Joint Segmentation and Identification Feature Learning for Occlusion Face Recognition
The existing occlusion face recognition algorithms almost tend to pay more attention to the visible facial components. However, these models are limited because they heavily rely on existing face segmentation approaches to locate occlusions, which is extremely sensitive to the performance of mask le...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 34; no. 12; pp. 10875 - 10888 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The existing occlusion face recognition algorithms almost tend to pay more attention to the visible facial components. However, these models are limited because they heavily rely on existing face segmentation approaches to locate occlusions, which is extremely sensitive to the performance of mask learning. To tackle this issue, we propose a joint segmentation and identification feature learning framework for end-to-end occlusion face recognition. More particularly, unlike employing an external face segmentation model to locate the occlusion, we design an occlusion prediction module supervised by known mask labels to be aware of the mask. It shares underlying convolutional feature maps with the identification network and can be collaboratively optimized with each other. Furthermore, we propose a novel channel refinement network to cast the predicted single-channel occlusion mask into a multi-channel mask matrix with each channel owing a distinct mask map. Occlusion-free feature maps are then generated by projecting multi-channel mask probability maps onto original feature maps. Thus, it can suppress the representation of occlusion elements in both the spatial and channel dimensions under the guidance of the mask matrix. Moreover, in order to avoid misleading aggressively predicted mask maps and meanwhile actively exploit usable occlusion-robust features, we aggregate the original and occlusion-free feature maps to distill the final candidate embeddings by our proposed feature purification module. Lastly, to alleviate the scarcity of real-world occlusion face recognition datasets, we build large-scale synthetic occlusion face datasets, totaling up to 980193 face images of 10574 subjects for the training dataset and 36721 face images of 6817 subjects for the testing dataset, respectively. Extensive experimental results on the synthetic and real-world occlusion face datasets show that our approach significantly outperforms the state-of-the-art in both 1:1 face verification and 1:N face identification. |
---|---|
AbstractList | The existing occlusion face recognition algorithms almost tend to pay more attention to the visible facial components. However, these models are limited because they heavily rely on existing face segmentation approaches to locate occlusions, which is extremely sensitive to the performance of mask learning. To tackle this issue, we propose a joint segmentation and identification feature learning framework for end-to-end occlusion face recognition. More particularly, unlike employing an external face segmentation model to locate the occlusion, we design an occlusion prediction module supervised by known mask labels to be aware of the mask. It shares underlying convolutional feature maps with the identification network and can be collaboratively optimized with each other. Furthermore, we propose a novel channel refinement network to cast the predicted single-channel occlusion mask into a multi-channel mask matrix with each channel owing a distinct mask map. Occlusion-free feature maps are then generated by projecting multi-channel mask probability maps onto original feature maps. Thus, it can suppress the representation of occlusion elements in both the spatial and channel dimensions under the guidance of the mask matrix. Moreover, in order to avoid misleading aggressively predicted mask maps and meanwhile actively exploit usable occlusion-robust features, we aggregate the original and occlusion-free feature maps to distill the final candidate embeddings by our proposed feature purification module. Lastly, to alleviate the scarcity of real-world occlusion face recognition datasets, we build large-scale synthetic occlusion face datasets, totaling up to 980193 face images of 10574 subjects for the training dataset and 36721 face images of 6817 subjects for the testing dataset, respectively. Extensive experimental results on the synthetic and real-world occlusion face datasets show that our approach significantly outperforms the state-of-the-art in both 1:1 face verification and 1:N face identification.The existing occlusion face recognition algorithms almost tend to pay more attention to the visible facial components. However, these models are limited because they heavily rely on existing face segmentation approaches to locate occlusions, which is extremely sensitive to the performance of mask learning. To tackle this issue, we propose a joint segmentation and identification feature learning framework for end-to-end occlusion face recognition. More particularly, unlike employing an external face segmentation model to locate the occlusion, we design an occlusion prediction module supervised by known mask labels to be aware of the mask. It shares underlying convolutional feature maps with the identification network and can be collaboratively optimized with each other. Furthermore, we propose a novel channel refinement network to cast the predicted single-channel occlusion mask into a multi-channel mask matrix with each channel owing a distinct mask map. Occlusion-free feature maps are then generated by projecting multi-channel mask probability maps onto original feature maps. Thus, it can suppress the representation of occlusion elements in both the spatial and channel dimensions under the guidance of the mask matrix. Moreover, in order to avoid misleading aggressively predicted mask maps and meanwhile actively exploit usable occlusion-robust features, we aggregate the original and occlusion-free feature maps to distill the final candidate embeddings by our proposed feature purification module. Lastly, to alleviate the scarcity of real-world occlusion face recognition datasets, we build large-scale synthetic occlusion face datasets, totaling up to 980193 face images of 10574 subjects for the training dataset and 36721 face images of 6817 subjects for the testing dataset, respectively. Extensive experimental results on the synthetic and real-world occlusion face datasets show that our approach significantly outperforms the state-of-the-art in both 1:1 face verification and 1:N face identification. The existing occlusion face recognition algorithms almost tend to pay more attention to the visible facial components. However, these models are limited because they heavily rely on existing face segmentation approaches to locate occlusions, which is extremely sensitive to the performance of mask learning. To tackle this issue, we propose a joint segmentation and identification feature learning framework for end-to-end occlusion face recognition. More particularly, unlike employing an external face segmentation model to locate the occlusion, we design an occlusion prediction module supervised by known mask labels to be aware of the mask. It shares underlying convolutional feature maps with the identification network and can be collaboratively optimized with each other. Furthermore, we propose a novel channel refinement network to cast the predicted single-channel occlusion mask into a multi-channel mask matrix with each channel owing a distinct mask map. Occlusion-free feature maps are then generated by projecting multi-channel mask probability maps onto original feature maps. Thus, it can suppress the representation of occlusion elements in both the spatial and channel dimensions under the guidance of the mask matrix. Moreover, in order to avoid misleading aggressively predicted mask maps and meanwhile actively exploit usable occlusion-robust features, we aggregate the original and occlusion-free feature maps to distill the final candidate embeddings by our proposed feature purification module. Lastly, to alleviate the scarcity of real-world occlusion face recognition datasets, we build large-scale synthetic occlusion face datasets, totaling up to 980193 face images of 10574 subjects for the training dataset and 36721 face images of 6817 subjects for the testing dataset, respectively. Extensive experimental results on the synthetic and real-world occlusion face datasets show that our approach significantly outperforms the state-of-the-art in both 1:1 face verification and 1:N face identification. |
Author | Han, Zhen Zou, Qin Lu, Tao Jiang, Kui Tian, Xin Huang, Baojin Wang, Zhongyuan |
Author_xml | – sequence: 1 givenname: Baojin orcidid: 0000-0002-4882-5787 surname: Huang fullname: Huang, Baojin email: huangbaojin@whu.edu.cn organization: School of Computer Science, Wuhan University, Wuhan, China – sequence: 2 givenname: Zhongyuan orcidid: 0000-0002-9796-488X surname: Wang fullname: Wang, Zhongyuan email: wzy_hope@163.com organization: School of Computer Science, Wuhan University, Wuhan, China – sequence: 3 givenname: Kui orcidid: 0000-0002-4055-7503 surname: Jiang fullname: Jiang, Kui email: kuijiang_1994@163.com organization: School of Computer Science, Wuhan University, Wuhan, China – sequence: 4 givenname: Qin orcidid: 0000-0001-7955-0782 surname: Zou fullname: Zou, Qin email: qzou@whu.edu.cn organization: School of Computer Science, Wuhan University, Wuhan, China – sequence: 5 givenname: Xin orcidid: 0000-0003-1993-2708 surname: Tian fullname: Tian, Xin email: xin.tian@whu.edu.cn organization: School of Electronic Information, Wuhan University, Wuhan, China – sequence: 6 givenname: Tao orcidid: 0000-0001-8117-2012 surname: Lu fullname: Lu, Tao email: lutxyl@gmail.com organization: Hubei Province Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, China – sequence: 7 givenname: Zhen orcidid: 0000-0002-1862-4781 surname: Han fullname: Han, Zhen email: hanzhen_1980@163.com organization: School of Computer Science, Wuhan University, Wuhan, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35560076$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUlLBDEUhIMo7n9AQRq8eJkxe6ePIq4MCi7gLcTk9RDpSTTpPvjvzdijBw_mkqW-eoSqHbQeYgCEDgieEoKb06e7u9njlGJKp4zURGK-hrYpkXRCmVLrv-f6ZQvt5_yGy5JYSN5soi0mhMS4ltvo-Tb60FePMF9A6E3vY6hMcNWNK1ffejs-XYLphwTVDEwKPsyrNqbq3tpuyN-ysVA9gI3z4Jf8HtpoTZdhf7XvoufLi6fz68ns_urm_Gw2sUyQfgKOCiCGvFrDay6IaYltnWidZJJypTi1WDpeRMyIa1rVOGNxUbCgpqTAdtHJOPc9xY8Bcq8XPlvoOhMgDllTKQvMBJUFPf6DvsUhhfI7TVUjMZU1YYU6WlHD6wKcfk9-YdKn_gmsAGoEbIo5J2i19WNsfTK-0wTrZT36ux69rEev6ilW-sf6M_1f0-Fo8gDwa2jqmiuu2BcBq5mT |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1007_s00371_023_03125_0 crossref_primary_10_1145_3569943 crossref_primary_10_1109_TBIOM_2023_3242085 crossref_primary_10_3390_educsci13090914 crossref_primary_10_1145_3635716 crossref_primary_10_1016_j_patcog_2024_110574 crossref_primary_10_1016_j_patrec_2024_03_004 crossref_primary_10_1109_TIFS_2024_3354109 crossref_primary_10_1007_s44267_024_00060_z crossref_primary_10_1109_TBIOM_2024_3354333 crossref_primary_10_1007_s11042_024_19831_3 crossref_primary_10_1145_3649899 |
Cites_doi | 10.1109/WACV.2016.7477558 10.1109/TIP.2016.2515987 10.1109/TIP.2011.2109729 10.1109/TCYB.2016.2529300 10.1109/TIFS.2020.3023793 10.1109/TNNLS.2016.2580572 10.1109/CVPR.2017.624 10.1109/CVPR.2017.53 10.1109/TCSVT.2017.2761829 10.4324/9781410605337-29 10.1109/CVPRW.2014.9 10.1109/CVPR.2016.90 10.1109/ICB2018.2018.00033 10.1109/TPAMI.2018.2858819 10.1109/ICCV.2017.116 10.1109/CVPR.2015.7298682 10.1109/ACCESS.2021.3106483 10.1007/978-3-319-46478-7_31 10.1109/CVPR.2016.527 10.1109/TCSVT.2016.2603535 10.1109/CVPR.2018.00745 10.1109/CVPR42600.2020.00525 10.1109/CVPR.2011.5995393 10.1109/CVPR42600.2020.00685 10.1007/978-3-030-01267-0_45 10.1109/TPAMI.2002.1008382 10.1109/ICCV.2019.01015 10.1109/CVPRW.2017.250 10.1109/TCSVT.2017.2691801 10.1109/TNNLS.2020.3017528 10.1109/CVPR.2018.00552 10.1109/TNNLS.2021.3071119 10.1007/978-981-16-1103-2_7 10.1109/TIFS.2017.2763119 10.1109/TNNLS.2020.2978127 10.1109/ICASSP39728.2021.9413893 10.24963/ijcai.2020/93 10.1109/ICCV.2017.67 10.1109/ICCV.2019.00086 10.1109/CVPR.2014.220 10.1109/ICCVW54120.2021.00172 10.1109/CVPR.2017.713 10.1109/ICIP.2014.7025068 10.1109/CVPR.2019.00482 10.1109/ICIP.2017.8296992 10.1007/978-3-642-15558-1_36 10.1109/ICCVW.2017.193 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2022.3171604 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 10888 |
ExternalDocumentID | 35560076 10_1109_TNNLS_2022_3171604 9774848 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: U1903214; 62071339; 62072347; 62072350; 61872277 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2021YFF0602102 funderid: 10.13039/501100012166 – fundername: Hubei Province Key Research and Development Project grantid: 2020BAB018 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c351t-ed25e1a1bca47451af1cfd5fd636248842c06d4a47031d9f89dac0248052a1103 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Fri Jul 11 03:09:48 EDT 2025 Sun Jun 29 16:09:41 EDT 2025 Thu Jan 02 22:22:40 EST 2025 Tue Jul 01 00:27:45 EDT 2025 Thu Apr 24 23:09:53 EDT 2025 Wed Aug 27 02:07:45 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-ed25e1a1bca47451af1cfd5fd636248842c06d4a47031d9f89dac0248052a1103 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7955-0782 0000-0001-8117-2012 0000-0002-9796-488X 0000-0002-4055-7503 0000-0002-4882-5787 0000-0003-1993-2708 0000-0002-1862-4781 |
PMID | 35560076 |
PQID | 2896026713 |
PQPubID | 85436 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2896026713 ieee_primary_9774848 crossref_citationtrail_10_1109_TNNLS_2022_3171604 proquest_miscellaneous_2664803526 pubmed_primary_35560076 crossref_primary_10_1109_TNNLS_2022_3171604 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref53 Yi (ref18) 2014 ref52 ref11 ref10 ref17 ref16 Chen (ref45) 2015 ref51 ref46 ref48 ref47 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 Cootes (ref50) 2010 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref20 Simonyan (ref25) 2014 ref22 ref21 ref28 ref27 ref29 Huang (ref19) 2007 Martinez (ref42) 1998 |
References_xml | – ident: ref20 doi: 10.1109/WACV.2016.7477558 – ident: ref51 doi: 10.1109/TIP.2016.2515987 – ident: ref37 doi: 10.1109/TIP.2011.2109729 – volume-title: FG-NET Aging Database year: 2010 ident: ref50 – ident: ref53 doi: 10.1109/TCYB.2016.2529300 – ident: ref38 doi: 10.1109/TIFS.2020.3023793 – volume-title: The Ar face database year: 1998 ident: ref42 – ident: ref1 doi: 10.1109/TNNLS.2016.2580572 – ident: ref14 doi: 10.1109/CVPR.2017.624 – ident: ref16 doi: 10.1109/CVPR.2017.53 – ident: ref23 doi: 10.1109/TCSVT.2017.2761829 – ident: ref27 doi: 10.4324/9781410605337-29 – ident: ref35 doi: 10.1109/CVPRW.2014.9 – ident: ref26 doi: 10.1109/CVPR.2016.90 – ident: ref41 doi: 10.1109/ICB2018.2018.00033 – ident: ref15 doi: 10.1109/TPAMI.2018.2858819 – ident: ref39 doi: 10.1109/ICCV.2017.116 – ident: ref6 doi: 10.1109/CVPR.2015.7298682 – ident: ref9 doi: 10.1109/ACCESS.2021.3106483 – ident: ref30 doi: 10.1007/978-3-319-46478-7_31 – ident: ref40 doi: 10.1109/CVPR.2016.527 – ident: ref22 doi: 10.1109/TCSVT.2016.2603535 – ident: ref28 doi: 10.1109/CVPR.2018.00745 – ident: ref44 doi: 10.1109/CVPR42600.2020.00525 – ident: ref34 doi: 10.1109/CVPR.2011.5995393 – ident: ref36 doi: 10.1109/CVPR42600.2020.00685 – year: 2015 ident: ref45 article-title: MXNet: A flexible and efficient machine learning library for heterogeneous distributed systems publication-title: arXiv:1512.01274 – ident: ref29 doi: 10.1007/978-3-030-01267-0_45 – ident: ref33 doi: 10.1109/TPAMI.2002.1008382 – ident: ref8 doi: 10.1109/ICCV.2019.01015 – ident: ref21 doi: 10.1109/CVPRW.2017.250 – volume-title: Labeled faces in the wild: A database for studying face recognition in unconstrained environments year: 2007 ident: ref19 – ident: ref24 doi: 10.1109/TCSVT.2017.2691801 – ident: ref4 doi: 10.1109/TNNLS.2020.3017528 – ident: ref31 doi: 10.1109/CVPR.2018.00552 – ident: ref5 doi: 10.1109/TNNLS.2021.3071119 – ident: ref47 doi: 10.1007/978-981-16-1103-2_7 – ident: ref13 doi: 10.1109/TIFS.2017.2763119 – ident: ref3 doi: 10.1109/TNNLS.2020.2978127 – ident: ref17 doi: 10.1109/ICASSP39728.2021.9413893 – ident: ref48 doi: 10.24963/ijcai.2020/93 – ident: ref46 doi: 10.1109/ICCV.2017.67 – ident: ref12 doi: 10.1109/ICCV.2019.00086 – ident: ref32 doi: 10.1109/CVPR.2014.220 – ident: ref43 doi: 10.1109/ICCVW54120.2021.00172 – ident: ref7 doi: 10.1109/CVPR.2017.713 – ident: ref49 doi: 10.1109/ICIP.2014.7025068 – ident: ref2 doi: 10.1109/CVPR.2019.00482 – ident: ref11 doi: 10.1109/ICIP.2017.8296992 – year: 2014 ident: ref18 article-title: Learning face representation from scratch publication-title: arXiv:1411.7923 – year: 2014 ident: ref25 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv:1409.1556 – ident: ref52 doi: 10.1007/978-3-642-15558-1_36 – ident: ref10 doi: 10.1109/ICCVW.2017.193 |
SSID | ssj0000605649 |
Score | 2.5440686 |
Snippet | The existing occlusion face recognition algorithms almost tend to pay more attention to the visible facial components. However, these models are limited... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10875 |
SubjectTerms | Algorithms Datasets Deep learning Face Face recognition Facial Recognition Feature extraction Feature maps Humans Image Processing, Computer-Assisted Image segmentation Learning Learning systems Machine learning Modules Neural Networks, Computer Occlusion Occlusion face dataset occlusion face recognition occlusion segmentation occlusion synthesis Pattern recognition Probability Representation learning Segmentation Training |
Title | Joint Segmentation and Identification Feature Learning for Occlusion Face Recognition |
URI | https://ieeexplore.ieee.org/document/9774848 https://www.ncbi.nlm.nih.gov/pubmed/35560076 https://www.proquest.com/docview/2896026713 https://www.proquest.com/docview/2664803526 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BJy6lLW1JC5UrcWuzOFnbGx-rCoRQWSRgpb1FzthBCJpUkFz49YwdJ1Krtuotkp0Pe2biN_bMPIBDUxv0mpL6I5pUWE_krmWROmXR2FrbIgRjni_V6UqcreV6A75MuTDOuRB85mb-Mpzl2xZ7v1V25LFKIYpN2CTHbcjVmvZTOOFyFdBunqk8zeeL9Zgjw_XR9XL5_Yq8wTwnJ5VcBO75eGip9dXZ1S9LUuBY-TvcDMvOyQ6cjx88RJvczfqumuHTb7Uc_3dEL-FFxJ_s66Awr2DDNa9hZ-R2YNHUd2F11t42HbtyNz9idlLDTGPZkNhbx50-5hFk_-BYLNN6wwgDswvE-_4xNBt07HKMUWqbN7A6Ob7-dppGCoYU5zLrUmdz6TKTVWjEQsjM1BnWVtZW0cJHti9y5MoKaqSfg9V1oa1BXyaNy9zQzM_fwlbTNm4PmF7wSsgFaqQRu4obFMpo9Lm7ShjJE8hGKZQY65N7moz7MvgpXJdBiKUXYhmFmMDn6Z6fQ3WOf_be9RKYesbJT2B_FHYZDfixJD80kHNl8wQ-Tc1kev48xTSu7amPUjRQTzCQwLtBSaZnj7r1_s_v_ADbnrd-iIvZh63uoXcHhG666mNQ62cf9_IL |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VcoBLWyjQQAtG4gbZ2lnbGx9R1Wopu4tEd6W9RY7tVIiSoDa58OsZO04kECBukex82DPOvLFn5gG80ZU2XlNSf0STcuuJ3JXIUyet0bZSNg_BmMuVnG_45VZsd-DdmAvjnAvBZ27iL8NZvm1M57fKTj1WyXl-D-6j3Resz9Yad1QoInMZ8G7GZJZm09l2yJKh6nS9Wi2u0B_MMnRT0UmgnpEHja2vzy5_MUqBZeXvgDMYnot9WA6f3MebfJ10bTkxP36r5vi_YzqAvYhAyfteZR7Bjqsfw_7A7kDiYj-EzWXzpW7Jlbv-FvOTaqJrS_rU3iru9RGPIbtbR2Kh1muCKJh8MuamuwvN2jjyeYhSauonsLk4X5_N00jCkJqpYG3qbCYc06w0ms-4YLpiprKishJNH65-nhkqLcdG_D1YVeXKauMLpVGRaZz56VPYrZvaHQFRM1pyMTPK4IhdSbXhUivjs3cl14ImwAYpFCZWKPdEGTdF8FSoKoIQCy_EIgoxgbfjPd_7-hz_7H3oJTD2jJOfwPEg7CIu4bsCPdFAz8WmCbwem3Hx-RMVXbumwz5S4kA9xUACz3olGZ896NbzP7_zFTyYr5eLYvFh9fEFPPQs9n2UzDHstredO0Gs05Yvg4r_BOi69VQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+Segmentation+and+Identification+Feature+Learning+for+Occlusion+Face+Recognition&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Huang%2C+Baojin&rft.au=Wang%2C+Zhongyuan&rft.au=Jiang%2C+Kui&rft.au=Zou%2C+Qin&rft.date=2023-12-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=34&rft.issue=12&rft.spage=10875&rft.epage=10888&rft_id=info:doi/10.1109%2FTNNLS.2022.3171604&rft_id=info%3Apmid%2F35560076&rft.externalDocID=9774848 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |