A single-variable method for solving min–max programming problem with addition-min fuzzy relational inequalities

In this paper, we study the min–max programming problem with n addition-min fuzzy relational inequality constraints. We prove that when the problem is feasible, an optimal solution always exists with all variables being of the same value. Based on this result, the min–max programming problem can be...

Full description

Saved in:
Bibliographic Details
Published inFuzzy optimization and decision making Vol. 18; no. 4; pp. 433 - 449
Main Authors Chiu, Ya-Ling, Guu, Sy-Ming, Yu, Jiajun, Wu, Yan-Kuen
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1568-4539
1573-2908
DOI10.1007/s10700-019-09305-9

Cover

Loading…
Abstract In this paper, we study the min–max programming problem with n addition-min fuzzy relational inequality constraints. We prove that when the problem is feasible, an optimal solution always exists with all variables being of the same value. Based on this result, the min–max programming problem can be simplified as a single-variable optimization problem with the same optimal objective value. To solve the corresponding single-variable optimization problem, we propose an analytical method and an iterative method by successively approximating the lower bound of the optimal value. Numerical examples are given to illustrate our methods.
AbstractList In this paper, we study the min–max programming problem with n addition-min fuzzy relational inequality constraints. We prove that when the problem is feasible, an optimal solution always exists with all variables being of the same value. Based on this result, the min–max programming problem can be simplified as a single-variable optimization problem with the same optimal objective value. To solve the corresponding single-variable optimization problem, we propose an analytical method and an iterative method by successively approximating the lower bound of the optimal value. Numerical examples are given to illustrate our methods.
In this paper, we study the min–max programming problem with n addition-min fuzzy relational inequality constraints. We prove that when the problem is feasible, an optimal solution always exists with all variables being of the same value. Based on this result, the min–max programming problem can be simplified as a single-variable optimization problem with the same optimal objective value. To solve the corresponding single-variable optimization problem, we propose an analytical method and an iterative method by successively approximating the lower bound of the optimal value. Numerical examples are given to illustrate our methods.
Author Guu, Sy-Ming
Chiu, Ya-Ling
Wu, Yan-Kuen
Yu, Jiajun
Author_xml – sequence: 1
  givenname: Ya-Ling
  surname: Chiu
  fullname: Chiu, Ya-Ling
  organization: College of International Business, Zhejiang Yuexiu University of Foreign Languages
– sequence: 2
  givenname: Sy-Ming
  surname: Guu
  fullname: Guu, Sy-Ming
  email: iesmguu@gmail.com
  organization: College of Management, Chang Gung University, Department of Neurology, Chang Gung Memorial Hospital LinKou
– sequence: 3
  givenname: Jiajun
  surname: Yu
  fullname: Yu, Jiajun
  organization: College of Management, Chang Gung University, School of Innovation and Entrepreneurship, Huashang College, Guangdong University of Finance & Economics
– sequence: 4
  givenname: Yan-Kuen
  surname: Wu
  fullname: Wu, Yan-Kuen
  organization: Department of Business Administration, Vanung University
BookMark eNp9kM1KAzEUhYNUsK2-gKuA62gy6UySZSn-QcGNrsPtTNKmzE-bTKvtynfwDX0SM60guOjqXs79zuVwBqhXN7VB6JrRW0apuAuMCkoJZYpQxWlK1Bnqs1Rwkigqe92eSTJKubpAgxCWlLIsSWUf-TEOrp6XhmzBO5iVBlemXTQFto3HoSm38YorV39_flXwgVe-mXuoqk6Ne-Qr_O7aBYaicK1rahJP2G72-x32poROghK72qw3UEbChEt0bqEM5up3DtHbw_3r5IlMXx6fJ-MpyXnKWmJHdmRSIWWaZEkGCszI8iIXVuU0M7kFmkjIijQKhZ0JYZlUMMsizhRnIPgQ3Rz_xpzrjQmtXjYbH9MEnSRMMCm46Ch5pHLfhOCN1blrD7FbD67UjOquYX1sWMeG9aFhraI1-WddeVeB35028aMpRLieG_-X6oTrB-VBk6o
CitedBy_id crossref_primary_10_1007_s40314_024_02945_7
crossref_primary_10_1109_ACCESS_2020_3034279
crossref_primary_10_1109_TFUZZ_2022_3213884
crossref_primary_10_1016_j_fss_2022_03_017
crossref_primary_10_1109_TFUZZ_2021_3078529
crossref_primary_10_1016_j_fss_2024_109011
crossref_primary_10_1109_ACCESS_2022_3197611
crossref_primary_10_3233_JIFS_191565
crossref_primary_10_3934_math_2024665
crossref_primary_10_1007_s40815_022_01316_w
crossref_primary_10_1016_j_cie_2020_106644
crossref_primary_10_1016_j_fss_2023_108825
crossref_primary_10_1080_27690911_2024_2335319
crossref_primary_10_3390_math12203183
crossref_primary_10_1007_s10700_021_09368_7
crossref_primary_10_1109_ACCESS_2021_3092745
crossref_primary_10_1109_TFUZZ_2024_3514746
crossref_primary_10_1007_s10700_022_09390_3
crossref_primary_10_1109_TFUZZ_2023_3284392
crossref_primary_10_1016_j_fss_2025_109369
crossref_primary_10_1109_ACCESS_2020_2984095
crossref_primary_10_1016_j_fss_2022_02_005
crossref_primary_10_1016_j_aej_2022_09_009
crossref_primary_10_1016_j_fss_2024_109067
crossref_primary_10_1007_s10700_021_09371_y
crossref_primary_10_1109_TFUZZ_2022_3201982
crossref_primary_10_1109_ACCESS_2024_3467191
crossref_primary_10_1016_j_ins_2022_01_023
crossref_primary_10_1007_s10700_021_09377_6
crossref_primary_10_1080_27690911_2023_2279179
Cites_doi 10.1007/s10700-008-9029-y
10.1016/S0165-0114(98)00417-5
10.1016/j.ins.2005.11.008
10.1007/978-94-017-1650-5
10.1016/j.ins.2011.03.004
10.1016/j.ins.2011.04.042
10.1109/TFUZZ.2007.902018
10.1016/j.fss.2005.02.010
10.1109/TFUZZ.2016.2593496
10.1016/S0165-0114(97)00184-X
10.1016/j.ins.2011.04.011
10.1109/TFUZZ.2015.2428716
10.1007/s00500-013-1152-1
10.1023/A:1022848114005
10.1016/j.ins.2010.10.024
10.1109/TFUZZ.2017.2771406
10.1016/0022-247X(85)90329-4
10.1016/S0019-9958(76)90446-0
10.1016/S0165-0114(98)00235-8
10.1016/j.fss.2014.04.007
10.1016/j.ins.2011.06.009
10.1016/j.fss.2013.03.009
10.1109/FSKD.2012.6233956
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Fuzzy Optimization and Decision Making is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Fuzzy Optimization and Decision Making is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7TB
7WY
7WZ
7X5
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
KR7
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s10700-019-09305-9
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Entrepreneurship Database
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Entrepreneurship
Advanced Technologies & Aerospace Collection
Business Premium Collection
Civil Engineering Abstracts
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Computer Science
EISSN 1573-2908
EndPage 449
ExternalDocumentID 10_1007_s10700_019_09305_9
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan
  grantid: MOST 106-2221-E-182 -038 -MY2
  funderid: http://dx.doi.org/10.13039/501100004663
– fundername: Ministry of Science and Technology, Taiwan
  grantid: MOST 106-2410-H-238-002; MOST 106-2632-H-182-001
  funderid: http://dx.doi.org/10.13039/501100004663
– fundername: Chang Gung Memorial Hospital, Linkou
  grantid: BMRP017
  funderid: http://dx.doi.org/10.13039/501100005795
GroupedDBID -5D
-5G
-BR
-EM
-XX
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
203
29H
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
3-Y
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
7WY
8FE
8FG
8FL
8FW
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EBU
EDO
EIOEI
EIS
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
Q2X
QOS
QWB
R89
R9I
RNI
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZL0
ZMTXR
~8M
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7TB
7X5
7XB
8AL
8FD
8FK
ABRTQ
FR3
JQ2
KR7
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c351t-f4f4e578852626a9ae4f3dc7f9c06ecfa028a6d57f9dfb77f189ab68521931a73
IEDL.DBID U2A
ISSN 1568-4539
IngestDate Fri Jul 25 07:55:16 EDT 2025
Thu Apr 24 23:06:23 EDT 2025
Tue Jul 01 04:03:02 EDT 2025
Fri Feb 21 02:34:55 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Fuzzy relational inequalities
Min–max programming problem
Single-variable method
Addition-min composition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-f4f4e578852626a9ae4f3dc7f9c06ecfa028a6d57f9dfb77f189ab68521931a73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2217187377
PQPubID 25821
PageCount 17
ParticipantIDs proquest_journals_2217187377
crossref_citationtrail_10_1007_s10700_019_09305_9
crossref_primary_10_1007_s10700_019_09305_9
springer_journals_10_1007_s10700_019_09305_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle A Journal of Modeling and Computation Under Uncertainty
PublicationTitle Fuzzy optimization and decision making
PublicationTitleAbbrev Fuzzy Optim Decis Making
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Shieh (CR22) 2011; 181
Lee, Guu (CR10) 2003; 2
Loetamonphong, Fang (CR15) 2001; 118
Yang (CR24) 2014; 255
CR13
Guu, Yu, Wu (CR8) 2018; 26
Chang, Shieh (CR1) 2013; 234
Lin, Wu, Guu (CR14) 2011; 181
Matusiewicz, Drewniak (CR17) 2013; 232
Pedrycz (CR19) 1985; 107
Wu, Guu (CR23) 2008; 16
Markovskii (CR16) 2005; 153
Li, Fang (CR11) 2008; 7
Di Nola, Sessa, Pedrycz, Sanchez (CR3) 1989
Li, Liu (CR12) 2014; 18
Fang, Li (CR4) 1999; 103
De, Biswas, Roy (CR2) 2001; 117
CR7
Yang, Zhou, Cao (CR25) 2016; 24
Guu, Wu (CR6) 2017; 25
Freson, De Baets, De Meyer (CR5) 2013; 234
Sanchez (CR21) 1976; 30
Nobuhara, Bede, Hirota (CR18) 2006; 176
Peeva (CR20) 2013; 234
Klir, Yuan (CR9) 1995
B-S Shieh (9305_CR22) 2011; 181
P Li (9305_CR12) 2014; 18
S-M Guu (9305_CR6) 2017; 25
9305_CR7
X-P Yang (9305_CR25) 2016; 24
S Freson (9305_CR5) 2013; 234
S-M Guu (9305_CR8) 2018; 26
H Nobuhara (9305_CR18) 2006; 176
S-J Yang (9305_CR24) 2014; 255
W Pedrycz (9305_CR19) 1985; 107
P Li (9305_CR11) 2008; 7
E Sanchez (9305_CR21) 1976; 30
A Nola Di (9305_CR3) 1989
GJ Klir (9305_CR9) 1995
Y-K Wu (9305_CR23) 2008; 16
C-W Chang (9305_CR1) 2013; 234
K Peeva (9305_CR20) 2013; 234
Z Matusiewicz (9305_CR17) 2013; 232
AV Markovskii (9305_CR16) 2005; 153
S-C Fang (9305_CR4) 1999; 103
SK De (9305_CR2) 2001; 117
H-C Lee (9305_CR10) 2003; 2
9305_CR13
J-L Lin (9305_CR14) 2011; 181
J Loetamonphong (9305_CR15) 2001; 118
References_xml – volume: 7
  start-page: 169
  year: 2008
  end-page: 214
  ident: CR11
  article-title: On the resolution and optimization of a system of fuzzy relational equations with sup-T composition
  publication-title: Fuzzy Optimization and Decision Making
  doi: 10.1007/s10700-008-9029-y
– volume: 118
  start-page: 509
  year: 2001
  end-page: 517
  ident: CR15
  article-title: Optimization of fuzzy relational equations with max–product composition
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/S0165-0114(98)00417-5
– volume: 176
  start-page: 2988
  year: 2006
  end-page: 3010
  ident: CR18
  article-title: On various eigen fuzzy sets and their application to image reconstruction
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2005.11.008
– year: 1989
  ident: CR3
  publication-title: Fuzzy relational equations and their applications in knowledge engineering
  doi: 10.1007/978-94-017-1650-5
– volume: 181
  start-page: 2951
  year: 2011
  end-page: 2963
  ident: CR14
  article-title: On fuzzy relational equations and the covering problem
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2011.03.004
– volume: 234
  start-page: 71
  year: 2013
  end-page: 79
  ident: CR1
  article-title: Linear optimization problem constrained by fuzzy max–min relation equations
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2011.04.042
– volume: 16
  start-page: 73
  issue: 1
  year: 2008
  end-page: 84
  ident: CR23
  article-title: An efficient procedure for solving a fuzzy relational equation with max-Archimedean t-norm composition
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2007.902018
– volume: 153
  start-page: 261
  year: 2005
  end-page: 273
  ident: CR16
  article-title: On the relation between equations with max–product composition and the covering problem
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/j.fss.2005.02.010
– volume: 25
  start-page: 985
  issue: 4
  year: 2017
  end-page: 992
  ident: CR6
  article-title: A linear programming approach for minimizing a linear function subject to fuzzy relational inequalities with addition-min composition
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2016.2593496
– volume: 103
  start-page: 107
  year: 1999
  end-page: 113
  ident: CR4
  article-title: Solving fuzzy relation equations with a linear objective function
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/S0165-0114(97)00184-X
– volume: 234
  start-page: 44
  year: 2013
  end-page: 63
  ident: CR20
  article-title: Resolution of fuzzy relational equations—Method, algorithm and software with applications
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2011.04.011
– volume: 24
  start-page: 111
  issue: 1
  year: 2016
  end-page: 119
  ident: CR25
  article-title: Min-max programming problem subject to addition-min fuzzy relation inequalities
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2015.2428716
– volume: 18
  start-page: 1399
  year: 2014
  end-page: 1404
  ident: CR12
  article-title: Linear optimization with bipolar fuzzy relational equation constraints using Lukasiewicz triagular norm
  publication-title: Soft Computing
  doi: 10.1007/s00500-013-1152-1
– volume: 2
  start-page: 31
  year: 2003
  end-page: 39
  ident: CR10
  article-title: On the optimal three-tier multimedia streaming services
  publication-title: Fuzzy Optimization and Decision Making
  doi: 10.1023/A:1022848114005
– volume: 181
  start-page: 832
  year: 2011
  end-page: 841
  ident: CR22
  article-title: Minimizing a linear objective function under a fuzzy max-t-norm relation equation constraint
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2010.10.024
– year: 1995
  ident: CR9
  publication-title: Fuzzy sets and fuzzy logic: Theory and applications
– volume: 26
  start-page: 2251
  issue: 4
  year: 2018
  end-page: 2260
  ident: CR8
  article-title: A two-phase approach to finding a better managerial solution for systems with addition-min fuzzy relational inequalities
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2017.2771406
– volume: 107
  start-page: 520
  year: 1985
  end-page: 536
  ident: CR19
  article-title: On generalized fuzzy relational equations and their applications
  publication-title: Journal of Mathematical Analysis and Applications
  doi: 10.1016/0022-247X(85)90329-4
– ident: CR13
– volume: 30
  start-page: 38
  year: 1976
  end-page: 48
  ident: CR21
  article-title: Resolution of composite fuzzy relation equations
  publication-title: Information and Control
  doi: 10.1016/S0019-9958(76)90446-0
– volume: 117
  start-page: 209
  year: 2001
  end-page: 213
  ident: CR2
  article-title: An application of intuitionistic fuzzy sets in medical diagnosis
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/S0165-0114(98)00235-8
– ident: CR7
– volume: 255
  start-page: 41
  year: 2014
  end-page: 51
  ident: CR24
  article-title: An algorithm for minimizing a linear objective function subject to the fuzzy relation inequalities with addition-min composition
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/j.fss.2014.04.007
– volume: 234
  start-page: 3
  year: 2013
  end-page: 15
  ident: CR5
  article-title: Linear optimization with bipolar max–min constraints
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2011.06.009
– volume: 232
  start-page: 120
  year: 2013
  end-page: 133
  ident: CR17
  article-title: Increasing continuous operations in fuzzy max-* equations and inequalieties
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/j.fss.2013.03.009
– volume: 117
  start-page: 209
  year: 2001
  ident: 9305_CR2
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/S0165-0114(98)00235-8
– volume-title: Fuzzy relational equations and their applications in knowledge engineering
  year: 1989
  ident: 9305_CR3
  doi: 10.1007/978-94-017-1650-5
– volume: 18
  start-page: 1399
  year: 2014
  ident: 9305_CR12
  publication-title: Soft Computing
  doi: 10.1007/s00500-013-1152-1
– ident: 9305_CR7
– volume: 234
  start-page: 44
  year: 2013
  ident: 9305_CR20
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2011.04.011
– volume: 24
  start-page: 111
  issue: 1
  year: 2016
  ident: 9305_CR25
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2015.2428716
– volume: 26
  start-page: 2251
  issue: 4
  year: 2018
  ident: 9305_CR8
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2017.2771406
– volume: 255
  start-page: 41
  year: 2014
  ident: 9305_CR24
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/j.fss.2014.04.007
– volume: 30
  start-page: 38
  year: 1976
  ident: 9305_CR21
  publication-title: Information and Control
  doi: 10.1016/S0019-9958(76)90446-0
– volume: 234
  start-page: 3
  year: 2013
  ident: 9305_CR5
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2011.06.009
– volume: 118
  start-page: 509
  year: 2001
  ident: 9305_CR15
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/S0165-0114(98)00417-5
– volume: 153
  start-page: 261
  year: 2005
  ident: 9305_CR16
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/j.fss.2005.02.010
– volume: 25
  start-page: 985
  issue: 4
  year: 2017
  ident: 9305_CR6
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2016.2593496
– volume: 234
  start-page: 71
  year: 2013
  ident: 9305_CR1
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2011.04.042
– ident: 9305_CR13
  doi: 10.1109/FSKD.2012.6233956
– volume: 107
  start-page: 520
  year: 1985
  ident: 9305_CR19
  publication-title: Journal of Mathematical Analysis and Applications
  doi: 10.1016/0022-247X(85)90329-4
– volume: 103
  start-page: 107
  year: 1999
  ident: 9305_CR4
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/S0165-0114(97)00184-X
– volume: 181
  start-page: 832
  year: 2011
  ident: 9305_CR22
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2010.10.024
– volume: 7
  start-page: 169
  year: 2008
  ident: 9305_CR11
  publication-title: Fuzzy Optimization and Decision Making
  doi: 10.1007/s10700-008-9029-y
– volume: 176
  start-page: 2988
  year: 2006
  ident: 9305_CR18
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2005.11.008
– volume-title: Fuzzy sets and fuzzy logic: Theory and applications
  year: 1995
  ident: 9305_CR9
– volume: 232
  start-page: 120
  year: 2013
  ident: 9305_CR17
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/j.fss.2013.03.009
– volume: 181
  start-page: 2951
  year: 2011
  ident: 9305_CR14
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2011.03.004
– volume: 2
  start-page: 31
  year: 2003
  ident: 9305_CR10
  publication-title: Fuzzy Optimization and Decision Making
  doi: 10.1023/A:1022848114005
– volume: 16
  start-page: 73
  issue: 1
  year: 2008
  ident: 9305_CR23
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2007.902018
SSID ssj0016258
Score 2.3637943
Snippet In this paper, we study the min–max programming problem with n addition-min fuzzy relational inequality constraints. We prove that when the problem is...
In this paper, we study the min–max programming problem with n addition-min fuzzy relational inequality constraints. We prove that when the problem is...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 433
SubjectTerms Artificial Intelligence
Calculus of Variations and Optimal Control; Optimization
Iterative methods
Lower bounds
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Nonlinear programming
Operations Research/Decision Theory
Optimization
Probability Theory and Stochastic Processes
Programming
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwELWgXODAUkAUCvKBG1jUTZzYJ1QhSoUEJyr1FiVeJKRudEHQE__AH_IlzKROC0j0GidOlDf2LJ43Q8i5ieqO14xBxrJgYaZDJiMpmAF1UtNhmgZ5Lb2Hx6jVDu87ouMDbmOfVlnsiflGbQYaY-RXdbCduYyDOL4evjDsGoWnq76FxjrZ4KBpUMJl825xigC2fU6FE5FkoQiUJ8146lyMnGqk8CiQeaZ-K6altfnngDTXO81dsu0NRtqYI7xH1my_THaKZgzUr80y2fpRWXCfjBoUgwBdy17BGUZ6FJ33iqZgpFKQN4wj0N5z_-vjs5e-UZ-m1cOrvscMxRAtxXwjxI7BEHXT2eydjnz-HHwVvHDOygR_-4C0m7dPNy3m2yswHQg-YS50oYUFK0UdvBqs0h26wOjYKV2LrHYpmB5pZARcMC6LY8elSjMAEja5gKdxcEhK_UHfHhFqVSaltpFA70tbpSw3AbcKS_PozNkK4cW_TbSvPY4tMLrJsmoy4pEAHkmOR6Iq5GLxzHBeeWPl3dUCssSvwnGylJkKuSxgXA7_P9vx6tlOyGYdJSfPaqmS0mQ0tadgm0yys1wAvwHr4eF1
  priority: 102
  providerName: ProQuest
Title A single-variable method for solving min–max programming problem with addition-min fuzzy relational inequalities
URI https://link.springer.com/article/10.1007/s10700-019-09305-9
https://www.proquest.com/docview/2217187377
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58XPTgW1xdlxy8aWD7SJscV9ldURQRF_RU2jQBwV1lH6Ke_A_-Q3-JM910V0UFT6VJmpZ-k2QmmW8GYC-PfOvV85wYy4KHmQ65jKTgOS4ndR2maVDE0js7j4474cm1uHaksEHp7V4eSRYz9SeyW0wsaCLdKJRSrmZhXqDtTnLd8RuTswPU6AsCnIgkD0WgHFXm5z6-LkdTHfPbsWix2rRWYMmpiawxxnUVZkxvDZbLFAzMjcg1WPwUTxDvziZBWAfr0G8w2gi4M_wRDWKiSLFxvmiGiipDmaO9BNa97b2_vnXTJ-ZctbpU6vLMMNqmZeRzRPhxrGJ29PLyzPrOhw6_EV8_Zmaizb0BnVbz6uiYuxQLXAfCG3Ib2tDgoJXCR8uGInWHNsh1bJWuR0bbFNWPNMoFFuQ2i2PrSZVmCCZOdIGXxsEmzPXue2YLmFGZlNpEgiwwbZQyXh54RlF4Hp1ZUwGv_NOJdvHHKQ3GXTKNnEzoJIhOUqCTqArsT555GEff-LN1tQQwcSNxkPhoc3kyDuK4AgclqNPq33vb_l_zHVjwSa4KT5cqzA37I7OL-sowq8GsbLVrMN9o35w28XrYPL-4rBVC-wElveb6
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB615UA58OhDLG2pD3ACq5vYTuwDQlVhu6WPUyv1liZ-SEjdbdluobsn_gP_gx_FL2EmcbqARG-92okTeT7bM-P5ZgBeuSwNSdc5YiwrLisruc604g6Pk66VZSnqXHqHR1n_RH46Vadz8LPlwlBYZbsn1hu1u7DkI99KUXdOdC7y_P3lF05Vo-h2tS2h0cBi30--ocl29W7vA8r3dZr2Ph7v9HmsKsCtUMmYBxmkR5xqlaIyT8mpZRDO5sHYbuZtKPHELTOnsMGFKs9Dok1Z4f_j2hZJmQscdx4eSCEMhRDq3u7trQXaEjX1TmWaSyVMJOlEql5OHG6iDBlcY9z8fRDOtNt_LmTrc673FB5HBZVtN4h6BnN-uARP2uIPLO4FS_Doj0yGyzDaZuR0OPf8KxrfRMdiTW1qhkoxQ3yT34INPg9_ff8xKG9YDAsbUGusacPIJcwovomwwrGLhevpdMJGMV4P_wo_2LBA0b5fgZN7mfhVWBheDP1zYN5UWlufKbL2rDfGJ04k3lAqIFsF34GkndvCxlznVHLjvJhlaSZ5FCiPopZHYTrw5vadyybTx51Pr7ciK-KqvypmGO3A21aMs-7_j_bi7tE24WH_-PCgONg72l-DxZRQVEfUrMPCeHTtN1AvGlcvazAyOLtv9P8GWp4e2A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB5RkFA5UKBFXaCtD_TUWmziOLYPVYVKt_wV9VAkbmniH6kSu8CytOye-g59mz5On6QzicPSSuXGNU6cxPPZnhnPNwOw6fI0JF3niLEseVbZjOtcS-5wO-narCxFnUvv41G-e5ztn8iTGfjVcmEorLJdE-uF2p1Z8pFvpag7J1oJpbZCDIv4tNN7e37BqYIUnbS25TQaiBz48Xc03y7f7O2grF-mae_953e7PFYY4FbIZMRDFjKPmNUyRcWeElVnQTirgrHd3NtQ4u5b5k7iBRcqpUKiTVnhv-A8F0mpBPb7AOaU0F2qnqB7H25OMNCuqGl4Mtc8k8JEwk6k7SnicxN9yOB84-bvTXGq6f5zOFvveb0lWIzKKttu0LUMM36wAo_aQhAsrgsrsHArq-FjGG4zckCcev4NDXGiZrGmTjVDBZkh1smHwfpfB79__OyX1yyGiPXpaqxvw8g9zCjWiXDDsYmFq8lkzIYxdg-_Cl_YMELR1n8Cx_cy8KswOzgb-KfAvKm0tj6XZPlZb4xPnEi8obRAtgq-A0k7toWNec-p_MZpMc3YTPIoUB5FLY_CdODVzTPnTdaPO-_eaEVWxBXgspjitQOvWzFOm__f29rdvb2AecR9cbh3dLAOD1MCUR1cswGzo-GVf4Yq0qh6XmORwZf7Bv8feE8jBQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+single-variable+method+for+solving+min%E2%80%93max+programming+problem+with+addition-min+fuzzy+relational+inequalities&rft.jtitle=Fuzzy+optimization+and+decision+making&rft.au=Chiu%2C+Ya-Ling&rft.au=Guu%2C+Sy-Ming&rft.au=Yu%2C+Jiajun&rft.au=Wu%2C+Yan-Kuen&rft.date=2019-12-01&rft.pub=Springer+US&rft.issn=1568-4539&rft.eissn=1573-2908&rft.volume=18&rft.issue=4&rft.spage=433&rft.epage=449&rft_id=info:doi/10.1007%2Fs10700-019-09305-9&rft.externalDocID=10_1007_s10700_019_09305_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4539&client=summon