A Deeply Supervised Convolutional Neural Network for Pavement Crack Detection With Multiscale Feature Fusion
Automatic crack detection is vital for efficient and economical road maintenance. With the explosive development of convolutional neural networks (CNNs), recent crack detection methods are mostly based on CNNs. In this article, we propose a deeply supervised convolutional neural network for crack de...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 33; no. 9; pp. 4890 - 4899 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Automatic crack detection is vital for efficient and economical road maintenance. With the explosive development of convolutional neural networks (CNNs), recent crack detection methods are mostly based on CNNs. In this article, we propose a deeply supervised convolutional neural network for crack detection via a novel multiscale convolutional feature fusion module. Within this multiscale feature fusion module, the high-level features are introduced directly into the low-level features at different convolutional stages. Besides, deep supervision provides integrated direct supervision for convolutional feature fusion, which is helpful to improve model convergency and final performance of crack detection. Multiscale convolutional features learned at different convolution stages are fused together to robustly represent cracks, whose geometric structures are complicated and hardly captured by single-scale features. To demonstrate its superiority and generalizability, we evaluate the proposed network on three public crack data sets, respectively. Sufficient experimental results demonstrate that our method outperforms other state-of-the-art crack detection, edge detection, and image segmentation methods in terms of F1-score and mean IU. |
---|---|
AbstractList | Automatic crack detection is vital for efficient and economical road maintenance. With the explosive development of convolutional neural networks (CNNs), recent crack detection methods are mostly based on CNNs. In this article, we propose a deeply supervised convolutional neural network for crack detection via a novel multiscale convolutional feature fusion module. Within this multiscale feature fusion module, the high-level features are introduced directly into the low-level features at different convolutional stages. Besides, deep supervision provides integrated direct supervision for convolutional feature fusion, which is helpful to improve model convergency and final performance of crack detection. Multiscale convolutional features learned at different convolution stages are fused together to robustly represent cracks, whose geometric structures are complicated and hardly captured by single-scale features. To demonstrate its superiority and generalizability, we evaluate the proposed network on three public crack data sets, respectively. Sufficient experimental results demonstrate that our method outperforms other state-of-the-art crack detection, edge detection, and image segmentation methods in terms of F1-score and mean IU.Automatic crack detection is vital for efficient and economical road maintenance. With the explosive development of convolutional neural networks (CNNs), recent crack detection methods are mostly based on CNNs. In this article, we propose a deeply supervised convolutional neural network for crack detection via a novel multiscale convolutional feature fusion module. Within this multiscale feature fusion module, the high-level features are introduced directly into the low-level features at different convolutional stages. Besides, deep supervision provides integrated direct supervision for convolutional feature fusion, which is helpful to improve model convergency and final performance of crack detection. Multiscale convolutional features learned at different convolution stages are fused together to robustly represent cracks, whose geometric structures are complicated and hardly captured by single-scale features. To demonstrate its superiority and generalizability, we evaluate the proposed network on three public crack data sets, respectively. Sufficient experimental results demonstrate that our method outperforms other state-of-the-art crack detection, edge detection, and image segmentation methods in terms of F1-score and mean IU. Automatic crack detection is vital for efficient and economical road maintenance. With the explosive development of convolutional neural networks (CNNs), recent crack detection methods are mostly based on CNNs. In this article, we propose a deeply supervised convolutional neural network for crack detection via a novel multiscale convolutional feature fusion module. Within this multiscale feature fusion module, the high-level features are introduced directly into the low-level features at different convolutional stages. Besides, deep supervision provides integrated direct supervision for convolutional feature fusion, which is helpful to improve model convergency and final performance of crack detection. Multiscale convolutional features learned at different convolution stages are fused together to robustly represent cracks, whose geometric structures are complicated and hardly captured by single-scale features. To demonstrate its superiority and generalizability, we evaluate the proposed network on three public crack data sets, respectively. Sufficient experimental results demonstrate that our method outperforms other state-of-the-art crack detection, edge detection, and image segmentation methods in terms of F1-score and mean IU. |
Author | Qu, Zhong Cao, Chong Liu, Ling Zhou, Dong-Yang |
Author_xml | – sequence: 1 givenname: Zhong orcidid: 0000-0001-7013-4854 surname: Qu fullname: Qu, Zhong email: quzhong@cqupt.edu.cn organization: College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China – sequence: 2 givenname: Chong orcidid: 0000-0001-5990-8820 surname: Cao fullname: Cao, Chong email: 251132362@qq.com organization: College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China – sequence: 3 givenname: Ling surname: Liu fullname: Liu, Ling email: 331322843@qq.com organization: College of Mobile Telecommunications, Chongqing University of Posts and Telecommunications, Chongqing, China – sequence: 4 givenname: Dong-Yang surname: Zhou fullname: Zhou, Dong-Yang email: 375614984@qq.com organization: College of Mobile Telecommunications, Chongqing University of Posts and Telecommunications, Chongqing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33720835$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1uEzEUhS1UREvpC4CELLFhk3Btz9ieZRUoIIWA1CLYjTyeGzGtMw7-Cerb42lCFl3gzbHk71zb5zwnJ6MfkZCXDOaMQfPuZrVaXs85cDYXIDkoeELOOJN8xoXWJ8e9-nlKLmK8hbIk1LJqnpFTIRQHLeoz4i7pe8Stu6fXeYthN0Ts6cKPO-9yGvxoHF1hDg-S_vhwR9c-0G9mhxscE10EY-_KhIR2oumPIf2iX7JLQ7TGIb1Ck3IommM5fkGero2LeHHQc_L96sPN4tNs-fXj58XlcmZFzdIM0XQaZN93VuuKGSV1rTX0QoOWtlsLJpStKmWZ7ME0ihkthRKiRuwq22hxTt7u526D_50xpnZT3oPOmRF9ji2vgelaAPCCvnmE3vocyrcLpaBhtVQwDXx9oHK3wb7dhmFjwn37L8cC8D1gg48x4PqIMGinvtqHvtqpr_bQVzHpRyY7JDPlmIIZ3P-tr_bWARGPdzVClZy4-AtEhKHV |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1109_TITS_2023_3332995 crossref_primary_10_1111_mice_13241 crossref_primary_10_1088_1361_6560_ad0b65 crossref_primary_10_1016_j_measurement_2024_115478 crossref_primary_10_1109_TITS_2024_3389945 crossref_primary_10_1109_ACCESS_2024_3368376 crossref_primary_10_1109_TIM_2022_3184351 crossref_primary_10_1016_j_engappai_2024_109840 crossref_primary_10_1016_j_eswa_2023_122406 crossref_primary_10_1061_JPSEA2_PSENG_1482 crossref_primary_10_1109_TITS_2022_3154746 crossref_primary_10_3390_app142411632 crossref_primary_10_1080_10298436_2024_2356758 crossref_primary_10_3390_electronics13122257 crossref_primary_10_1109_TIV_2022_3210299 crossref_primary_10_3390_electronics12122583 crossref_primary_10_1371_journal_pone_0309434 crossref_primary_10_1016_j_autcon_2023_105138 crossref_primary_10_1109_ACCESS_2024_3481649 crossref_primary_10_1109_TITS_2023_3307286 crossref_primary_10_3390_s23104589 crossref_primary_10_1016_j_engappai_2023_107624 crossref_primary_10_1007_s00371_024_03470_8 crossref_primary_10_1016_j_cosrev_2025_100729 crossref_primary_10_1016_j_conbuildmat_2024_134950 crossref_primary_10_1016_j_conbuildmat_2024_136179 crossref_primary_10_1007_s00371_024_03531_y crossref_primary_10_1109_TIM_2023_3272052 crossref_primary_10_1007_s00530_024_01408_7 crossref_primary_10_1109_ACCESS_2021_3093308 crossref_primary_10_1016_j_neucom_2024_129243 crossref_primary_10_3390_app122413006 crossref_primary_10_1109_TCYB_2024_3392474 crossref_primary_10_1016_j_mex_2024_102796 crossref_primary_10_3390_app12188940 crossref_primary_10_1038_s41598_024_81119_1 crossref_primary_10_3390_math10132354 crossref_primary_10_1007_s00530_022_01008_3 crossref_primary_10_1109_TIM_2024_3427806 crossref_primary_10_1109_TIM_2024_3457928 crossref_primary_10_1049_tje2_12317 crossref_primary_10_3390_s24175586 crossref_primary_10_3389_frsc_2023_1253627 crossref_primary_10_1016_j_autcon_2024_105331 crossref_primary_10_1109_TITS_2022_3147669 crossref_primary_10_1016_j_autcon_2024_105332 crossref_primary_10_1016_j_bspc_2024_107376 crossref_primary_10_1016_j_measurement_2024_114159 crossref_primary_10_1016_j_measurement_2024_115327 crossref_primary_10_1016_j_autcon_2024_105934 crossref_primary_10_1109_TIM_2023_3323004 crossref_primary_10_1155_2022_6317008 crossref_primary_10_1109_TITS_2024_3405995 crossref_primary_10_1016_j_autcon_2024_105410 crossref_primary_10_1016_j_jtte_2022_11_003 crossref_primary_10_1007_s00521_023_08277_7 crossref_primary_10_1016_j_engappai_2025_110411 crossref_primary_10_1016_j_engappai_2024_109175 crossref_primary_10_1016_j_displa_2024_102787 crossref_primary_10_1109_TITS_2024_3500030 crossref_primary_10_1155_2023_5935284 crossref_primary_10_1117_1_JEI_31_3_033019 |
Cites_doi | 10.3390/s20154198 10.1016/j.dsp.2020.102907 10.23919/EUSIPCO.2017.8081563 10.1109/TIP.2018.2878966 10.3390/ma13132960 10.1109/ACCESS.2019.2956191 10.1109/TITS.2015.2477675 10.1016/j.autcon.2018.07.008 10.1109/CVPR.2018.00913 10.3390/coatings10020152 10.1109/TPAMI.2017.2699184 10.1109/TNNLS.2018.2874657 10.1155/2020/6412562 10.1109/TNNLS.2013.2293637 10.1016/j.patrec.2021.02.005 10.1109/TNNLS.2016.2522428 10.1111/mice.12387 10.48550/arXiv.1802.02611 10.1109/TITS.2019.2910595 10.1111/mice.12564 10.1109/ICMA.2019.8816422 10.1109/TASE.2013.2294687 10.1109/TITS.2016.2552248 10.1016/j.conbuildmat.2020.120080 10.1109/TPAMI.2016.2644615 10.1007/978-3-319-24574-4_28 10.1111/j.1467-8667.2011.00716.x 10.1109/TITS.2019.2929483 10.1016/j.neucom.2019.01.036 10.1109/ICCV.2015.164 10.1109/CVPR.2017.106 10.1111/mice.12477 10.1109/TPAMI.2018.2878849 10.23919/EUSIPCO.2017.8081565 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2021.3062070 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 4899 |
ExternalDocumentID | 33720835 10_1109_TNNLS_2021_3062070 9378802 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61701060 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c351t-eeab806ddbc8841a7685880d38086cbf3137c447c16d0a971a8637335eeb4c983 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Fri Jul 11 00:36:53 EDT 2025 Mon Jun 30 03:26:18 EDT 2025 Thu Jan 02 22:56:22 EST 2025 Thu Apr 24 23:00:13 EDT 2025 Tue Jul 01 00:27:38 EDT 2025 Wed Aug 27 02:14:21 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-eeab806ddbc8841a7685880d38086cbf3137c447c16d0a971a8637335eeb4c983 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7013-4854 0000-0001-5990-8820 |
PMID | 33720835 |
PQID | 2709156708 |
PQPubID | 85436 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1109_TNNLS_2021_3062070 proquest_journals_2709156708 crossref_citationtrail_10_1109_TNNLS_2021_3062070 proquest_miscellaneous_2501853002 pubmed_primary_33720835 ieee_primary_9378802 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref14 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref21 ref28 ref27 Lee (ref22) ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref5 doi: 10.3390/s20154198 – ident: ref28 doi: 10.1016/j.dsp.2020.102907 – ident: ref3 doi: 10.23919/EUSIPCO.2017.8081563 – ident: ref14 doi: 10.1109/TIP.2018.2878966 – ident: ref29 doi: 10.3390/ma13132960 – ident: ref34 doi: 10.1109/ACCESS.2019.2956191 – ident: ref25 doi: 10.1109/TITS.2015.2477675 – ident: ref24 doi: 10.1016/j.autcon.2018.07.008 – ident: ref30 doi: 10.1109/CVPR.2018.00913 – ident: ref11 doi: 10.3390/coatings10020152 – ident: ref21 doi: 10.1109/TPAMI.2017.2699184 – ident: ref10 doi: 10.1109/TNNLS.2018.2874657 – ident: ref32 doi: 10.1155/2020/6412562 – ident: ref18 doi: 10.1109/TNNLS.2013.2293637 – ident: ref13 doi: 10.1016/j.patrec.2021.02.005 – ident: ref9 doi: 10.1109/TNNLS.2016.2522428 – ident: ref12 doi: 10.1111/mice.12387 – ident: ref35 doi: 10.48550/arXiv.1802.02611 – start-page: 562 volume-title: Proc. Artif. Intell. Statist. ident: ref22 article-title: Deeply-supervised nets – ident: ref31 doi: 10.1109/TITS.2019.2910595 – ident: ref7 doi: 10.1111/mice.12564 – ident: ref23 doi: 10.1109/ICMA.2019.8816422 – ident: ref4 doi: 10.1109/TASE.2013.2294687 – ident: ref8 doi: 10.1109/TITS.2016.2552248 – ident: ref26 doi: 10.1016/j.conbuildmat.2020.120080 – ident: ref15 doi: 10.1109/TPAMI.2016.2644615 – ident: ref20 doi: 10.1007/978-3-319-24574-4_28 – ident: ref1 doi: 10.1111/j.1467-8667.2011.00716.x – ident: ref2 doi: 10.1109/TITS.2019.2929483 – ident: ref16 doi: 10.1016/j.neucom.2019.01.036 – ident: ref17 doi: 10.1109/ICCV.2015.164 – ident: ref19 doi: 10.1109/CVPR.2017.106 – ident: ref27 doi: 10.1111/mice.12477 – ident: ref33 doi: 10.1109/TPAMI.2018.2878849 – ident: ref6 doi: 10.23919/EUSIPCO.2017.8081565 |
SSID | ssj0000605649 |
Score | 2.6530027 |
Snippet | Automatic crack detection is vital for efficient and economical road maintenance. With the explosive development of convolutional neural networks (CNNs),... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4890 |
SubjectTerms | Artificial neural networks Convolution Convolutional neural networks Convolutional neural networks (CNNs) deep supervision Edge detection Explosives detection Feature extraction Image edge detection Image processing Image segmentation Learning systems Modules multiscale feature fusion Neural networks pavement crack detection Road maintenance Semantics Training |
Title | A Deeply Supervised Convolutional Neural Network for Pavement Crack Detection With Multiscale Feature Fusion |
URI | https://ieeexplore.ieee.org/document/9378802 https://www.ncbi.nlm.nih.gov/pubmed/33720835 https://www.proquest.com/docview/2709156708 https://www.proquest.com/docview/2501853002 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKD6gXChToloKMxA2yjR-JnWO1UFWIrpDair1FfkwE6iq72k0qtb--Y-eBhABxcqRMJo5mHH-2Z74h5L2WEic5LhOL3UwkGJYUeSYSVklvKsQcpgjZyBfz_Pxafllkix3yccyFAYAYfAbTcBnP8v3KtWGr7KQI5OeBOfIRtl2u1rifkiIuzyPa5SznCRdqMeTIpMXJ1Xz-9RJXg5xNESNz9PM98liECi06Fnr7NSXFGit_h5tx2jnbJxdDh7tok5tp29ipu_-Ny_F_v-gpedLjT3raOcwzsgP1c7I_1Hag_VA_IMtT-glgvbyjl-06_E-24OlsVd_2roo6Aq9HbGIgOUX0S7-ZSD_e0NnGuBvU0MRIr5p-_9n8oDHZd4tOATQgz3aDbRt2616Q67PPV7PzpK_MkDiRsSYBMFanuffWaS2ZUYHFXqdeaFwhOVsJJpSTUjmW-9QUihmdCyVEBmClK7R4SXbrVQ2HhFaeS6UqyZlAKJRx61E4yy1w5ryzMCFsME7petryUD1jWcblS1qU0bZlsG3Z23ZCPozPrDvSjn9KHwTDjJK9TSbkePCBsh_X25IrxFdZrlI9Ie_G2zgiwzGLqWHVokzgSMxEGlS86nxn1D243NGf3_ma7PGQXhFj2I7JbrNp4Q2Cnsa-jd7-AAiy-q4 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB6VIkEvLVCggQKLBCfk1Pvw68ChSqlSmkZITUVu7r4sUCMnSmxQ-S38Ff4bsxvbSAi4VeJkS16P7fU3s9_uzgPgVSoEDnJMBApfMxBW0iCLIx7QQhhZIOeQmYtGPhvHwwvxfhpNN-B7FwtjrfXOZ7bvTv1evpnr2i2VHWQu-XnIGhfKU3v9FSdoq7cnR_g3XzN2_G4yGAZNDYFA84hWgbVSpWFsjNJpKqhMXL71NDQ8RS6vVcEpT7QQiaaxCWWWUJnGPOE8slYJnaUc5d6C28gzIraODutWcEKcCcSeXzMas4DxZNpG5YTZwWQ8Hp3j_JPRPrJyhpq1BXe4qwmT-tJyvwZBX9Xl7wTXD3THO_Cj7aK1f8tVv65UX3_7LXvk_9qH92C7YdjkcK0S92HDlg9gp61eQRpjtguzQ3Jk7WJ2Tc7rhbOYK2vIYF5-aZQRZbjMJf7gXeUJ8nvyQfoE6xUZLKW-QgmV92UrycfP1Sfiw5lXCHtLHLeul3is3XrkQ7i4kW9-BJvlvLR7QArDRJIUglGOZC9iymDjKFaWUW20sj2gLRhy3SRmd_VBZrmfoIVZ7rGUOyzlDZZ68Ka7Z7FOS_LP1rsOCF3LBgM92G8xlzeWa5WzBBlkFCdh2oOX3WW0OW4jSZZ2XmMblwUy4qET8XiN1U52C_Enf37mC7g7nJyN8tHJ-PQpbDEXTOI99vZhs1rW9hlSvEo995pG4PKmYfkT0BdW-A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deeply+Supervised+Convolutional+Neural+Network+for+Pavement+Crack+Detection+With+Multiscale+Feature+Fusion&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Qu%2C+Zhong&rft.au=Cao%2C+Chong&rft.au=Liu%2C+Ling&rft.au=Zhou%2C+Dong-Yang&rft.date=2022-09-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=33&rft.issue=9&rft.spage=4890&rft_id=info:doi/10.1109%2FTNNLS.2021.3062070&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |