Preventing Hydrogen Disposal Increases Electrode Utilization Efficiency by Shewanella oneidensis

Many bacteria use hydrogen anaerobically as both a source and sink for electrons; consuming hydrogen when it is plentiful and producing it when concentrations are low enough to allow proton reduction. While this can increase an organism's competitiveness, hydrogen uptake, or excretion can also...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in energy research Vol. 7
Main Authors Joshi, Komal, Kane, Aunica L., Kotloski, Nicholas J., Gralnick, Jeffrey A., Bond, Daniel R.
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 11.09.2019
Subjects
Online AccessGet full text
ISSN2296-598X
2296-598X
DOI10.3389/fenrg.2019.00095

Cover

Loading…
Abstract Many bacteria use hydrogen anaerobically as both a source and sink for electrons; consuming hydrogen when it is plentiful and producing it when concentrations are low enough to allow proton reduction. While this can increase an organism's competitiveness, hydrogen uptake, or excretion can also make it difficult to control electron flux to a specific product. For example, when Shewanella oneidensis strain MR-1 is used to oxidize organic molecules and recover electrons in microbial electrochemical devices, small changes in ambient hydrogen concentrations could dramatically alter the efficiency of electron capture at the anode due to this organism's respiratory flexibility. When new three-electrode reactor designs created to minimize oxygen intrusion during anodic growth were tested with lactate-oxidizing S. oneidensis, current production decreased significantly in reactors vented to remove hydrogen produced at the counter electrode, suggesting a role for hydrogen uptake or disposal when cells used electrodes as electron acceptors. A ΔhydAΔhyaB mutant lacking both hydrogenases reversed this trend, and nearly doubled current production rates. This increase was shown to be due to the efficiency of lactate oxidation, as 90% of electrons were recovered as electricity in the ΔhydAΔhyaB mutant compared to only 50% for wild type. Experiments with Fe(III) oxide provided additional evidence that S. oneidensis generates hydrogen reducing equivalents during reduction of insoluble electron acceptors, while experiments with cells incubated with Fe(III) citrate showed increased survival of wild-type compared to ΔhydAΔhyaB in stationary phase. Together these data show how the multiple routes of electron disposal of S. oneidensis, while beneficial under changing conditions, limits the efficiency of electron recovery in electrochemical systems, and demonstrates a simple approach to increasing current production rates in systems where hydrogen is being captured as a product.
AbstractList Many bacteria use hydrogen anaerobically as both a source and sink for electrons; consuming hydrogen when it is plentiful and producing it when concentrations are low enough to allow proton reduction. While this can increase an organism's competitiveness, hydrogen uptake, or excretion can also make it difficult to control electron flux to a specific product. For example, when Shewanella oneidensis strain MR-1 is used to oxidize organic molecules and recover electrons in microbial electrochemical devices, small changes in ambient hydrogen concentrations could dramatically alter the efficiency of electron capture at the anode due to this organism's respiratory flexibility. When new three-electrode reactor designs created to minimize oxygen intrusion during anodic growth were tested with lactate-oxidizing S. oneidensis, current production decreased significantly in reactors vented to remove hydrogen produced at the counter electrode, suggesting a role for hydrogen uptake or disposal when cells used electrodes as electron acceptors. A ΔhydAΔhyaB mutant lacking both hydrogenases reversed this trend, and nearly doubled current production rates. This increase was shown to be due to the efficiency of lactate oxidation, as 90% of electrons were recovered as electricity in the ΔhydAΔhyaB mutant compared to only 50% for wild type. Experiments with Fe(III) oxide provided additional evidence that S. oneidensis generates hydrogen reducing equivalents during reduction of insoluble electron acceptors, while experiments with cells incubated with Fe(III) citrate showed increased survival of wild-type compared to ΔhydAΔhyaB in stationary phase. Together these data show how the multiple routes of electron disposal of S. oneidensis, while beneficial under changing conditions, limits the efficiency of electron recovery in electrochemical systems, and demonstrates a simple approach to increasing current production rates in systems where hydrogen is being captured as a product.
Author Kane, Aunica L.
Kotloski, Nicholas J.
Bond, Daniel R.
Joshi, Komal
Gralnick, Jeffrey A.
Author_xml – sequence: 1
  givenname: Komal
  surname: Joshi
  fullname: Joshi, Komal
– sequence: 2
  givenname: Aunica L.
  surname: Kane
  fullname: Kane, Aunica L.
– sequence: 3
  givenname: Nicholas J.
  surname: Kotloski
  fullname: Kotloski, Nicholas J.
– sequence: 4
  givenname: Jeffrey A.
  surname: Gralnick
  fullname: Gralnick, Jeffrey A.
– sequence: 5
  givenname: Daniel R.
  surname: Bond
  fullname: Bond, Daniel R.
BookMark eNp1kEtLQzEQhYNU8Ll3mT_QmtdNk6XUqgVBQQV3MTeZ1Mg1KclFqb_ea6sggqszDHMOZ74DNEo5AUInlEw4V_o0QCrLCSNUTwghutlB-4xpOW60ehz9mvfQca0vwwnlrBGU7KOn2wJvkPqYlvhq7UteQsLnsa5ytR1eJFfAVqh43oHrS_aAH_rYxQ_bx5zwPIToIiS3xu0a3z3Du03QdRYP9aKHVGM9QrvBdhWOv_UQPVzM72dX4-uby8Xs7HrseEP7MUyFCrTxXlhK2xBa7qTiqhHMe8aUVNOWcA5ScwKMaxsCsKkL4KwVg2p-iBbbXJ_ti1mV-GrL2mQbzWaRy9LY0kfXgQmeudYzSSXTohW2VWoaghBcNrqVjRqy5DbLlVxrgWBc7Dcf98XGzlBivrCbDXbzhd1ssA9G8sf4U-RfyydNhIrs
CitedBy_id crossref_primary_10_1007_s10529_023_03450_3
crossref_primary_10_1016_j_bioflm_2022_100077
crossref_primary_10_1021_jacs_2c00934
crossref_primary_10_1128_aem_01387_23
crossref_primary_10_1016_j_ijhydene_2024_12_407
crossref_primary_10_1128_spectrum_02798_22
crossref_primary_10_1016_j_jhazmat_2023_131545
crossref_primary_10_1016_j_joule_2021_02_001
crossref_primary_10_1016_j_ibiod_2022_105439
crossref_primary_10_1149_1945_7111_acb239
crossref_primary_10_1038_s41557_020_0460_1
crossref_primary_10_1111_mmi_14801
Cites_doi 10.1128/AEM.01142-09
10.1073/pnas.0409574102
10.1146/annurev.micro.61.080706.093257
10.1016/j.jpowsour.2006.10.026
10.1002/bit.22556
10.1007/0-387-30746-X_45
10.1039/C4CP03197K
10.1021/es9025358
10.1016/j.bios.2013.03.010
10.1111/mmi.14067
10.1016/j.biortech.2010.10.033
10.1128/AEM.01087-07
10.1016/j.chom.2013.11.002
10.1128/JB.00925-09
10.1271/bbb.110633
10.1186/1471-2164-11-494
10.1128/AEM.01588-06
10.1016/j.biortech.2012.09.106
10.1128/JB.00090-10
10.1111/1574-6968.12361
10.1016/0016-7037(88)90163-9
10.1021/es102842p
10.1002/bit.22621
10.1002/elan.200800016
10.1038/nrmicro2166
10.1007/978-3-642-30123-0_59
10.1074/jbc.M109.043455
10.1038/nrmicro1947
10.1002/bit.26046
10.1128/AEM.00840-08
10.1038/srep20941
10.1099/00207713-49-2-705
10.1073/pnas.1834303100
10.1002/celc.201402128
10.1002/bit.25128
10.1128/JB.00927-15
10.1021/es900204j
10.1021/es052254w
10.1016/j.tibtech.2005.04.008
10.1128/AEM.05382-11
10.1128/BR.41.1.100-180.1977
10.1128/AEM.53.7.1536-1540.1987
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/fenrg.2019.00095
DatabaseName CrossRef
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2296-598X
ExternalDocumentID oai_doaj_org_article_fd2cbd2616294b4ab887ff443659b658
10_3389_fenrg_2019_00095
GroupedDBID 5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
M~E
OK1
ID FETCH-LOGICAL-c351t-e748f15dd4a11bffb3c6838542dd228687b033e6930e239affe27cfecaa47cf93
IEDL.DBID DOA
ISSN 2296-598X
IngestDate Wed Aug 27 01:27:55 EDT 2025
Thu Apr 24 22:56:03 EDT 2025
Tue Jul 01 03:00:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-e748f15dd4a11bffb3c6838542dd228687b033e6930e239affe27cfecaa47cf93
OpenAccessLink https://doaj.org/article/fd2cbd2616294b4ab887ff443659b658
ParticipantIDs doaj_primary_oai_doaj_org_article_fd2cbd2616294b4ab887ff443659b658
crossref_citationtrail_10_3389_fenrg_2019_00095
crossref_primary_10_3389_fenrg_2019_00095
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-11
PublicationDateYYYYMMDD 2019-09-11
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-11
  day: 11
PublicationDecade 2010
PublicationTitle Frontiers in energy research
PublicationYear 2019
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Rabaey (B27) 2005; 23
Meshulam-Simon (B23) 2007; 73
Kirchhofer (B13) 2014; 16
TerAvest (B37) 2014; 1
Kouzuma (B14) 2012; 76
Venkateswaran (B40) 1999; 49
Watson (B41) 2010; 105
Baron (B1) 2009; 284
Beblawy (B2) 2018; 109
TerAvest (B38) 2014; 111
Newton (B25) 2009; 75
Thauer (B39) 1977; 41
Saltikov (B33) 2003; 100
Geelhoed (B7) 2011; 45
Wu (B42) 2013; 135
Fredrickson (B6) 2008; 6
Rosenbaum (B31) 2010; 105
Coursolle (B5) 2010; 192
Lovley (B19) 1987; 53
Luo (B21) 2016; 6
Nealson (B24) 2006
Rodionov (B30) 2010; 11
Lee (B16) 2010; 44
Lovley (B18) 1988; 52
Pinchuk (B26) 2011; 77
Bretschger (B3) 2010; 22
Bretschger (B4) 2007; 73
Lee (B17) 2009; 43
Lu (B20) 2017; 114
Ringeisen (B28) 2006; 40
Ringeisen (B29) 2007; 165
Golitsch (B8) 2013; 47
Schink (B34) 2013
Kane (B12) 2016; 198
Maier (B22) 2013; 14
Hunt (B11) 2010; 192
Stams (B36) 2009; 7
Hau (B10) 2007; 61
Hau (B9) 2008; 74
Rosenbaum (B32) 2011; 102
Kreuzer (B15) 2014; 352
Spear (B35) 2005; 102
References_xml – volume: 75
  start-page: 7674
  year: 2009
  ident: B25
  article-title: Analyses of current-generating mechanisms of Shewanella loihica PV-4 and Shewanella oneidensis MR-1 in microbial fuel cells
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01142-09
– volume: 102
  start-page: 2555
  year: 2005
  ident: B35
  article-title: Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0409574102
– volume: 61
  start-page: 237
  year: 2007
  ident: B10
  article-title: Ecology and biotechnology of the genus Shewanella
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.micro.61.080706.093257
– volume: 165
  start-page: 591
  year: 2007
  ident: B29
  article-title: A miniature microbial fuel cell operating with an aerobic anode chamber
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.10.026
– volume: 105
  start-page: 489
  year: 2010
  ident: B41
  article-title: Power production in MFCs inoculated with Shewanella oneidensis MR-1 or mixed cultures
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.22556
– start-page: 1133
  volume-title: The Prokaryotes
  year: 2006
  ident: B24
  article-title: Ecophysiology of the genus Shewanella
  doi: 10.1007/0-387-30746-X_45
– volume: 16
  start-page: 20436
  year: 2014
  ident: B13
  article-title: The conjugated oligoelectrolyte DSSN+ enables exceptional coulombic efficiency via direct electron transfer for anode-respiring Shewanella oneidensis MR-1—a mechanistic study
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP03197K
– volume: 44
  start-page: 948
  year: 2010
  ident: B16
  article-title: Significance of biological hydrogen oxidation in a continuous single-chamber microbial electrolysis cell
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9025358
– volume: 47
  start-page: 285
  year: 2013
  ident: B8
  article-title: Proof of principle for an engineered microbial biosensor based on Shewanella oneidensis outer membrane protein complexes
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2013.03.010
– volume: 109
  start-page: 571
  year: 2018
  ident: B2
  article-title: Extracellular reduction of solid electron acceptors by Shewanella oneidensis
  publication-title: Mol. Microbiol.
  doi: 10.1111/mmi.14067
– volume: 102
  start-page: 2623
  year: 2011
  ident: B32
  article-title: Shewanella oneidensis in a lactate-fed pure-culture and a glucose-fed co-culture with Lactococcus lactis with an electrode as electron acceptor
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.10.033
– volume: 73
  start-page: 7003
  year: 2007
  ident: B4
  article-title: Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01087-07
– volume: 14
  start-page: 641
  year: 2013
  ident: B22
  article-title: Microbiota-derived hydrogen fuels Salmonella typhimurium invasion of the gut ecosystem
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2013.11.002
– volume: 192
  start-page: 467
  year: 2010
  ident: B5
  article-title: The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00925-09
– volume: 76
  start-page: 270
  year: 2012
  ident: B14
  article-title: Influences of aerobic respiration on current generation by Shewanella oneidensis MR-1 in single-chamber microbial fuel cells
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1271/bbb.110633
– volume: 11
  start-page: 494
  year: 2010
  ident: B30
  article-title: Genomic encyclopedia of sugar utilization pathways in the Shewanella genus
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-11-494
– volume: 73
  start-page: 1153
  year: 2007
  ident: B23
  article-title: Hydrogen metabolism in Shewanella oneidensis MR-1
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01588-06
– volume: 135
  start-page: 630
  year: 2013
  ident: B42
  article-title: Ferric iron enhances electricity generation by Shewanella oneidensis MR-1 in MFCs
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.09.106
– volume: 192
  start-page: 3345
  year: 2010
  ident: B11
  article-title: Substrate-level phosphorylation is the primary source of energy conservation during anaerobic respiration of Shewanella oneidensis strain MR-1
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00090-10
– volume: 352
  start-page: 18
  year: 2014
  ident: B15
  article-title: Contributions of the [NiFe]- and [FeFe]-hydrogenase to H2 production in Shewanella oneidensis MR-1 as revealed by isotope ratio analysis of evolved H2
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/1574-6968.12361
– volume: 52
  start-page: 2993
  year: 1988
  ident: B18
  article-title: Hydrogen concentrations as an indicator of the predominant terminal electron-accepting reactions in aquatic sediments
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(88)90163-9
– volume: 45
  start-page: 815
  year: 2011
  ident: B7
  article-title: Electricity-assisted biological hydrogen production from acetate by Geobacter sulfurreducens
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es102842p
– volume: 105
  start-page: 880
  year: 2010
  ident: B31
  article-title: Aerated Shewanella oneidensis in continuously fed bioelectrochemical systems for power and hydrogen production
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.22621
– volume: 22
  start-page: 883
  year: 2010
  ident: B3
  article-title: Comparative microbial fuel cell evaluations of Shewanella spp
  publication-title: Electroanalysis
  doi: 10.1002/elan.200800016
– volume: 7
  start-page: 568
  year: 2009
  ident: B36
  article-title: Electron transfer in syntrophic communities of anaerobic bacteria and archaea
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2166
– start-page: 471
  volume-title: The Prokaryotes: Prokaryotic Communities and Ecophysiology
  year: 2013
  ident: B34
  article-title: Syntrophism among prokaryotes
  doi: 10.1007/978-3-642-30123-0_59
– volume: 284
  start-page: 28865
  year: 2009
  ident: B1
  article-title: Electrochemical measurement of electron transfer kinetics by Shewanella oneidensis MR-1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.043455
– volume: 6
  start-page: 592
  year: 2008
  ident: B6
  article-title: Towards environmental systems biology of Shewanella
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro1947
– volume: 114
  start-page: 96
  year: 2017
  ident: B20
  article-title: Effect of oxygen on the per-cell extracellular electron transfer rate of Shewanella oneidensis MR-1 explored in bioelectrochemical systems
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.26046
– volume: 74
  start-page: 6880
  year: 2008
  ident: B9
  article-title: Mechanism and consequences of anaerobic respiration of cobalt by Shewanella oneidensis Strain MR-1
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00840-08
– volume: 6
  start-page: 20941
  year: 2016
  ident: B21
  article-title: 13C pathway analysis for the role of formate in electricity generation by Shewanella Oneidensis MR-1 using lactate in microbial fuel cells
  publication-title: Sci. Rep.
  doi: 10.1038/srep20941
– volume: 49
  start-page: 705
  year: 1999
  ident: B40
  article-title: Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov
  publication-title: Int. J. Syst. Bacteriol.
  doi: 10.1099/00207713-49-2-705
– volume: 100
  start-page: 10983
  year: 2003
  ident: B33
  article-title: Genetic identification of a respiratory arsenate reductase
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1834303100
– volume: 1
  start-page: 2000
  year: 2014
  ident: B37
  article-title: Oxidizing electrode potentials decrease current production and coulombic efficiency through cytochrome c inactivation in Shewanella oneidensis MR-1
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201402128
– volume: 111
  start-page: 692
  year: 2014
  ident: B38
  article-title: Oxygen allows Shewanella oneidensis MR-1 to overcome mediator washout in a continuously fed bioelectrochemical system
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.25128
– volume: 198
  start-page: 1337
  year: 2016
  ident: B12
  article-title: Formate metabolism in Shewanella oneidensis generates proton motive force and prevents growth without an electron acceptor
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00927-15
– volume: 43
  start-page: 7971
  year: 2009
  ident: B17
  article-title: Fate of H2 in an upflow single-chamber microbial electrolysis cell using a metal-catalyst-free cathode
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es900204j
– volume: 40
  start-page: 2629
  year: 2006
  ident: B28
  article-title: High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es052254w
– volume: 23
  start-page: 291
  year: 2005
  ident: B27
  article-title: Microbial fuel cells: novel biotechnology for energy generation
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2005.04.008
– volume: 77
  start-page: 8234
  year: 2011
  ident: B26
  article-title: Pyruvate and lactate metabolism by Shewanella oneidensis MR-1 under fermentation, oxygen limitation, and fumarate respiration conditions
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.05382-11
– volume: 41
  start-page: 100
  year: 1977
  ident: B39
  article-title: Energy conservation in chemotrophic anaerobic bacteria
  publication-title: Bacteriol. Rev.
  doi: 10.1128/BR.41.1.100-180.1977
– volume: 53
  start-page: 1536
  year: 1987
  ident: B19
  article-title: Rapid assay for microbially reducible ferric iron in aquatic sediments
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.53.7.1536-1540.1987
SSID ssj0001325410
Score 2.18026
Snippet Many bacteria use hydrogen anaerobically as both a source and sink for electrons; consuming hydrogen when it is plentiful and producing it when concentrations...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
SubjectTerms coulombic efficiency
extracellular electron transfer
hydrogen metabolism
hydrogenase
microbial fuel cells
Shewanella
Title Preventing Hydrogen Disposal Increases Electrode Utilization Efficiency by Shewanella oneidensis
URI https://doaj.org/article/fd2cbd2616294b4ab887ff443659b658
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sDCEDV-5DXyaFUhwQKVugU_S6UqRW0R6r_nzkmrTLAwRYrsxPp8zt05n78j5CaPheexZZHNhIlkltmogMg30tpoZ5VVeWC7P7-kw5F8GifjVqkv5ITV8sA1cD1vudEW4vyUF1JLpWFVeC-lSJNCg_vEry_4vFYyFXZXBCQ-LK7_S0IWVvQ8TMcEqVyoTxljOYmWH2rJ9Qe_Mjgg-01ASO_qgRySHVcdkb2WTOAxed_oLFUTOlzbxRwmnT5OkXAFPWGFI7HcLWm_LmljHR2tprPmgCXtB5EIPGFJ9Zq-frhvhdQWRecValxVy-nyhIwG_beHYdRURoiMSNgqcpnMPUuslYox7b0WJs1FnkhuLed5mmc6FsJhmUPHRaG8dzwz3hmlJFwLcUo6FbzljNBYevBeEOZxp1GtXksXS5Nan6s0jb3pkt4Gp9I0suFYvWJWQvqAyJYB2RKRLQOyXXK77fFZS2b80vYeod-2Q7HrcANMoGxMoPzLBM7_4yEXZBeHhVQQxi5JZ7X4clcQb6z0dTCtH79m1TM
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preventing+Hydrogen+Disposal+Increases+Electrode+Utilization+Efficiency+by+Shewanella+oneidensis&rft.jtitle=Frontiers+in+energy+research&rft.au=Joshi%2C+Komal&rft.au=Kane%2C+Aunica+L.&rft.au=Kotloski%2C+Nicholas+J.&rft.au=Gralnick%2C+Jeffrey+A.&rft.date=2019-09-11&rft.issn=2296-598X&rft.eissn=2296-598X&rft.volume=7&rft_id=info:doi/10.3389%2Ffenrg.2019.00095&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fenrg_2019_00095
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-598X&client=summon