_3467191 crossref_primary_10_1016_j_ins_2022_01_023 crossref_primary_10_1007_s10700_021_09377_6 crossref_primary_10_1080_27690911_2023_2279179 |
Cites_doi | 10.1007/s10700-008-9029-y 10.1016/S0165-0114(98)00417-5 10.1016/j.ins.2005.11.008 10.1007/978-94-017-1650-5 10.1016/j.ins.2011.03.004 10.1016/j.ins.2011.04.042 10.1109/TFUZZ.2007.902018 10.1016/j.fss.2005.02.010 10.1109/TFUZZ.2016.2593496 10.1016/S0165-0114(97)00184-X 10.1016/j.ins.2011.04.011 10.1109/TFUZZ.2015.2428716 10.1007/s00500-013-1152-1 10.1023/A:1022848114005 10.1016/j.ins.2010.10.024 10.1109/TFUZZ.2017.2771406 10.1016/0022-247X(85)90329-4 10.1016/S0019-9958(76)90446-0 10.1016/S0165-0114(98)00235-8 10.1016/j.fss.2014.04.007 10.1016/j.ins.2011.06.009 10.1016/j.fss.2013.03.009 10.1109/FSKD.2012.6233956 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 Fuzzy Optimization and Decision Making is a copyright of Springer, (2019). All Rights Reserved. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: Fuzzy Optimization and Decision Making is a copyright of Springer, (2019). All Rights Reserved. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7WY 7WZ 7X5 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FR3 FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- KR7 L.- L7M L~C L~D M0C M0N P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s10700-019-09305-9 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) Entrepreneurship Database ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database Civil Engineering Abstracts ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Entrepreneurship Advanced Technologies & Aerospace Collection Business Premium Collection Civil Engineering Abstracts ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics Computer Science |
EISSN | 1573-2908 |
EndPage | 449 |
ExternalDocumentID | 10_1007_s10700_019_09305_9 |
GrantInformation_xml | – fundername: Ministry of Science and Technology, Taiwan grantid: MOST 106-2221-E-182 -038 -MY2 funderid: http://dx.doi.org/10.13039/501100004663 – fundername: Ministry of Science and Technology, Taiwan grantid: MOST 106-2410-H-238-002; MOST 106-2632-H-182-001 funderid: http://dx.doi.org/10.13039/501100004663 – fundername: Chang Gung Memorial Hospital, Linkou grantid: BMRP017 funderid: http://dx.doi.org/10.13039/501100005795 |
GroupedDBID | -5D -5G -BR -EM -XX -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 203 29H 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 3-Y 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 7WY 8FE 8FG 8FL 8FW 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EBU EDO EIOEI EIS EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 Q2X QOS QWB R89 R9I RNI ROL RPX RSV RZC RZE S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZL0 ZMTXR ~8M ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7TB 7X5 7XB 8AL 8FD 8FK ABRTQ FR3 JQ2 KR7 L.- L7M L~C L~D PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c351t-f4f4e578852626a9ae4f3dc7f9c06ecfa028a6d57f9dfb77f189ab68521931a73 |
IEDL.DBID | U2A |
ISSN | 1568-4539 |
IngestDate | Fri Jul 25 07:55:16 EDT 2025 Thu Apr 24 23:06:23 EDT 2025 Tue Jul 01 04:03:02 EDT 2025 Fri Feb 21 02:34:55 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Fuzzy relational inequalities Min–max programming problem Single-variable method Addition-min composition |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-f4f4e578852626a9ae4f3dc7f9c06ecfa028a6d57f9dfb77f189ab68521931a73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2217187377 |
PQPubID | 25821 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2217187377 crossref_citationtrail_10_1007_s10700_019_09305_9 crossref_primary_10_1007_s10700_019_09305_9 springer_journals_10_1007_s10700_019_09305_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-01 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationSubtitle | A Journal of Modeling and Computation Under Uncertainty |
PublicationTitle | Fuzzy optimization and decision making |
PublicationTitleAbbrev | Fuzzy Optim Decis Making |
PublicationYear | 2019 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Shieh (CR22) 2011; 181 Lee, Guu (CR10) 2003; 2 Loetamonphong, Fang (CR15) 2001; 118 Yang (CR24) 2014; 255 CR13 Guu, Yu, Wu (CR8) 2018; 26 Chang, Shieh (CR1) 2013; 234 Lin, Wu, Guu (CR14) 2011; 181 Matusiewicz, Drewniak (CR17) 2013; 232 Pedrycz (CR19) 1985; 107 Wu, Guu (CR23) 2008; 16 Markovskii (CR16) 2005; 153 Li, Fang (CR11) 2008; 7 Di Nola, Sessa, Pedrycz, Sanchez (CR3) 1989 Li, Liu (CR12) 2014; 18 Fang, Li (CR4) 1999; 103 De, Biswas, Roy (CR2) 2001; 117 CR7 Yang, Zhou, Cao (CR25) 2016; 24 Guu, Wu (CR6) 2017; 25 Freson, De Baets, De Meyer (CR5) 2013; 234 Sanchez (CR21) 1976; 30 Nobuhara, Bede, Hirota (CR18) 2006; 176 Peeva (CR20) 2013; 234 Klir, Yuan (CR9) 1995 B-S Shieh (9305_CR22) 2011; 181 P Li (9305_CR12) 2014; 18 S-M Guu (9305_CR6) 2017; 25 9305_CR7 X-P Yang (9305_CR25) 2016; 24 S Freson (9305_CR5) 2013; 234 S-M Guu (9305_CR8) 2018; 26 H Nobuhara (9305_CR18) 2006; 176 S-J Yang (9305_CR24) 2014; 255 W Pedrycz (9305_CR19) 1985; 107 P Li (9305_CR11) 2008; 7 E Sanchez (9305_CR21) 1976; 30 A Nola Di (9305_CR3) 1989 GJ Klir (9305_CR9) 1995 Y-K Wu (9305_CR23) 2008; 16 C-W Chang (9305_CR1) 2013; 234 K Peeva (9305_CR20) 2013; 234 Z Matusiewicz (9305_CR17) 2013; 232 AV Markovskii (9305_CR16) 2005; 153 S-C Fang (9305_CR4) 1999; 103 SK De (9305_CR2) 2001; 117 H-C Lee (9305_CR10) 2003; 2 9305_CR13 J-L Lin (9305_CR14) 2011; 181 J Loetamonphong (9305_CR15) 2001; 118 |
References_xml | – volume: 7 start-page: 169 year: 2008 end-page: 214 ident: CR11 article-title: On the resolution and optimization of a system of fuzzy relational equations with sup-T composition publication-title: Fuzzy Optimization and Decision Making doi: 10.1007/s10700-008-9029-y – volume: 118 start-page: 509 year: 2001 end-page: 517 ident: CR15 article-title: Optimization of fuzzy relational equations with max–product composition publication-title: Fuzzy Sets and Systems doi: 10.1016/S0165-0114(98)00417-5 – volume: 176 start-page: 2988 year: 2006 end-page: 3010 ident: CR18 article-title: On various eigen fuzzy sets and their application to image reconstruction publication-title: Information Sciences doi: 10.1016/j.ins.2005.11.008 – year: 1989 ident: CR3 publication-title: Fuzzy relational equations and their applications in knowledge engineering doi: 10.1007/978-94-017-1650-5 – volume: 181 start-page: 2951 year: 2011 end-page: 2963 ident: CR14 article-title: On fuzzy relational equations and the covering problem publication-title: Information Sciences doi: 10.1016/j.ins.2011.03.004 – volume: 234 start-page: 71 year: 2013 end-page: 79 ident: CR1 article-title: Linear optimization problem constrained by fuzzy max–min relation equations publication-title: Information Sciences doi: 10.1016/j.ins.2011.04.042 – volume: 16 start-page: 73 issue: 1 year: 2008 end-page: 84 ident: CR23 article-title: An efficient procedure for solving a fuzzy relational equation with max-Archimedean t-norm composition publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2007.902018 – volume: 153 start-page: 261 year: 2005 end-page: 273 ident: CR16 article-title: On the relation between equations with max–product composition and the covering problem publication-title: Fuzzy Sets and Systems doi: 10.1016/j.fss.2005.02.010 – volume: 25 start-page: 985 issue: 4 year: 2017 end-page: 992 ident: CR6 article-title: A linear programming approach for minimizing a linear function subject to fuzzy relational inequalities with addition-min composition publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2016.2593496 – volume: 103 start-page: 107 year: 1999 end-page: 113 ident: CR4 article-title: Solving fuzzy relation equations with a linear objective function publication-title: Fuzzy Sets and Systems doi: 10.1016/S0165-0114(97)00184-X – volume: 234 start-page: 44 year: 2013 end-page: 63 ident: CR20 article-title: Resolution of fuzzy relational equations—Method, algorithm and software with applications publication-title: Information Sciences doi: 10.1016/j.ins.2011.04.011 – volume: 24 start-page: 111 issue: 1 year: 2016 end-page: 119 ident: CR25 article-title: Min-max programming problem subject to addition-min fuzzy relation inequalities publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2015.2428716 – volume: 18 start-page: 1399 year: 2014 end-page: 1404 ident: CR12 article-title: Linear optimization with bipolar fuzzy relational equation constraints using Lukasiewicz triagular norm publication-title: Soft Computing doi: 10.1007/s00500-013-1152-1 – volume: 2 start-page: 31 year: 2003 end-page: 39 ident: CR10 article-title: On the optimal three-tier multimedia streaming services publication-title: Fuzzy Optimization and Decision Making doi: 10.1023/A:1022848114005 – volume: 181 start-page: 832 year: 2011 end-page: 841 ident: CR22 article-title: Minimizing a linear objective function under a fuzzy max-t-norm relation equation constraint publication-title: Information Sciences doi: 10.1016/j.ins.2010.10.024 – year: 1995 ident: CR9 publication-title: Fuzzy sets and fuzzy logic: Theory and applications – volume: 26 start-page: 2251 issue: 4 year: 2018 end-page: 2260 ident: CR8 article-title: A two-phase approach to finding a better managerial solution for systems with addition-min fuzzy relational inequalities publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2017.2771406 – volume: 107 start-page: 520 year: 1985 end-page: 536 ident: CR19 article-title: On generalized fuzzy relational equations and their applications publication-title: Journal of Mathematical Analysis and Applications doi: 10.1016/0022-247X(85)90329-4 – ident: CR13 – volume: 30 start-page: 38 year: 1976 end-page: 48 ident: CR21 article-title: Resolution of composite fuzzy relation equations publication-title: Information and Control doi: 10.1016/S0019-9958(76)90446-0 – volume: 117 start-page: 209 year: 2001 end-page: 213 ident: CR2 article-title: An application of intuitionistic fuzzy sets in medical diagnosis publication-title: Fuzzy Sets and Systems doi: 10.1016/S0165-0114(98)00235-8 – ident: CR7 – volume: 255 start-page: 41 year: 2014 end-page: 51 ident: CR24 article-title: An algorithm for minimizing a linear objective function subject to the fuzzy relation inequalities with addition-min composition publication-title: Fuzzy Sets and Systems doi: 10.1016/j.fss.2014.04.007 – volume: 234 start-page: 3 year: 2013 end-page: 15 ident: CR5 article-title: Linear optimization with bipolar max–min constraints publication-title: Information Sciences doi: 10.1016/j.ins.2011.06.009 – volume: 232 start-page: 120 year: 2013 end-page: 133 ident: CR17 article-title: Increasing continuous operations in fuzzy max-* equations and inequalieties publication-title: Fuzzy Sets and Systems doi: 10.1016/j.fss.2013.03.009 – volume: 117 start-page: 209 year: 2001 ident: 9305_CR2 publication-title: Fuzzy Sets and Systems doi: 10.1016/S0165-0114(98)00235-8 – volume-title: Fuzzy relational equations and their applications in knowledge engineering year: 1989 ident: 9305_CR3 doi: 10.1007/978-94-017-1650-5 – volume: 18 start-page: 1399 year: 2014 ident: 9305_CR12 publication-title: Soft Computing doi: 10.1007/s00500-013-1152-1 – ident: 9305_CR7 – volume: 234 start-page: 44 year: 2013 ident: 9305_CR20 publication-title: Information Sciences doi: 10.1016/j.ins.2011.04.011 – volume: 24 start-page: 111 issue: 1 year: 2016 ident: 9305_CR25 publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2015.2428716 – volume: 26 start-page: 2251 issue: 4 year: 2018 ident: 9305_CR8 publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2017.2771406 – volume: 255 start-page: 41 year: 2014 ident: 9305_CR24 publication-title: Fuzzy Sets and Systems doi: 10.1016/j.fss.2014.04.007 – volume: 30 start-page: 38 year: 1976 ident: 9305_CR21 publication-title: Information and Control doi: 10.1016/S0019-9958(76)90446-0 – volume: 234 start-page: 3 year: 2013 ident: 9305_CR5 publication-title: Information Sciences doi: 10.1016/j.ins.2011.06.009 – volume: 118 start-page: 509 year: 2001 ident: 9305_CR15 publication-title: Fuzzy Sets and Systems doi: 10.1016/S0165-0114(98)00417-5 – volume: 153 start-page: 261 year: 2005 ident: 9305_CR16 publication-title: Fuzzy Sets and Systems doi: 10.1016/j.fss.2005.02.010 – volume: 25 start-page: 985 issue: 4 year: 2017 ident: 9305_CR6 publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2016.2593496 – volume: 234 start-page: 71 year: 2013 ident: 9305_CR1 publication-title: Information Sciences doi: 10.1016/j.ins.2011.04.042 – ident: 9305_CR13 doi: 10.1109/FSKD.2012.6233956 – volume: 107 start-page: 520 year: 1985 ident: 9305_CR19 publication-title: Journal of Mathematical Analysis and Applications doi: 10.1016/0022-247X(85)90329-4 – volume: 103 start-page: 107 year: 1999 ident: 9305_CR4 publication-title: Fuzzy Sets and Systems doi: 10.1016/S0165-0114(97)00184-X – volume: 181 start-page: 832 year: 2011 ident: 9305_CR22 publication-title: Information Sciences doi: 10.1016/j.ins.2010.10.024 – volume: 7 start-page: 169 year: 2008 ident: 9305_CR11 publication-title: Fuzzy Optimization and Decision Making doi: 10.1007/s10700-008-9029-y – volume: 176 start-page: 2988 year: 2006 ident: 9305_CR18 publication-title: Information Sciences doi: 10.1016/j.ins.2005.11.008 – volume-title: Fuzzy sets and fuzzy logic: Theory and applications year: 1995 ident: 9305_CR9 – volume: 232 start-page: 120 year: 2013 ident: 9305_CR17 publication-title: Fuzzy Sets and Systems doi: 10.1016/j.fss.2013.03.009 – volume: 181 start-page: 2951 year: 2011 ident: 9305_CR14 publication-title: Information Sciences doi: 10.1016/j.ins.2011.03.004 – volume: 2 start-page: 31 year: 2003 ident: 9305_CR10 publication-title: Fuzzy Optimization and Decision Making doi: 10.1023/A:1022848114005 – volume: 16 start-page: 73 issue: 1 year: 2008 ident: 9305_CR23 publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2007.902018 |
SSID | ssj0016258 |
Score | 2.3637943 |
Snippet | In this paper, we study the min–max programming problem with
n
addition-min fuzzy relational inequality constraints. We prove that when the problem is... In this paper, we study the min–max programming problem with n addition-min fuzzy relational inequality constraints. We prove that when the problem is... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 433 |
SubjectTerms | Artificial Intelligence Calculus of Variations and Optimal Control; Optimization Iterative methods Lower bounds Mathematical Logic and Foundations Mathematics Mathematics and Statistics Nonlinear programming Operations Research/Decision Theory Optimization Probability Theory and Stochastic Processes Programming |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwELWgXODAUkAUCvKBG1jUTZzYJ1QhSoUEJyr1FiVeJKRudEHQE__AH_IlzKROC0j0GidOlDf2LJ43Q8i5ieqO14xBxrJgYaZDJiMpmAF1UtNhmgZ5Lb2Hx6jVDu87ouMDbmOfVlnsiflGbQYaY-RXdbCduYyDOL4evjDsGoWnq76FxjrZ4KBpUMJl825xigC2fU6FE5FkoQiUJ8146lyMnGqk8CiQeaZ-K6altfnngDTXO81dsu0NRtqYI7xH1my_THaKZgzUr80y2fpRWXCfjBoUgwBdy17BGUZ6FJ33iqZgpFKQN4wj0N5z_-vjs5e-UZ-m1cOrvscMxRAtxXwjxI7BEHXT2eydjnz-HHwVvHDOygR_-4C0m7dPNy3m2yswHQg-YS50oYUFK0UdvBqs0h26wOjYKV2LrHYpmB5pZARcMC6LY8elSjMAEja5gKdxcEhK_UHfHhFqVSaltpFA70tbpSw3AbcKS_PozNkK4cW_TbSvPY4tMLrJsmoy4pEAHkmOR6Iq5GLxzHBeeWPl3dUCssSvwnGylJkKuSxgXA7_P9vx6tlOyGYdJSfPaqmS0mQ0tadgm0yys1wAvwHr4eF1 priority: 102 providerName: ProQuest |
Title | A single-variable method for solving min–max programming problem with addition-min fuzzy relational inequalities |
URI | https://link.springer.com/article/10.1007/s10700-019-09305-9 https://www.proquest.com/docview/2217187377 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58XPTgW1xdlxy8aWD7SJscV9ldURQRF_RU2jQBwV1lH6Ke_A_-Q3-JM910V0UFT6VJmpZ-k2QmmW8GYC-PfOvV85wYy4KHmQ65jKTgOS4ndR2maVDE0js7j4474cm1uHaksEHp7V4eSRYz9SeyW0wsaCLdKJRSrmZhXqDtTnLd8RuTswPU6AsCnIgkD0WgHFXm5z6-LkdTHfPbsWix2rRWYMmpiawxxnUVZkxvDZbLFAzMjcg1WPwUTxDvziZBWAfr0G8w2gi4M_wRDWKiSLFxvmiGiipDmaO9BNa97b2_vnXTJ-ZctbpU6vLMMNqmZeRzRPhxrGJ29PLyzPrOhw6_EV8_Zmaizb0BnVbz6uiYuxQLXAfCG3Ib2tDgoJXCR8uGInWHNsh1bJWuR0bbFNWPNMoFFuQ2i2PrSZVmCCZOdIGXxsEmzPXue2YLmFGZlNpEgiwwbZQyXh54RlF4Hp1ZUwGv_NOJdvHHKQ3GXTKNnEzoJIhOUqCTqArsT555GEff-LN1tQQwcSNxkPhoc3kyDuK4AgclqNPq33vb_l_zHVjwSa4KT5cqzA37I7OL-sowq8GsbLVrMN9o35w28XrYPL-4rBVC-wElveb6 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB615UA58OhDLG2pD3ACq5vYTuwDQlVhu6WPUyv1liZ-SEjdbdluobsn_gP_gx_FL2EmcbqARG-92okTeT7bM-P5ZgBeuSwNSdc5YiwrLisruc604g6Pk66VZSnqXHqHR1n_RH46Vadz8LPlwlBYZbsn1hu1u7DkI99KUXdOdC7y_P3lF05Vo-h2tS2h0cBi30--ocl29W7vA8r3dZr2Ph7v9HmsKsCtUMmYBxmkR5xqlaIyT8mpZRDO5sHYbuZtKPHELTOnsMGFKs9Dok1Z4f_j2hZJmQscdx4eSCEMhRDq3u7trQXaEjX1TmWaSyVMJOlEql5OHG6iDBlcY9z8fRDOtNt_LmTrc673FB5HBZVtN4h6BnN-uARP2uIPLO4FS_Doj0yGyzDaZuR0OPf8KxrfRMdiTW1qhkoxQ3yT34INPg9_ff8xKG9YDAsbUGusacPIJcwovomwwrGLhevpdMJGMV4P_wo_2LBA0b5fgZN7mfhVWBheDP1zYN5UWlufKbL2rDfGJ04k3lAqIFsF34GkndvCxlznVHLjvJhlaSZ5FCiPopZHYTrw5vadyybTx51Pr7ciK-KqvypmGO3A21aMs-7_j_bi7tE24WH_-PCgONg72l-DxZRQVEfUrMPCeHTtN1AvGlcvazAyOLtv9P8GWp4e2A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB5RkFA5UKBFXaCtD_TUWmziOLYPVYVKt_wV9VAkbmniH6kSu8CytOye-g59mz5On6QzicPSSuXGNU6cxPPZnhnPNwOw6fI0JF3niLEseVbZjOtcS-5wO-narCxFnUvv41G-e5ztn8iTGfjVcmEorLJdE-uF2p1Z8pFvpag7J1oJpbZCDIv4tNN7e37BqYIUnbS25TQaiBz48Xc03y7f7O2grF-mae_953e7PFYY4FbIZMRDFjKPmNUyRcWeElVnQTirgrHd3NtQ4u5b5k7iBRcqpUKiTVnhv-A8F0mpBPb7AOaU0F2qnqB7H25OMNCuqGl4Mtc8k8JEwk6k7SnicxN9yOB84-bvTXGq6f5zOFvveb0lWIzKKttu0LUMM36wAo_aQhAsrgsrsHArq-FjGG4zckCcev4NDXGiZrGmTjVDBZkh1smHwfpfB79__OyX1yyGiPXpaqxvw8g9zCjWiXDDsYmFq8lkzIYxdg-_Cl_YMELR1n8Cx_cy8KswOzgb-KfAvKm0tj6XZPlZb4xPnEi8obRAtgq-A0k7toWNec-p_MZpMc3YTPIoUB5FLY_CdODVzTPnTdaPO-_eaEVWxBXgspjitQOvWzFOm__f29rdvb2AecR9cbh3dLAOD1MCUR1cswGzo-GVf4Yq0qh6XmORwZf7Bv8feE8jBQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+single-variable+method+for+solving+min%E2%80%93max+programming+problem+with+addition-min+fuzzy+relational+inequalities&rft.jtitle=Fuzzy+optimization+and+decision+making&rft.au=Chiu%2C+Ya-Ling&rft.au=Guu%2C+Sy-Ming&rft.au=Yu%2C+Jiajun&rft.au=Wu%2C+Yan-Kuen&rft.date=2019-12-01&rft.pub=Springer+US&rft.issn=1568-4539&rft.eissn=1573-2908&rft.volume=18&rft.issue=4&rft.spage=433&rft.epage=449&rft_id=info:doi/10.1007%2Fs10700-019-09305-9&rft.externalDocID=10_1007_s10700_019_09305_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4539&client=summon |