Enhanced Motor Imagery Based Brain- Computer Interface via FES and VR for Lower Limbs

Motor imagery based brain-computer interface (MI-BCI) has been studied for improvement of patients' motor function in neurorehabilitation and motor assistance. However, the difficulties in performing imagery tasks limit its application. To overcome the limitation, an enhanced MI-BCI based on fu...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 28; no. 8; pp. 1846 - 1855
Main Authors Ren, Shixin, Wang, Weiqun, Hou, Zeng-Guang, Liang, Xu, Wang, Jiaxing, Shi, Weiguo
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Motor imagery based brain-computer interface (MI-BCI) has been studied for improvement of patients' motor function in neurorehabilitation and motor assistance. However, the difficulties in performing imagery tasks limit its application. To overcome the limitation, an enhanced MI-BCI based on functional electrical stimulation (FES) and virtual reality (VR) is proposed in this study. On one hand, the FES is used to stimulate the subjects' lower limbs before their imagination to make them experience the muscles' contraction and improve their attention on the lower limbs, by which it is supposed that the subjects' motor imagery (MI) abilities can be enhanced. On the other hand, a ball-kicking movement scenario from the first-person perspective is designed to provide visual guidance for performing MI tasks. The combination of FES and VR can be used to reduce the difficulties in performing MI tasks and improve classification accuracy. Finally, the comparison experiments were conducted on twelve healthy subjects to validate the performance of the enhanced MI-BCI. The results show that the classification performance can be improved significantly by using the proposed MI-BCI in terms of the classification accuracy (ACC), the area under the curve (AUC) and the F1 score (paired t-test, p <; 0.05 ).
AbstractList Motor imagery based brain-computer interface (MI-BCI) has been studied for improvement of patients’ motor function in neurorehabilitation and motor assistance. However, the difficulties in performing imagery tasks limit its application. To overcome the limitation, an enhanced MI-BCI based on functional electrical stimulation (FES) and virtual reality (VR) is proposed in this study. On one hand, the FES is used to stimulate the subjects’ lower limbs before their imagination to make them experience the muscles’ contraction and improve their attention on the lower limbs, by which it is supposed that the subjects’ motor imagery (MI) abilities can be enhanced. On the other hand, a ball-kicking movement scenario from the first-person perspective is designed to provide visual guidance for performing MI tasks. The combination of FES and VR can be used to reduce the difficulties in performing MI tasks and improve classification accuracy. Finally, the comparison experiments were conducted on twelve healthy subjects to validate the performance of the enhanced MI-BCI. The results show that the classification performance can be improved significantly by using the proposed MI-BCI in terms of the classification accuracy (ACC), the area under the curve (AUC) and the F1 score (paired t-test, [Formula Omitted]).
Motor imagery based brain-computer interface (MI-BCI) has been studied for improvement of patients' motor function in neurorehabilitation and motor assistance. However, the difficulties in performing imagery tasks limit its application. To overcome the limitation, an enhanced MI-BCI based on functional electrical stimulation (FES) and virtual reality (VR) is proposed in this study. On one hand, the FES is used to stimulate the subjects' lower limbs before their imagination to make them experience the muscles' contraction and improve their attention on the lower limbs, by which it is supposed that the subjects' motor imagery (MI) abilities can be enhanced. On the other hand, a ball-kicking movement scenario from the first-person perspective is designed to provide visual guidance for performing MI tasks. The combination of FES and VR can be used to reduce the difficulties in performing MI tasks and improve classification accuracy. Finally, the comparison experiments were conducted on twelve healthy subjects to validate the performance of the enhanced MI-BCI. The results show that the classification performance can be improved significantly by using the proposed MI-BCI in terms of the classification accuracy (ACC), the area under the curve (AUC) and the F1 score (paired t-test, p <; 0.05 ).
Motor imagery based brain-computer interface (MI-BCI) has been studied for improvement of patients' motor function in neurorehabilitation and motor assistance. However, the difficulties in performing imagery tasks limit its application. To overcome the limitation, an enhanced MI-BCI based on functional electrical stimulation (FES) and virtual reality (VR) is proposed in this study. On one hand, the FES is used to stimulate the subjects' lower limbs before their imagination to make them experience the muscles' contraction and improve their attention on the lower limbs, by which it is supposed that the subjects' motor imagery (MI) abilities can be enhanced. On the other hand, a ball-kicking movement scenario from the first-person perspective is designed to provide visual guidance for performing MI tasks. The combination of FES and VR can be used to reduce the difficulties in performing MI tasks and improve classification accuracy. Finally, the comparison experiments were conducted on twelve healthy subjects to validate the performance of the enhanced MI-BCI. The results show that the classification performance can be improved significantly by using the proposed MI-BCI in terms of the classification accuracy (ACC), the area under the curve (AUC) and the F1 score (paired t-test, ).
Motor imagery based brain-computer interface (MI-BCI) has been studied for improvement of patients' motor function in neurorehabilitation and motor assistance. However, the difficulties in performing imagery tasks limit its application. To overcome the limitation, an enhanced MI-BCI based on functional electrical stimulation (FES) and virtual reality (VR) is proposed in this study. On one hand, the FES is used to stimulate the subjects' lower limbs before their imagination to make them experience the muscles' contraction and improve their attention on the lower limbs, by which it is supposed that the subjects' motor imagery (MI) abilities can be enhanced. On the other hand, a ball-kicking movement scenario from the first-person perspective is designed to provide visual guidance for performing MI tasks. The combination of FES and VR can be used to reduce the difficulties in performing MI tasks and improve classification accuracy. Finally, the comparison experiments were conducted on twelve healthy subjects to validate the performance of the enhanced MI-BCI. The results show that the classification performance can be improved significantly by using the proposed MI-BCI in terms of the classification accuracy (ACC), the area under the curve (AUC) and the F1 score (paired t-test, ).Motor imagery based brain-computer interface (MI-BCI) has been studied for improvement of patients' motor function in neurorehabilitation and motor assistance. However, the difficulties in performing imagery tasks limit its application. To overcome the limitation, an enhanced MI-BCI based on functional electrical stimulation (FES) and virtual reality (VR) is proposed in this study. On one hand, the FES is used to stimulate the subjects' lower limbs before their imagination to make them experience the muscles' contraction and improve their attention on the lower limbs, by which it is supposed that the subjects' motor imagery (MI) abilities can be enhanced. On the other hand, a ball-kicking movement scenario from the first-person perspective is designed to provide visual guidance for performing MI tasks. The combination of FES and VR can be used to reduce the difficulties in performing MI tasks and improve classification accuracy. Finally, the comparison experiments were conducted on twelve healthy subjects to validate the performance of the enhanced MI-BCI. The results show that the classification performance can be improved significantly by using the proposed MI-BCI in terms of the classification accuracy (ACC), the area under the curve (AUC) and the F1 score (paired t-test, ).
Author Shi, Weiguo
Wang, Weiqun
Ren, Shixin
Liang, Xu
Hou, Zeng-Guang
Wang, Jiaxing
Author_xml – sequence: 1
  givenname: Shixin
  surname: Ren
  fullname: Ren, Shixin
  email: renshixin2015@ia.ac.cn
  organization: State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
– sequence: 2
  givenname: Weiqun
  orcidid: 0000-0001-6981-297X
  surname: Wang
  fullname: Wang, Weiqun
  email: weiqun.wang@ia.ac.cn
  organization: State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
– sequence: 3
  givenname: Zeng-Guang
  orcidid: 0000-0002-1534-5840
  surname: Hou
  fullname: Hou, Zeng-Guang
  email: zengguang.hou@ia.ac.cn
  organization: State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
– sequence: 4
  givenname: Xu
  orcidid: 0000-0002-9963-3662
  surname: Liang
  fullname: Liang, Xu
  email: liangxu2013@ia.ac.cn
  organization: State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
– sequence: 5
  givenname: Jiaxing
  orcidid: 0000-0002-6061-3445
  surname: Wang
  fullname: Wang, Jiaxing
  email: wangjiaxing2016@ia.ac.cn
  organization: State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
– sequence: 6
  givenname: Weiguo
  surname: Shi
  fullname: Shi, Weiguo
  email: shiweiguo2017@ia.ac.cn
  organization: State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32746291$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v1DAQhi1URD_gD4CELHHhksXjj2R9pKstVFpA6gdXy4nHkGpjb-0E1H-Pw2459MDFtsbPMxrNe0qOQgxIyGtgCwCmP9x8vb5aLzjjbCEYA63ZM3ICSi0rxoEdzW8hKyk4OyanOd8VpqlV84IcC97Imms4Ibfr8NOGDh39EseY6OVgf2B6oOc2l9p5sn2o6CoOu2nE8hvK6W2H9Fdv6cX6mtrg6Pcr6ou6ib8LsumHNr8kz73dZnx1uM_I7cX6ZvW52nz7dLn6uKk6oWCsUEsHbcdd7VGythESOZcenOhc42qFS-DaN95ycGXillvUoJnHVtfcsVqckff7vrsU7yfMoxn63OF2awPGKRsuBRONUnxG3z1B7-KUQplupoAtlVSqUG8P1NQO6Mwu9YNND-ZxYQVY7oEuxZwTetP1ox37GMayq60BZuZszN9szJyNOWRTVP5Efez-X-nNXuoR8Z-gAVRT0v0DvSmXKg
CODEN ITNSB3
CitedBy_id crossref_primary_10_1007_s11055_023_01552_z
crossref_primary_10_3390_app13063732
crossref_primary_10_1109_ACCESS_2021_3068929
crossref_primary_10_1007_s12553_021_00560_8
crossref_primary_10_54097_hset_v36i_5747
crossref_primary_10_11834_jig_230031
crossref_primary_10_3389_fnins_2023_1202951
crossref_primary_10_1109_TBME_2022_3202189
crossref_primary_10_1109_JSEN_2023_3328615
crossref_primary_10_3390_app12031695
crossref_primary_10_1109_TIM_2024_3481538
crossref_primary_10_53941_ijndi_2023_100008
crossref_primary_10_3390_s23073763
crossref_primary_10_1109_TBME_2021_3049853
crossref_primary_10_1007_s11042_022_14118_x
crossref_primary_10_3390_e23091170
crossref_primary_10_3390_s21134312
crossref_primary_10_1016_j_device_2024_100425
crossref_primary_10_1109_TCDS_2023_3289845
crossref_primary_10_47134_jpo_v1i1_21
crossref_primary_10_3389_fnins_2023_1077479
crossref_primary_10_1016_j_compbiomed_2022_105299
crossref_primary_10_1016_j_chbr_2024_100508
crossref_primary_10_1155_2021_9967348
crossref_primary_10_1109_TNSRE_2021_3099908
crossref_primary_10_4103_2773_2398_365026
crossref_primary_10_1088_1741_2552_ad5f27
crossref_primary_10_1109_TNSRE_2023_3255233
crossref_primary_10_31857_S0044467723040032
crossref_primary_10_1007_s00521_024_09605_1
crossref_primary_10_1109_TMECH_2023_3321403
crossref_primary_10_1080_10255842_2023_2298369
crossref_primary_10_3389_fnins_2022_909434
crossref_primary_10_1007_s44174_023_00082_z
crossref_primary_10_31857_S0044467724050042
crossref_primary_10_1007_s11571_021_09738_2
crossref_primary_10_1109_JBHI_2024_3472097
crossref_primary_10_1109_TMECH_2024_3362381
crossref_primary_10_3389_fnbot_2022_913748
crossref_primary_10_3390_electronics10233025
crossref_primary_10_1109_TNSRE_2024_3502135
crossref_primary_10_31083_j_jin2307125
crossref_primary_10_1007_s42979_022_01515_0
crossref_primary_10_3389_fnagi_2022_892178
crossref_primary_10_3389_fnhum_2023_1194751
crossref_primary_10_1002_ima_22821
crossref_primary_10_1109_JSEN_2024_3510059
crossref_primary_10_1016_j_jneumeth_2022_109593
crossref_primary_10_1109_TNSRE_2024_3431025
crossref_primary_10_3389_fnhum_2022_975410
crossref_primary_10_1109_TETCI_2022_3147225
Cites_doi 10.1073/pnas.0913697107
10.1038/srep30383
10.1109/TNSRE.2017.2757519
10.1016/j.neuroscience.2015.02.055
10.3389/fnhum.2015.00168
10.1109/TBME.2019.2921198
10.1016/S0013-4694(97)00022-2
10.1186/1743-0003-10-77
10.1007/s11571-019-09560-x
10.1016/S1388-2457(98)00038-8
10.1006/nimg.2001.0757
10.1109/TNSRE.2015.2476481
10.1109/TNNLS.2019.2946869
10.1088/1741-2560/14/1/016003
10.1016/j.compbiomed.2018.03.018
10.1007/s10484-017-9383-z
10.1016/j.bbe.2018.12.002
10.1007/BF00916547
10.3389/fnhum.2015.00463
10.1109/TBME.2011.2131142
10.1109/IJCNN.2019.8851945
10.1016/j.neuropsychologia.2003.11.018
10.1109/TNSRE.2018.2794415
10.1109/TBME.2010.2082539
10.1145/1961189.1961199
10.1016/j.apmr.2015.01.013
10.1109/IJCNN.2008.4634130
10.1111/ejn.12921
10.1109/TNSRE.2016.2601240
10.1109/TNSRE.2015.2466079
10.1016/j.cmpb.2016.04.023
10.1162/pres.16.1.111
10.1038/s41591-018-0171-y
10.1016/j.jphysparis.2006.03.012
10.1016/j.eswa.2017.12.015
10.1016/j.neucom.2014.08.092
10.1109/86.662615
10.1016/j.neucom.2013.05.005
10.1109/TNNLS.2015.2402694
10.1007/s11517-010-0579-0
10.3389/fnins.2018.00509
10.1152/jn.00257.2010
10.1109/TNSRE.2016.2587939
10.1109/TMRB.2019.2949854
10.1093/cercor/bhh086
10.1109/TNSRE.2017.2655542
10.1016/j.jneumeth.2015.08.004
10.1109/TNSRE.2017.2739244
10.1109/TBME.2013.2287245
10.1016/S1004-4132(08)60066-3
10.1038/sj.sc.3102091
10.1109/MSP.2008.4408441
10.1109/MIS.2008.41
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TNSRE.2020.3001990
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 1855
ExternalDocumentID 32746291
10_1109_TNSRE_2020_3001990
9115715
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 91648208; 91848110; 61720106012
  funderid: 10.13039/501100001809
– fundername: Beijing Natural Science Foundation
  grantid: 3171001; 4202074
  funderid: 10.13039/501100004826
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c351t-e94d1bc2d6fe40b734e224f1d3cd7d65e8129f7fa21d274b2ae9190feb962d063
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Thu Jul 10 22:58:59 EDT 2025
Mon Jul 14 08:13:48 EDT 2025
Wed Feb 19 02:28:23 EST 2025
Thu Apr 24 23:05:24 EDT 2025
Tue Jul 01 00:43:21 EDT 2025
Wed Aug 27 02:51:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-e94d1bc2d6fe40b734e224f1d3cd7d65e8129f7fa21d274b2ae9190feb962d063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9963-3662
0000-0001-6981-297X
0000-0002-1534-5840
0000-0002-6061-3445
PMID 32746291
PQID 2431085455
PQPubID 85423
PageCount 10
ParticipantIDs proquest_miscellaneous_2430375526
crossref_citationtrail_10_1109_TNSRE_2020_3001990
crossref_primary_10_1109_TNSRE_2020_3001990
pubmed_primary_32746291
proquest_journals_2431085455
ieee_primary_9115715
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
xia (ref20) 2012
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref39
ref38
frisoli (ref1) 2016; 35
ref24
ref23
ref26
ref25
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref35
  doi: 10.1073/pnas.0913697107
– ident: ref7
  doi: 10.1038/srep30383
– ident: ref45
  doi: 10.1109/TNSRE.2017.2757519
– ident: ref10
  doi: 10.1016/j.neuroscience.2015.02.055
– ident: ref43
  doi: 10.3389/fnhum.2015.00168
– ident: ref3
  doi: 10.1109/TBME.2019.2921198
– ident: ref34
  doi: 10.1016/S0013-4694(97)00022-2
– ident: ref32
  doi: 10.1186/1743-0003-10-77
– ident: ref31
  doi: 10.1007/s11571-019-09560-x
– ident: ref41
  doi: 10.1016/S1388-2457(98)00038-8
– ident: ref6
  doi: 10.1006/nimg.2001.0757
– ident: ref40
  doi: 10.1109/TNSRE.2015.2476481
– ident: ref19
  doi: 10.1109/TNNLS.2019.2946869
– ident: ref18
  doi: 10.1088/1741-2560/14/1/016003
– ident: ref25
  doi: 10.1016/j.compbiomed.2018.03.018
– ident: ref27
  doi: 10.1007/s10484-017-9383-z
– ident: ref29
  doi: 10.1016/j.bbe.2018.12.002
– ident: ref54
  doi: 10.1007/BF00916547
– ident: ref24
  doi: 10.3389/fnhum.2015.00463
– ident: ref16
  doi: 10.1109/TBME.2011.2131142
– ident: ref55
  doi: 10.1109/IJCNN.2019.8851945
– ident: ref9
  doi: 10.1016/j.neuropsychologia.2003.11.018
– ident: ref14
  doi: 10.1109/TNSRE.2018.2794415
– ident: ref46
  doi: 10.1109/TBME.2010.2082539
– ident: ref48
  doi: 10.1145/1961189.1961199
– ident: ref39
  doi: 10.1016/j.apmr.2015.01.013
– ident: ref44
  doi: 10.1109/IJCNN.2008.4634130
– ident: ref51
  doi: 10.1111/ejn.12921
– ident: ref17
  doi: 10.1109/TNSRE.2016.2601240
– ident: ref36
  doi: 10.1109/TNSRE.2015.2466079
– volume: 35
  start-page: 141
  year: 2016
  ident: ref1
  article-title: New generation emerging technologies for neurorehabilitation and motor assistance
  publication-title: Acta Myologica
– ident: ref26
  doi: 10.1016/j.cmpb.2016.04.023
– ident: ref23
  doi: 10.1162/pres.16.1.111
– start-page: 1
  year: 2012
  ident: ref20
  article-title: A neurofeedback training paradigm for motor imagery based brain-computer interface
  publication-title: Proc Int Joint Conf Neural Netw (IJCNN)
– ident: ref2
  doi: 10.1038/s41591-018-0171-y
– ident: ref49
  doi: 10.1016/j.jphysparis.2006.03.012
– ident: ref11
  doi: 10.1016/j.eswa.2017.12.015
– ident: ref12
  doi: 10.1016/j.neucom.2014.08.092
– ident: ref30
  doi: 10.1109/86.662615
– ident: ref15
  doi: 10.1016/j.neucom.2013.05.005
– ident: ref13
  doi: 10.1109/TNNLS.2015.2402694
– ident: ref53
  doi: 10.1007/s11517-010-0579-0
– ident: ref33
  doi: 10.3389/fnins.2018.00509
– ident: ref8
  doi: 10.1152/jn.00257.2010
– ident: ref21
  doi: 10.1109/TNSRE.2016.2587939
– ident: ref28
  doi: 10.1109/TMRB.2019.2949854
– ident: ref4
  doi: 10.1093/cercor/bhh086
– ident: ref22
  doi: 10.1109/TNSRE.2017.2655542
– ident: ref37
  doi: 10.1016/j.jneumeth.2015.08.004
– ident: ref5
  doi: 10.1109/TNSRE.2017.2739244
– ident: ref52
  doi: 10.1109/TBME.2013.2287245
– ident: ref47
  doi: 10.1016/S1004-4132(08)60066-3
– ident: ref38
  doi: 10.1038/sj.sc.3102091
– ident: ref42
  doi: 10.1109/MSP.2008.4408441
– ident: ref50
  doi: 10.1109/MIS.2008.41
SSID ssj0017657
Score 2.5459542
Snippet Motor imagery based brain-computer interface (MI-BCI) has been studied for improvement of patients' motor function in neurorehabilitation and motor assistance....
Motor imagery based brain-computer interface (MI-BCI) has been studied for improvement of patients’ motor function in neurorehabilitation and motor assistance....
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1846
SubjectTerms Accuracy
Brain
Brain computer interface
Classification
Computer applications
Contraction
Electrical stimuli
Electroencephalography
enhanced motor imagery
functional electrical stimulation (FES)
Human motion
Human-computer interface
Image enhancement
Implants
Iron
Limbs
Mental task performance
Muscle contraction
Muscles
Neurology
Rehabilitation
rehabilitation training
Task analysis
Virtual reality
Visualization
Title Enhanced Motor Imagery Based Brain- Computer Interface via FES and VR for Lower Limbs
URI https://ieeexplore.ieee.org/document/9115715
https://www.ncbi.nlm.nih.gov/pubmed/32746291
https://www.proquest.com/docview/2431085455
https://www.proquest.com/docview/2430375526
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PTxQxFG6QExcVAV1B80yUC3aZaTtdehSyGzAsh2XXcJv0ZyDArJFdEvzrfe38iBA13iZppzOd9zr9Xvv6fYR8DJHEynJNswNvqCi0o0rLQM2BdYE7J62PSwPjM3k8E18viosV8rk7C-O9T8lnvh8v016-m9tlXCrbV5EZJp4of4aBW31Wq9sxGMjE6okDWFDBWdYekMnU_vTsfDLEUJBhhBohjYrybxzDMclU_mg-SgIrf8eaac4ZvSDj9m3rVJPr_nJh-vbnEyLH_-3OS_K8AZ_wpfaWdbLiq1fk0-9EwzCtWQZgFyaPOLw3yGxYXaZ0ARjPMVCHk9tIf_EAhzgPOjiMUhMUWpEISCuNQVsP91caRsNz0JWDbxNAkAynUZoNTq9uzd0mmY2G06Nj2ogyUMuLfEG9Ei43ljkZvMjMgAuPKCDkjls3cLLwiBhUGATNcoef2DDtFYKO4I2SzCEg2iKr1bzybwhgC7lWBhGz5UKjr_DMMGnxlxeEsUL3SN6aprRNb6Nwxk2ZIpdMlcmyZbRs2Vi2R_a6e77XfB3_rL0RzdLVbCzSIzutB5TNkL4rGUItxKeiwOIPXTEOxrjDois_X6Y6UVO4YLJHXtee07XdOtzbPz9zm6zFN6tzC3fI6uLH0r9DvLMw75Oj_wJ9nvkt
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB5V5QAXXgW6UMBIwAWc7tpepz5SlCiFJIc0Qb2t_BQVdINoggS_nrH3IYoAcVtpvV57Z7zzjT3zDcDzEEmsLNc0P_KGilI7qrQM1BxZF7hz0vq4NTCby8lKvDsrz3bgdZ8L471PwWd-EC_TWb5b223cKjtUkRkmZpRfQ7tfsiZbqz8zGMrE64lLWFDBWd6lyOTqcDk_XYzQGWToo0ZQo2IBOI4OmWSquGKRUomVv6PNZHXGt2DWjbcJNvk02G7MwP74jcrxfyd0G2628JO8afTlDuz4-i68-JVqmCwbngHykiyusHjvwWpUf0wBA2S2RlednFxEAozv5BgtoSPHsdgEJV2ZCJL2GoO2nnw712Q8OiW6duTDgiBMJtNYnI1Mzy_M5T1YjUfLtxPalmWglpfFhnolXGEsczJ4kZshFx5xQCgct27oZOkRM6gwDJoVDj-xYdorhB3BGyWZQ0h0H3brde33gWAPhVYGMbPlQqO28NwwafGnF4SxQmdQdKKpbDvbWDrjc5V8l1xVSbJVlGzVSjaDV_0zXxrGjn-23oti6Vu2EsngoNOAql3UlxVDsIUIFVUvg2f9bVyO8YxF1369TW1iVeGSyQweNJrT990p3MM_v_MpXJ8sZ9NqejJ__whuxFE2kYYHsLv5uvWPEf1szJOk9D8Bp0z8dw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Motor+Imagery+Based+Brain-+Computer+Interface+via+FES+and+VR+for+Lower+Limbs&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Ren%2C+Shixin&rft.au=Wang%2C+Weiqun&rft.au=Hou%2C+Zeng-Guang&rft.au=Liang%2C+Xu&rft.date=2020-08-01&rft.issn=1534-4320&rft.eissn=1558-0210&rft.volume=28&rft.issue=8&rft.spage=1846&rft.epage=1855&rft_id=info:doi/10.1109%2FTNSRE.2020.3001990&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSRE_2020_3001990
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon