A novel prediction method based on the support vector regression for the remaining useful life of lithium-ion batteries
Traditional approaches to lithium-ion battery health management mostly focus on the state of charge (SOC) estimation issues, whereas the state of health (SOH) estimation is also critical to lithium-ion batteries for safe operation. For online battery prognostics, it is critical to make timely and ac...
Saved in:
Published in | Microelectronics and reliability Vol. 85; pp. 99 - 108 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Traditional approaches to lithium-ion battery health management mostly focus on the state of charge (SOC) estimation issues, whereas the state of health (SOH) estimation is also critical to lithium-ion batteries for safe operation. For online battery prognostics, it is critical to make timely and accurate response to SOH. The loss of rated capacity of a battery is usually used to determine the battery SOH, whereas the measurement of the capacity of an operating battery is quite challenging. Normally, the rated capacity fading largely relies on laboratory measurements and offline analysis. In this paper, two real-time measurable health indicators (HI) - one is the time interval of an equal charging voltage difference (TIECVD), and the other is the time interval of an equal discharging voltage difference (TIEDVD) - are extracted. A novel method which combines feature vector selection (FVS) with SVR is utilized to model the relationship between these two HIs and capacity, then the online capacity can be evaluated, more accurate prognostics of SOH and remaining useful life (RUL) can be made. Besides, compared to standard SVR, the proposed method takes FVS to cut down the training data size, which improves the efficiency of model training and prediction. In the end, two datasets demonstrated this approach performs both well in accuracy and efficiency.
•Two new health indicators were identified to assess battery capacity during operation.•A SVR model was developed to online estimate battery SOH and to predict battery RUL.•The proposed method outperformed other state-of-the-art techniques. |
---|---|
AbstractList | Traditional approaches to lithium-ion battery health management mostly focus on the state of charge (SOC) estimation issues, whereas the state of health (SOH) estimation is also critical to lithium-ion batteries for safe operation. For online battery prognostics, it is critical to make timely and accurate response to SOH. The loss of rated capacity of a battery is usually used to determine the battery SOH, whereas the measurement of the capacity of an operating battery is quite challenging. Normally, the rated capacity fading largely relies on laboratory measurements and offline analysis. In this paper, two real-time measurable health indicators (HI) - one is the time interval of an equal charging voltage difference (TIECVD), and the other is the time interval of an equal discharging voltage difference (TIEDVD) - are extracted. A novel method which combines feature vector selection (FVS) with SVR is utilized to model the relationship between these two HIs and capacity, then the online capacity can be evaluated, more accurate prognostics of SOH and remaining useful life (RUL) can be made. Besides, compared to standard SVR, the proposed method takes FVS to cut down the training data size, which improves the efficiency of model training and prediction. In the end, two datasets demonstrated this approach performs both well in accuracy and efficiency.
•Two new health indicators were identified to assess battery capacity during operation.•A SVR model was developed to online estimate battery SOH and to predict battery RUL.•The proposed method outperformed other state-of-the-art techniques. |
Author | Zhao, Qi Qin, Xiaoli Zhao, Hongbo Feng, Wenquan |
Author_xml | – sequence: 1 givenname: Qi surname: Zhao fullname: Zhao, Qi email: zhaoqi@buaa.edu.cn – sequence: 2 givenname: Xiaoli surname: Qin fullname: Qin, Xiaoli – sequence: 3 givenname: Hongbo surname: Zhao fullname: Zhao, Hongbo email: bhzhb@buaa.edu.cn – sequence: 4 givenname: Wenquan surname: Feng fullname: Feng, Wenquan email: buaafwq@buaa.edu.cn |
BookMark | eNqFkM9KAzEYxINUsK2-guQFds23m6a74MFS_AcFLwreQjb90qbsbkqSVnx7s1QvXnoaBmYG5jcho971SMgtsBwYiLtd3lntncc2LxhUOeM5Y_MLMoZqXmQ1h88RGTNWiKyYA78ikxB2LCUYwJh8LWjvjtjSvce11dG6nnYYt25NGxVwTZOPW6ThsN87H-kRdXSeetx4DGFIm2SHhMdO2d72G3oIaA4tba1B6kzSuLWHLhvCjYoRvcVwTS6NagPe_OqUfDw9vi9fstXb8-tyscp0OYOYGVZUcyGa2iijOQpVMwFaaKOUaPSMiwZqVlaVNqWuDRQFB80LNIAaeFOpckruT7uJUAgejdQ2quFm9Mq2EpgcIMqd_IMoB4iScZkQpbr4V9972yn_fb74cCpiOne06GXQFnudIPuEUK6dPTfxA4fMloA |
CitedBy_id | crossref_primary_10_1002_ente_202300232 crossref_primary_10_1016_j_apenergy_2021_117346 crossref_primary_10_3390_jmse12112002 crossref_primary_10_3390_en15238918 crossref_primary_10_1016_j_asej_2022_101936 crossref_primary_10_1016_j_est_2025_115713 crossref_primary_10_1109_ACCESS_2019_2936822 crossref_primary_10_1016_j_ress_2020_107225 crossref_primary_10_1016_j_est_2023_109143 crossref_primary_10_1016_j_egyr_2022_09_043 crossref_primary_10_1016_j_est_2023_107367 crossref_primary_10_3389_fenrg_2022_899804 crossref_primary_10_3390_en12224366 crossref_primary_10_1016_j_est_2020_102118 crossref_primary_10_1016_j_est_2023_109308 crossref_primary_10_7240_jeps_897500 crossref_primary_10_1016_j_est_2024_110785 crossref_primary_10_1038_s41598_025_92262_8 crossref_primary_10_1038_s41598_024_63160_2 crossref_primary_10_1016_j_est_2023_109014 crossref_primary_10_1016_j_heliyon_2024_e36236 crossref_primary_10_1080_15435075_2025_2453539 crossref_primary_10_1109_ACCESS_2019_2960406 crossref_primary_10_1016_j_est_2021_103158 crossref_primary_10_1063_5_0221822 crossref_primary_10_1016_j_jpowsour_2025_236607 crossref_primary_10_1115_1_4065666 crossref_primary_10_1016_j_est_2022_104750 crossref_primary_10_1016_j_rser_2019_109254 crossref_primary_10_1016_j_energy_2024_131888 crossref_primary_10_3390_en16093628 crossref_primary_10_1016_j_joule_2019_11_018 crossref_primary_10_1016_j_measurement_2021_109057 crossref_primary_10_3389_frai_2020_578613 crossref_primary_10_3390_ma18010145 crossref_primary_10_1016_j_rser_2023_113576 crossref_primary_10_1016_j_jpowsour_2024_235449 crossref_primary_10_3390_app12094296 crossref_primary_10_1016_j_energy_2022_124344 crossref_primary_10_1109_TIA_2021_3112392 crossref_primary_10_1149_1945_7111_ac0e4c crossref_primary_10_1109_ACCESS_2024_3474089 crossref_primary_10_1109_JIOT_2023_3315483 crossref_primary_10_3390_pr11030678 crossref_primary_10_1007_s42154_022_00181_5 crossref_primary_10_1016_j_apenergy_2021_117511 crossref_primary_10_3390_batteries7040066 crossref_primary_10_3389_fenrg_2022_984991 crossref_primary_10_3390_batteries10060193 crossref_primary_10_1016_j_apenergy_2024_123280 crossref_primary_10_1109_TTE_2020_3017090 crossref_primary_10_1016_j_est_2021_102726 crossref_primary_10_1016_j_jpowsour_2023_234046 crossref_primary_10_1016_j_energy_2020_119530 crossref_primary_10_1016_j_est_2023_109796 crossref_primary_10_1016_j_apenergy_2023_120954 crossref_primary_10_1016_j_jechem_2025_03_011 crossref_primary_10_1016_j_energy_2021_122716 crossref_primary_10_1016_j_neucom_2019_09_074 crossref_primary_10_1115_1_4064350 crossref_primary_10_1016_j_biosystems_2022_104737 crossref_primary_10_3390_app9091890 crossref_primary_10_1109_ACCESS_2019_2937550 crossref_primary_10_54097_hset_v57i_9881 crossref_primary_10_1016_j_est_2022_106193 crossref_primary_10_20964_2018_10_51 crossref_primary_10_1016_j_est_2024_111422 crossref_primary_10_1109_ACCESS_2019_2937798 crossref_primary_10_3390_electronics10121497 crossref_primary_10_1109_ACCESS_2022_3156657 crossref_primary_10_1016_j_energy_2023_126665 crossref_primary_10_1016_j_apenergy_2023_120841 crossref_primary_10_1016_j_jpowsour_2024_234697 crossref_primary_10_1109_ACCESS_2020_2977429 crossref_primary_10_20964_2019_08_61 crossref_primary_10_1016_j_est_2022_104984 crossref_primary_10_1016_j_egyr_2022_03_191 crossref_primary_10_1016_j_rser_2024_115045 crossref_primary_10_1016_j_apenergy_2022_120204 crossref_primary_10_1016_j_geits_2024_100160 crossref_primary_10_1039_D4SE01238K crossref_primary_10_1016_j_compind_2020_103332 crossref_primary_10_3390_en12173271 crossref_primary_10_1002_eom2_12345 crossref_primary_10_1016_j_apenergy_2021_117819 crossref_primary_10_3390_batteries8100192 crossref_primary_10_3390_su15021602 crossref_primary_10_1007_s13369_024_08766_4 crossref_primary_10_1016_j_est_2023_108763 crossref_primary_10_1016_j_est_2022_104869 crossref_primary_10_1063_5_0236673 crossref_primary_10_1155_2023_9305309 crossref_primary_10_1002_er_7785 crossref_primary_10_1016_j_egyr_2024_04_039 crossref_primary_10_1109_TII_2021_3106593 crossref_primary_10_3390_en16031420 crossref_primary_10_3390_pr9122174 crossref_primary_10_3390_en17071695 crossref_primary_10_1016_j_jechem_2023_10_056 crossref_primary_10_3390_en15197422 crossref_primary_10_3389_fmech_2021_719718 crossref_primary_10_1080_19427867_2021_1985895 crossref_primary_10_20964_2019_08_44 crossref_primary_10_1016_j_jechem_2023_03_026 crossref_primary_10_3934_energy_2019_2_186 crossref_primary_10_1016_j_energy_2024_131294 crossref_primary_10_1002_er_5750 crossref_primary_10_1016_j_est_2022_105648 crossref_primary_10_1109_TIA_2022_3210081 crossref_primary_10_1016_j_est_2022_106469 crossref_primary_10_3390_electronics10243126 crossref_primary_10_32604_ee_2024_057500 crossref_primary_10_1016_j_iswa_2023_200251 crossref_primary_10_1016_j_rser_2025_115408 crossref_primary_10_1002_qre_2792 crossref_primary_10_1016_j_energy_2023_127453 crossref_primary_10_1080_10498850_2020_1766616 crossref_primary_10_1016_j_eswa_2021_116075 crossref_primary_10_1109_ACCESS_2024_3370847 crossref_primary_10_1109_TIM_2023_3251391 crossref_primary_10_1109_TTE_2024_3354551 crossref_primary_10_1155_2022_9807511 crossref_primary_10_1016_j_apenergy_2023_120751 crossref_primary_10_1016_j_microrel_2021_114071 crossref_primary_10_1016_j_energy_2023_128137 crossref_primary_10_1016_j_energy_2021_120851 crossref_primary_10_3390_en12091685 crossref_primary_10_1016_j_est_2024_113074 crossref_primary_10_1016_j_knosys_2022_110012 crossref_primary_10_1088_2631_8695_ad3ad0 crossref_primary_10_1016_j_est_2023_107577 crossref_primary_10_1016_j_est_2023_108547 crossref_primary_10_1016_j_est_2022_105018 |
Cites_doi | 10.1016/S0378-7753(01)00887-4 10.1016/j.neucom.2005.12.126 10.1109/TIM.2008.2005965 10.1002/widm.1125 10.1023/B:STCO.0000035301.49549.88 10.1016/j.neucom.2009.07.009 10.1016/j.microrel.2015.06.133 10.1109/TIE.2008.918390 10.1016/j.jpowsour.2011.08.040 10.3390/en6083654 10.1016/S0925-2312(03)00429-6 10.1016/j.apenergy.2010.07.021 10.1016/S0893-6080(03)00169-2 10.1007/s00521-013-1520-x 10.1016/j.jpowsour.2013.05.040 10.1016/j.jpowsour.2004.02.033 10.1145/1961189.1961199 10.1016/j.jpowsour.2013.03.129 10.1016/j.jpowsour.2014.03.058 10.1016/S0378-7753(99)00502-9 10.3390/en6084134 10.1016/j.jpowsour.2015.01.164 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd |
Copyright_xml | – notice: 2018 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.microrel.2018.04.007 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-941X |
EndPage | 108 |
ExternalDocumentID | 10_1016_j_microrel_2018_04_007 S0026271418301690 |
GroupedDBID | --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 29M 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ RXW SDF SDG SES SET SEW SPC SPCBC SPD SSM SST SSV SSZ T5K T9H TAE UHS UNMZH WUQ XOL ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c351t-f028766b9fafc4e6a9061c6cfaa6bc546b190388cf3c9f12241c42ef1ec14b8a3 |
IEDL.DBID | .~1 |
ISSN | 0026-2714 |
IngestDate | Tue Jul 01 01:27:27 EDT 2025 Thu Apr 24 23:02:16 EDT 2025 Fri Feb 23 02:18:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lithium-ion battery Support vector regression Remaining useful life State of health Feature vector selection Prognostic |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-f028766b9fafc4e6a9061c6cfaa6bc546b190388cf3c9f12241c42ef1ec14b8a3 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1016_j_microrel_2018_04_007 crossref_primary_10_1016_j_microrel_2018_04_007 elsevier_sciencedirect_doi_10_1016_j_microrel_2018_04_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-06-01 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Microelectronics and reliability |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Plett (bb0050) 2004; 134 Barré, Deguilhem, Grolleau (bb0025) 2013; 241 Saha, Goebel (bb0105) 2007 He, Williard, Osterman (bb0055) 2011; 196 He, Gao, Wang (bb0010) 2013; 6 Lukic, Cao, Bansal (bb0015) 2008; 55 Platt (bb0125) 1998 Ortiz-García, Salcedo-Sanz, Pérez-Bellido (bb0085) 2009; 72 Chang, Lin (bb0130) 2011; 2 Saha, Goebel, Poll (bb0030) 2009; 58 Liu, Wang, Peng (bb0110) 2013; 6 Huang, Zhu, Siew (bb0135) 2006; 70 Chen, Pecht (bb0020) 2012 Smola, Schölkopf (bb0080) 2004; 14 Nishi (bb0005) 2001; 100 Baudat, Anouar (bb0100) 2003; 55 Guo, Li, Pecht (bb0035) 2015; 281 Kavaklioglu (bb0090) 2011; 88 Hsu, Chang, Lin (bb0095) 2003 Chan, Lo, Weixiang (bb0060) 2000; 87 Cherkassky, Ma (bb0120) 2004; 17 Lu, Tao, Fan (bb0065) 2014; 261 Qin, Zeng, Guo (bb0070) 2015; 55 Wang, Miao, Pecht (bb0045) 2013; 239 Vapnik, Vapnik (bb0115) 1998 Salcedo-Sanz, Rojo, Martínez-Ramón, Camps-Valls (bb0075) 2014; 4 Liu, Luo, Liu, Peng, Guo, Pecht (bb0040) 2014; 25 Chen (10.1016/j.microrel.2018.04.007_bb0020) 2012 Plett (10.1016/j.microrel.2018.04.007_bb0050) 2004; 134 Salcedo-Sanz (10.1016/j.microrel.2018.04.007_bb0075) 2014; 4 Liu (10.1016/j.microrel.2018.04.007_bb0110) 2013; 6 Hsu (10.1016/j.microrel.2018.04.007_bb0095) 2003 Kavaklioglu (10.1016/j.microrel.2018.04.007_bb0090) 2011; 88 Platt (10.1016/j.microrel.2018.04.007_bb0125) 1998 Ortiz-García (10.1016/j.microrel.2018.04.007_bb0085) 2009; 72 Guo (10.1016/j.microrel.2018.04.007_bb0035) 2015; 281 Baudat (10.1016/j.microrel.2018.04.007_bb0100) 2003; 55 He (10.1016/j.microrel.2018.04.007_bb0055) 2011; 196 Smola (10.1016/j.microrel.2018.04.007_bb0080) 2004; 14 Liu (10.1016/j.microrel.2018.04.007_bb0040) 2014; 25 Wang (10.1016/j.microrel.2018.04.007_bb0045) 2013; 239 Lu (10.1016/j.microrel.2018.04.007_bb0065) 2014; 261 Qin (10.1016/j.microrel.2018.04.007_bb0070) 2015; 55 Chang (10.1016/j.microrel.2018.04.007_bb0130) 2011; 2 Saha (10.1016/j.microrel.2018.04.007_bb0030) 2009; 58 Lukic (10.1016/j.microrel.2018.04.007_bb0015) 2008; 55 Vapnik (10.1016/j.microrel.2018.04.007_bb0115) 1998 Cherkassky (10.1016/j.microrel.2018.04.007_bb0120) 2004; 17 He (10.1016/j.microrel.2018.04.007_bb0010) 2013; 6 Saha (10.1016/j.microrel.2018.04.007_bb0105) 2007 Huang (10.1016/j.microrel.2018.04.007_bb0135) 2006; 70 Nishi (10.1016/j.microrel.2018.04.007_bb0005) 2001; 100 Barré (10.1016/j.microrel.2018.04.007_bb0025) 2013; 241 Chan (10.1016/j.microrel.2018.04.007_bb0060) 2000; 87 |
References_xml | – volume: 134 start-page: 277 year: 2004 end-page: 292 ident: bb0050 article-title: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: part 3. State and parameter estimation publication-title: J. Power Sources – volume: 6 start-page: 3654 year: 2013 end-page: 3668 ident: bb0110 article-title: Satellite lithium-ion battery remaining cycle life prediction with novel indirect health indicator extraction publication-title: Energies – volume: 2 start-page: 27 year: 2011 ident: bb0130 article-title: LIBSVM: a library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol. – volume: 6 start-page: 4134 year: 2013 end-page: 4151 ident: bb0010 article-title: Adaptive state of charge estimation for Li-ion batteries based on an unscented Kalman filter with an enhanced battery model publication-title: Energies – volume: 55 start-page: 1280 year: 2015 end-page: 1284 ident: bb0070 article-title: Robust prognostics for state of health estimation of lithium-ion batteries based on an improved PSO–SVR model publication-title: Microelectron. Reliab. – volume: 261 start-page: 141 year: 2014 end-page: 147 ident: bb0065 article-title: Li-ion battery capacity estimation: a geometrical approach publication-title: J. Power Sources – volume: 55 start-page: 21 year: 2003 end-page: 38 ident: bb0100 article-title: Feature vector selection and projection using kernels publication-title: Neurocomputing – volume: 100 start-page: 101 year: 2001 end-page: 106 ident: bb0005 article-title: Lithium ion secondary batteries; past 10 years and the future publication-title: J. Power Sources – volume: 87 start-page: 201 year: 2000 end-page: 204 ident: bb0060 article-title: The available capacity computation model based on artificial neural network for lead–acid batteries in electric vehicles publication-title: J. Power Sources – year: 1998 ident: bb0115 article-title: Statistical Learning Theory – volume: 281 start-page: 173 year: 2015 end-page: 184 ident: bb0035 article-title: A Bayesian approach for Li-ion battery capacity fade modeling and cycles to failure prognostics publication-title: J. Power Sources – volume: 72 start-page: 3683 year: 2009 end-page: 3691 ident: bb0085 article-title: Improving the training time of support vector regression algorithms through novel hyper-parameters search space reductions publication-title: Neurocomputing – year: 2003 ident: bb0095 article-title: A Practical Guide to Support Vector Classification – volume: 4 start-page: 234 year: 2014 end-page: 267 ident: bb0075 article-title: Support vector machines in engineering: an overview publication-title: WIREs Data Min. Knowl. Discovery – volume: 55 start-page: 2258 year: 2008 end-page: 2267 ident: bb0015 article-title: Energy storage systems for automotive applications publication-title: IEEE Trans. Ind. Electron. – volume: 88 start-page: 368 year: 2011 end-page: 375 ident: bb0090 article-title: Modeling and prediction of Turkey's electricity consumption using support vector regression publication-title: Appl. Energy – volume: 196 start-page: 10314 year: 2011 end-page: 10321 ident: bb0055 article-title: Prognostics of lithium-ion batteries based on Dempster–Shafer theory and the Bayesian Monte Carlo method publication-title: J. Power Sources – start-page: 1 year: 2012 end-page: 6 ident: bb0020 article-title: Prognostics of lithium-ion batteries using model-based and data-driven methods publication-title: Prognostics and System Health Management (PHM), 2012 IEEE Conference on – volume: 25 start-page: 557 year: 2014 end-page: 572 ident: bb0040 article-title: Lithium-ion battery remaining useful life estimation based on fusion nonlinear degradation AR model and RPF algorithm publication-title: Neural Comput. & Applic. – volume: 241 start-page: 680 year: 2013 end-page: 689 ident: bb0025 article-title: A review on lithium-ion battery ageing mechanisms and estimations for automotive applications publication-title: J. Power Sources – volume: 17 start-page: 113 year: 2004 end-page: 126 ident: bb0120 article-title: Practical selection of SVM parameters and noise estimation for SVM regression publication-title: Neural Netw. – year: 2007 ident: bb0105 article-title: Battery Data Set – volume: 14 start-page: 199 year: 2004 end-page: 222 ident: bb0080 article-title: A tutorial on support vector regression publication-title: Stat. Comput. – volume: 58 start-page: 291 year: 2009 end-page: 296 ident: bb0030 article-title: Prognostics methods for battery health monitoring using a Bayesian framework publication-title: IEEE Trans. Instrum. Meas. – volume: 239 start-page: 253 year: 2013 end-page: 264 ident: bb0045 article-title: Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model publication-title: J. Power Sources – year: 1998 ident: bb0125 article-title: Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines – volume: 70 start-page: 489 year: 2006 end-page: 501 ident: bb0135 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing – volume: 100 start-page: 101 issue: 1 year: 2001 ident: 10.1016/j.microrel.2018.04.007_bb0005 article-title: Lithium ion secondary batteries; past 10 years and the future publication-title: J. Power Sources doi: 10.1016/S0378-7753(01)00887-4 – year: 1998 ident: 10.1016/j.microrel.2018.04.007_bb0125 – volume: 70 start-page: 489 issue: 1 year: 2006 ident: 10.1016/j.microrel.2018.04.007_bb0135 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – volume: 58 start-page: 291 issue: 2 year: 2009 ident: 10.1016/j.microrel.2018.04.007_bb0030 article-title: Prognostics methods for battery health monitoring using a Bayesian framework publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2008.2005965 – volume: 4 start-page: 234 issue: 3 year: 2014 ident: 10.1016/j.microrel.2018.04.007_bb0075 article-title: Support vector machines in engineering: an overview publication-title: WIREs Data Min. Knowl. Discovery doi: 10.1002/widm.1125 – volume: 14 start-page: 199 issue: 3 year: 2004 ident: 10.1016/j.microrel.2018.04.007_bb0080 article-title: A tutorial on support vector regression publication-title: Stat. Comput. doi: 10.1023/B:STCO.0000035301.49549.88 – volume: 72 start-page: 3683 issue: 16 year: 2009 ident: 10.1016/j.microrel.2018.04.007_bb0085 article-title: Improving the training time of support vector regression algorithms through novel hyper-parameters search space reductions publication-title: Neurocomputing doi: 10.1016/j.neucom.2009.07.009 – volume: 55 start-page: 1280 issue: 9 year: 2015 ident: 10.1016/j.microrel.2018.04.007_bb0070 article-title: Robust prognostics for state of health estimation of lithium-ion batteries based on an improved PSO–SVR model publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2015.06.133 – volume: 55 start-page: 2258 issue: 6 year: 2008 ident: 10.1016/j.microrel.2018.04.007_bb0015 article-title: Energy storage systems for automotive applications publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2008.918390 – volume: 196 start-page: 10314 issue: 23 year: 2011 ident: 10.1016/j.microrel.2018.04.007_bb0055 article-title: Prognostics of lithium-ion batteries based on Dempster–Shafer theory and the Bayesian Monte Carlo method publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2011.08.040 – volume: 6 start-page: 3654 issue: 8 year: 2013 ident: 10.1016/j.microrel.2018.04.007_bb0110 article-title: Satellite lithium-ion battery remaining cycle life prediction with novel indirect health indicator extraction publication-title: Energies doi: 10.3390/en6083654 – year: 1998 ident: 10.1016/j.microrel.2018.04.007_bb0115 – volume: 55 start-page: 21 issue: 1 year: 2003 ident: 10.1016/j.microrel.2018.04.007_bb0100 article-title: Feature vector selection and projection using kernels publication-title: Neurocomputing doi: 10.1016/S0925-2312(03)00429-6 – year: 2003 ident: 10.1016/j.microrel.2018.04.007_bb0095 – volume: 88 start-page: 368 issue: 1 year: 2011 ident: 10.1016/j.microrel.2018.04.007_bb0090 article-title: Modeling and prediction of Turkey's electricity consumption using support vector regression publication-title: Appl. Energy doi: 10.1016/j.apenergy.2010.07.021 – volume: 17 start-page: 113 issue: 1 year: 2004 ident: 10.1016/j.microrel.2018.04.007_bb0120 article-title: Practical selection of SVM parameters and noise estimation for SVM regression publication-title: Neural Netw. doi: 10.1016/S0893-6080(03)00169-2 – volume: 25 start-page: 557 issue: 3 year: 2014 ident: 10.1016/j.microrel.2018.04.007_bb0040 article-title: Lithium-ion battery remaining useful life estimation based on fusion nonlinear degradation AR model and RPF algorithm publication-title: Neural Comput. & Applic. doi: 10.1007/s00521-013-1520-x – volume: 241 start-page: 680 year: 2013 ident: 10.1016/j.microrel.2018.04.007_bb0025 article-title: A review on lithium-ion battery ageing mechanisms and estimations for automotive applications publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.05.040 – volume: 134 start-page: 277 issue: 2 year: 2004 ident: 10.1016/j.microrel.2018.04.007_bb0050 article-title: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: part 3. State and parameter estimation publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2004.02.033 – volume: 2 start-page: 27 issue: 3 year: 2011 ident: 10.1016/j.microrel.2018.04.007_bb0130 article-title: LIBSVM: a library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/1961189.1961199 – volume: 239 start-page: 253 year: 2013 ident: 10.1016/j.microrel.2018.04.007_bb0045 article-title: Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.03.129 – volume: 261 start-page: 141 year: 2014 ident: 10.1016/j.microrel.2018.04.007_bb0065 article-title: Li-ion battery capacity estimation: a geometrical approach publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.03.058 – year: 2007 ident: 10.1016/j.microrel.2018.04.007_bb0105 – volume: 87 start-page: 201 issue: 1 year: 2000 ident: 10.1016/j.microrel.2018.04.007_bb0060 article-title: The available capacity computation model based on artificial neural network for lead–acid batteries in electric vehicles publication-title: J. Power Sources doi: 10.1016/S0378-7753(99)00502-9 – volume: 6 start-page: 4134 issue: 8 year: 2013 ident: 10.1016/j.microrel.2018.04.007_bb0010 article-title: Adaptive state of charge estimation for Li-ion batteries based on an unscented Kalman filter with an enhanced battery model publication-title: Energies doi: 10.3390/en6084134 – volume: 281 start-page: 173 year: 2015 ident: 10.1016/j.microrel.2018.04.007_bb0035 article-title: A Bayesian approach for Li-ion battery capacity fade modeling and cycles to failure prognostics publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.01.164 – start-page: 1 year: 2012 ident: 10.1016/j.microrel.2018.04.007_bb0020 article-title: Prognostics of lithium-ion batteries using model-based and data-driven methods |
SSID | ssj0007011 |
Score | 2.5480347 |
Snippet | Traditional approaches to lithium-ion battery health management mostly focus on the state of charge (SOC) estimation issues, whereas the state of health (SOH)... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 99 |
SubjectTerms | Feature vector selection Lithium-ion battery Prognostic Remaining useful life State of health Support vector regression |
Title | A novel prediction method based on the support vector regression for the remaining useful life of lithium-ion batteries |
URI | https://dx.doi.org/10.1016/j.microrel.2018.04.007 |
Volume | 85 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqssCAeIryqDywps3DcZKxqqgKiE5U6hbFrg2t2jRKm7Lx27mLEygSUgemyJFPss4nf9_Z9yDkXjOfJdzH-y-uLaaniSU8N7QEYHkYTgElPMx3fhnx4Zg9TfxJg_TrXBgMq6zOfnOml6d19adbabObzWaY4-tyN3AYGCWWFEG_nbEArbzz-RPmEdiO6Zrncgtn72QJzztLDHrLFT5BOGHHFNL-G6B2QGdwQo4rtkh7ZkGnpKHSM3K0U0PwnHz0aLraqgXNcnxzQT1T0xaaIkJNKYyB5NF1kSHVptvymp7m6s1EwKYUaGs5I1dL0y6CFmuliwVdzLSiKw3fzfusWFo4WZT1OMG9viDjwcNrf2hV3RQs6fnOxtLAJALORaQTLZniSQRQLrnUScKF9BkXwA28MJTak5EuH9wkc5V2lHSYCBPvkjTTVaquCOWuhI237QR8Q4b7i06c9jRYpe0K32kRv1ZhLKtS49jxYhHXMWXzuFZ9jKqPbRaD6luk-y2XmWIbeyWieofiX2YTAyLskb3-h-wNOcSRiRm7Jc1NXqg7YCcb0S7Nr00Oeo_Pw9EXe13oKA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI6m7QAcEE8xnjlwLesjzbrjNIHKYzsNiVvUZAkMbd3UtePvYzftNCQkDpyqtrFUOZb9ubE_E3JrWMgSHuL_L24cZiaJIwM_ciTE8iiaQJQIsN95OOLxK3t6C98aZFD3wmBZZeX7rU8vvXX1pFNps7OcTrHH1-d-12NglEgpAnl7C9mpwiZp9R-f49HGIXddzw7O87mDAluNwp93c6x7yzSeQnjRneXS_j1GbcWdhwOyXwFG2rffdEgaOj0ie1s0gsfkq0_TxVrP6DLDYxdUNbWToSkGqQmFe8B5dFUsEW3Tdfmnnmb63RbBphSQa7ki03M7MYIWK22KGZ1NjaYLA9f8Y1rMHVwsS0pOyLBPyOvD_XgQO9VABUcFoZc7BsBEl3PZM4lRTPOkB9FccWWShEsVMi4BHgRRpEygeqY8c1PM18bTymMySoJT0kwXqT4jlPsK9t51E0gPGW4x5nEmMGCYri9Dr03CWoVCVWzjOPRiJuqysk9Rq16g6oXLBKi-TTobuaXl2_hTolfvkPhhOQKCwh-y5_-QvSE78Xj4Il4eR88XZBff2BKyS9LMs0JfAVjJ5XVljN9rJerZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+prediction+method+based+on+the+support+vector+regression+for+the+remaining+useful+life+of+lithium-ion+batteries&rft.jtitle=Microelectronics+and+reliability&rft.au=Zhao%2C+Qi&rft.au=Qin%2C+Xiaoli&rft.au=Zhao%2C+Hongbo&rft.au=Feng%2C+Wenquan&rft.date=2018-06-01&rft.pub=Elsevier+Ltd&rft.issn=0026-2714&rft.eissn=1872-941X&rft.volume=85&rft.spage=99&rft.epage=108&rft_id=info:doi/10.1016%2Fj.microrel.2018.04.007&rft.externalDocID=S0026271418301690 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-2714&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-2714&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-2714&client=summon |