Preventing Hydrogen Disposal Increases Electrode Utilization Efficiency by Shewanella oneidensis
Many bacteria use hydrogen anaerobically as both a source and sink for electrons; consuming hydrogen when it is plentiful and producing it when concentrations are low enough to allow proton reduction. While this can increase an organism's competitiveness, hydrogen uptake, or excretion can also...
Saved in:
Published in | Frontiers in energy research Vol. 7 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
11.09.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 2296-598X 2296-598X |
DOI | 10.3389/fenrg.2019.00095 |
Cover
Loading…
Abstract | Many bacteria use hydrogen anaerobically as both a source and sink for electrons; consuming hydrogen when it is plentiful and producing it when concentrations are low enough to allow proton reduction. While this can increase an organism's competitiveness, hydrogen uptake, or excretion can also make it difficult to control electron flux to a specific product. For example, when Shewanella oneidensis strain MR-1 is used to oxidize organic molecules and recover electrons in microbial electrochemical devices, small changes in ambient hydrogen concentrations could dramatically alter the efficiency of electron capture at the anode due to this organism's respiratory flexibility. When new three-electrode reactor designs created to minimize oxygen intrusion during anodic growth were tested with lactate-oxidizing S. oneidensis, current production decreased significantly in reactors vented to remove hydrogen produced at the counter electrode, suggesting a role for hydrogen uptake or disposal when cells used electrodes as electron acceptors. A ΔhydAΔhyaB mutant lacking both hydrogenases reversed this trend, and nearly doubled current production rates. This increase was shown to be due to the efficiency of lactate oxidation, as 90% of electrons were recovered as electricity in the ΔhydAΔhyaB mutant compared to only 50% for wild type. Experiments with Fe(III) oxide provided additional evidence that S. oneidensis generates hydrogen reducing equivalents during reduction of insoluble electron acceptors, while experiments with cells incubated with Fe(III) citrate showed increased survival of wild-type compared to ΔhydAΔhyaB in stationary phase. Together these data show how the multiple routes of electron disposal of S. oneidensis, while beneficial under changing conditions, limits the efficiency of electron recovery in electrochemical systems, and demonstrates a simple approach to increasing current production rates in systems where hydrogen is being captured as a product. |
---|---|
AbstractList | Many bacteria use hydrogen anaerobically as both a source and sink for electrons; consuming hydrogen when it is plentiful and producing it when concentrations are low enough to allow proton reduction. While this can increase an organism's competitiveness, hydrogen uptake, or excretion can also make it difficult to control electron flux to a specific product. For example, when Shewanella oneidensis strain MR-1 is used to oxidize organic molecules and recover electrons in microbial electrochemical devices, small changes in ambient hydrogen concentrations could dramatically alter the efficiency of electron capture at the anode due to this organism's respiratory flexibility. When new three-electrode reactor designs created to minimize oxygen intrusion during anodic growth were tested with lactate-oxidizing S. oneidensis, current production decreased significantly in reactors vented to remove hydrogen produced at the counter electrode, suggesting a role for hydrogen uptake or disposal when cells used electrodes as electron acceptors. A ΔhydAΔhyaB mutant lacking both hydrogenases reversed this trend, and nearly doubled current production rates. This increase was shown to be due to the efficiency of lactate oxidation, as 90% of electrons were recovered as electricity in the ΔhydAΔhyaB mutant compared to only 50% for wild type. Experiments with Fe(III) oxide provided additional evidence that S. oneidensis generates hydrogen reducing equivalents during reduction of insoluble electron acceptors, while experiments with cells incubated with Fe(III) citrate showed increased survival of wild-type compared to ΔhydAΔhyaB in stationary phase. Together these data show how the multiple routes of electron disposal of S. oneidensis, while beneficial under changing conditions, limits the efficiency of electron recovery in electrochemical systems, and demonstrates a simple approach to increasing current production rates in systems where hydrogen is being captured as a product. |
Author | Kane, Aunica L. Kotloski, Nicholas J. Bond, Daniel R. Joshi, Komal Gralnick, Jeffrey A. |
Author_xml | – sequence: 1 givenname: Komal surname: Joshi fullname: Joshi, Komal – sequence: 2 givenname: Aunica L. surname: Kane fullname: Kane, Aunica L. – sequence: 3 givenname: Nicholas J. surname: Kotloski fullname: Kotloski, Nicholas J. – sequence: 4 givenname: Jeffrey A. surname: Gralnick fullname: Gralnick, Jeffrey A. – sequence: 5 givenname: Daniel R. surname: Bond fullname: Bond, Daniel R. |
BookMark | eNp1kEtLQzEQhYNU8Ll3mT_QmtdNk6XUqgVBQQV3MTeZ1Mg1KclFqb_ea6sggqszDHMOZ74DNEo5AUInlEw4V_o0QCrLCSNUTwghutlB-4xpOW60ehz9mvfQca0vwwnlrBGU7KOn2wJvkPqYlvhq7UteQsLnsa5ytR1eJFfAVqh43oHrS_aAH_rYxQ_bx5zwPIToIiS3xu0a3z3Du03QdRYP9aKHVGM9QrvBdhWOv_UQPVzM72dX4-uby8Xs7HrseEP7MUyFCrTxXlhK2xBa7qTiqhHMe8aUVNOWcA5ScwKMaxsCsKkL4KwVg2p-iBbbXJ_ti1mV-GrL2mQbzWaRy9LY0kfXgQmeudYzSSXTohW2VWoaghBcNrqVjRqy5DbLlVxrgWBc7Dcf98XGzlBivrCbDXbzhd1ssA9G8sf4U-RfyydNhIrs |
CitedBy_id | crossref_primary_10_1007_s10529_023_03450_3 crossref_primary_10_1016_j_bioflm_2022_100077 crossref_primary_10_1021_jacs_2c00934 crossref_primary_10_1128_aem_01387_23 crossref_primary_10_1016_j_ijhydene_2024_12_407 crossref_primary_10_1128_spectrum_02798_22 crossref_primary_10_1016_j_jhazmat_2023_131545 crossref_primary_10_1016_j_joule_2021_02_001 crossref_primary_10_1016_j_ibiod_2022_105439 crossref_primary_10_1149_1945_7111_acb239 crossref_primary_10_1038_s41557_020_0460_1 crossref_primary_10_1111_mmi_14801 |
Cites_doi | 10.1128/AEM.01142-09 10.1073/pnas.0409574102 10.1146/annurev.micro.61.080706.093257 10.1016/j.jpowsour.2006.10.026 10.1002/bit.22556 10.1007/0-387-30746-X_45 10.1039/C4CP03197K 10.1021/es9025358 10.1016/j.bios.2013.03.010 10.1111/mmi.14067 10.1016/j.biortech.2010.10.033 10.1128/AEM.01087-07 10.1016/j.chom.2013.11.002 10.1128/JB.00925-09 10.1271/bbb.110633 10.1186/1471-2164-11-494 10.1128/AEM.01588-06 10.1016/j.biortech.2012.09.106 10.1128/JB.00090-10 10.1111/1574-6968.12361 10.1016/0016-7037(88)90163-9 10.1021/es102842p 10.1002/bit.22621 10.1002/elan.200800016 10.1038/nrmicro2166 10.1007/978-3-642-30123-0_59 10.1074/jbc.M109.043455 10.1038/nrmicro1947 10.1002/bit.26046 10.1128/AEM.00840-08 10.1038/srep20941 10.1099/00207713-49-2-705 10.1073/pnas.1834303100 10.1002/celc.201402128 10.1002/bit.25128 10.1128/JB.00927-15 10.1021/es900204j 10.1021/es052254w 10.1016/j.tibtech.2005.04.008 10.1128/AEM.05382-11 10.1128/BR.41.1.100-180.1977 10.1128/AEM.53.7.1536-1540.1987 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3389/fenrg.2019.00095 |
DatabaseName | CrossRef DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2296-598X |
ExternalDocumentID | oai_doaj_org_article_fd2cbd2616294b4ab887ff443659b658 10_3389_fenrg_2019_00095 |
GroupedDBID | 5VS 9T4 AAFWJ AAYXX ACGFS ACXDI ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ KQ8 M~E OK1 |
ID | FETCH-LOGICAL-c351t-e748f15dd4a11bffb3c6838542dd228687b033e6930e239affe27cfecaa47cf93 |
IEDL.DBID | DOA |
ISSN | 2296-598X |
IngestDate | Wed Aug 27 01:27:55 EDT 2025 Thu Apr 24 22:56:03 EDT 2025 Tue Jul 01 03:00:17 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-e748f15dd4a11bffb3c6838542dd228687b033e6930e239affe27cfecaa47cf93 |
OpenAccessLink | https://doaj.org/article/fd2cbd2616294b4ab887ff443659b658 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fd2cbd2616294b4ab887ff443659b658 crossref_citationtrail_10_3389_fenrg_2019_00095 crossref_primary_10_3389_fenrg_2019_00095 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-11 |
PublicationDateYYYYMMDD | 2019-09-11 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-11 day: 11 |
PublicationDecade | 2010 |
PublicationTitle | Frontiers in energy research |
PublicationYear | 2019 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Rabaey (B27) 2005; 23 Meshulam-Simon (B23) 2007; 73 Kirchhofer (B13) 2014; 16 TerAvest (B37) 2014; 1 Kouzuma (B14) 2012; 76 Venkateswaran (B40) 1999; 49 Watson (B41) 2010; 105 Baron (B1) 2009; 284 Beblawy (B2) 2018; 109 TerAvest (B38) 2014; 111 Newton (B25) 2009; 75 Thauer (B39) 1977; 41 Saltikov (B33) 2003; 100 Geelhoed (B7) 2011; 45 Wu (B42) 2013; 135 Fredrickson (B6) 2008; 6 Rosenbaum (B31) 2010; 105 Coursolle (B5) 2010; 192 Lovley (B19) 1987; 53 Luo (B21) 2016; 6 Nealson (B24) 2006 Rodionov (B30) 2010; 11 Lee (B16) 2010; 44 Lovley (B18) 1988; 52 Pinchuk (B26) 2011; 77 Bretschger (B3) 2010; 22 Bretschger (B4) 2007; 73 Lee (B17) 2009; 43 Lu (B20) 2017; 114 Ringeisen (B28) 2006; 40 Ringeisen (B29) 2007; 165 Golitsch (B8) 2013; 47 Schink (B34) 2013 Kane (B12) 2016; 198 Maier (B22) 2013; 14 Hunt (B11) 2010; 192 Stams (B36) 2009; 7 Hau (B10) 2007; 61 Hau (B9) 2008; 74 Rosenbaum (B32) 2011; 102 Kreuzer (B15) 2014; 352 Spear (B35) 2005; 102 |
References_xml | – volume: 75 start-page: 7674 year: 2009 ident: B25 article-title: Analyses of current-generating mechanisms of Shewanella loihica PV-4 and Shewanella oneidensis MR-1 in microbial fuel cells publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01142-09 – volume: 102 start-page: 2555 year: 2005 ident: B35 article-title: Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0409574102 – volume: 61 start-page: 237 year: 2007 ident: B10 article-title: Ecology and biotechnology of the genus Shewanella publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.micro.61.080706.093257 – volume: 165 start-page: 591 year: 2007 ident: B29 article-title: A miniature microbial fuel cell operating with an aerobic anode chamber publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2006.10.026 – volume: 105 start-page: 489 year: 2010 ident: B41 article-title: Power production in MFCs inoculated with Shewanella oneidensis MR-1 or mixed cultures publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.22556 – start-page: 1133 volume-title: The Prokaryotes year: 2006 ident: B24 article-title: Ecophysiology of the genus Shewanella doi: 10.1007/0-387-30746-X_45 – volume: 16 start-page: 20436 year: 2014 ident: B13 article-title: The conjugated oligoelectrolyte DSSN+ enables exceptional coulombic efficiency via direct electron transfer for anode-respiring Shewanella oneidensis MR-1—a mechanistic study publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP03197K – volume: 44 start-page: 948 year: 2010 ident: B16 article-title: Significance of biological hydrogen oxidation in a continuous single-chamber microbial electrolysis cell publication-title: Environ. Sci. Technol. doi: 10.1021/es9025358 – volume: 47 start-page: 285 year: 2013 ident: B8 article-title: Proof of principle for an engineered microbial biosensor based on Shewanella oneidensis outer membrane protein complexes publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2013.03.010 – volume: 109 start-page: 571 year: 2018 ident: B2 article-title: Extracellular reduction of solid electron acceptors by Shewanella oneidensis publication-title: Mol. Microbiol. doi: 10.1111/mmi.14067 – volume: 102 start-page: 2623 year: 2011 ident: B32 article-title: Shewanella oneidensis in a lactate-fed pure-culture and a glucose-fed co-culture with Lactococcus lactis with an electrode as electron acceptor publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.10.033 – volume: 73 start-page: 7003 year: 2007 ident: B4 article-title: Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01087-07 – volume: 14 start-page: 641 year: 2013 ident: B22 article-title: Microbiota-derived hydrogen fuels Salmonella typhimurium invasion of the gut ecosystem publication-title: Cell Host Microbe doi: 10.1016/j.chom.2013.11.002 – volume: 192 start-page: 467 year: 2010 ident: B5 article-title: The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis publication-title: J. Bacteriol. doi: 10.1128/JB.00925-09 – volume: 76 start-page: 270 year: 2012 ident: B14 article-title: Influences of aerobic respiration on current generation by Shewanella oneidensis MR-1 in single-chamber microbial fuel cells publication-title: Biosci. Biotechnol. Biochem. doi: 10.1271/bbb.110633 – volume: 11 start-page: 494 year: 2010 ident: B30 article-title: Genomic encyclopedia of sugar utilization pathways in the Shewanella genus publication-title: BMC Genomics doi: 10.1186/1471-2164-11-494 – volume: 73 start-page: 1153 year: 2007 ident: B23 article-title: Hydrogen metabolism in Shewanella oneidensis MR-1 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01588-06 – volume: 135 start-page: 630 year: 2013 ident: B42 article-title: Ferric iron enhances electricity generation by Shewanella oneidensis MR-1 in MFCs publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.09.106 – volume: 192 start-page: 3345 year: 2010 ident: B11 article-title: Substrate-level phosphorylation is the primary source of energy conservation during anaerobic respiration of Shewanella oneidensis strain MR-1 publication-title: J. Bacteriol. doi: 10.1128/JB.00090-10 – volume: 352 start-page: 18 year: 2014 ident: B15 article-title: Contributions of the [NiFe]- and [FeFe]-hydrogenase to H2 production in Shewanella oneidensis MR-1 as revealed by isotope ratio analysis of evolved H2 publication-title: FEMS Microbiol. Lett. doi: 10.1111/1574-6968.12361 – volume: 52 start-page: 2993 year: 1988 ident: B18 article-title: Hydrogen concentrations as an indicator of the predominant terminal electron-accepting reactions in aquatic sediments publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(88)90163-9 – volume: 45 start-page: 815 year: 2011 ident: B7 article-title: Electricity-assisted biological hydrogen production from acetate by Geobacter sulfurreducens publication-title: Environ. Sci. Technol. doi: 10.1021/es102842p – volume: 105 start-page: 880 year: 2010 ident: B31 article-title: Aerated Shewanella oneidensis in continuously fed bioelectrochemical systems for power and hydrogen production publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.22621 – volume: 22 start-page: 883 year: 2010 ident: B3 article-title: Comparative microbial fuel cell evaluations of Shewanella spp publication-title: Electroanalysis doi: 10.1002/elan.200800016 – volume: 7 start-page: 568 year: 2009 ident: B36 article-title: Electron transfer in syntrophic communities of anaerobic bacteria and archaea publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2166 – start-page: 471 volume-title: The Prokaryotes: Prokaryotic Communities and Ecophysiology year: 2013 ident: B34 article-title: Syntrophism among prokaryotes doi: 10.1007/978-3-642-30123-0_59 – volume: 284 start-page: 28865 year: 2009 ident: B1 article-title: Electrochemical measurement of electron transfer kinetics by Shewanella oneidensis MR-1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.043455 – volume: 6 start-page: 592 year: 2008 ident: B6 article-title: Towards environmental systems biology of Shewanella publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro1947 – volume: 114 start-page: 96 year: 2017 ident: B20 article-title: Effect of oxygen on the per-cell extracellular electron transfer rate of Shewanella oneidensis MR-1 explored in bioelectrochemical systems publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.26046 – volume: 74 start-page: 6880 year: 2008 ident: B9 article-title: Mechanism and consequences of anaerobic respiration of cobalt by Shewanella oneidensis Strain MR-1 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00840-08 – volume: 6 start-page: 20941 year: 2016 ident: B21 article-title: 13C pathway analysis for the role of formate in electricity generation by Shewanella Oneidensis MR-1 using lactate in microbial fuel cells publication-title: Sci. Rep. doi: 10.1038/srep20941 – volume: 49 start-page: 705 year: 1999 ident: B40 article-title: Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov publication-title: Int. J. Syst. Bacteriol. doi: 10.1099/00207713-49-2-705 – volume: 100 start-page: 10983 year: 2003 ident: B33 article-title: Genetic identification of a respiratory arsenate reductase publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1834303100 – volume: 1 start-page: 2000 year: 2014 ident: B37 article-title: Oxidizing electrode potentials decrease current production and coulombic efficiency through cytochrome c inactivation in Shewanella oneidensis MR-1 publication-title: ChemElectroChem doi: 10.1002/celc.201402128 – volume: 111 start-page: 692 year: 2014 ident: B38 article-title: Oxygen allows Shewanella oneidensis MR-1 to overcome mediator washout in a continuously fed bioelectrochemical system publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.25128 – volume: 198 start-page: 1337 year: 2016 ident: B12 article-title: Formate metabolism in Shewanella oneidensis generates proton motive force and prevents growth without an electron acceptor publication-title: J. Bacteriol. doi: 10.1128/JB.00927-15 – volume: 43 start-page: 7971 year: 2009 ident: B17 article-title: Fate of H2 in an upflow single-chamber microbial electrolysis cell using a metal-catalyst-free cathode publication-title: Environ. Sci. Technol. doi: 10.1021/es900204j – volume: 40 start-page: 2629 year: 2006 ident: B28 article-title: High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10 publication-title: Environ. Sci. Technol. doi: 10.1021/es052254w – volume: 23 start-page: 291 year: 2005 ident: B27 article-title: Microbial fuel cells: novel biotechnology for energy generation publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2005.04.008 – volume: 77 start-page: 8234 year: 2011 ident: B26 article-title: Pyruvate and lactate metabolism by Shewanella oneidensis MR-1 under fermentation, oxygen limitation, and fumarate respiration conditions publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.05382-11 – volume: 41 start-page: 100 year: 1977 ident: B39 article-title: Energy conservation in chemotrophic anaerobic bacteria publication-title: Bacteriol. Rev. doi: 10.1128/BR.41.1.100-180.1977 – volume: 53 start-page: 1536 year: 1987 ident: B19 article-title: Rapid assay for microbially reducible ferric iron in aquatic sediments publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.53.7.1536-1540.1987 |
SSID | ssj0001325410 |
Score | 2.18026 |
Snippet | Many bacteria use hydrogen anaerobically as both a source and sink for electrons; consuming hydrogen when it is plentiful and producing it when concentrations... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
SubjectTerms | coulombic efficiency extracellular electron transfer hydrogen metabolism hydrogenase microbial fuel cells Shewanella |
Title | Preventing Hydrogen Disposal Increases Electrode Utilization Efficiency by Shewanella oneidensis |
URI | https://doaj.org/article/fd2cbd2616294b4ab887ff443659b658 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sDCEDV-5DXyaFUhwQKVugU_S6UqRW0R6r_nzkmrTLAwRYrsxPp8zt05n78j5CaPheexZZHNhIlkltmogMg30tpoZ5VVeWC7P7-kw5F8GifjVqkv5ITV8sA1cD1vudEW4vyUF1JLpWFVeC-lSJNCg_vEry_4vFYyFXZXBCQ-LK7_S0IWVvQ8TMcEqVyoTxljOYmWH2rJ9Qe_Mjgg-01ASO_qgRySHVcdkb2WTOAxed_oLFUTOlzbxRwmnT5OkXAFPWGFI7HcLWm_LmljHR2tprPmgCXtB5EIPGFJ9Zq-frhvhdQWRecValxVy-nyhIwG_beHYdRURoiMSNgqcpnMPUuslYox7b0WJs1FnkhuLed5mmc6FsJhmUPHRaG8dzwz3hmlJFwLcUo6FbzljNBYevBeEOZxp1GtXksXS5Nan6s0jb3pkt4Gp9I0suFYvWJWQvqAyJYB2RKRLQOyXXK77fFZS2b80vYeod-2Q7HrcANMoGxMoPzLBM7_4yEXZBeHhVQQxi5JZ7X4clcQb6z0dTCtH79m1TM |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preventing+Hydrogen+Disposal+Increases+Electrode+Utilization+Efficiency+by+Shewanella+oneidensis&rft.jtitle=Frontiers+in+energy+research&rft.au=Joshi%2C+Komal&rft.au=Kane%2C+Aunica+L.&rft.au=Kotloski%2C+Nicholas+J.&rft.au=Gralnick%2C+Jeffrey+A.&rft.date=2019-09-11&rft.issn=2296-598X&rft.eissn=2296-598X&rft.volume=7&rft_id=info:doi/10.3389%2Ffenrg.2019.00095&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fenrg_2019_00095 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-598X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-598X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-598X&client=summon |