A novel prediction method based on the support vector regression for the remaining useful life of lithium-ion batteries

Traditional approaches to lithium-ion battery health management mostly focus on the state of charge (SOC) estimation issues, whereas the state of health (SOH) estimation is also critical to lithium-ion batteries for safe operation. For online battery prognostics, it is critical to make timely and ac...

Full description

Saved in:
Bibliographic Details
Published inMicroelectronics and reliability Vol. 85; pp. 99 - 108
Main Authors Zhao, Qi, Qin, Xiaoli, Zhao, Hongbo, Feng, Wenquan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Traditional approaches to lithium-ion battery health management mostly focus on the state of charge (SOC) estimation issues, whereas the state of health (SOH) estimation is also critical to lithium-ion batteries for safe operation. For online battery prognostics, it is critical to make timely and accurate response to SOH. The loss of rated capacity of a battery is usually used to determine the battery SOH, whereas the measurement of the capacity of an operating battery is quite challenging. Normally, the rated capacity fading largely relies on laboratory measurements and offline analysis. In this paper, two real-time measurable health indicators (HI) - one is the time interval of an equal charging voltage difference (TIECVD), and the other is the time interval of an equal discharging voltage difference (TIEDVD) - are extracted. A novel method which combines feature vector selection (FVS) with SVR is utilized to model the relationship between these two HIs and capacity, then the online capacity can be evaluated, more accurate prognostics of SOH and remaining useful life (RUL) can be made. Besides, compared to standard SVR, the proposed method takes FVS to cut down the training data size, which improves the efficiency of model training and prediction. In the end, two datasets demonstrated this approach performs both well in accuracy and efficiency. •Two new health indicators were identified to assess battery capacity during operation.•A SVR model was developed to online estimate battery SOH and to predict battery RUL.•The proposed method outperformed other state-of-the-art techniques.
AbstractList Traditional approaches to lithium-ion battery health management mostly focus on the state of charge (SOC) estimation issues, whereas the state of health (SOH) estimation is also critical to lithium-ion batteries for safe operation. For online battery prognostics, it is critical to make timely and accurate response to SOH. The loss of rated capacity of a battery is usually used to determine the battery SOH, whereas the measurement of the capacity of an operating battery is quite challenging. Normally, the rated capacity fading largely relies on laboratory measurements and offline analysis. In this paper, two real-time measurable health indicators (HI) - one is the time interval of an equal charging voltage difference (TIECVD), and the other is the time interval of an equal discharging voltage difference (TIEDVD) - are extracted. A novel method which combines feature vector selection (FVS) with SVR is utilized to model the relationship between these two HIs and capacity, then the online capacity can be evaluated, more accurate prognostics of SOH and remaining useful life (RUL) can be made. Besides, compared to standard SVR, the proposed method takes FVS to cut down the training data size, which improves the efficiency of model training and prediction. In the end, two datasets demonstrated this approach performs both well in accuracy and efficiency. •Two new health indicators were identified to assess battery capacity during operation.•A SVR model was developed to online estimate battery SOH and to predict battery RUL.•The proposed method outperformed other state-of-the-art techniques.
Author Zhao, Qi
Qin, Xiaoli
Zhao, Hongbo
Feng, Wenquan
Author_xml – sequence: 1
  givenname: Qi
  surname: Zhao
  fullname: Zhao, Qi
  email: zhaoqi@buaa.edu.cn
– sequence: 2
  givenname: Xiaoli
  surname: Qin
  fullname: Qin, Xiaoli
– sequence: 3
  givenname: Hongbo
  surname: Zhao
  fullname: Zhao, Hongbo
  email: bhzhb@buaa.edu.cn
– sequence: 4
  givenname: Wenquan
  surname: Feng
  fullname: Feng, Wenquan
  email: buaafwq@buaa.edu.cn
BookMark eNqFkM9KAzEYxINUsK2-guQFds23m6a74MFS_AcFLwreQjb90qbsbkqSVnx7s1QvXnoaBmYG5jcho971SMgtsBwYiLtd3lntncc2LxhUOeM5Y_MLMoZqXmQ1h88RGTNWiKyYA78ikxB2LCUYwJh8LWjvjtjSvce11dG6nnYYt25NGxVwTZOPW6ThsN87H-kRdXSeetx4DGFIm2SHhMdO2d72G3oIaA4tba1B6kzSuLWHLhvCjYoRvcVwTS6NagPe_OqUfDw9vi9fstXb8-tyscp0OYOYGVZUcyGa2iijOQpVMwFaaKOUaPSMiwZqVlaVNqWuDRQFB80LNIAaeFOpckruT7uJUAgejdQ2quFm9Mq2EpgcIMqd_IMoB4iScZkQpbr4V9972yn_fb74cCpiOne06GXQFnudIPuEUK6dPTfxA4fMloA
CitedBy_id crossref_primary_10_1002_ente_202300232
crossref_primary_10_1016_j_apenergy_2021_117346
crossref_primary_10_3390_jmse12112002
crossref_primary_10_3390_en15238918
crossref_primary_10_1016_j_asej_2022_101936
crossref_primary_10_1016_j_est_2025_115713
crossref_primary_10_1109_ACCESS_2019_2936822
crossref_primary_10_1016_j_ress_2020_107225
crossref_primary_10_1016_j_est_2023_109143
crossref_primary_10_1016_j_egyr_2022_09_043
crossref_primary_10_1016_j_est_2023_107367
crossref_primary_10_3389_fenrg_2022_899804
crossref_primary_10_3390_en12224366
crossref_primary_10_1016_j_est_2020_102118
crossref_primary_10_1016_j_est_2023_109308
crossref_primary_10_7240_jeps_897500
crossref_primary_10_1016_j_est_2024_110785
crossref_primary_10_1038_s41598_025_92262_8
crossref_primary_10_1038_s41598_024_63160_2
crossref_primary_10_1016_j_est_2023_109014
crossref_primary_10_1016_j_heliyon_2024_e36236
crossref_primary_10_1080_15435075_2025_2453539
crossref_primary_10_1109_ACCESS_2019_2960406
crossref_primary_10_1016_j_est_2021_103158
crossref_primary_10_1063_5_0221822
crossref_primary_10_1016_j_jpowsour_2025_236607
crossref_primary_10_1115_1_4065666
crossref_primary_10_1016_j_est_2022_104750
crossref_primary_10_1016_j_rser_2019_109254
crossref_primary_10_1016_j_energy_2024_131888
crossref_primary_10_3390_en16093628
crossref_primary_10_1016_j_joule_2019_11_018
crossref_primary_10_1016_j_measurement_2021_109057
crossref_primary_10_3389_frai_2020_578613
crossref_primary_10_3390_ma18010145
crossref_primary_10_1016_j_rser_2023_113576
crossref_primary_10_1016_j_jpowsour_2024_235449
crossref_primary_10_3390_app12094296
crossref_primary_10_1016_j_energy_2022_124344
crossref_primary_10_1109_TIA_2021_3112392
crossref_primary_10_1149_1945_7111_ac0e4c
crossref_primary_10_1109_ACCESS_2024_3474089
crossref_primary_10_1109_JIOT_2023_3315483
crossref_primary_10_3390_pr11030678
crossref_primary_10_1007_s42154_022_00181_5
crossref_primary_10_1016_j_apenergy_2021_117511
crossref_primary_10_3390_batteries7040066
crossref_primary_10_3389_fenrg_2022_984991
crossref_primary_10_3390_batteries10060193
crossref_primary_10_1016_j_apenergy_2024_123280
crossref_primary_10_1109_TTE_2020_3017090
crossref_primary_10_1016_j_est_2021_102726
crossref_primary_10_1016_j_jpowsour_2023_234046
crossref_primary_10_1016_j_energy_2020_119530
crossref_primary_10_1016_j_est_2023_109796
crossref_primary_10_1016_j_apenergy_2023_120954
crossref_primary_10_1016_j_jechem_2025_03_011
crossref_primary_10_1016_j_energy_2021_122716
crossref_primary_10_1016_j_neucom_2019_09_074
crossref_primary_10_1115_1_4064350
crossref_primary_10_1016_j_biosystems_2022_104737
crossref_primary_10_3390_app9091890
crossref_primary_10_1109_ACCESS_2019_2937550
crossref_primary_10_54097_hset_v57i_9881
crossref_primary_10_1016_j_est_2022_106193
crossref_primary_10_20964_2018_10_51
crossref_primary_10_1016_j_est_2024_111422
crossref_primary_10_1109_ACCESS_2019_2937798
crossref_primary_10_3390_electronics10121497
crossref_primary_10_1109_ACCESS_2022_3156657
crossref_primary_10_1016_j_energy_2023_126665
crossref_primary_10_1016_j_apenergy_2023_120841
crossref_primary_10_1016_j_jpowsour_2024_234697
crossref_primary_10_1109_ACCESS_2020_2977429
crossref_primary_10_20964_2019_08_61
crossref_primary_10_1016_j_est_2022_104984
crossref_primary_10_1016_j_egyr_2022_03_191
crossref_primary_10_1016_j_rser_2024_115045
crossref_primary_10_1016_j_apenergy_2022_120204
crossref_primary_10_1016_j_geits_2024_100160
crossref_primary_10_1039_D4SE01238K
crossref_primary_10_1016_j_compind_2020_103332
crossref_primary_10_3390_en12173271
crossref_primary_10_1002_eom2_12345
crossref_primary_10_1016_j_apenergy_2021_117819
crossref_primary_10_3390_batteries8100192
crossref_primary_10_3390_su15021602
crossref_primary_10_1007_s13369_024_08766_4
crossref_primary_10_1016_j_est_2023_108763
crossref_primary_10_1016_j_est_2022_104869
crossref_primary_10_1063_5_0236673
crossref_primary_10_1155_2023_9305309
crossref_primary_10_1002_er_7785
crossref_primary_10_1016_j_egyr_2024_04_039
crossref_primary_10_1109_TII_2021_3106593
crossref_primary_10_3390_en16031420
crossref_primary_10_3390_pr9122174
crossref_primary_10_3390_en17071695
crossref_primary_10_1016_j_jechem_2023_10_056
crossref_primary_10_3390_en15197422
crossref_primary_10_3389_fmech_2021_719718
crossref_primary_10_1080_19427867_2021_1985895
crossref_primary_10_20964_2019_08_44
crossref_primary_10_1016_j_jechem_2023_03_026
crossref_primary_10_3934_energy_2019_2_186
crossref_primary_10_1016_j_energy_2024_131294
crossref_primary_10_1002_er_5750
crossref_primary_10_1016_j_est_2022_105648
crossref_primary_10_1109_TIA_2022_3210081
crossref_primary_10_1016_j_est_2022_106469
crossref_primary_10_3390_electronics10243126
crossref_primary_10_32604_ee_2024_057500
crossref_primary_10_1016_j_iswa_2023_200251
crossref_primary_10_1016_j_rser_2025_115408
crossref_primary_10_1002_qre_2792
crossref_primary_10_1016_j_energy_2023_127453
crossref_primary_10_1080_10498850_2020_1766616
crossref_primary_10_1016_j_eswa_2021_116075
crossref_primary_10_1109_ACCESS_2024_3370847
crossref_primary_10_1109_TIM_2023_3251391
crossref_primary_10_1109_TTE_2024_3354551
crossref_primary_10_1155_2022_9807511
crossref_primary_10_1016_j_apenergy_2023_120751
crossref_primary_10_1016_j_microrel_2021_114071
crossref_primary_10_1016_j_energy_2023_128137
crossref_primary_10_1016_j_energy_2021_120851
crossref_primary_10_3390_en12091685
crossref_primary_10_1016_j_est_2024_113074
crossref_primary_10_1016_j_knosys_2022_110012
crossref_primary_10_1088_2631_8695_ad3ad0
crossref_primary_10_1016_j_est_2023_107577
crossref_primary_10_1016_j_est_2023_108547
crossref_primary_10_1016_j_est_2022_105018
Cites_doi 10.1016/S0378-7753(01)00887-4
10.1016/j.neucom.2005.12.126
10.1109/TIM.2008.2005965
10.1002/widm.1125
10.1023/B:STCO.0000035301.49549.88
10.1016/j.neucom.2009.07.009
10.1016/j.microrel.2015.06.133
10.1109/TIE.2008.918390
10.1016/j.jpowsour.2011.08.040
10.3390/en6083654
10.1016/S0925-2312(03)00429-6
10.1016/j.apenergy.2010.07.021
10.1016/S0893-6080(03)00169-2
10.1007/s00521-013-1520-x
10.1016/j.jpowsour.2013.05.040
10.1016/j.jpowsour.2004.02.033
10.1145/1961189.1961199
10.1016/j.jpowsour.2013.03.129
10.1016/j.jpowsour.2014.03.058
10.1016/S0378-7753(99)00502-9
10.3390/en6084134
10.1016/j.jpowsour.2015.01.164
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.microrel.2018.04.007
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-941X
EndPage 108
ExternalDocumentID 10_1016_j_microrel_2018_04_007
S0026271418301690
GroupedDBID --K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
29M
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSM
SST
SSV
SSZ
T5K
T9H
TAE
UHS
UNMZH
WUQ
XOL
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c351t-f028766b9fafc4e6a9061c6cfaa6bc546b190388cf3c9f12241c42ef1ec14b8a3
IEDL.DBID .~1
ISSN 0026-2714
IngestDate Tue Jul 01 01:27:27 EDT 2025
Thu Apr 24 23:02:16 EDT 2025
Fri Feb 23 02:18:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lithium-ion battery
Support vector regression
Remaining useful life
State of health
Feature vector selection
Prognostic
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-f028766b9fafc4e6a9061c6cfaa6bc546b190388cf3c9f12241c42ef1ec14b8a3
PageCount 10
ParticipantIDs crossref_citationtrail_10_1016_j_microrel_2018_04_007
crossref_primary_10_1016_j_microrel_2018_04_007
elsevier_sciencedirect_doi_10_1016_j_microrel_2018_04_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-06-01
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Microelectronics and reliability
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Plett (bb0050) 2004; 134
Barré, Deguilhem, Grolleau (bb0025) 2013; 241
Saha, Goebel (bb0105) 2007
He, Williard, Osterman (bb0055) 2011; 196
He, Gao, Wang (bb0010) 2013; 6
Lukic, Cao, Bansal (bb0015) 2008; 55
Platt (bb0125) 1998
Ortiz-García, Salcedo-Sanz, Pérez-Bellido (bb0085) 2009; 72
Chang, Lin (bb0130) 2011; 2
Saha, Goebel, Poll (bb0030) 2009; 58
Liu, Wang, Peng (bb0110) 2013; 6
Huang, Zhu, Siew (bb0135) 2006; 70
Chen, Pecht (bb0020) 2012
Smola, Schölkopf (bb0080) 2004; 14
Nishi (bb0005) 2001; 100
Baudat, Anouar (bb0100) 2003; 55
Guo, Li, Pecht (bb0035) 2015; 281
Kavaklioglu (bb0090) 2011; 88
Hsu, Chang, Lin (bb0095) 2003
Chan, Lo, Weixiang (bb0060) 2000; 87
Cherkassky, Ma (bb0120) 2004; 17
Lu, Tao, Fan (bb0065) 2014; 261
Qin, Zeng, Guo (bb0070) 2015; 55
Wang, Miao, Pecht (bb0045) 2013; 239
Vapnik, Vapnik (bb0115) 1998
Salcedo-Sanz, Rojo, Martínez-Ramón, Camps-Valls (bb0075) 2014; 4
Liu, Luo, Liu, Peng, Guo, Pecht (bb0040) 2014; 25
Chen (10.1016/j.microrel.2018.04.007_bb0020) 2012
Plett (10.1016/j.microrel.2018.04.007_bb0050) 2004; 134
Salcedo-Sanz (10.1016/j.microrel.2018.04.007_bb0075) 2014; 4
Liu (10.1016/j.microrel.2018.04.007_bb0110) 2013; 6
Hsu (10.1016/j.microrel.2018.04.007_bb0095) 2003
Kavaklioglu (10.1016/j.microrel.2018.04.007_bb0090) 2011; 88
Platt (10.1016/j.microrel.2018.04.007_bb0125) 1998
Ortiz-García (10.1016/j.microrel.2018.04.007_bb0085) 2009; 72
Guo (10.1016/j.microrel.2018.04.007_bb0035) 2015; 281
Baudat (10.1016/j.microrel.2018.04.007_bb0100) 2003; 55
He (10.1016/j.microrel.2018.04.007_bb0055) 2011; 196
Smola (10.1016/j.microrel.2018.04.007_bb0080) 2004; 14
Liu (10.1016/j.microrel.2018.04.007_bb0040) 2014; 25
Wang (10.1016/j.microrel.2018.04.007_bb0045) 2013; 239
Lu (10.1016/j.microrel.2018.04.007_bb0065) 2014; 261
Qin (10.1016/j.microrel.2018.04.007_bb0070) 2015; 55
Chang (10.1016/j.microrel.2018.04.007_bb0130) 2011; 2
Saha (10.1016/j.microrel.2018.04.007_bb0030) 2009; 58
Lukic (10.1016/j.microrel.2018.04.007_bb0015) 2008; 55
Vapnik (10.1016/j.microrel.2018.04.007_bb0115) 1998
Cherkassky (10.1016/j.microrel.2018.04.007_bb0120) 2004; 17
He (10.1016/j.microrel.2018.04.007_bb0010) 2013; 6
Saha (10.1016/j.microrel.2018.04.007_bb0105) 2007
Huang (10.1016/j.microrel.2018.04.007_bb0135) 2006; 70
Nishi (10.1016/j.microrel.2018.04.007_bb0005) 2001; 100
Barré (10.1016/j.microrel.2018.04.007_bb0025) 2013; 241
Chan (10.1016/j.microrel.2018.04.007_bb0060) 2000; 87
References_xml – volume: 134
  start-page: 277
  year: 2004
  end-page: 292
  ident: bb0050
  article-title: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: part 3. State and parameter estimation
  publication-title: J. Power Sources
– volume: 6
  start-page: 3654
  year: 2013
  end-page: 3668
  ident: bb0110
  article-title: Satellite lithium-ion battery remaining cycle life prediction with novel indirect health indicator extraction
  publication-title: Energies
– volume: 2
  start-page: 27
  year: 2011
  ident: bb0130
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
– volume: 6
  start-page: 4134
  year: 2013
  end-page: 4151
  ident: bb0010
  article-title: Adaptive state of charge estimation for Li-ion batteries based on an unscented Kalman filter with an enhanced battery model
  publication-title: Energies
– volume: 55
  start-page: 1280
  year: 2015
  end-page: 1284
  ident: bb0070
  article-title: Robust prognostics for state of health estimation of lithium-ion batteries based on an improved PSO–SVR model
  publication-title: Microelectron. Reliab.
– volume: 261
  start-page: 141
  year: 2014
  end-page: 147
  ident: bb0065
  article-title: Li-ion battery capacity estimation: a geometrical approach
  publication-title: J. Power Sources
– volume: 55
  start-page: 21
  year: 2003
  end-page: 38
  ident: bb0100
  article-title: Feature vector selection and projection using kernels
  publication-title: Neurocomputing
– volume: 100
  start-page: 101
  year: 2001
  end-page: 106
  ident: bb0005
  article-title: Lithium ion secondary batteries; past 10 years and the future
  publication-title: J. Power Sources
– volume: 87
  start-page: 201
  year: 2000
  end-page: 204
  ident: bb0060
  article-title: The available capacity computation model based on artificial neural network for lead–acid batteries in electric vehicles
  publication-title: J. Power Sources
– year: 1998
  ident: bb0115
  article-title: Statistical Learning Theory
– volume: 281
  start-page: 173
  year: 2015
  end-page: 184
  ident: bb0035
  article-title: A Bayesian approach for Li-ion battery capacity fade modeling and cycles to failure prognostics
  publication-title: J. Power Sources
– volume: 72
  start-page: 3683
  year: 2009
  end-page: 3691
  ident: bb0085
  article-title: Improving the training time of support vector regression algorithms through novel hyper-parameters search space reductions
  publication-title: Neurocomputing
– year: 2003
  ident: bb0095
  article-title: A Practical Guide to Support Vector Classification
– volume: 4
  start-page: 234
  year: 2014
  end-page: 267
  ident: bb0075
  article-title: Support vector machines in engineering: an overview
  publication-title: WIREs Data Min. Knowl. Discovery
– volume: 55
  start-page: 2258
  year: 2008
  end-page: 2267
  ident: bb0015
  article-title: Energy storage systems for automotive applications
  publication-title: IEEE Trans. Ind. Electron.
– volume: 88
  start-page: 368
  year: 2011
  end-page: 375
  ident: bb0090
  article-title: Modeling and prediction of Turkey's electricity consumption using support vector regression
  publication-title: Appl. Energy
– volume: 196
  start-page: 10314
  year: 2011
  end-page: 10321
  ident: bb0055
  article-title: Prognostics of lithium-ion batteries based on Dempster–Shafer theory and the Bayesian Monte Carlo method
  publication-title: J. Power Sources
– start-page: 1
  year: 2012
  end-page: 6
  ident: bb0020
  article-title: Prognostics of lithium-ion batteries using model-based and data-driven methods
  publication-title: Prognostics and System Health Management (PHM), 2012 IEEE Conference on
– volume: 25
  start-page: 557
  year: 2014
  end-page: 572
  ident: bb0040
  article-title: Lithium-ion battery remaining useful life estimation based on fusion nonlinear degradation AR model and RPF algorithm
  publication-title: Neural Comput. & Applic.
– volume: 241
  start-page: 680
  year: 2013
  end-page: 689
  ident: bb0025
  article-title: A review on lithium-ion battery ageing mechanisms and estimations for automotive applications
  publication-title: J. Power Sources
– volume: 17
  start-page: 113
  year: 2004
  end-page: 126
  ident: bb0120
  article-title: Practical selection of SVM parameters and noise estimation for SVM regression
  publication-title: Neural Netw.
– year: 2007
  ident: bb0105
  article-title: Battery Data Set
– volume: 14
  start-page: 199
  year: 2004
  end-page: 222
  ident: bb0080
  article-title: A tutorial on support vector regression
  publication-title: Stat. Comput.
– volume: 58
  start-page: 291
  year: 2009
  end-page: 296
  ident: bb0030
  article-title: Prognostics methods for battery health monitoring using a Bayesian framework
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 239
  start-page: 253
  year: 2013
  end-page: 264
  ident: bb0045
  article-title: Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model
  publication-title: J. Power Sources
– year: 1998
  ident: bb0125
  article-title: Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines
– volume: 70
  start-page: 489
  year: 2006
  end-page: 501
  ident: bb0135
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
– volume: 100
  start-page: 101
  issue: 1
  year: 2001
  ident: 10.1016/j.microrel.2018.04.007_bb0005
  article-title: Lithium ion secondary batteries; past 10 years and the future
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(01)00887-4
– year: 1998
  ident: 10.1016/j.microrel.2018.04.007_bb0125
– volume: 70
  start-page: 489
  issue: 1
  year: 2006
  ident: 10.1016/j.microrel.2018.04.007_bb0135
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 58
  start-page: 291
  issue: 2
  year: 2009
  ident: 10.1016/j.microrel.2018.04.007_bb0030
  article-title: Prognostics methods for battery health monitoring using a Bayesian framework
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2008.2005965
– volume: 4
  start-page: 234
  issue: 3
  year: 2014
  ident: 10.1016/j.microrel.2018.04.007_bb0075
  article-title: Support vector machines in engineering: an overview
  publication-title: WIREs Data Min. Knowl. Discovery
  doi: 10.1002/widm.1125
– volume: 14
  start-page: 199
  issue: 3
  year: 2004
  ident: 10.1016/j.microrel.2018.04.007_bb0080
  article-title: A tutorial on support vector regression
  publication-title: Stat. Comput.
  doi: 10.1023/B:STCO.0000035301.49549.88
– volume: 72
  start-page: 3683
  issue: 16
  year: 2009
  ident: 10.1016/j.microrel.2018.04.007_bb0085
  article-title: Improving the training time of support vector regression algorithms through novel hyper-parameters search space reductions
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2009.07.009
– volume: 55
  start-page: 1280
  issue: 9
  year: 2015
  ident: 10.1016/j.microrel.2018.04.007_bb0070
  article-title: Robust prognostics for state of health estimation of lithium-ion batteries based on an improved PSO–SVR model
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2015.06.133
– volume: 55
  start-page: 2258
  issue: 6
  year: 2008
  ident: 10.1016/j.microrel.2018.04.007_bb0015
  article-title: Energy storage systems for automotive applications
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2008.918390
– volume: 196
  start-page: 10314
  issue: 23
  year: 2011
  ident: 10.1016/j.microrel.2018.04.007_bb0055
  article-title: Prognostics of lithium-ion batteries based on Dempster–Shafer theory and the Bayesian Monte Carlo method
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.08.040
– volume: 6
  start-page: 3654
  issue: 8
  year: 2013
  ident: 10.1016/j.microrel.2018.04.007_bb0110
  article-title: Satellite lithium-ion battery remaining cycle life prediction with novel indirect health indicator extraction
  publication-title: Energies
  doi: 10.3390/en6083654
– year: 1998
  ident: 10.1016/j.microrel.2018.04.007_bb0115
– volume: 55
  start-page: 21
  issue: 1
  year: 2003
  ident: 10.1016/j.microrel.2018.04.007_bb0100
  article-title: Feature vector selection and projection using kernels
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(03)00429-6
– year: 2003
  ident: 10.1016/j.microrel.2018.04.007_bb0095
– volume: 88
  start-page: 368
  issue: 1
  year: 2011
  ident: 10.1016/j.microrel.2018.04.007_bb0090
  article-title: Modeling and prediction of Turkey's electricity consumption using support vector regression
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2010.07.021
– volume: 17
  start-page: 113
  issue: 1
  year: 2004
  ident: 10.1016/j.microrel.2018.04.007_bb0120
  article-title: Practical selection of SVM parameters and noise estimation for SVM regression
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(03)00169-2
– volume: 25
  start-page: 557
  issue: 3
  year: 2014
  ident: 10.1016/j.microrel.2018.04.007_bb0040
  article-title: Lithium-ion battery remaining useful life estimation based on fusion nonlinear degradation AR model and RPF algorithm
  publication-title: Neural Comput. & Applic.
  doi: 10.1007/s00521-013-1520-x
– volume: 241
  start-page: 680
  year: 2013
  ident: 10.1016/j.microrel.2018.04.007_bb0025
  article-title: A review on lithium-ion battery ageing mechanisms and estimations for automotive applications
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.05.040
– volume: 134
  start-page: 277
  issue: 2
  year: 2004
  ident: 10.1016/j.microrel.2018.04.007_bb0050
  article-title: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: part 3. State and parameter estimation
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2004.02.033
– volume: 2
  start-page: 27
  issue: 3
  year: 2011
  ident: 10.1016/j.microrel.2018.04.007_bb0130
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/1961189.1961199
– volume: 239
  start-page: 253
  year: 2013
  ident: 10.1016/j.microrel.2018.04.007_bb0045
  article-title: Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.03.129
– volume: 261
  start-page: 141
  year: 2014
  ident: 10.1016/j.microrel.2018.04.007_bb0065
  article-title: Li-ion battery capacity estimation: a geometrical approach
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.03.058
– year: 2007
  ident: 10.1016/j.microrel.2018.04.007_bb0105
– volume: 87
  start-page: 201
  issue: 1
  year: 2000
  ident: 10.1016/j.microrel.2018.04.007_bb0060
  article-title: The available capacity computation model based on artificial neural network for lead–acid batteries in electric vehicles
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(99)00502-9
– volume: 6
  start-page: 4134
  issue: 8
  year: 2013
  ident: 10.1016/j.microrel.2018.04.007_bb0010
  article-title: Adaptive state of charge estimation for Li-ion batteries based on an unscented Kalman filter with an enhanced battery model
  publication-title: Energies
  doi: 10.3390/en6084134
– volume: 281
  start-page: 173
  year: 2015
  ident: 10.1016/j.microrel.2018.04.007_bb0035
  article-title: A Bayesian approach for Li-ion battery capacity fade modeling and cycles to failure prognostics
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.01.164
– start-page: 1
  year: 2012
  ident: 10.1016/j.microrel.2018.04.007_bb0020
  article-title: Prognostics of lithium-ion batteries using model-based and data-driven methods
SSID ssj0007011
Score 2.5480347
Snippet Traditional approaches to lithium-ion battery health management mostly focus on the state of charge (SOC) estimation issues, whereas the state of health (SOH)...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 99
SubjectTerms Feature vector selection
Lithium-ion battery
Prognostic
Remaining useful life
State of health
Support vector regression
Title A novel prediction method based on the support vector regression for the remaining useful life of lithium-ion batteries
URI https://dx.doi.org/10.1016/j.microrel.2018.04.007
Volume 85
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqssCAeIryqDywps3DcZKxqqgKiE5U6hbFrg2t2jRKm7Lx27mLEygSUgemyJFPss4nf9_Z9yDkXjOfJdzH-y-uLaaniSU8N7QEYHkYTgElPMx3fhnx4Zg9TfxJg_TrXBgMq6zOfnOml6d19adbabObzWaY4-tyN3AYGCWWFEG_nbEArbzz-RPmEdiO6Zrncgtn72QJzztLDHrLFT5BOGHHFNL-G6B2QGdwQo4rtkh7ZkGnpKHSM3K0U0PwnHz0aLraqgXNcnxzQT1T0xaaIkJNKYyB5NF1kSHVptvymp7m6s1EwKYUaGs5I1dL0y6CFmuliwVdzLSiKw3fzfusWFo4WZT1OMG9viDjwcNrf2hV3RQs6fnOxtLAJALORaQTLZniSQRQLrnUScKF9BkXwA28MJTak5EuH9wkc5V2lHSYCBPvkjTTVaquCOWuhI237QR8Q4b7i06c9jRYpe0K32kRv1ZhLKtS49jxYhHXMWXzuFZ9jKqPbRaD6luk-y2XmWIbeyWieofiX2YTAyLskb3-h-wNOcSRiRm7Jc1NXqg7YCcb0S7Nr00Oeo_Pw9EXe13oKA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI6m7QAcEE8xnjlwLesjzbrjNIHKYzsNiVvUZAkMbd3UtePvYzftNCQkDpyqtrFUOZb9ubE_E3JrWMgSHuL_L24cZiaJIwM_ciTE8iiaQJQIsN95OOLxK3t6C98aZFD3wmBZZeX7rU8vvXX1pFNps7OcTrHH1-d-12NglEgpAnl7C9mpwiZp9R-f49HGIXddzw7O87mDAluNwp93c6x7yzSeQnjRneXS_j1GbcWdhwOyXwFG2rffdEgaOj0ie1s0gsfkq0_TxVrP6DLDYxdUNbWToSkGqQmFe8B5dFUsEW3Tdfmnnmb63RbBphSQa7ki03M7MYIWK22KGZ1NjaYLA9f8Y1rMHVwsS0pOyLBPyOvD_XgQO9VABUcFoZc7BsBEl3PZM4lRTPOkB9FccWWShEsVMi4BHgRRpEygeqY8c1PM18bTymMySoJT0kwXqT4jlPsK9t51E0gPGW4x5nEmMGCYri9Dr03CWoVCVWzjOPRiJuqysk9Rq16g6oXLBKi-TTobuaXl2_hTolfvkPhhOQKCwh-y5_-QvSE78Xj4Il4eR88XZBff2BKyS9LMs0JfAVjJ5XVljN9rJerZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+prediction+method+based+on+the+support+vector+regression+for+the+remaining+useful+life+of+lithium-ion+batteries&rft.jtitle=Microelectronics+and+reliability&rft.au=Zhao%2C+Qi&rft.au=Qin%2C+Xiaoli&rft.au=Zhao%2C+Hongbo&rft.au=Feng%2C+Wenquan&rft.date=2018-06-01&rft.pub=Elsevier+Ltd&rft.issn=0026-2714&rft.eissn=1872-941X&rft.volume=85&rft.spage=99&rft.epage=108&rft_id=info:doi/10.1016%2Fj.microrel.2018.04.007&rft.externalDocID=S0026271418301690
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-2714&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-2714&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-2714&client=summon