Enhanced Motor Imagery Based Brain- Computer Interface via FES and VR for Lower Limbs
Motor imagery based brain-computer interface (MI-BCI) has been studied for improvement of patients' motor function in neurorehabilitation and motor assistance. However, the difficulties in performing imagery tasks limit its application. To overcome the limitation, an enhanced MI-BCI based on fu...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 28; no. 8; pp. 1846 - 1855 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.08.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Motor imagery based brain-computer interface (MI-BCI) has been studied for improvement of patients' motor function in neurorehabilitation and motor assistance. However, the difficulties in performing imagery tasks limit its application. To overcome the limitation, an enhanced MI-BCI based on functional electrical stimulation (FES) and virtual reality (VR) is proposed in this study. On one hand, the FES is used to stimulate the subjects' lower limbs before their imagination to make them experience the muscles' contraction and improve their attention on the lower limbs, by which it is supposed that the subjects' motor imagery (MI) abilities can be enhanced. On the other hand, a ball-kicking movement scenario from the first-person perspective is designed to provide visual guidance for performing MI tasks. The combination of FES and VR can be used to reduce the difficulties in performing MI tasks and improve classification accuracy. Finally, the comparison experiments were conducted on twelve healthy subjects to validate the performance of the enhanced MI-BCI. The results show that the classification performance can be improved significantly by using the proposed MI-BCI in terms of the classification accuracy (ACC), the area under the curve (AUC) and the F1 score (paired t-test, p <; 0.05 ). |
---|---|
AbstractList | Motor imagery based brain-computer interface (MI-BCI) has been studied for improvement of patients’ motor function in neurorehabilitation and motor assistance. However, the difficulties in performing imagery tasks limit its application. To overcome the limitation, an enhanced MI-BCI based on functional electrical stimulation (FES) and virtual reality (VR) is proposed in this study. On one hand, the FES is used to stimulate the subjects’ lower limbs before their imagination to make them experience the muscles’ contraction and improve their attention on the lower limbs, by which it is supposed that the subjects’ motor imagery (MI) abilities can be enhanced. On the other hand, a ball-kicking movement scenario from the first-person perspective is designed to provide visual guidance for performing MI tasks. The combination of FES and VR can be used to reduce the difficulties in performing MI tasks and improve classification accuracy. Finally, the comparison experiments were conducted on twelve healthy subjects to validate the performance of the enhanced MI-BCI. The results show that the classification performance can be improved significantly by using the proposed MI-BCI in terms of the classification accuracy (ACC), the area under the curve (AUC) and the F1 score (paired t-test, [Formula Omitted]). Motor imagery based brain-computer interface (MI-BCI) has been studied for improvement of patients' motor function in neurorehabilitation and motor assistance. However, the difficulties in performing imagery tasks limit its application. To overcome the limitation, an enhanced MI-BCI based on functional electrical stimulation (FES) and virtual reality (VR) is proposed in this study. On one hand, the FES is used to stimulate the subjects' lower limbs before their imagination to make them experience the muscles' contraction and improve their attention on the lower limbs, by which it is supposed that the subjects' motor imagery (MI) abilities can be enhanced. On the other hand, a ball-kicking movement scenario from the first-person perspective is designed to provide visual guidance for performing MI tasks. The combination of FES and VR can be used to reduce the difficulties in performing MI tasks and improve classification accuracy. Finally, the comparison experiments were conducted on twelve healthy subjects to validate the performance of the enhanced MI-BCI. The results show that the classification performance can be improved significantly by using the proposed MI-BCI in terms of the classification accuracy (ACC), the area under the curve (AUC) and the F1 score (paired t-test, p <; 0.05 ). Motor imagery based brain-computer interface (MI-BCI) has been studied for improvement of patients' motor function in neurorehabilitation and motor assistance. However, the difficulties in performing imagery tasks limit its application. To overcome the limitation, an enhanced MI-BCI based on functional electrical stimulation (FES) and virtual reality (VR) is proposed in this study. On one hand, the FES is used to stimulate the subjects' lower limbs before their imagination to make them experience the muscles' contraction and improve their attention on the lower limbs, by which it is supposed that the subjects' motor imagery (MI) abilities can be enhanced. On the other hand, a ball-kicking movement scenario from the first-person perspective is designed to provide visual guidance for performing MI tasks. The combination of FES and VR can be used to reduce the difficulties in performing MI tasks and improve classification accuracy. Finally, the comparison experiments were conducted on twelve healthy subjects to validate the performance of the enhanced MI-BCI. The results show that the classification performance can be improved significantly by using the proposed MI-BCI in terms of the classification accuracy (ACC), the area under the curve (AUC) and the F1 score (paired t-test, ). Motor imagery based brain-computer interface (MI-BCI) has been studied for improvement of patients' motor function in neurorehabilitation and motor assistance. However, the difficulties in performing imagery tasks limit its application. To overcome the limitation, an enhanced MI-BCI based on functional electrical stimulation (FES) and virtual reality (VR) is proposed in this study. On one hand, the FES is used to stimulate the subjects' lower limbs before their imagination to make them experience the muscles' contraction and improve their attention on the lower limbs, by which it is supposed that the subjects' motor imagery (MI) abilities can be enhanced. On the other hand, a ball-kicking movement scenario from the first-person perspective is designed to provide visual guidance for performing MI tasks. The combination of FES and VR can be used to reduce the difficulties in performing MI tasks and improve classification accuracy. Finally, the comparison experiments were conducted on twelve healthy subjects to validate the performance of the enhanced MI-BCI. The results show that the classification performance can be improved significantly by using the proposed MI-BCI in terms of the classification accuracy (ACC), the area under the curve (AUC) and the F1 score (paired t-test, ).Motor imagery based brain-computer interface (MI-BCI) has been studied for improvement of patients' motor function in neurorehabilitation and motor assistance. However, the difficulties in performing imagery tasks limit its application. To overcome the limitation, an enhanced MI-BCI based on functional electrical stimulation (FES) and virtual reality (VR) is proposed in this study. On one hand, the FES is used to stimulate the subjects' lower limbs before their imagination to make them experience the muscles' contraction and improve their attention on the lower limbs, by which it is supposed that the subjects' motor imagery (MI) abilities can be enhanced. On the other hand, a ball-kicking movement scenario from the first-person perspective is designed to provide visual guidance for performing MI tasks. The combination of FES and VR can be used to reduce the difficulties in performing MI tasks and improve classification accuracy. Finally, the comparison experiments were conducted on twelve healthy subjects to validate the performance of the enhanced MI-BCI. The results show that the classification performance can be improved significantly by using the proposed MI-BCI in terms of the classification accuracy (ACC), the area under the curve (AUC) and the F1 score (paired t-test, ). |
Author | Shi, Weiguo Wang, Weiqun Ren, Shixin Liang, Xu Hou, Zeng-Guang Wang, Jiaxing |
Author_xml | – sequence: 1 givenname: Shixin surname: Ren fullname: Ren, Shixin email: renshixin2015@ia.ac.cn organization: State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China – sequence: 2 givenname: Weiqun orcidid: 0000-0001-6981-297X surname: Wang fullname: Wang, Weiqun email: weiqun.wang@ia.ac.cn organization: State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China – sequence: 3 givenname: Zeng-Guang orcidid: 0000-0002-1534-5840 surname: Hou fullname: Hou, Zeng-Guang email: zengguang.hou@ia.ac.cn organization: State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China – sequence: 4 givenname: Xu orcidid: 0000-0002-9963-3662 surname: Liang fullname: Liang, Xu email: liangxu2013@ia.ac.cn organization: State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China – sequence: 5 givenname: Jiaxing orcidid: 0000-0002-6061-3445 surname: Wang fullname: Wang, Jiaxing email: wangjiaxing2016@ia.ac.cn organization: State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China – sequence: 6 givenname: Weiguo surname: Shi fullname: Shi, Weiguo email: shiweiguo2017@ia.ac.cn organization: State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32746291$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1v1DAQhi1URD_gD4CELHHhksXjj2R9pKstVFpA6gdXy4nHkGpjb-0E1H-Pw2459MDFtsbPMxrNe0qOQgxIyGtgCwCmP9x8vb5aLzjjbCEYA63ZM3ICSi0rxoEdzW8hKyk4OyanOd8VpqlV84IcC97Imms4Ibfr8NOGDh39EseY6OVgf2B6oOc2l9p5sn2o6CoOu2nE8hvK6W2H9Fdv6cX6mtrg6Pcr6ou6ib8LsumHNr8kz73dZnx1uM_I7cX6ZvW52nz7dLn6uKk6oWCsUEsHbcdd7VGythESOZcenOhc42qFS-DaN95ycGXillvUoJnHVtfcsVqckff7vrsU7yfMoxn63OF2awPGKRsuBRONUnxG3z1B7-KUQplupoAtlVSqUG8P1NQO6Mwu9YNND-ZxYQVY7oEuxZwTetP1ox37GMayq60BZuZszN9szJyNOWRTVP5Efez-X-nNXuoR8Z-gAVRT0v0DvSmXKg |
CODEN | ITNSB3 |
CitedBy_id | crossref_primary_10_1007_s11055_023_01552_z crossref_primary_10_3390_app13063732 crossref_primary_10_1109_ACCESS_2021_3068929 crossref_primary_10_1007_s12553_021_00560_8 crossref_primary_10_54097_hset_v36i_5747 crossref_primary_10_11834_jig_230031 crossref_primary_10_3389_fnins_2023_1202951 crossref_primary_10_1109_TBME_2022_3202189 crossref_primary_10_1109_JSEN_2023_3328615 crossref_primary_10_3390_app12031695 crossref_primary_10_1109_TIM_2024_3481538 crossref_primary_10_53941_ijndi_2023_100008 crossref_primary_10_3390_s23073763 crossref_primary_10_1109_TBME_2021_3049853 crossref_primary_10_1007_s11042_022_14118_x crossref_primary_10_3390_e23091170 crossref_primary_10_3390_s21134312 crossref_primary_10_1016_j_device_2024_100425 crossref_primary_10_1109_TCDS_2023_3289845 crossref_primary_10_47134_jpo_v1i1_21 crossref_primary_10_3389_fnins_2023_1077479 crossref_primary_10_1016_j_compbiomed_2022_105299 crossref_primary_10_1016_j_chbr_2024_100508 crossref_primary_10_1155_2021_9967348 crossref_primary_10_1109_TNSRE_2021_3099908 crossref_primary_10_4103_2773_2398_365026 crossref_primary_10_1088_1741_2552_ad5f27 crossref_primary_10_1109_TNSRE_2023_3255233 crossref_primary_10_31857_S0044467723040032 crossref_primary_10_1007_s00521_024_09605_1 crossref_primary_10_1109_TMECH_2023_3321403 crossref_primary_10_1080_10255842_2023_2298369 crossref_primary_10_3389_fnins_2022_909434 crossref_primary_10_1007_s44174_023_00082_z crossref_primary_10_31857_S0044467724050042 crossref_primary_10_1007_s11571_021_09738_2 crossref_primary_10_1109_JBHI_2024_3472097 crossref_primary_10_1109_TMECH_2024_3362381 crossref_primary_10_3389_fnbot_2022_913748 crossref_primary_10_3390_electronics10233025 crossref_primary_10_1109_TNSRE_2024_3502135 crossref_primary_10_31083_j_jin2307125 crossref_primary_10_1007_s42979_022_01515_0 crossref_primary_10_3389_fnagi_2022_892178 crossref_primary_10_3389_fnhum_2023_1194751 crossref_primary_10_1002_ima_22821 crossref_primary_10_1109_JSEN_2024_3510059 crossref_primary_10_1016_j_jneumeth_2022_109593 crossref_primary_10_1109_TNSRE_2024_3431025 crossref_primary_10_3389_fnhum_2022_975410 crossref_primary_10_1109_TETCI_2022_3147225 |
Cites_doi | 10.1073/pnas.0913697107 10.1038/srep30383 10.1109/TNSRE.2017.2757519 10.1016/j.neuroscience.2015.02.055 10.3389/fnhum.2015.00168 10.1109/TBME.2019.2921198 10.1016/S0013-4694(97)00022-2 10.1186/1743-0003-10-77 10.1007/s11571-019-09560-x 10.1016/S1388-2457(98)00038-8 10.1006/nimg.2001.0757 10.1109/TNSRE.2015.2476481 10.1109/TNNLS.2019.2946869 10.1088/1741-2560/14/1/016003 10.1016/j.compbiomed.2018.03.018 10.1007/s10484-017-9383-z 10.1016/j.bbe.2018.12.002 10.1007/BF00916547 10.3389/fnhum.2015.00463 10.1109/TBME.2011.2131142 10.1109/IJCNN.2019.8851945 10.1016/j.neuropsychologia.2003.11.018 10.1109/TNSRE.2018.2794415 10.1109/TBME.2010.2082539 10.1145/1961189.1961199 10.1016/j.apmr.2015.01.013 10.1109/IJCNN.2008.4634130 10.1111/ejn.12921 10.1109/TNSRE.2016.2601240 10.1109/TNSRE.2015.2466079 10.1016/j.cmpb.2016.04.023 10.1162/pres.16.1.111 10.1038/s41591-018-0171-y 10.1016/j.jphysparis.2006.03.012 10.1016/j.eswa.2017.12.015 10.1016/j.neucom.2014.08.092 10.1109/86.662615 10.1016/j.neucom.2013.05.005 10.1109/TNNLS.2015.2402694 10.1007/s11517-010-0579-0 10.3389/fnins.2018.00509 10.1152/jn.00257.2010 10.1109/TNSRE.2016.2587939 10.1109/TMRB.2019.2949854 10.1093/cercor/bhh086 10.1109/TNSRE.2017.2655542 10.1016/j.jneumeth.2015.08.004 10.1109/TNSRE.2017.2739244 10.1109/TBME.2013.2287245 10.1016/S1004-4132(08)60066-3 10.1038/sj.sc.3102091 10.1109/MSP.2008.4408441 10.1109/MIS.2008.41 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/TNSRE.2020.3001990 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 1855 |
ExternalDocumentID | 32746291 10_1109_TNSRE_2020_3001990 9115715 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 91648208; 91848110; 61720106012 funderid: 10.13039/501100001809 – fundername: Beijing Natural Science Foundation grantid: 3171001; 4202074 funderid: 10.13039/501100004826 |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c351t-e94d1bc2d6fe40b734e224f1d3cd7d65e8129f7fa21d274b2ae9190feb962d063 |
IEDL.DBID | RIE |
ISSN | 1534-4320 1558-0210 |
IngestDate | Thu Jul 10 22:58:59 EDT 2025 Mon Jul 14 08:13:48 EDT 2025 Wed Feb 19 02:28:23 EST 2025 Thu Apr 24 23:05:24 EDT 2025 Tue Jul 01 00:43:21 EDT 2025 Wed Aug 27 02:51:13 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-e94d1bc2d6fe40b734e224f1d3cd7d65e8129f7fa21d274b2ae9190feb962d063 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9963-3662 0000-0001-6981-297X 0000-0002-1534-5840 0000-0002-6061-3445 |
PMID | 32746291 |
PQID | 2431085455 |
PQPubID | 85423 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2430375526 crossref_citationtrail_10_1109_TNSRE_2020_3001990 crossref_primary_10_1109_TNSRE_2020_3001990 pubmed_primary_32746291 proquest_journals_2431085455 ieee_primary_9115715 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-01 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref53 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 xia (ref20) 2012 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref39 ref38 frisoli (ref1) 2016; 35 ref24 ref23 ref26 ref25 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref35 doi: 10.1073/pnas.0913697107 – ident: ref7 doi: 10.1038/srep30383 – ident: ref45 doi: 10.1109/TNSRE.2017.2757519 – ident: ref10 doi: 10.1016/j.neuroscience.2015.02.055 – ident: ref43 doi: 10.3389/fnhum.2015.00168 – ident: ref3 doi: 10.1109/TBME.2019.2921198 – ident: ref34 doi: 10.1016/S0013-4694(97)00022-2 – ident: ref32 doi: 10.1186/1743-0003-10-77 – ident: ref31 doi: 10.1007/s11571-019-09560-x – ident: ref41 doi: 10.1016/S1388-2457(98)00038-8 – ident: ref6 doi: 10.1006/nimg.2001.0757 – ident: ref40 doi: 10.1109/TNSRE.2015.2476481 – ident: ref19 doi: 10.1109/TNNLS.2019.2946869 – ident: ref18 doi: 10.1088/1741-2560/14/1/016003 – ident: ref25 doi: 10.1016/j.compbiomed.2018.03.018 – ident: ref27 doi: 10.1007/s10484-017-9383-z – ident: ref29 doi: 10.1016/j.bbe.2018.12.002 – ident: ref54 doi: 10.1007/BF00916547 – ident: ref24 doi: 10.3389/fnhum.2015.00463 – ident: ref16 doi: 10.1109/TBME.2011.2131142 – ident: ref55 doi: 10.1109/IJCNN.2019.8851945 – ident: ref9 doi: 10.1016/j.neuropsychologia.2003.11.018 – ident: ref14 doi: 10.1109/TNSRE.2018.2794415 – ident: ref46 doi: 10.1109/TBME.2010.2082539 – ident: ref48 doi: 10.1145/1961189.1961199 – ident: ref39 doi: 10.1016/j.apmr.2015.01.013 – ident: ref44 doi: 10.1109/IJCNN.2008.4634130 – ident: ref51 doi: 10.1111/ejn.12921 – ident: ref17 doi: 10.1109/TNSRE.2016.2601240 – ident: ref36 doi: 10.1109/TNSRE.2015.2466079 – volume: 35 start-page: 141 year: 2016 ident: ref1 article-title: New generation emerging technologies for neurorehabilitation and motor assistance publication-title: Acta Myologica – ident: ref26 doi: 10.1016/j.cmpb.2016.04.023 – ident: ref23 doi: 10.1162/pres.16.1.111 – start-page: 1 year: 2012 ident: ref20 article-title: A neurofeedback training paradigm for motor imagery based brain-computer interface publication-title: Proc Int Joint Conf Neural Netw (IJCNN) – ident: ref2 doi: 10.1038/s41591-018-0171-y – ident: ref49 doi: 10.1016/j.jphysparis.2006.03.012 – ident: ref11 doi: 10.1016/j.eswa.2017.12.015 – ident: ref12 doi: 10.1016/j.neucom.2014.08.092 – ident: ref30 doi: 10.1109/86.662615 – ident: ref15 doi: 10.1016/j.neucom.2013.05.005 – ident: ref13 doi: 10.1109/TNNLS.2015.2402694 – ident: ref53 doi: 10.1007/s11517-010-0579-0 – ident: ref33 doi: 10.3389/fnins.2018.00509 – ident: ref8 doi: 10.1152/jn.00257.2010 – ident: ref21 doi: 10.1109/TNSRE.2016.2587939 – ident: ref28 doi: 10.1109/TMRB.2019.2949854 – ident: ref4 doi: 10.1093/cercor/bhh086 – ident: ref22 doi: 10.1109/TNSRE.2017.2655542 – ident: ref37 doi: 10.1016/j.jneumeth.2015.08.004 – ident: ref5 doi: 10.1109/TNSRE.2017.2739244 – ident: ref52 doi: 10.1109/TBME.2013.2287245 – ident: ref47 doi: 10.1016/S1004-4132(08)60066-3 – ident: ref38 doi: 10.1038/sj.sc.3102091 – ident: ref42 doi: 10.1109/MSP.2008.4408441 – ident: ref50 doi: 10.1109/MIS.2008.41 |
SSID | ssj0017657 |
Score | 2.5459542 |
Snippet | Motor imagery based brain-computer interface (MI-BCI) has been studied for improvement of patients' motor function in neurorehabilitation and motor assistance.... Motor imagery based brain-computer interface (MI-BCI) has been studied for improvement of patients’ motor function in neurorehabilitation and motor assistance.... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1846 |
SubjectTerms | Accuracy Brain Brain computer interface Classification Computer applications Contraction Electrical stimuli Electroencephalography enhanced motor imagery functional electrical stimulation (FES) Human motion Human-computer interface Image enhancement Implants Iron Limbs Mental task performance Muscle contraction Muscles Neurology Rehabilitation rehabilitation training Task analysis Virtual reality Visualization |
Title | Enhanced Motor Imagery Based Brain- Computer Interface via FES and VR for Lower Limbs |
URI | https://ieeexplore.ieee.org/document/9115715 https://www.ncbi.nlm.nih.gov/pubmed/32746291 https://www.proquest.com/docview/2431085455 https://www.proquest.com/docview/2430375526 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PTxQxFG6QExcVAV1B80yUC3aZaTtdehSyGzAsh2XXcJv0ZyDArJFdEvzrfe38iBA13iZppzOd9zr9Xvv6fYR8DJHEynJNswNvqCi0o0rLQM2BdYE7J62PSwPjM3k8E18viosV8rk7C-O9T8lnvh8v016-m9tlXCrbV5EZJp4of4aBW31Wq9sxGMjE6okDWFDBWdYekMnU_vTsfDLEUJBhhBohjYrybxzDMclU_mg-SgIrf8eaac4ZvSDj9m3rVJPr_nJh-vbnEyLH_-3OS_K8AZ_wpfaWdbLiq1fk0-9EwzCtWQZgFyaPOLw3yGxYXaZ0ARjPMVCHk9tIf_EAhzgPOjiMUhMUWpEISCuNQVsP91caRsNz0JWDbxNAkAynUZoNTq9uzd0mmY2G06Nj2ogyUMuLfEG9Ei43ljkZvMjMgAuPKCDkjls3cLLwiBhUGATNcoef2DDtFYKO4I2SzCEg2iKr1bzybwhgC7lWBhGz5UKjr_DMMGnxlxeEsUL3SN6aprRNb6Nwxk2ZIpdMlcmyZbRs2Vi2R_a6e77XfB3_rL0RzdLVbCzSIzutB5TNkL4rGUItxKeiwOIPXTEOxrjDois_X6Y6UVO4YLJHXtee07XdOtzbPz9zm6zFN6tzC3fI6uLH0r9DvLMw75Oj_wJ9nvkt |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB5V5QAXXgW6UMBIwAWc7tpepz5SlCiFJIc0Qb2t_BQVdINoggS_nrH3IYoAcVtpvV57Z7zzjT3zDcDzEEmsLNc0P_KGilI7qrQM1BxZF7hz0vq4NTCby8lKvDsrz3bgdZ8L471PwWd-EC_TWb5b223cKjtUkRkmZpRfQ7tfsiZbqz8zGMrE64lLWFDBWd6lyOTqcDk_XYzQGWToo0ZQo2IBOI4OmWSquGKRUomVv6PNZHXGt2DWjbcJNvk02G7MwP74jcrxfyd0G2628JO8afTlDuz4-i68-JVqmCwbngHykiyusHjvwWpUf0wBA2S2RlednFxEAozv5BgtoSPHsdgEJV2ZCJL2GoO2nnw712Q8OiW6duTDgiBMJtNYnI1Mzy_M5T1YjUfLtxPalmWglpfFhnolXGEsczJ4kZshFx5xQCgct27oZOkRM6gwDJoVDj-xYdorhB3BGyWZQ0h0H3brde33gWAPhVYGMbPlQqO28NwwafGnF4SxQmdQdKKpbDvbWDrjc5V8l1xVSbJVlGzVSjaDV_0zXxrGjn-23oti6Vu2EsngoNOAql3UlxVDsIUIFVUvg2f9bVyO8YxF1369TW1iVeGSyQweNJrT990p3MM_v_MpXJ8sZ9NqejJ__whuxFE2kYYHsLv5uvWPEf1szJOk9D8Bp0z8dw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Motor+Imagery+Based+Brain-+Computer+Interface+via+FES+and+VR+for+Lower+Limbs&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Ren%2C+Shixin&rft.au=Wang%2C+Weiqun&rft.au=Hou%2C+Zeng-Guang&rft.au=Liang%2C+Xu&rft.date=2020-08-01&rft.issn=1534-4320&rft.eissn=1558-0210&rft.volume=28&rft.issue=8&rft.spage=1846&rft.epage=1855&rft_id=info:doi/10.1109%2FTNSRE.2020.3001990&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSRE_2020_3001990 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |