Environmentally sustainable, fluorine-free and waterproof breathable PDMS/PS nanofibrous membranes for carbon dioxide capture

Membrane contactors are one of many CO 2 capture techniques, and they combine chemical absorption and membrane separation. A hydrophobic membrane with high porosity, i.e. , a waterproof breathable membrane, is necessary in the CO 2 absorption process of membrane contactors. Fluorinated hydrophobic m...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 6; no. 2; pp. 9489 - 9497
Main Authors Lin, Yi-Feng, Wang, Wen-Wen, Chang, Chia-Yu
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Membrane contactors are one of many CO 2 capture techniques, and they combine chemical absorption and membrane separation. A hydrophobic membrane with high porosity, i.e. , a waterproof breathable membrane, is necessary in the CO 2 absorption process of membrane contactors. Fluorinated hydrophobic membranes are commonly used in the CO 2 absorption process of membrane contactors. However, fluorinated hydrophobic membranes are toxic and harmful to our environment. Consequently, in this study, environmentally friendly, fluorine-free and waterproof breathable polydimethylsiloxane (PDMS)/polystyrene (PS) nanofibrous membranes with a high porosity of 89% are successfully fabricated using an electrospinning process. Compared with pristine PS nanofibrous membranes, PDMS doping in PS nanofibrous membranes successfully prevents liquid droplets from adhering on their surfaces, resulting in the successful fabrication of an anti-wetting membrane surface. The CO 2 absorption flux of the as-prepared PDMS/PS nanofibrous membrane is approximately 1.85 mmol m −2 s −1 , which is comparable with other previously reported membranes. Furthermore, the fluorine-free hydrophobic PDMS/PS nanofibrous membranes exhibited not only durability but also reusability. As a result, the environmentally friendly, fluorine-free and waterproof breathable PDMS/PS nanofibrous membrane is promising for use in large-scale CO 2 absorption applications, such as in membrane contactors for post-combustion CO 2 capture in power plants. The as-prepared PDMS/PS nanofibrous membranes exhibited durability and reusability in the CO 2 absorption process for membrane contactor applications.
AbstractList Membrane contactors are one of many CO 2 capture techniques, and they combine chemical absorption and membrane separation. A hydrophobic membrane with high porosity, i.e. , a waterproof breathable membrane, is necessary in the CO 2 absorption process of membrane contactors. Fluorinated hydrophobic membranes are commonly used in the CO 2 absorption process of membrane contactors. However, fluorinated hydrophobic membranes are toxic and harmful to our environment. Consequently, in this study, environmentally friendly, fluorine-free and waterproof breathable polydimethylsiloxane (PDMS)/polystyrene (PS) nanofibrous membranes with a high porosity of 89% are successfully fabricated using an electrospinning process. Compared with pristine PS nanofibrous membranes, PDMS doping in PS nanofibrous membranes successfully prevents liquid droplets from adhering on their surfaces, resulting in the successful fabrication of an anti-wetting membrane surface. The CO 2 absorption flux of the as-prepared PDMS/PS nanofibrous membrane is approximately 1.85 mmol m −2 s −1 , which is comparable with other previously reported membranes. Furthermore, the fluorine-free hydrophobic PDMS/PS nanofibrous membranes exhibited not only durability but also reusability. As a result, the environmentally friendly, fluorine-free and waterproof breathable PDMS/PS nanofibrous membrane is promising for use in large-scale CO 2 absorption applications, such as in membrane contactors for post-combustion CO 2 capture in power plants.
Membrane contactors are one of many CO 2 capture techniques, and they combine chemical absorption and membrane separation. A hydrophobic membrane with high porosity, i.e. , a waterproof breathable membrane, is necessary in the CO 2 absorption process of membrane contactors. Fluorinated hydrophobic membranes are commonly used in the CO 2 absorption process of membrane contactors. However, fluorinated hydrophobic membranes are toxic and harmful to our environment. Consequently, in this study, environmentally friendly, fluorine-free and waterproof breathable polydimethylsiloxane (PDMS)/polystyrene (PS) nanofibrous membranes with a high porosity of 89% are successfully fabricated using an electrospinning process. Compared with pristine PS nanofibrous membranes, PDMS doping in PS nanofibrous membranes successfully prevents liquid droplets from adhering on their surfaces, resulting in the successful fabrication of an anti-wetting membrane surface. The CO 2 absorption flux of the as-prepared PDMS/PS nanofibrous membrane is approximately 1.85 mmol m −2 s −1 , which is comparable with other previously reported membranes. Furthermore, the fluorine-free hydrophobic PDMS/PS nanofibrous membranes exhibited not only durability but also reusability. As a result, the environmentally friendly, fluorine-free and waterproof breathable PDMS/PS nanofibrous membrane is promising for use in large-scale CO 2 absorption applications, such as in membrane contactors for post-combustion CO 2 capture in power plants. The as-prepared PDMS/PS nanofibrous membranes exhibited durability and reusability in the CO 2 absorption process for membrane contactor applications.
Membrane contactors are one of many CO2 capture techniques, and they combine chemical absorption and membrane separation. A hydrophobic membrane with high porosity, i.e., a waterproof breathable membrane, is necessary in the CO2 absorption process of membrane contactors. Fluorinated hydrophobic membranes are commonly used in the CO2 absorption process of membrane contactors. However, fluorinated hydrophobic membranes are toxic and harmful to our environment. Consequently, in this study, environmentally friendly, fluorine-free and waterproof breathable polydimethylsiloxane (PDMS)/polystyrene (PS) nanofibrous membranes with a high porosity of 89% are successfully fabricated using an electrospinning process. Compared with pristine PS nanofibrous membranes, PDMS doping in PS nanofibrous membranes successfully prevents liquid droplets from adhering on their surfaces, resulting in the successful fabrication of an anti-wetting membrane surface. The CO2 absorption flux of the as-prepared PDMS/PS nanofibrous membrane is approximately 1.85 mmol m−2 s−1, which is comparable with other previously reported membranes. Furthermore, the fluorine-free hydrophobic PDMS/PS nanofibrous membranes exhibited not only durability but also reusability. As a result, the environmentally friendly, fluorine-free and waterproof breathable PDMS/PS nanofibrous membrane is promising for use in large-scale CO2 absorption applications, such as in membrane contactors for post-combustion CO2 capture in power plants.
Membrane contactors are one of many CO₂ capture techniques, and they combine chemical absorption and membrane separation. A hydrophobic membrane with high porosity, i.e., a waterproof breathable membrane, is necessary in the CO₂ absorption process of membrane contactors. Fluorinated hydrophobic membranes are commonly used in the CO₂ absorption process of membrane contactors. However, fluorinated hydrophobic membranes are toxic and harmful to our environment. Consequently, in this study, environmentally friendly, fluorine-free and waterproof breathable polydimethylsiloxane (PDMS)/polystyrene (PS) nanofibrous membranes with a high porosity of 89% are successfully fabricated using an electrospinning process. Compared with pristine PS nanofibrous membranes, PDMS doping in PS nanofibrous membranes successfully prevents liquid droplets from adhering on their surfaces, resulting in the successful fabrication of an anti-wetting membrane surface. The CO₂ absorption flux of the as-prepared PDMS/PS nanofibrous membrane is approximately 1.85 mmol m⁻² s⁻¹, which is comparable with other previously reported membranes. Furthermore, the fluorine-free hydrophobic PDMS/PS nanofibrous membranes exhibited not only durability but also reusability. As a result, the environmentally friendly, fluorine-free and waterproof breathable PDMS/PS nanofibrous membrane is promising for use in large-scale CO₂ absorption applications, such as in membrane contactors for post-combustion CO₂ capture in power plants.
Author Wang, Wen-Wen
Lin, Yi-Feng
Chang, Chia-Yu
AuthorAffiliation R&D Center for Membrane Technology
Department of Chemical Engineering
Chung Yuan Christian University
AuthorAffiliation_xml – sequence: 0
  name: Chung Yuan Christian University
– sequence: 0
  name: Department of Chemical Engineering
– sequence: 0
  name: R&D Center for Membrane Technology
Author_xml – sequence: 1
  givenname: Yi-Feng
  surname: Lin
  fullname: Lin, Yi-Feng
– sequence: 2
  givenname: Wen-Wen
  surname: Wang
  fullname: Wang, Wen-Wen
– sequence: 3
  givenname: Chia-Yu
  surname: Chang
  fullname: Chang, Chia-Yu
BookMark eNptkc1LHEEQxRtR0KgX74GGXIJktD9mdmaOspoPUCJozkNNdw1pmeneVPckevB_tzcrCmJdqor6veLB-8C2ffDI2JEUJ1Lo9tQ0CYRQdWW32J4SlSjqsl1sv8xNs8sOY7wTuRohFm27xx4v_F9HwU_oE4zjA49zTOA89CN-4cM4B3Iei4EQOXjL_0FCWlEIA-8JIf1eg_z6_Orm9PqGe_BhcD2FOfIJp57AY-RDIG6A-uC5deHeWczrKs2EB2xngDHi4XPfZ7--XtwuvxeXP7_9WJ5dFkZXMhUIFvTCiEaDQlFWUmBp-1boulStlrVUpTS2RtnjYJUymai1bWxVWWuktHqffd78zc7_zBhTN7locByzv-y1U0rXWdOUKqOf3qB3YSaf3XVK5PuirfSaEhvKUIiRcOiMS5Bc8InAjZ0U3TqSbtncnv2P5DxLjt9IVuQmoIf34Y8bmKJ54V7z1U_u8JkV
CitedBy_id crossref_primary_10_1002_adma_202106570
crossref_primary_10_1002_mame_202200613
crossref_primary_10_1016_j_jenvman_2024_120026
crossref_primary_10_1016_j_ijhydene_2024_09_431
crossref_primary_10_3390_mi12030267
crossref_primary_10_1557_jmr_2020_88
crossref_primary_10_1002_marc_201800931
crossref_primary_10_1021_acsomega_2c03602
crossref_primary_10_1002_chem_202402855
crossref_primary_10_1021_acsabm_2c00447
crossref_primary_10_1080_15583724_2022_2067868
crossref_primary_10_1016_j_memsci_2024_123385
crossref_primary_10_1002_admi_201901013
crossref_primary_10_1016_j_seppur_2023_124845
crossref_primary_10_1021_acsami_9b20081
crossref_primary_10_1021_acsabm_9b00875
crossref_primary_10_1080_15422119_2024_2328080
crossref_primary_10_1039_D1TA08862A
crossref_primary_10_3390_biomimetics7040217
crossref_primary_10_1080_15422119_2019_1610975
crossref_primary_10_1016_j_cej_2024_151998
crossref_primary_10_1016_j_seppur_2019_115721
crossref_primary_10_1016_j_seppur_2021_119720
crossref_primary_10_1021_acsaem_0c01603
crossref_primary_10_1007_s10311_020_01133_3
crossref_primary_10_1016_j_memsci_2022_120518
crossref_primary_10_1002_mame_202100757
crossref_primary_10_1016_j_optlastec_2022_108171
crossref_primary_10_1021_acsami_3c02397
crossref_primary_10_1080_00405000_2023_2201061
crossref_primary_10_1016_j_porgcoat_2023_108126
crossref_primary_10_1071_CH18447
crossref_primary_10_1021_acs_langmuir_4c01405
crossref_primary_10_1002_adfm_202305411
crossref_primary_10_1016_j_apenergy_2024_123305
crossref_primary_10_1016_j_desal_2022_116044
crossref_primary_10_1016_j_jcis_2021_05_171
crossref_primary_10_1016_j_mattod_2021_03_016
crossref_primary_10_1016_j_desal_2022_115950
crossref_primary_10_1016_j_inoche_2024_112989
Cites_doi 10.1002/cssc.201300578
10.1016/j.nanoen.2017.04.035
10.1021/acsami.7b08885
10.1039/C7TC03456C
10.1038/ncomms6802
10.1002/app.45534
10.1016/j.jngse.2014.10.016
10.1016/j.memsci.2016.11.069
10.1021/acs.langmuir.7b01978
10.1021/acsami.7b09209
10.1016/j.memsci.2016.07.019
10.1021/acsami.6b09392
10.1021/nn506633b
10.1016/S0376-7388(96)00213-X
10.1016/j.memsci.2015.08.062
10.1016/j.memsci.2013.04.062
10.1002/adma.200501961
10.1016/j.fuproc.2006.12.007
10.1002/adma.201603524
10.1016/j.jpowsour.2017.07.052
10.1002/adv.21568
10.1016/j.cej.2016.04.119
10.1039/C3RA45371E
10.1016/j.chemosphere.2009.02.027
10.1126/science.1148326
10.1016/j.cej.2016.12.010
10.1016/j.apenergy.2015.04.109
10.1016/j.memsci.2017.09.045
10.1002/adfm.201702310
10.1016/j.jelechem.2017.02.025
10.1021/acsnano.5b00121
10.1016/j.snb.2016.07.062
10.1016/j.memsci.2017.06.086
10.1039/C4RA11290C
10.1016/j.cej.2017.08.129
10.1016/j.cej.2015.07.071
10.1021/acs.accounts.7b00218
10.1016/j.ces.2014.10.041
10.1021/acsami.5b06509
10.1016/j.cej.2015.09.063
10.1016/j.apenergy.2014.05.001
10.1039/C6RA08607A
10.1016/j.jtice.2017.06.036
10.1002/cssc.201200837
10.1002/anie.201202823
10.1021/acsami.7b02594
10.1002/adma.201603143
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2018
Copyright_xml – notice: Copyright Royal Society of Chemistry 2018
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
DOI 10.1039/c8ta00275d
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef

Materials Research Database
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 9497
ExternalDocumentID 10_1039_C8TA00275D
c8ta00275d
GroupedDBID -JG
0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
EJD
GGIMP
GNO
H13
HZ~
H~N
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
AAYXX
AFRZK
AKMSF
ALUYA
ANBJS
CITATION
J3G
J3H
ROL
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c351t-eada36c083a2e04510e4db90374293171241cd7e1befd22c45173d8d55ddc11d3
ISSN 2050-7488
2050-7496
IngestDate Thu Jul 10 18:46:40 EDT 2025
Mon Jun 30 12:05:44 EDT 2025
Tue Jul 01 03:13:50 EDT 2025
Thu Apr 24 22:58:16 EDT 2025
Tue Dec 17 20:58:54 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c351t-eada36c083a2e04510e4db90374293171241cd7e1befd22c45173d8d55ddc11d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3431-1144
PQID 2042369532
PQPubID 2047523
PageCount 9
ParticipantIDs proquest_journals_2042369532
proquest_miscellaneous_2237517842
crossref_primary_10_1039_C8TA00275D
rsc_primary_c8ta00275d
crossref_citationtrail_10_1039_C8TA00275D
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-00-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018-00-00
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2018
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Yan (C8TA00275D-(cit44)/*[position()=1]) 2007; 88
Hong (C8TA00275D-(cit23)/*[position()=1]) 2014; 4
Armstrong (C8TA00275D-(cit26)/*[position()=1]) 2017; 33
Li (C8TA00275D-(cit29)/*[position()=1]) 2015; 7
Lee (C8TA00275D-(cit30)/*[position()=1]) 2016; 520
Wu (C8TA00275D-(cit28)/*[position()=1]) 2017; 78
Kobaku (C8TA00275D-(cit7)/*[position()=1]) 2012; 51
Zhao (C8TA00275D-(cit35)/*[position()=1]) 2017; 9
Si (C8TA00275D-(cit41)/*[position()=1]) 2015; 9
Lee (C8TA00275D-(cit43)/*[position()=1]) 2015; 494
Sapountzi (C8TA00275D-(cit24)/*[position()=1]) 2017; 238
Sheng (C8TA00275D-(cit12)/*[position()=1]) 2017; 9
Beenish (C8TA00275D-(cit25)/*[position()=1]) 2017; 789
Rahim (C8TA00275D-(cit45)/*[position()=1]) 2014; 21
Lin (C8TA00275D-(cit46)/*[position()=1]) 2009; 75
Lin (C8TA00275D-(cit4)/*[position()=1]) 2014; 4
Li (C8TA00275D-(cit34)/*[position()=1]) 2017; 36
Sheng (C8TA00275D-(cit38)/*[position()=1]) 2016; 8
Lin (C8TA00275D-(cit3)/*[position()=1]) 2016; 300
Si (C8TA00275D-(cit40)/*[position()=1]) 2014; 5
Ye (C8TA00275D-(cit16)/*[position()=1]) 2016; 283
Kim (C8TA00275D-(cit19)/*[position()=1]) 2017
Lin (C8TA00275D-(cit21)/*[position()=1]) 2017; 362
Yu (C8TA00275D-(cit10)/*[position()=1]) 2015; 496
Si (C8TA00275D-(cit42)/*[position()=1]) 2016; 28
Xue (C8TA00275D-(cit15)/*[position()=1]) 2017; 50
Bougie (C8TA00275D-(cit47)/*[position()=1]) 2015; 123
Lin (C8TA00275D-(cit1)/*[position()=1]) 2013; 6
Lin (C8TA00275D-(cit33)/*[position()=1]) 2016; 284
Li (C8TA00275D-(cit14)/*[position()=1]) 2017; 544
Lin (C8TA00275D-(cit2)/*[position()=1]) 2014; 129
Geyer (C8TA00275D-(cit9)/*[position()=1]) 2017
Zhang (C8TA00275D-(cit11)/*[position()=1]) 2013; 443
Peterson (C8TA00275D-(cit27)/*[position()=1]) 2017; 9
Lee (C8TA00275D-(cit31)/*[position()=1]) 2017; 524
Xu (C8TA00275D-(cit18)/*[position()=1]) 2017; 5
Lee (C8TA00275D-(cit20)/*[position()=1]) 2017
Feng (C8TA00275D-(cit8)/*[position()=1]) 2006; 18
Lin (C8TA00275D-(cit32)/*[position()=1]) 2014; 7
Tuteja (C8TA00275D-(cit6)/*[position()=1]) 2007; 318
Lin (C8TA00275D-(cit5)/*[position()=1]) 2015; 154
Nie (C8TA00275D-(cit17)/*[position()=1]) 2016; 6
Woo Park (C8TA00275D-(cit22)/*[position()=1]) 2017; 541
Wu (C8TA00275D-(cit36)/*[position()=1]) 2017; 314
Amini (C8TA00275D-(cit37)/*[position()=1]) 2016; 35
Chen (C8TA00275D-(cit39)/*[position()=1]) 2015; 9
Wu (C8TA00275D-(cit13)/*[position()=1]) 2018; 331
References_xml – volume: 7
  start-page: 604
  year: 2014
  ident: C8TA00275D-(cit32)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201300578
– volume: 36
  start-page: 341
  year: 2017
  ident: C8TA00275D-(cit34)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.04.035
– volume: 9
  start-page: 29302
  year: 2017
  ident: C8TA00275D-(cit35)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b08885
– volume: 5
  start-page: 10288
  year: 2017
  ident: C8TA00275D-(cit18)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC03456C
– volume: 5
  start-page: 5802
  year: 2014
  ident: C8TA00275D-(cit40)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6802
– start-page: 45534
  year: 2017
  ident: C8TA00275D-(cit19)/*[position()=1]
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.45534
– volume: 21
  start-page: 886
  year: 2014
  ident: C8TA00275D-(cit45)/*[position()=1]
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2014.10.016
– volume: 524
  start-page: 712
  year: 2017
  ident: C8TA00275D-(cit31)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2016.11.069
– volume: 33
  start-page: 9066
  year: 2017
  ident: C8TA00275D-(cit26)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.7b01978
– volume: 9
  start-page: 32248
  year: 2017
  ident: C8TA00275D-(cit27)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b09209
– volume: 520
  start-page: 145
  year: 2016
  ident: C8TA00275D-(cit30)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2016.07.019
– volume: 8
  start-page: 27218
  year: 2016
  ident: C8TA00275D-(cit38)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b09392
– volume: 9
  start-page: 3791
  year: 2015
  ident: C8TA00275D-(cit41)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn506633b
– volume: 494
  start-page: 43
  issue: 1
  year: 2015
  ident: C8TA00275D-(cit43)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(96)00213-X
– volume: 496
  start-page: 1
  year: 2015
  ident: C8TA00275D-(cit10)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2015.08.062
– volume: 443
  start-page: 170
  year: 2013
  ident: C8TA00275D-(cit11)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2013.04.062
– volume: 18
  start-page: 3063
  year: 2006
  ident: C8TA00275D-(cit8)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200501961
– volume: 88
  start-page: 501
  year: 2007
  ident: C8TA00275D-(cit44)/*[position()=1]
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2006.12.007
– start-page: 1603524
  year: 2017
  ident: C8TA00275D-(cit9)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603524
– volume: 362
  start-page: 258
  year: 2017
  ident: C8TA00275D-(cit21)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.07.052
– volume: 35
  start-page: 419
  year: 2016
  ident: C8TA00275D-(cit37)/*[position()=1]
  publication-title: Adv. Polym. Technol.
  doi: 10.1002/adv.21568
– volume: 300
  start-page: 29
  year: 2016
  ident: C8TA00275D-(cit3)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.04.119
– volume: 4
  start-page: 1456
  year: 2014
  ident: C8TA00275D-(cit4)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C3RA45371E
– volume: 75
  start-page: 1410
  year: 2009
  ident: C8TA00275D-(cit46)/*[position()=1]
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2009.02.027
– volume: 318
  start-page: 1618
  year: 2007
  ident: C8TA00275D-(cit6)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1148326
– volume: 314
  start-page: 526
  year: 2017
  ident: C8TA00275D-(cit36)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.12.010
– volume: 154
  start-page: 21
  year: 2015
  ident: C8TA00275D-(cit5)/*[position()=1]
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.04.109
– volume: 544
  start-page: 333
  year: 2017
  ident: C8TA00275D-(cit14)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2017.09.045
– start-page: 1702310
  year: 2017
  ident: C8TA00275D-(cit20)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201702310
– volume: 789
  start-page: 181
  year: 2017
  ident: C8TA00275D-(cit25)/*[position()=1]
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2017.02.025
– volume: 9
  start-page: 4070
  year: 2015
  ident: C8TA00275D-(cit39)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b00121
– volume: 238
  start-page: 392
  year: 2017
  ident: C8TA00275D-(cit24)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2016.07.062
– volume: 541
  start-page: 85
  year: 2017
  ident: C8TA00275D-(cit22)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2017.06.086
– volume: 4
  start-page: 58956
  year: 2014
  ident: C8TA00275D-(cit23)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C4RA11290C
– volume: 331
  start-page: 517
  year: 2018
  ident: C8TA00275D-(cit13)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.08.129
– volume: 283
  start-page: 304
  year: 2016
  ident: C8TA00275D-(cit16)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.07.071
– volume: 50
  start-page: 1976
  year: 2017
  ident: C8TA00275D-(cit15)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00218
– volume: 123
  start-page: 255
  year: 2015
  ident: C8TA00275D-(cit47)/*[position()=1]
  publication-title: Chem. Eng.
  doi: 10.1016/j.ces.2014.10.041
– volume: 7
  start-page: 21919
  year: 2015
  ident: C8TA00275D-(cit29)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b06509
– volume: 284
  start-page: 888
  year: 2016
  ident: C8TA00275D-(cit33)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.09.063
– volume: 129
  start-page: 25
  year: 2014
  ident: C8TA00275D-(cit2)/*[position()=1]
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.05.001
– volume: 6
  start-page: 54693
  year: 2016
  ident: C8TA00275D-(cit17)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C6RA08607A
– volume: 78
  start-page: 552
  year: 2017
  ident: C8TA00275D-(cit28)/*[position()=1]
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2017.06.036
– volume: 6
  start-page: 437
  year: 2013
  ident: C8TA00275D-(cit1)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201200837
– volume: 51
  start-page: 10109
  year: 2012
  ident: C8TA00275D-(cit7)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201202823
– volume: 9
  start-page: 15139
  year: 2017
  ident: C8TA00275D-(cit12)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b02594
– volume: 28
  start-page: 9512
  year: 2016
  ident: C8TA00275D-(cit42)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603143
SSID ssj0000800699
Score 2.4066434
Snippet Membrane contactors are one of many CO 2 capture techniques, and they combine chemical absorption and membrane separation. A hydrophobic membrane with high...
Membrane contactors are one of many CO2 capture techniques, and they combine chemical absorption and membrane separation. A hydrophobic membrane with high...
Membrane contactors are one of many CO₂ capture techniques, and they combine chemical absorption and membrane separation. A hydrophobic membrane with high...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9489
SubjectTerms Absorption
Carbon dioxide
Carbon sequestration
Contactors
droplets
durability
Electric power generation
Fabrication
Fluorination
Fluorine
Hydrophobicity
liquids
Membrane separation
Membranes
nanofibers
Polydimethylsiloxane
Polystyrene
Polystyrene resins
Porosity
Power plants
Silicone resins
Surface chemistry
toxicity
Title Environmentally sustainable, fluorine-free and waterproof breathable PDMS/PS nanofibrous membranes for carbon dioxide capture
URI https://www.proquest.com/docview/2042369532
https://www.proquest.com/docview/2237517842
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l6QUOiFdFoKBFcEHBrb1-H6M2VUGhRIqjtidrH3aJlDhVmoiHxH_jpzHjXT8KEQIulrXe2OudL7Oz429mCHmtnChwlC8sh4XC8nI7skQkY8uRdi6litDIRrbFWXA69d5f-Bedzo8Wa2mzFgfy29a4kv-RKrSBXDFK9h8kW98UGuAc5AtHkDAc_0rGwyZKjc_nX_s3TTQUTl0-3yC9LrPyVaa_EnzmJcVwCRaiQGvxUxk4NT7-MIFBjCf9ghcwILFCXuwiW8BOGjRhyUSUfCUAKGq2_DJTyBW7rnKRbDFtF_gYfP2-rOrJHfQHOjSoulKmGteBh6Xvvho6cnVrN__lzIIJvzLOg-YrUmGda3V5zs3KWzIUZty63BgSgWk3Dg2jfTUHCh0mFVu1ZKOYMTZKkdm-jflP9a-ydpuujFtp9aAFXma3VHTs6ZpFZrmPPc0P_m0psV3MxCqjNcetu6-aBbMiCZx9TE-mo1GaDC-SHbLLYKPCumR3MEzejWo_H1rkQVnGtB56lSXXjQ-b29-2i5rNzs6qqkRTWjzJfXLPyJMONO4ekE5WPCR3WwksH5HvvyCQthD4lt7CHwUp0wZ_tMEfRfwdjie0hT5ao48CUKhGHzXoowZ9j8n0ZJgcnVqmoIclXd9ZW6C1uBtIsPo5yzCxkZ15SsSYAgmsTicEW9ORKswckeWKMQk9QldFyveVko6j3D3SLZZF9oRQTGnhKo87scO9PBRcShHlIhYxszlnQY-8qaYzlSbbPRZdmacl68KN06MoGZRTf9wjr-q-1zrHy9Ze-5VUUqMDblKGtLIg9l3WIy_rywBa_OwGkwQTloIBHsKLRB702QNp1s9ohP_0z_d-Ru7gH0V7_vZJd73aZM_BFl6LFwZuPwGVLr4d
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Environmentally+sustainable%2C+fluorine-free+and+waterproof+breathable+PDMS%2FPS+nanofibrous+membranes+for+carbon+dioxide+capture&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Yi-Feng%2C+Lin&rft.au=Wen-Wen%2C+Wang&rft.au=Chia-Yu%2C+Chang&rft.date=2018&rft.pub=Royal+Society+of+Chemistry&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=6&rft.issue=20&rft.spage=9489&rft.epage=9497&rft_id=info:doi/10.1039%2Fc8ta00275d&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon