Joint Segmentation and Identification Feature Learning for Occlusion Face Recognition

The existing occlusion face recognition algorithms almost tend to pay more attention to the visible facial components. However, these models are limited because they heavily rely on existing face segmentation approaches to locate occlusions, which is extremely sensitive to the performance of mask le...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 34; no. 12; pp. 10875 - 10888
Main Authors Huang, Baojin, Wang, Zhongyuan, Jiang, Kui, Zou, Qin, Tian, Xin, Lu, Tao, Han, Zhen
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The existing occlusion face recognition algorithms almost tend to pay more attention to the visible facial components. However, these models are limited because they heavily rely on existing face segmentation approaches to locate occlusions, which is extremely sensitive to the performance of mask learning. To tackle this issue, we propose a joint segmentation and identification feature learning framework for end-to-end occlusion face recognition. More particularly, unlike employing an external face segmentation model to locate the occlusion, we design an occlusion prediction module supervised by known mask labels to be aware of the mask. It shares underlying convolutional feature maps with the identification network and can be collaboratively optimized with each other. Furthermore, we propose a novel channel refinement network to cast the predicted single-channel occlusion mask into a multi-channel mask matrix with each channel owing a distinct mask map. Occlusion-free feature maps are then generated by projecting multi-channel mask probability maps onto original feature maps. Thus, it can suppress the representation of occlusion elements in both the spatial and channel dimensions under the guidance of the mask matrix. Moreover, in order to avoid misleading aggressively predicted mask maps and meanwhile actively exploit usable occlusion-robust features, we aggregate the original and occlusion-free feature maps to distill the final candidate embeddings by our proposed feature purification module. Lastly, to alleviate the scarcity of real-world occlusion face recognition datasets, we build large-scale synthetic occlusion face datasets, totaling up to 980193 face images of 10574 subjects for the training dataset and 36721 face images of 6817 subjects for the testing dataset, respectively. Extensive experimental results on the synthetic and real-world occlusion face datasets show that our approach significantly outperforms the state-of-the-art in both 1:1 face verification and 1:N face identification.
AbstractList The existing occlusion face recognition algorithms almost tend to pay more attention to the visible facial components. However, these models are limited because they heavily rely on existing face segmentation approaches to locate occlusions, which is extremely sensitive to the performance of mask learning. To tackle this issue, we propose a joint segmentation and identification feature learning framework for end-to-end occlusion face recognition. More particularly, unlike employing an external face segmentation model to locate the occlusion, we design an occlusion prediction module supervised by known mask labels to be aware of the mask. It shares underlying convolutional feature maps with the identification network and can be collaboratively optimized with each other. Furthermore, we propose a novel channel refinement network to cast the predicted single-channel occlusion mask into a multi-channel mask matrix with each channel owing a distinct mask map. Occlusion-free feature maps are then generated by projecting multi-channel mask probability maps onto original feature maps. Thus, it can suppress the representation of occlusion elements in both the spatial and channel dimensions under the guidance of the mask matrix. Moreover, in order to avoid misleading aggressively predicted mask maps and meanwhile actively exploit usable occlusion-robust features, we aggregate the original and occlusion-free feature maps to distill the final candidate embeddings by our proposed feature purification module. Lastly, to alleviate the scarcity of real-world occlusion face recognition datasets, we build large-scale synthetic occlusion face datasets, totaling up to 980193 face images of 10574 subjects for the training dataset and 36721 face images of 6817 subjects for the testing dataset, respectively. Extensive experimental results on the synthetic and real-world occlusion face datasets show that our approach significantly outperforms the state-of-the-art in both 1:1 face verification and 1:N face identification.The existing occlusion face recognition algorithms almost tend to pay more attention to the visible facial components. However, these models are limited because they heavily rely on existing face segmentation approaches to locate occlusions, which is extremely sensitive to the performance of mask learning. To tackle this issue, we propose a joint segmentation and identification feature learning framework for end-to-end occlusion face recognition. More particularly, unlike employing an external face segmentation model to locate the occlusion, we design an occlusion prediction module supervised by known mask labels to be aware of the mask. It shares underlying convolutional feature maps with the identification network and can be collaboratively optimized with each other. Furthermore, we propose a novel channel refinement network to cast the predicted single-channel occlusion mask into a multi-channel mask matrix with each channel owing a distinct mask map. Occlusion-free feature maps are then generated by projecting multi-channel mask probability maps onto original feature maps. Thus, it can suppress the representation of occlusion elements in both the spatial and channel dimensions under the guidance of the mask matrix. Moreover, in order to avoid misleading aggressively predicted mask maps and meanwhile actively exploit usable occlusion-robust features, we aggregate the original and occlusion-free feature maps to distill the final candidate embeddings by our proposed feature purification module. Lastly, to alleviate the scarcity of real-world occlusion face recognition datasets, we build large-scale synthetic occlusion face datasets, totaling up to 980193 face images of 10574 subjects for the training dataset and 36721 face images of 6817 subjects for the testing dataset, respectively. Extensive experimental results on the synthetic and real-world occlusion face datasets show that our approach significantly outperforms the state-of-the-art in both 1:1 face verification and 1:N face identification.
The existing occlusion face recognition algorithms almost tend to pay more attention to the visible facial components. However, these models are limited because they heavily rely on existing face segmentation approaches to locate occlusions, which is extremely sensitive to the performance of mask learning. To tackle this issue, we propose a joint segmentation and identification feature learning framework for end-to-end occlusion face recognition. More particularly, unlike employing an external face segmentation model to locate the occlusion, we design an occlusion prediction module supervised by known mask labels to be aware of the mask. It shares underlying convolutional feature maps with the identification network and can be collaboratively optimized with each other. Furthermore, we propose a novel channel refinement network to cast the predicted single-channel occlusion mask into a multi-channel mask matrix with each channel owing a distinct mask map. Occlusion-free feature maps are then generated by projecting multi-channel mask probability maps onto original feature maps. Thus, it can suppress the representation of occlusion elements in both the spatial and channel dimensions under the guidance of the mask matrix. Moreover, in order to avoid misleading aggressively predicted mask maps and meanwhile actively exploit usable occlusion-robust features, we aggregate the original and occlusion-free feature maps to distill the final candidate embeddings by our proposed feature purification module. Lastly, to alleviate the scarcity of real-world occlusion face recognition datasets, we build large-scale synthetic occlusion face datasets, totaling up to 980193 face images of 10574 subjects for the training dataset and 36721 face images of 6817 subjects for the testing dataset, respectively. Extensive experimental results on the synthetic and real-world occlusion face datasets show that our approach significantly outperforms the state-of-the-art in both 1:1 face verification and 1:N face identification.
Author Han, Zhen
Zou, Qin
Lu, Tao
Jiang, Kui
Tian, Xin
Huang, Baojin
Wang, Zhongyuan
Author_xml – sequence: 1
  givenname: Baojin
  orcidid: 0000-0002-4882-5787
  surname: Huang
  fullname: Huang, Baojin
  email: huangbaojin@whu.edu.cn
  organization: School of Computer Science, Wuhan University, Wuhan, China
– sequence: 2
  givenname: Zhongyuan
  orcidid: 0000-0002-9796-488X
  surname: Wang
  fullname: Wang, Zhongyuan
  email: wzy_hope@163.com
  organization: School of Computer Science, Wuhan University, Wuhan, China
– sequence: 3
  givenname: Kui
  orcidid: 0000-0002-4055-7503
  surname: Jiang
  fullname: Jiang, Kui
  email: kuijiang_1994@163.com
  organization: School of Computer Science, Wuhan University, Wuhan, China
– sequence: 4
  givenname: Qin
  orcidid: 0000-0001-7955-0782
  surname: Zou
  fullname: Zou, Qin
  email: qzou@whu.edu.cn
  organization: School of Computer Science, Wuhan University, Wuhan, China
– sequence: 5
  givenname: Xin
  orcidid: 0000-0003-1993-2708
  surname: Tian
  fullname: Tian, Xin
  email: xin.tian@whu.edu.cn
  organization: School of Electronic Information, Wuhan University, Wuhan, China
– sequence: 6
  givenname: Tao
  orcidid: 0000-0001-8117-2012
  surname: Lu
  fullname: Lu, Tao
  email: lutxyl@gmail.com
  organization: Hubei Province Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, China
– sequence: 7
  givenname: Zhen
  orcidid: 0000-0002-1862-4781
  surname: Han
  fullname: Han, Zhen
  email: hanzhen_1980@163.com
  organization: School of Computer Science, Wuhan University, Wuhan, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35560076$$D View this record in MEDLINE/PubMed
BookMark eNp9kUlLBDEUhIMo7n9AQRq8eJkxe6ePIq4MCi7gLcTk9RDpSTTpPvjvzdijBw_mkqW-eoSqHbQeYgCEDgieEoKb06e7u9njlGJKp4zURGK-hrYpkXRCmVLrv-f6ZQvt5_yGy5JYSN5soi0mhMS4ltvo-Tb60FePMF9A6E3vY6hMcNWNK1ffejs-XYLphwTVDEwKPsyrNqbq3tpuyN-ysVA9gI3z4Jf8HtpoTZdhf7XvoufLi6fz68ns_urm_Gw2sUyQfgKOCiCGvFrDay6IaYltnWidZJJypTi1WDpeRMyIa1rVOGNxUbCgpqTAdtHJOPc9xY8Bcq8XPlvoOhMgDllTKQvMBJUFPf6DvsUhhfI7TVUjMZU1YYU6WlHD6wKcfk9-YdKn_gmsAGoEbIo5J2i19WNsfTK-0wTrZT36ux69rEev6ilW-sf6M_1f0-Fo8gDwa2jqmiuu2BcBq5mT
CODEN ITNNAL
CitedBy_id crossref_primary_10_1007_s00371_023_03125_0
crossref_primary_10_1145_3569943
crossref_primary_10_1109_TBIOM_2023_3242085
crossref_primary_10_3390_educsci13090914
crossref_primary_10_1145_3635716
crossref_primary_10_1016_j_patcog_2024_110574
crossref_primary_10_1016_j_patrec_2024_03_004
crossref_primary_10_1109_TIFS_2024_3354109
crossref_primary_10_1007_s44267_024_00060_z
crossref_primary_10_1109_TBIOM_2024_3354333
crossref_primary_10_1007_s11042_024_19831_3
crossref_primary_10_1145_3649899
Cites_doi 10.1109/WACV.2016.7477558
10.1109/TIP.2016.2515987
10.1109/TIP.2011.2109729
10.1109/TCYB.2016.2529300
10.1109/TIFS.2020.3023793
10.1109/TNNLS.2016.2580572
10.1109/CVPR.2017.624
10.1109/CVPR.2017.53
10.1109/TCSVT.2017.2761829
10.4324/9781410605337-29
10.1109/CVPRW.2014.9
10.1109/CVPR.2016.90
10.1109/ICB2018.2018.00033
10.1109/TPAMI.2018.2858819
10.1109/ICCV.2017.116
10.1109/CVPR.2015.7298682
10.1109/ACCESS.2021.3106483
10.1007/978-3-319-46478-7_31
10.1109/CVPR.2016.527
10.1109/TCSVT.2016.2603535
10.1109/CVPR.2018.00745
10.1109/CVPR42600.2020.00525
10.1109/CVPR.2011.5995393
10.1109/CVPR42600.2020.00685
10.1007/978-3-030-01267-0_45
10.1109/TPAMI.2002.1008382
10.1109/ICCV.2019.01015
10.1109/CVPRW.2017.250
10.1109/TCSVT.2017.2691801
10.1109/TNNLS.2020.3017528
10.1109/CVPR.2018.00552
10.1109/TNNLS.2021.3071119
10.1007/978-981-16-1103-2_7
10.1109/TIFS.2017.2763119
10.1109/TNNLS.2020.2978127
10.1109/ICASSP39728.2021.9413893
10.24963/ijcai.2020/93
10.1109/ICCV.2017.67
10.1109/ICCV.2019.00086
10.1109/CVPR.2014.220
10.1109/ICCVW54120.2021.00172
10.1109/CVPR.2017.713
10.1109/ICIP.2014.7025068
10.1109/CVPR.2019.00482
10.1109/ICIP.2017.8296992
10.1007/978-3-642-15558-1_36
10.1109/ICCVW.2017.193
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2022.3171604
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 10888
ExternalDocumentID 35560076
10_1109_TNNLS_2022_3171604
9774848
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: U1903214; 62071339; 62072347; 62072350; 61872277
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2021YFF0602102
  funderid: 10.13039/501100012166
– fundername: Hubei Province Key Research and Development Project
  grantid: 2020BAB018
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-ed25e1a1bca47451af1cfd5fd636248842c06d4a47031d9f89dac0248052a1103
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Fri Jul 11 03:09:48 EDT 2025
Sun Jun 29 16:09:41 EDT 2025
Thu Jan 02 22:22:40 EST 2025
Tue Jul 01 00:27:45 EDT 2025
Thu Apr 24 23:09:53 EDT 2025
Wed Aug 27 02:07:45 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-ed25e1a1bca47451af1cfd5fd636248842c06d4a47031d9f89dac0248052a1103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7955-0782
0000-0001-8117-2012
0000-0002-9796-488X
0000-0002-4055-7503
0000-0002-4882-5787
0000-0003-1993-2708
0000-0002-1862-4781
PMID 35560076
PQID 2896026713
PQPubID 85436
PageCount 14
ParticipantIDs proquest_journals_2896026713
ieee_primary_9774848
crossref_citationtrail_10_1109_TNNLS_2022_3171604
proquest_miscellaneous_2664803526
pubmed_primary_35560076
crossref_primary_10_1109_TNNLS_2022_3171604
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
Yi (ref18) 2014
ref52
ref11
ref10
ref17
ref16
Chen (ref45) 2015
ref51
ref46
ref48
ref47
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
Cootes (ref50) 2010
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref20
Simonyan (ref25) 2014
ref22
ref21
ref28
ref27
ref29
Huang (ref19) 2007
Martinez (ref42) 1998
References_xml – ident: ref20
  doi: 10.1109/WACV.2016.7477558
– ident: ref51
  doi: 10.1109/TIP.2016.2515987
– ident: ref37
  doi: 10.1109/TIP.2011.2109729
– volume-title: FG-NET Aging Database
  year: 2010
  ident: ref50
– ident: ref53
  doi: 10.1109/TCYB.2016.2529300
– ident: ref38
  doi: 10.1109/TIFS.2020.3023793
– volume-title: The Ar face database
  year: 1998
  ident: ref42
– ident: ref1
  doi: 10.1109/TNNLS.2016.2580572
– ident: ref14
  doi: 10.1109/CVPR.2017.624
– ident: ref16
  doi: 10.1109/CVPR.2017.53
– ident: ref23
  doi: 10.1109/TCSVT.2017.2761829
– ident: ref27
  doi: 10.4324/9781410605337-29
– ident: ref35
  doi: 10.1109/CVPRW.2014.9
– ident: ref26
  doi: 10.1109/CVPR.2016.90
– ident: ref41
  doi: 10.1109/ICB2018.2018.00033
– ident: ref15
  doi: 10.1109/TPAMI.2018.2858819
– ident: ref39
  doi: 10.1109/ICCV.2017.116
– ident: ref6
  doi: 10.1109/CVPR.2015.7298682
– ident: ref9
  doi: 10.1109/ACCESS.2021.3106483
– ident: ref30
  doi: 10.1007/978-3-319-46478-7_31
– ident: ref40
  doi: 10.1109/CVPR.2016.527
– ident: ref22
  doi: 10.1109/TCSVT.2016.2603535
– ident: ref28
  doi: 10.1109/CVPR.2018.00745
– ident: ref44
  doi: 10.1109/CVPR42600.2020.00525
– ident: ref34
  doi: 10.1109/CVPR.2011.5995393
– ident: ref36
  doi: 10.1109/CVPR42600.2020.00685
– year: 2015
  ident: ref45
  article-title: MXNet: A flexible and efficient machine learning library for heterogeneous distributed systems
  publication-title: arXiv:1512.01274
– ident: ref29
  doi: 10.1007/978-3-030-01267-0_45
– ident: ref33
  doi: 10.1109/TPAMI.2002.1008382
– ident: ref8
  doi: 10.1109/ICCV.2019.01015
– ident: ref21
  doi: 10.1109/CVPRW.2017.250
– volume-title: Labeled faces in the wild: A database for studying face recognition in unconstrained environments
  year: 2007
  ident: ref19
– ident: ref24
  doi: 10.1109/TCSVT.2017.2691801
– ident: ref4
  doi: 10.1109/TNNLS.2020.3017528
– ident: ref31
  doi: 10.1109/CVPR.2018.00552
– ident: ref5
  doi: 10.1109/TNNLS.2021.3071119
– ident: ref47
  doi: 10.1007/978-981-16-1103-2_7
– ident: ref13
  doi: 10.1109/TIFS.2017.2763119
– ident: ref3
  doi: 10.1109/TNNLS.2020.2978127
– ident: ref17
  doi: 10.1109/ICASSP39728.2021.9413893
– ident: ref48
  doi: 10.24963/ijcai.2020/93
– ident: ref46
  doi: 10.1109/ICCV.2017.67
– ident: ref12
  doi: 10.1109/ICCV.2019.00086
– ident: ref32
  doi: 10.1109/CVPR.2014.220
– ident: ref43
  doi: 10.1109/ICCVW54120.2021.00172
– ident: ref7
  doi: 10.1109/CVPR.2017.713
– ident: ref49
  doi: 10.1109/ICIP.2014.7025068
– ident: ref2
  doi: 10.1109/CVPR.2019.00482
– ident: ref11
  doi: 10.1109/ICIP.2017.8296992
– year: 2014
  ident: ref18
  article-title: Learning face representation from scratch
  publication-title: arXiv:1411.7923
– year: 2014
  ident: ref25
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv:1409.1556
– ident: ref52
  doi: 10.1007/978-3-642-15558-1_36
– ident: ref10
  doi: 10.1109/ICCVW.2017.193
SSID ssj0000605649
Score 2.5440686
Snippet The existing occlusion face recognition algorithms almost tend to pay more attention to the visible facial components. However, these models are limited...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10875
SubjectTerms Algorithms
Datasets
Deep learning
Face
Face recognition
Facial Recognition
Feature extraction
Feature maps
Humans
Image Processing, Computer-Assisted
Image segmentation
Learning
Learning systems
Machine learning
Modules
Neural Networks, Computer
Occlusion
Occlusion face dataset
occlusion face recognition
occlusion segmentation
occlusion synthesis
Pattern recognition
Probability
Representation learning
Segmentation
Training
Title Joint Segmentation and Identification Feature Learning for Occlusion Face Recognition
URI https://ieeexplore.ieee.org/document/9774848
https://www.ncbi.nlm.nih.gov/pubmed/35560076
https://www.proquest.com/docview/2896026713
https://www.proquest.com/docview/2664803526
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BJy6lLW1JC5UrcWuzOFnbGx-rCoRQWSRgpb1FzthBCJpUkFz49YwdJ1Krtuotkp0Pe2biN_bMPIBDUxv0mpL6I5pUWE_krmWROmXR2FrbIgRjni_V6UqcreV6A75MuTDOuRB85mb-Mpzl2xZ7v1V25LFKIYpN2CTHbcjVmvZTOOFyFdBunqk8zeeL9Zgjw_XR9XL5_Yq8wTwnJ5VcBO75eGip9dXZ1S9LUuBY-TvcDMvOyQ6cjx88RJvczfqumuHTb7Uc_3dEL-FFxJ_s66Awr2DDNa9hZ-R2YNHUd2F11t42HbtyNz9idlLDTGPZkNhbx50-5hFk_-BYLNN6wwgDswvE-_4xNBt07HKMUWqbN7A6Ob7-dppGCoYU5zLrUmdz6TKTVWjEQsjM1BnWVtZW0cJHti9y5MoKaqSfg9V1oa1BXyaNy9zQzM_fwlbTNm4PmF7wSsgFaqQRu4obFMpo9Lm7ShjJE8hGKZQY65N7moz7MvgpXJdBiKUXYhmFmMDn6Z6fQ3WOf_be9RKYesbJT2B_FHYZDfixJD80kHNl8wQ-Tc1kev48xTSu7amPUjRQTzCQwLtBSaZnj7r1_s_v_ADbnrd-iIvZh63uoXcHhG666mNQ62cf9_IL
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VcoBLWyjQQAtG4gbZ2lnbGx9R1Wopu4tEd6W9RY7tVIiSoDa58OsZO04kECBukex82DPOvLFn5gG80ZU2XlNSf0STcuuJ3JXIUyet0bZSNg_BmMuVnG_45VZsd-DdmAvjnAvBZ27iL8NZvm1M57fKTj1WyXl-D-6j3Resz9Yad1QoInMZ8G7GZJZm09l2yJKh6nS9Wi2u0B_MMnRT0UmgnpEHja2vzy5_MUqBZeXvgDMYnot9WA6f3MebfJ10bTkxP36r5vi_YzqAvYhAyfteZR7Bjqsfw_7A7kDiYj-EzWXzpW7Jlbv-FvOTaqJrS_rU3iru9RGPIbtbR2Kh1muCKJh8MuamuwvN2jjyeYhSauonsLk4X5_N00jCkJqpYG3qbCYc06w0ms-4YLpiprKishJNH65-nhkqLcdG_D1YVeXKauMLpVGRaZz56VPYrZvaHQFRM1pyMTPK4IhdSbXhUivjs3cl14ImwAYpFCZWKPdEGTdF8FSoKoIQCy_EIgoxgbfjPd_7-hz_7H3oJTD2jJOfwPEg7CIu4bsCPdFAz8WmCbwem3Hx-RMVXbumwz5S4kA9xUACz3olGZ896NbzP7_zFTyYr5eLYvFh9fEFPPQs9n2UzDHstredO0Gs05Yvg4r_BOi69VQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+Segmentation+and+Identification+Feature+Learning+for+Occlusion+Face+Recognition&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Huang%2C+Baojin&rft.au=Wang%2C+Zhongyuan&rft.au=Jiang%2C+Kui&rft.au=Zou%2C+Qin&rft.date=2023-12-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=34&rft.issue=12&rft.spage=10875&rft.epage=10888&rft_id=info:doi/10.1109%2FTNNLS.2022.3171604&rft_id=info%3Apmid%2F35560076&rft.externalDocID=9774848
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon