A Deeply Supervised Convolutional Neural Network for Pavement Crack Detection With Multiscale Feature Fusion

Automatic crack detection is vital for efficient and economical road maintenance. With the explosive development of convolutional neural networks (CNNs), recent crack detection methods are mostly based on CNNs. In this article, we propose a deeply supervised convolutional neural network for crack de...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 33; no. 9; pp. 4890 - 4899
Main Authors Qu, Zhong, Cao, Chong, Liu, Ling, Zhou, Dong-Yang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Automatic crack detection is vital for efficient and economical road maintenance. With the explosive development of convolutional neural networks (CNNs), recent crack detection methods are mostly based on CNNs. In this article, we propose a deeply supervised convolutional neural network for crack detection via a novel multiscale convolutional feature fusion module. Within this multiscale feature fusion module, the high-level features are introduced directly into the low-level features at different convolutional stages. Besides, deep supervision provides integrated direct supervision for convolutional feature fusion, which is helpful to improve model convergency and final performance of crack detection. Multiscale convolutional features learned at different convolution stages are fused together to robustly represent cracks, whose geometric structures are complicated and hardly captured by single-scale features. To demonstrate its superiority and generalizability, we evaluate the proposed network on three public crack data sets, respectively. Sufficient experimental results demonstrate that our method outperforms other state-of-the-art crack detection, edge detection, and image segmentation methods in terms of F1-score and mean IU.
AbstractList Automatic crack detection is vital for efficient and economical road maintenance. With the explosive development of convolutional neural networks (CNNs), recent crack detection methods are mostly based on CNNs. In this article, we propose a deeply supervised convolutional neural network for crack detection via a novel multiscale convolutional feature fusion module. Within this multiscale feature fusion module, the high-level features are introduced directly into the low-level features at different convolutional stages. Besides, deep supervision provides integrated direct supervision for convolutional feature fusion, which is helpful to improve model convergency and final performance of crack detection. Multiscale convolutional features learned at different convolution stages are fused together to robustly represent cracks, whose geometric structures are complicated and hardly captured by single-scale features. To demonstrate its superiority and generalizability, we evaluate the proposed network on three public crack data sets, respectively. Sufficient experimental results demonstrate that our method outperforms other state-of-the-art crack detection, edge detection, and image segmentation methods in terms of F1-score and mean IU.Automatic crack detection is vital for efficient and economical road maintenance. With the explosive development of convolutional neural networks (CNNs), recent crack detection methods are mostly based on CNNs. In this article, we propose a deeply supervised convolutional neural network for crack detection via a novel multiscale convolutional feature fusion module. Within this multiscale feature fusion module, the high-level features are introduced directly into the low-level features at different convolutional stages. Besides, deep supervision provides integrated direct supervision for convolutional feature fusion, which is helpful to improve model convergency and final performance of crack detection. Multiscale convolutional features learned at different convolution stages are fused together to robustly represent cracks, whose geometric structures are complicated and hardly captured by single-scale features. To demonstrate its superiority and generalizability, we evaluate the proposed network on three public crack data sets, respectively. Sufficient experimental results demonstrate that our method outperforms other state-of-the-art crack detection, edge detection, and image segmentation methods in terms of F1-score and mean IU.
Automatic crack detection is vital for efficient and economical road maintenance. With the explosive development of convolutional neural networks (CNNs), recent crack detection methods are mostly based on CNNs. In this article, we propose a deeply supervised convolutional neural network for crack detection via a novel multiscale convolutional feature fusion module. Within this multiscale feature fusion module, the high-level features are introduced directly into the low-level features at different convolutional stages. Besides, deep supervision provides integrated direct supervision for convolutional feature fusion, which is helpful to improve model convergency and final performance of crack detection. Multiscale convolutional features learned at different convolution stages are fused together to robustly represent cracks, whose geometric structures are complicated and hardly captured by single-scale features. To demonstrate its superiority and generalizability, we evaluate the proposed network on three public crack data sets, respectively. Sufficient experimental results demonstrate that our method outperforms other state-of-the-art crack detection, edge detection, and image segmentation methods in terms of F1-score and mean IU.
Author Qu, Zhong
Cao, Chong
Liu, Ling
Zhou, Dong-Yang
Author_xml – sequence: 1
  givenname: Zhong
  orcidid: 0000-0001-7013-4854
  surname: Qu
  fullname: Qu, Zhong
  email: quzhong@cqupt.edu.cn
  organization: College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
– sequence: 2
  givenname: Chong
  orcidid: 0000-0001-5990-8820
  surname: Cao
  fullname: Cao, Chong
  email: 251132362@qq.com
  organization: College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
– sequence: 3
  givenname: Ling
  surname: Liu
  fullname: Liu, Ling
  email: 331322843@qq.com
  organization: College of Mobile Telecommunications, Chongqing University of Posts and Telecommunications, Chongqing, China
– sequence: 4
  givenname: Dong-Yang
  surname: Zhou
  fullname: Zhou, Dong-Yang
  email: 375614984@qq.com
  organization: College of Mobile Telecommunications, Chongqing University of Posts and Telecommunications, Chongqing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33720835$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1uEzEUhS1UREvpC4CELLFhk3Btz9ieZRUoIIWA1CLYjTyeGzGtMw7-Cerb42lCFl3gzbHk71zb5zwnJ6MfkZCXDOaMQfPuZrVaXs85cDYXIDkoeELOOJN8xoXWJ8e9-nlKLmK8hbIk1LJqnpFTIRQHLeoz4i7pe8Stu6fXeYthN0Ts6cKPO-9yGvxoHF1hDg-S_vhwR9c-0G9mhxscE10EY-_KhIR2oumPIf2iX7JLQ7TGIb1Ck3IommM5fkGero2LeHHQc_L96sPN4tNs-fXj58XlcmZFzdIM0XQaZN93VuuKGSV1rTX0QoOWtlsLJpStKmWZ7ME0ihkthRKiRuwq22hxTt7u526D_50xpnZT3oPOmRF9ji2vgelaAPCCvnmE3vocyrcLpaBhtVQwDXx9oHK3wb7dhmFjwn37L8cC8D1gg48x4PqIMGinvtqHvtqpr_bQVzHpRyY7JDPlmIIZ3P-tr_bWARGPdzVClZy4-AtEhKHV
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_TITS_2023_3332995
crossref_primary_10_1111_mice_13241
crossref_primary_10_1088_1361_6560_ad0b65
crossref_primary_10_1016_j_measurement_2024_115478
crossref_primary_10_1109_TITS_2024_3389945
crossref_primary_10_1109_ACCESS_2024_3368376
crossref_primary_10_1109_TIM_2022_3184351
crossref_primary_10_1016_j_engappai_2024_109840
crossref_primary_10_1016_j_eswa_2023_122406
crossref_primary_10_1061_JPSEA2_PSENG_1482
crossref_primary_10_1109_TITS_2022_3154746
crossref_primary_10_3390_app142411632
crossref_primary_10_1080_10298436_2024_2356758
crossref_primary_10_3390_electronics13122257
crossref_primary_10_1109_TIV_2022_3210299
crossref_primary_10_3390_electronics12122583
crossref_primary_10_1371_journal_pone_0309434
crossref_primary_10_1016_j_autcon_2023_105138
crossref_primary_10_1109_ACCESS_2024_3481649
crossref_primary_10_1109_TITS_2023_3307286
crossref_primary_10_3390_s23104589
crossref_primary_10_1016_j_engappai_2023_107624
crossref_primary_10_1007_s00371_024_03470_8
crossref_primary_10_1016_j_cosrev_2025_100729
crossref_primary_10_1016_j_conbuildmat_2024_134950
crossref_primary_10_1016_j_conbuildmat_2024_136179
crossref_primary_10_1007_s00371_024_03531_y
crossref_primary_10_1109_TIM_2023_3272052
crossref_primary_10_1007_s00530_024_01408_7
crossref_primary_10_1109_ACCESS_2021_3093308
crossref_primary_10_1016_j_neucom_2024_129243
crossref_primary_10_3390_app122413006
crossref_primary_10_1109_TCYB_2024_3392474
crossref_primary_10_1016_j_mex_2024_102796
crossref_primary_10_3390_app12188940
crossref_primary_10_1038_s41598_024_81119_1
crossref_primary_10_3390_math10132354
crossref_primary_10_1007_s00530_022_01008_3
crossref_primary_10_1109_TIM_2024_3427806
crossref_primary_10_1109_TIM_2024_3457928
crossref_primary_10_1049_tje2_12317
crossref_primary_10_3390_s24175586
crossref_primary_10_3389_frsc_2023_1253627
crossref_primary_10_1016_j_autcon_2024_105331
crossref_primary_10_1109_TITS_2022_3147669
crossref_primary_10_1016_j_autcon_2024_105332
crossref_primary_10_1016_j_bspc_2024_107376
crossref_primary_10_1016_j_measurement_2024_114159
crossref_primary_10_1016_j_measurement_2024_115327
crossref_primary_10_1016_j_autcon_2024_105934
crossref_primary_10_1109_TIM_2023_3323004
crossref_primary_10_1155_2022_6317008
crossref_primary_10_1109_TITS_2024_3405995
crossref_primary_10_1016_j_autcon_2024_105410
crossref_primary_10_1016_j_jtte_2022_11_003
crossref_primary_10_1007_s00521_023_08277_7
crossref_primary_10_1016_j_engappai_2025_110411
crossref_primary_10_1016_j_engappai_2024_109175
crossref_primary_10_1016_j_displa_2024_102787
crossref_primary_10_1109_TITS_2024_3500030
crossref_primary_10_1155_2023_5935284
crossref_primary_10_1117_1_JEI_31_3_033019
Cites_doi 10.3390/s20154198
10.1016/j.dsp.2020.102907
10.23919/EUSIPCO.2017.8081563
10.1109/TIP.2018.2878966
10.3390/ma13132960
10.1109/ACCESS.2019.2956191
10.1109/TITS.2015.2477675
10.1016/j.autcon.2018.07.008
10.1109/CVPR.2018.00913
10.3390/coatings10020152
10.1109/TPAMI.2017.2699184
10.1109/TNNLS.2018.2874657
10.1155/2020/6412562
10.1109/TNNLS.2013.2293637
10.1016/j.patrec.2021.02.005
10.1109/TNNLS.2016.2522428
10.1111/mice.12387
10.48550/arXiv.1802.02611
10.1109/TITS.2019.2910595
10.1111/mice.12564
10.1109/ICMA.2019.8816422
10.1109/TASE.2013.2294687
10.1109/TITS.2016.2552248
10.1016/j.conbuildmat.2020.120080
10.1109/TPAMI.2016.2644615
10.1007/978-3-319-24574-4_28
10.1111/j.1467-8667.2011.00716.x
10.1109/TITS.2019.2929483
10.1016/j.neucom.2019.01.036
10.1109/ICCV.2015.164
10.1109/CVPR.2017.106
10.1111/mice.12477
10.1109/TPAMI.2018.2878849
10.23919/EUSIPCO.2017.8081565
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2021.3062070
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 4899
ExternalDocumentID 33720835
10_1109_TNNLS_2021_3062070
9378802
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61701060
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-eeab806ddbc8841a7685880d38086cbf3137c447c16d0a971a8637335eeb4c983
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Fri Jul 11 00:36:53 EDT 2025
Mon Jun 30 03:26:18 EDT 2025
Thu Jan 02 22:56:22 EST 2025
Thu Apr 24 23:00:13 EDT 2025
Tue Jul 01 00:27:38 EDT 2025
Wed Aug 27 02:14:21 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-eeab806ddbc8841a7685880d38086cbf3137c447c16d0a971a8637335eeb4c983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7013-4854
0000-0001-5990-8820
PMID 33720835
PQID 2709156708
PQPubID 85436
PageCount 10
ParticipantIDs crossref_primary_10_1109_TNNLS_2021_3062070
proquest_journals_2709156708
crossref_citationtrail_10_1109_TNNLS_2021_3062070
proquest_miscellaneous_2501853002
pubmed_primary_33720835
ieee_primary_9378802
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref21
ref28
ref27
Lee (ref22)
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref5
  doi: 10.3390/s20154198
– ident: ref28
  doi: 10.1016/j.dsp.2020.102907
– ident: ref3
  doi: 10.23919/EUSIPCO.2017.8081563
– ident: ref14
  doi: 10.1109/TIP.2018.2878966
– ident: ref29
  doi: 10.3390/ma13132960
– ident: ref34
  doi: 10.1109/ACCESS.2019.2956191
– ident: ref25
  doi: 10.1109/TITS.2015.2477675
– ident: ref24
  doi: 10.1016/j.autcon.2018.07.008
– ident: ref30
  doi: 10.1109/CVPR.2018.00913
– ident: ref11
  doi: 10.3390/coatings10020152
– ident: ref21
  doi: 10.1109/TPAMI.2017.2699184
– ident: ref10
  doi: 10.1109/TNNLS.2018.2874657
– ident: ref32
  doi: 10.1155/2020/6412562
– ident: ref18
  doi: 10.1109/TNNLS.2013.2293637
– ident: ref13
  doi: 10.1016/j.patrec.2021.02.005
– ident: ref9
  doi: 10.1109/TNNLS.2016.2522428
– ident: ref12
  doi: 10.1111/mice.12387
– ident: ref35
  doi: 10.48550/arXiv.1802.02611
– start-page: 562
  volume-title: Proc. Artif. Intell. Statist.
  ident: ref22
  article-title: Deeply-supervised nets
– ident: ref31
  doi: 10.1109/TITS.2019.2910595
– ident: ref7
  doi: 10.1111/mice.12564
– ident: ref23
  doi: 10.1109/ICMA.2019.8816422
– ident: ref4
  doi: 10.1109/TASE.2013.2294687
– ident: ref8
  doi: 10.1109/TITS.2016.2552248
– ident: ref26
  doi: 10.1016/j.conbuildmat.2020.120080
– ident: ref15
  doi: 10.1109/TPAMI.2016.2644615
– ident: ref20
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref1
  doi: 10.1111/j.1467-8667.2011.00716.x
– ident: ref2
  doi: 10.1109/TITS.2019.2929483
– ident: ref16
  doi: 10.1016/j.neucom.2019.01.036
– ident: ref17
  doi: 10.1109/ICCV.2015.164
– ident: ref19
  doi: 10.1109/CVPR.2017.106
– ident: ref27
  doi: 10.1111/mice.12477
– ident: ref33
  doi: 10.1109/TPAMI.2018.2878849
– ident: ref6
  doi: 10.23919/EUSIPCO.2017.8081565
SSID ssj0000605649
Score 2.6530027
Snippet Automatic crack detection is vital for efficient and economical road maintenance. With the explosive development of convolutional neural networks (CNNs),...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4890
SubjectTerms Artificial neural networks
Convolution
Convolutional neural networks
Convolutional neural networks (CNNs)
deep supervision
Edge detection
Explosives detection
Feature extraction
Image edge detection
Image processing
Image segmentation
Learning systems
Modules
multiscale feature fusion
Neural networks
pavement crack detection
Road maintenance
Semantics
Training
Title A Deeply Supervised Convolutional Neural Network for Pavement Crack Detection With Multiscale Feature Fusion
URI https://ieeexplore.ieee.org/document/9378802
https://www.ncbi.nlm.nih.gov/pubmed/33720835
https://www.proquest.com/docview/2709156708
https://www.proquest.com/docview/2501853002
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKD6gXChToloKMxA2yjR-JnWO1UFWIrpDair1FfkwE6iq72k0qtb--Y-eBhABxcqRMJo5mHH-2Z74h5L2WEic5LhOL3UwkGJYUeSYSVklvKsQcpgjZyBfz_Pxafllkix3yccyFAYAYfAbTcBnP8v3KtWGr7KQI5OeBOfIRtl2u1rifkiIuzyPa5SznCRdqMeTIpMXJ1Xz-9RJXg5xNESNz9PM98liECi06Fnr7NSXFGit_h5tx2jnbJxdDh7tok5tp29ipu_-Ny_F_v-gpedLjT3raOcwzsgP1c7I_1Hag_VA_IMtT-glgvbyjl-06_E-24OlsVd_2roo6Aq9HbGIgOUX0S7-ZSD_e0NnGuBvU0MRIr5p-_9n8oDHZd4tOATQgz3aDbRt2616Q67PPV7PzpK_MkDiRsSYBMFanuffWaS2ZUYHFXqdeaFwhOVsJJpSTUjmW-9QUihmdCyVEBmClK7R4SXbrVQ2HhFaeS6UqyZlAKJRx61E4yy1w5ryzMCFsME7petryUD1jWcblS1qU0bZlsG3Z23ZCPozPrDvSjn9KHwTDjJK9TSbkePCBsh_X25IrxFdZrlI9Ie_G2zgiwzGLqWHVokzgSMxEGlS86nxn1D243NGf3_ma7PGQXhFj2I7JbrNp4Q2Cnsa-jd7-AAiy-q4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB6VIkEvLVCggQKLBCfk1Pvw68ChSqlSmkZITUVu7r4sUCMnSmxQ-S38Ff4bsxvbSAi4VeJkS16P7fU3s9_uzgPgVSoEDnJMBApfMxBW0iCLIx7QQhhZIOeQmYtGPhvHwwvxfhpNN-B7FwtjrfXOZ7bvTv1evpnr2i2VHWQu-XnIGhfKU3v9FSdoq7cnR_g3XzN2_G4yGAZNDYFA84hWgbVSpWFsjNJpKqhMXL71NDQ8RS6vVcEpT7QQiaaxCWWWUJnGPOE8slYJnaUc5d6C28gzIraODutWcEKcCcSeXzMas4DxZNpG5YTZwWQ8Hp3j_JPRPrJyhpq1BXe4qwmT-tJyvwZBX9Xl7wTXD3THO_Cj7aK1f8tVv65UX3_7LXvk_9qH92C7YdjkcK0S92HDlg9gp61eQRpjtguzQ3Jk7WJ2Tc7rhbOYK2vIYF5-aZQRZbjMJf7gXeUJ8nvyQfoE6xUZLKW-QgmV92UrycfP1Sfiw5lXCHtLHLeul3is3XrkQ7i4kW9-BJvlvLR7QArDRJIUglGOZC9iymDjKFaWUW20sj2gLRhy3SRmd_VBZrmfoIVZ7rGUOyzlDZZ68Ka7Z7FOS_LP1rsOCF3LBgM92G8xlzeWa5WzBBlkFCdh2oOX3WW0OW4jSZZ2XmMblwUy4qET8XiN1U52C_Enf37mC7g7nJyN8tHJ-PQpbDEXTOI99vZhs1rW9hlSvEo995pG4PKmYfkT0BdW-A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deeply+Supervised+Convolutional+Neural+Network+for+Pavement+Crack+Detection+With+Multiscale+Feature+Fusion&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Qu%2C+Zhong&rft.au=Cao%2C+Chong&rft.au=Liu%2C+Ling&rft.au=Zhou%2C+Dong-Yang&rft.date=2022-09-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=33&rft.issue=9&rft.spage=4890&rft_id=info:doi/10.1109%2FTNNLS.2021.3062070&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon