Environmentally sustainable, fluorine-free and waterproof breathable PDMS/PS nanofibrous membranes for carbon dioxide capture
Membrane contactors are one of many CO 2 capture techniques, and they combine chemical absorption and membrane separation. A hydrophobic membrane with high porosity, i.e. , a waterproof breathable membrane, is necessary in the CO 2 absorption process of membrane contactors. Fluorinated hydrophobic m...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 6; no. 2; pp. 9489 - 9497 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Membrane contactors are one of many CO
2
capture techniques, and they combine chemical absorption and membrane separation. A hydrophobic membrane with high porosity,
i.e.
, a waterproof breathable membrane, is necessary in the CO
2
absorption process of membrane contactors. Fluorinated hydrophobic membranes are commonly used in the CO
2
absorption process of membrane contactors. However, fluorinated hydrophobic membranes are toxic and harmful to our environment. Consequently, in this study, environmentally friendly, fluorine-free and waterproof breathable polydimethylsiloxane (PDMS)/polystyrene (PS) nanofibrous membranes with a high porosity of 89% are successfully fabricated using an electrospinning process. Compared with pristine PS nanofibrous membranes, PDMS doping in PS nanofibrous membranes successfully prevents liquid droplets from adhering on their surfaces, resulting in the successful fabrication of an anti-wetting membrane surface. The CO
2
absorption flux of the as-prepared PDMS/PS nanofibrous membrane is approximately 1.85 mmol m
−2
s
−1
, which is comparable with other previously reported membranes. Furthermore, the fluorine-free hydrophobic PDMS/PS nanofibrous membranes exhibited not only durability but also reusability. As a result, the environmentally friendly, fluorine-free and waterproof breathable PDMS/PS nanofibrous membrane is promising for use in large-scale CO
2
absorption applications, such as in membrane contactors for post-combustion CO
2
capture in power plants.
The as-prepared PDMS/PS nanofibrous membranes exhibited durability and reusability in the CO
2
absorption process for membrane contactor applications. |
---|---|
AbstractList | Membrane contactors are one of many CO
2
capture techniques, and they combine chemical absorption and membrane separation. A hydrophobic membrane with high porosity,
i.e.
, a waterproof breathable membrane, is necessary in the CO
2
absorption process of membrane contactors. Fluorinated hydrophobic membranes are commonly used in the CO
2
absorption process of membrane contactors. However, fluorinated hydrophobic membranes are toxic and harmful to our environment. Consequently, in this study, environmentally friendly, fluorine-free and waterproof breathable polydimethylsiloxane (PDMS)/polystyrene (PS) nanofibrous membranes with a high porosity of 89% are successfully fabricated using an electrospinning process. Compared with pristine PS nanofibrous membranes, PDMS doping in PS nanofibrous membranes successfully prevents liquid droplets from adhering on their surfaces, resulting in the successful fabrication of an anti-wetting membrane surface. The CO
2
absorption flux of the as-prepared PDMS/PS nanofibrous membrane is approximately 1.85 mmol m
−2
s
−1
, which is comparable with other previously reported membranes. Furthermore, the fluorine-free hydrophobic PDMS/PS nanofibrous membranes exhibited not only durability but also reusability. As a result, the environmentally friendly, fluorine-free and waterproof breathable PDMS/PS nanofibrous membrane is promising for use in large-scale CO
2
absorption applications, such as in membrane contactors for post-combustion CO
2
capture in power plants. Membrane contactors are one of many CO 2 capture techniques, and they combine chemical absorption and membrane separation. A hydrophobic membrane with high porosity, i.e. , a waterproof breathable membrane, is necessary in the CO 2 absorption process of membrane contactors. Fluorinated hydrophobic membranes are commonly used in the CO 2 absorption process of membrane contactors. However, fluorinated hydrophobic membranes are toxic and harmful to our environment. Consequently, in this study, environmentally friendly, fluorine-free and waterproof breathable polydimethylsiloxane (PDMS)/polystyrene (PS) nanofibrous membranes with a high porosity of 89% are successfully fabricated using an electrospinning process. Compared with pristine PS nanofibrous membranes, PDMS doping in PS nanofibrous membranes successfully prevents liquid droplets from adhering on their surfaces, resulting in the successful fabrication of an anti-wetting membrane surface. The CO 2 absorption flux of the as-prepared PDMS/PS nanofibrous membrane is approximately 1.85 mmol m −2 s −1 , which is comparable with other previously reported membranes. Furthermore, the fluorine-free hydrophobic PDMS/PS nanofibrous membranes exhibited not only durability but also reusability. As a result, the environmentally friendly, fluorine-free and waterproof breathable PDMS/PS nanofibrous membrane is promising for use in large-scale CO 2 absorption applications, such as in membrane contactors for post-combustion CO 2 capture in power plants. The as-prepared PDMS/PS nanofibrous membranes exhibited durability and reusability in the CO 2 absorption process for membrane contactor applications. Membrane contactors are one of many CO2 capture techniques, and they combine chemical absorption and membrane separation. A hydrophobic membrane with high porosity, i.e., a waterproof breathable membrane, is necessary in the CO2 absorption process of membrane contactors. Fluorinated hydrophobic membranes are commonly used in the CO2 absorption process of membrane contactors. However, fluorinated hydrophobic membranes are toxic and harmful to our environment. Consequently, in this study, environmentally friendly, fluorine-free and waterproof breathable polydimethylsiloxane (PDMS)/polystyrene (PS) nanofibrous membranes with a high porosity of 89% are successfully fabricated using an electrospinning process. Compared with pristine PS nanofibrous membranes, PDMS doping in PS nanofibrous membranes successfully prevents liquid droplets from adhering on their surfaces, resulting in the successful fabrication of an anti-wetting membrane surface. The CO2 absorption flux of the as-prepared PDMS/PS nanofibrous membrane is approximately 1.85 mmol m−2 s−1, which is comparable with other previously reported membranes. Furthermore, the fluorine-free hydrophobic PDMS/PS nanofibrous membranes exhibited not only durability but also reusability. As a result, the environmentally friendly, fluorine-free and waterproof breathable PDMS/PS nanofibrous membrane is promising for use in large-scale CO2 absorption applications, such as in membrane contactors for post-combustion CO2 capture in power plants. Membrane contactors are one of many CO₂ capture techniques, and they combine chemical absorption and membrane separation. A hydrophobic membrane with high porosity, i.e., a waterproof breathable membrane, is necessary in the CO₂ absorption process of membrane contactors. Fluorinated hydrophobic membranes are commonly used in the CO₂ absorption process of membrane contactors. However, fluorinated hydrophobic membranes are toxic and harmful to our environment. Consequently, in this study, environmentally friendly, fluorine-free and waterproof breathable polydimethylsiloxane (PDMS)/polystyrene (PS) nanofibrous membranes with a high porosity of 89% are successfully fabricated using an electrospinning process. Compared with pristine PS nanofibrous membranes, PDMS doping in PS nanofibrous membranes successfully prevents liquid droplets from adhering on their surfaces, resulting in the successful fabrication of an anti-wetting membrane surface. The CO₂ absorption flux of the as-prepared PDMS/PS nanofibrous membrane is approximately 1.85 mmol m⁻² s⁻¹, which is comparable with other previously reported membranes. Furthermore, the fluorine-free hydrophobic PDMS/PS nanofibrous membranes exhibited not only durability but also reusability. As a result, the environmentally friendly, fluorine-free and waterproof breathable PDMS/PS nanofibrous membrane is promising for use in large-scale CO₂ absorption applications, such as in membrane contactors for post-combustion CO₂ capture in power plants. |
Author | Wang, Wen-Wen Lin, Yi-Feng Chang, Chia-Yu |
AuthorAffiliation | R&D Center for Membrane Technology Department of Chemical Engineering Chung Yuan Christian University |
AuthorAffiliation_xml | – sequence: 0 name: Chung Yuan Christian University – sequence: 0 name: Department of Chemical Engineering – sequence: 0 name: R&D Center for Membrane Technology |
Author_xml | – sequence: 1 givenname: Yi-Feng surname: Lin fullname: Lin, Yi-Feng – sequence: 2 givenname: Wen-Wen surname: Wang fullname: Wang, Wen-Wen – sequence: 3 givenname: Chia-Yu surname: Chang fullname: Chang, Chia-Yu |
BookMark | eNptkc1LHEEQxRtR0KgX74GGXIJktD9mdmaOspoPUCJozkNNdw1pmeneVPckevB_tzcrCmJdqor6veLB-8C2ffDI2JEUJ1Lo9tQ0CYRQdWW32J4SlSjqsl1sv8xNs8sOY7wTuRohFm27xx4v_F9HwU_oE4zjA49zTOA89CN-4cM4B3Iei4EQOXjL_0FCWlEIA-8JIf1eg_z6_Orm9PqGe_BhcD2FOfIJp57AY-RDIG6A-uC5deHeWczrKs2EB2xngDHi4XPfZ7--XtwuvxeXP7_9WJ5dFkZXMhUIFvTCiEaDQlFWUmBp-1boulStlrVUpTS2RtnjYJUymai1bWxVWWuktHqffd78zc7_zBhTN7locByzv-y1U0rXWdOUKqOf3qB3YSaf3XVK5PuirfSaEhvKUIiRcOiMS5Bc8InAjZ0U3TqSbtncnv2P5DxLjt9IVuQmoIf34Y8bmKJ54V7z1U_u8JkV |
CitedBy_id | crossref_primary_10_1002_adma_202106570 crossref_primary_10_1002_mame_202200613 crossref_primary_10_1016_j_jenvman_2024_120026 crossref_primary_10_1016_j_ijhydene_2024_09_431 crossref_primary_10_3390_mi12030267 crossref_primary_10_1557_jmr_2020_88 crossref_primary_10_1002_marc_201800931 crossref_primary_10_1021_acsomega_2c03602 crossref_primary_10_1002_chem_202402855 crossref_primary_10_1021_acsabm_2c00447 crossref_primary_10_1080_15583724_2022_2067868 crossref_primary_10_1016_j_memsci_2024_123385 crossref_primary_10_1002_admi_201901013 crossref_primary_10_1016_j_seppur_2023_124845 crossref_primary_10_1021_acsami_9b20081 crossref_primary_10_1021_acsabm_9b00875 crossref_primary_10_1080_15422119_2024_2328080 crossref_primary_10_1039_D1TA08862A crossref_primary_10_3390_biomimetics7040217 crossref_primary_10_1080_15422119_2019_1610975 crossref_primary_10_1016_j_cej_2024_151998 crossref_primary_10_1016_j_seppur_2019_115721 crossref_primary_10_1016_j_seppur_2021_119720 crossref_primary_10_1021_acsaem_0c01603 crossref_primary_10_1007_s10311_020_01133_3 crossref_primary_10_1016_j_memsci_2022_120518 crossref_primary_10_1002_mame_202100757 crossref_primary_10_1016_j_optlastec_2022_108171 crossref_primary_10_1021_acsami_3c02397 crossref_primary_10_1080_00405000_2023_2201061 crossref_primary_10_1016_j_porgcoat_2023_108126 crossref_primary_10_1071_CH18447 crossref_primary_10_1021_acs_langmuir_4c01405 crossref_primary_10_1002_adfm_202305411 crossref_primary_10_1016_j_apenergy_2024_123305 crossref_primary_10_1016_j_desal_2022_116044 crossref_primary_10_1016_j_jcis_2021_05_171 crossref_primary_10_1016_j_mattod_2021_03_016 crossref_primary_10_1016_j_desal_2022_115950 crossref_primary_10_1016_j_inoche_2024_112989 |
Cites_doi | 10.1002/cssc.201300578 10.1016/j.nanoen.2017.04.035 10.1021/acsami.7b08885 10.1039/C7TC03456C 10.1038/ncomms6802 10.1002/app.45534 10.1016/j.jngse.2014.10.016 10.1016/j.memsci.2016.11.069 10.1021/acs.langmuir.7b01978 10.1021/acsami.7b09209 10.1016/j.memsci.2016.07.019 10.1021/acsami.6b09392 10.1021/nn506633b 10.1016/S0376-7388(96)00213-X 10.1016/j.memsci.2015.08.062 10.1016/j.memsci.2013.04.062 10.1002/adma.200501961 10.1016/j.fuproc.2006.12.007 10.1002/adma.201603524 10.1016/j.jpowsour.2017.07.052 10.1002/adv.21568 10.1016/j.cej.2016.04.119 10.1039/C3RA45371E 10.1016/j.chemosphere.2009.02.027 10.1126/science.1148326 10.1016/j.cej.2016.12.010 10.1016/j.apenergy.2015.04.109 10.1016/j.memsci.2017.09.045 10.1002/adfm.201702310 10.1016/j.jelechem.2017.02.025 10.1021/acsnano.5b00121 10.1016/j.snb.2016.07.062 10.1016/j.memsci.2017.06.086 10.1039/C4RA11290C 10.1016/j.cej.2017.08.129 10.1016/j.cej.2015.07.071 10.1021/acs.accounts.7b00218 10.1016/j.ces.2014.10.041 10.1021/acsami.5b06509 10.1016/j.cej.2015.09.063 10.1016/j.apenergy.2014.05.001 10.1039/C6RA08607A 10.1016/j.jtice.2017.06.036 10.1002/cssc.201200837 10.1002/anie.201202823 10.1021/acsami.7b02594 10.1002/adma.201603143 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2018 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2018 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
DOI | 10.1039/c8ta00275d |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Materials Research Database AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 9497 |
ExternalDocumentID | 10_1039_C8TA00275D c8ta00275d |
GroupedDBID | -JG 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFVBQ AGEGJ AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- EJD GGIMP GNO H13 HZ~ H~N J3I O-G O9- R7C RAOCF RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ AAYXX AFRZK AKMSF ALUYA ANBJS CITATION J3G J3H ROL 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c351t-eada36c083a2e04510e4db90374293171241cd7e1befd22c45173d8d55ddc11d3 |
ISSN | 2050-7488 2050-7496 |
IngestDate | Thu Jul 10 18:46:40 EDT 2025 Mon Jun 30 12:05:44 EDT 2025 Tue Jul 01 03:13:50 EDT 2025 Thu Apr 24 22:58:16 EDT 2025 Tue Dec 17 20:58:54 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c351t-eada36c083a2e04510e4db90374293171241cd7e1befd22c45173d8d55ddc11d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3431-1144 |
PQID | 2042369532 |
PQPubID | 2047523 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2042369532 proquest_miscellaneous_2237517842 crossref_primary_10_1039_C8TA00275D rsc_primary_c8ta00275d crossref_citationtrail_10_1039_C8TA00275D |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-00-00 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – year: 2018 text: 2018-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2018 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Yan (C8TA00275D-(cit44)/*[position()=1]) 2007; 88 Hong (C8TA00275D-(cit23)/*[position()=1]) 2014; 4 Armstrong (C8TA00275D-(cit26)/*[position()=1]) 2017; 33 Li (C8TA00275D-(cit29)/*[position()=1]) 2015; 7 Lee (C8TA00275D-(cit30)/*[position()=1]) 2016; 520 Wu (C8TA00275D-(cit28)/*[position()=1]) 2017; 78 Kobaku (C8TA00275D-(cit7)/*[position()=1]) 2012; 51 Zhao (C8TA00275D-(cit35)/*[position()=1]) 2017; 9 Si (C8TA00275D-(cit41)/*[position()=1]) 2015; 9 Lee (C8TA00275D-(cit43)/*[position()=1]) 2015; 494 Sapountzi (C8TA00275D-(cit24)/*[position()=1]) 2017; 238 Sheng (C8TA00275D-(cit12)/*[position()=1]) 2017; 9 Beenish (C8TA00275D-(cit25)/*[position()=1]) 2017; 789 Rahim (C8TA00275D-(cit45)/*[position()=1]) 2014; 21 Lin (C8TA00275D-(cit46)/*[position()=1]) 2009; 75 Lin (C8TA00275D-(cit4)/*[position()=1]) 2014; 4 Li (C8TA00275D-(cit34)/*[position()=1]) 2017; 36 Sheng (C8TA00275D-(cit38)/*[position()=1]) 2016; 8 Lin (C8TA00275D-(cit3)/*[position()=1]) 2016; 300 Si (C8TA00275D-(cit40)/*[position()=1]) 2014; 5 Ye (C8TA00275D-(cit16)/*[position()=1]) 2016; 283 Kim (C8TA00275D-(cit19)/*[position()=1]) 2017 Lin (C8TA00275D-(cit21)/*[position()=1]) 2017; 362 Yu (C8TA00275D-(cit10)/*[position()=1]) 2015; 496 Si (C8TA00275D-(cit42)/*[position()=1]) 2016; 28 Xue (C8TA00275D-(cit15)/*[position()=1]) 2017; 50 Bougie (C8TA00275D-(cit47)/*[position()=1]) 2015; 123 Lin (C8TA00275D-(cit1)/*[position()=1]) 2013; 6 Lin (C8TA00275D-(cit33)/*[position()=1]) 2016; 284 Li (C8TA00275D-(cit14)/*[position()=1]) 2017; 544 Lin (C8TA00275D-(cit2)/*[position()=1]) 2014; 129 Geyer (C8TA00275D-(cit9)/*[position()=1]) 2017 Zhang (C8TA00275D-(cit11)/*[position()=1]) 2013; 443 Peterson (C8TA00275D-(cit27)/*[position()=1]) 2017; 9 Lee (C8TA00275D-(cit31)/*[position()=1]) 2017; 524 Xu (C8TA00275D-(cit18)/*[position()=1]) 2017; 5 Lee (C8TA00275D-(cit20)/*[position()=1]) 2017 Feng (C8TA00275D-(cit8)/*[position()=1]) 2006; 18 Lin (C8TA00275D-(cit32)/*[position()=1]) 2014; 7 Tuteja (C8TA00275D-(cit6)/*[position()=1]) 2007; 318 Lin (C8TA00275D-(cit5)/*[position()=1]) 2015; 154 Nie (C8TA00275D-(cit17)/*[position()=1]) 2016; 6 Woo Park (C8TA00275D-(cit22)/*[position()=1]) 2017; 541 Wu (C8TA00275D-(cit36)/*[position()=1]) 2017; 314 Amini (C8TA00275D-(cit37)/*[position()=1]) 2016; 35 Chen (C8TA00275D-(cit39)/*[position()=1]) 2015; 9 Wu (C8TA00275D-(cit13)/*[position()=1]) 2018; 331 |
References_xml | – volume: 7 start-page: 604 year: 2014 ident: C8TA00275D-(cit32)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201300578 – volume: 36 start-page: 341 year: 2017 ident: C8TA00275D-(cit34)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.04.035 – volume: 9 start-page: 29302 year: 2017 ident: C8TA00275D-(cit35)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b08885 – volume: 5 start-page: 10288 year: 2017 ident: C8TA00275D-(cit18)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C7TC03456C – volume: 5 start-page: 5802 year: 2014 ident: C8TA00275D-(cit40)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms6802 – start-page: 45534 year: 2017 ident: C8TA00275D-(cit19)/*[position()=1] publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.45534 – volume: 21 start-page: 886 year: 2014 ident: C8TA00275D-(cit45)/*[position()=1] publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2014.10.016 – volume: 524 start-page: 712 year: 2017 ident: C8TA00275D-(cit31)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2016.11.069 – volume: 33 start-page: 9066 year: 2017 ident: C8TA00275D-(cit26)/*[position()=1] publication-title: Langmuir doi: 10.1021/acs.langmuir.7b01978 – volume: 9 start-page: 32248 year: 2017 ident: C8TA00275D-(cit27)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b09209 – volume: 520 start-page: 145 year: 2016 ident: C8TA00275D-(cit30)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2016.07.019 – volume: 8 start-page: 27218 year: 2016 ident: C8TA00275D-(cit38)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b09392 – volume: 9 start-page: 3791 year: 2015 ident: C8TA00275D-(cit41)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn506633b – volume: 494 start-page: 43 issue: 1 year: 2015 ident: C8TA00275D-(cit43)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(96)00213-X – volume: 496 start-page: 1 year: 2015 ident: C8TA00275D-(cit10)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2015.08.062 – volume: 443 start-page: 170 year: 2013 ident: C8TA00275D-(cit11)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2013.04.062 – volume: 18 start-page: 3063 year: 2006 ident: C8TA00275D-(cit8)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200501961 – volume: 88 start-page: 501 year: 2007 ident: C8TA00275D-(cit44)/*[position()=1] publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2006.12.007 – start-page: 1603524 year: 2017 ident: C8TA00275D-(cit9)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201603524 – volume: 362 start-page: 258 year: 2017 ident: C8TA00275D-(cit21)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.07.052 – volume: 35 start-page: 419 year: 2016 ident: C8TA00275D-(cit37)/*[position()=1] publication-title: Adv. Polym. Technol. doi: 10.1002/adv.21568 – volume: 300 start-page: 29 year: 2016 ident: C8TA00275D-(cit3)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.04.119 – volume: 4 start-page: 1456 year: 2014 ident: C8TA00275D-(cit4)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C3RA45371E – volume: 75 start-page: 1410 year: 2009 ident: C8TA00275D-(cit46)/*[position()=1] publication-title: Chemosphere doi: 10.1016/j.chemosphere.2009.02.027 – volume: 318 start-page: 1618 year: 2007 ident: C8TA00275D-(cit6)/*[position()=1] publication-title: Science doi: 10.1126/science.1148326 – volume: 314 start-page: 526 year: 2017 ident: C8TA00275D-(cit36)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.12.010 – volume: 154 start-page: 21 year: 2015 ident: C8TA00275D-(cit5)/*[position()=1] publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.04.109 – volume: 544 start-page: 333 year: 2017 ident: C8TA00275D-(cit14)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2017.09.045 – start-page: 1702310 year: 2017 ident: C8TA00275D-(cit20)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201702310 – volume: 789 start-page: 181 year: 2017 ident: C8TA00275D-(cit25)/*[position()=1] publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2017.02.025 – volume: 9 start-page: 4070 year: 2015 ident: C8TA00275D-(cit39)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.5b00121 – volume: 238 start-page: 392 year: 2017 ident: C8TA00275D-(cit24)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2016.07.062 – volume: 541 start-page: 85 year: 2017 ident: C8TA00275D-(cit22)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2017.06.086 – volume: 4 start-page: 58956 year: 2014 ident: C8TA00275D-(cit23)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C4RA11290C – volume: 331 start-page: 517 year: 2018 ident: C8TA00275D-(cit13)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.08.129 – volume: 283 start-page: 304 year: 2016 ident: C8TA00275D-(cit16)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.07.071 – volume: 50 start-page: 1976 year: 2017 ident: C8TA00275D-(cit15)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00218 – volume: 123 start-page: 255 year: 2015 ident: C8TA00275D-(cit47)/*[position()=1] publication-title: Chem. Eng. doi: 10.1016/j.ces.2014.10.041 – volume: 7 start-page: 21919 year: 2015 ident: C8TA00275D-(cit29)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b06509 – volume: 284 start-page: 888 year: 2016 ident: C8TA00275D-(cit33)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.09.063 – volume: 129 start-page: 25 year: 2014 ident: C8TA00275D-(cit2)/*[position()=1] publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.05.001 – volume: 6 start-page: 54693 year: 2016 ident: C8TA00275D-(cit17)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C6RA08607A – volume: 78 start-page: 552 year: 2017 ident: C8TA00275D-(cit28)/*[position()=1] publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2017.06.036 – volume: 6 start-page: 437 year: 2013 ident: C8TA00275D-(cit1)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201200837 – volume: 51 start-page: 10109 year: 2012 ident: C8TA00275D-(cit7)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201202823 – volume: 9 start-page: 15139 year: 2017 ident: C8TA00275D-(cit12)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b02594 – volume: 28 start-page: 9512 year: 2016 ident: C8TA00275D-(cit42)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201603143 |
SSID | ssj0000800699 |
Score | 2.4066434 |
Snippet | Membrane contactors are one of many CO
2
capture techniques, and they combine chemical absorption and membrane separation. A hydrophobic membrane with high... Membrane contactors are one of many CO2 capture techniques, and they combine chemical absorption and membrane separation. A hydrophobic membrane with high... Membrane contactors are one of many CO₂ capture techniques, and they combine chemical absorption and membrane separation. A hydrophobic membrane with high... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 9489 |
SubjectTerms | Absorption Carbon dioxide Carbon sequestration Contactors droplets durability Electric power generation Fabrication Fluorination Fluorine Hydrophobicity liquids Membrane separation Membranes nanofibers Polydimethylsiloxane Polystyrene Polystyrene resins Porosity Power plants Silicone resins Surface chemistry toxicity |
Title | Environmentally sustainable, fluorine-free and waterproof breathable PDMS/PS nanofibrous membranes for carbon dioxide capture |
URI | https://www.proquest.com/docview/2042369532 https://www.proquest.com/docview/2237517842 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l6QUOiFdFoKBFcEHBrb1-H6M2VUGhRIqjtidrH3aJlDhVmoiHxH_jpzHjXT8KEQIulrXe2OudL7Oz429mCHmtnChwlC8sh4XC8nI7skQkY8uRdi6litDIRrbFWXA69d5f-Bedzo8Wa2mzFgfy29a4kv-RKrSBXDFK9h8kW98UGuAc5AtHkDAc_0rGwyZKjc_nX_s3TTQUTl0-3yC9LrPyVaa_EnzmJcVwCRaiQGvxUxk4NT7-MIFBjCf9ghcwILFCXuwiW8BOGjRhyUSUfCUAKGq2_DJTyBW7rnKRbDFtF_gYfP2-rOrJHfQHOjSoulKmGteBh6Xvvho6cnVrN__lzIIJvzLOg-YrUmGda3V5zs3KWzIUZty63BgSgWk3Dg2jfTUHCh0mFVu1ZKOYMTZKkdm-jflP9a-ydpuujFtp9aAFXma3VHTs6ZpFZrmPPc0P_m0psV3MxCqjNcetu6-aBbMiCZx9TE-mo1GaDC-SHbLLYKPCumR3MEzejWo_H1rkQVnGtB56lSXXjQ-b29-2i5rNzs6qqkRTWjzJfXLPyJMONO4ekE5WPCR3WwksH5HvvyCQthD4lt7CHwUp0wZ_tMEfRfwdjie0hT5ao48CUKhGHzXoowZ9j8n0ZJgcnVqmoIclXd9ZW6C1uBtIsPo5yzCxkZ15SsSYAgmsTicEW9ORKswckeWKMQk9QldFyveVko6j3D3SLZZF9oRQTGnhKo87scO9PBRcShHlIhYxszlnQY-8qaYzlSbbPRZdmacl68KN06MoGZRTf9wjr-q-1zrHy9Ze-5VUUqMDblKGtLIg9l3WIy_rywBa_OwGkwQTloIBHsKLRB702QNp1s9ohP_0z_d-Ru7gH0V7_vZJd73aZM_BFl6LFwZuPwGVLr4d |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Environmentally+sustainable%2C+fluorine-free+and+waterproof+breathable+PDMS%2FPS+nanofibrous+membranes+for+carbon+dioxide+capture&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Yi-Feng%2C+Lin&rft.au=Wen-Wen%2C+Wang&rft.au=Chia-Yu%2C+Chang&rft.date=2018&rft.pub=Royal+Society+of+Chemistry&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=6&rft.issue=20&rft.spage=9489&rft.epage=9497&rft_id=info:doi/10.1039%2Fc8ta00275d&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |