Why Deep-Water Eruptions Are So Different From Subaerial Eruptions

Magmas erupted in deep-water environments (>500 m) are subject to physical constraints very different to those for subaerial eruptions, including hydrostatic pressure, bulk modulus, thermal conductivity, heat capacity and the density of water mass, which are generally orders of magnitude greater...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in earth science (Lausanne) Vol. 6
Main Authors Cas, Raymond A. F., Simmons, Jack M.
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 20.11.2018
Subjects
Online AccessGet full text
ISSN2296-6463
2296-6463
DOI10.3389/feart.2018.00198

Cover

Loading…
Abstract Magmas erupted in deep-water environments (>500 m) are subject to physical constraints very different to those for subaerial eruptions, including hydrostatic pressure, bulk modulus, thermal conductivity, heat capacity and the density of water mass, which are generally orders of magnitude greater than for air. Generally, the exsolved volatile content of the erupting magma will be lower because magmas decompress to hydrostatic pressures orders of magnitude greater than atmospheric pressure. At water depths and pressures greater than those equivalent to the critical points of H2O and CO2, exsolved volatiles are supercritical fluids, not gas, and so have limited ability to expand, let alone explosively. Gas overpressures are lower in deep submarine magmas relative to subaerial counterparts, limiting explosive expansion of gas bubbles to shallower waters. Explosive intensity is further minimized by the higher bulk modulus of water, relative to air. Higher retention of volatiles makes subaqueously erupted magmas less viscous, and more prone to fire fountaining eruption style compared with compositionally equivalent subaerial counterparts. The high heat capacity and thermal conductivity of (ambient) water makes effusively (and/or explosively) erupted magmas more prone to rapid cooling and quench fragmentation, producing non-explosive hyaloclastite breccia. Gaseous subaqueous eruption columns and hot water plumes form above both explosive and non-explosive eruptions, and these can entrain pyroclasts and pumice autoclasts upward. The height of such plumes is limited by the water depth and will show different buoyancy, dynamics, and height and dispersal capacity compared with subaerial eruption columns. Water ingress and condensation erosion of gas bubbles will be major factors in controlling column dynamics. Autoclasts and pyroclasts with an initial bulk density less than water can rise buoyantly, irrespective of plume buoyancy, which they cannot do in the atmosphere. Dispersal and sedimentation of clasts in water is affected by the rate at which buoyant clasts become water-logged and sink, and by wind, waves, and oceanic currents, which can produce very circuitous dispersal patterns in floating pumice rafts. Floating pumice can abrade by frictional interaction with neighbors in a floating raft, and generate in transit, post-eruptive ash fallout unrelated to explosive activity or quench fragmentation.
AbstractList Magmas erupted in deep-water environments (>500 m) are subject to physical constraints very different to those for subaerial eruptions, including hydrostatic pressure, bulk modulus, thermal conductivity, heat capacity and the density of water mass, which are generally orders of magnitude greater than for air. Generally, the exsolved volatile content of the erupting magma will be lower because magmas decompress to hydrostatic pressures orders of magnitude greater than atmospheric pressure. At water depths and pressures greater than those equivalent to the critical points of H2O and CO2, exsolved volatiles are supercritical fluids, not gas, and so have limited ability to expand, let alone explosively. Gas overpressures are lower in deep submarine magmas relative to subaerial counterparts, limiting explosive expansion of gas bubbles to shallower waters. Explosive intensity is further minimized by the higher bulk modulus of water, relative to air. Higher retention of volatiles makes subaqueously erupted magmas less viscous, and more prone to fire fountaining eruption style compared with compositionally equivalent subaerial counterparts. The high heat capacity and thermal conductivity of (ambient) water makes effusively (and/or explosively) erupted magmas more prone to rapid cooling and quench fragmentation, producing non-explosive hyaloclastite breccia. Gaseous subaqueous eruption columns and hot water plumes form above both explosive and non-explosive eruptions, and these can entrain pyroclasts and pumice autoclasts upward. The height of such plumes is limited by the water depth and will show different buoyancy, dynamics, and height and dispersal capacity compared with subaerial eruption columns. Water ingress and condensation erosion of gas bubbles will be major factors in controlling column dynamics. Autoclasts and pyroclasts with an initial bulk density less than water can rise buoyantly, irrespective of plume buoyancy, which they cannot do in the atmosphere. Dispersal and sedimentation of clasts in water is affected by the rate at which buoyant clasts become water-logged and sink, and by wind, waves, and oceanic currents, which can produce very circuitous dispersal patterns in floating pumice rafts. Floating pumice can abrade by frictional interaction with neighbors in a floating raft, and generate in transit, post-eruptive ash fallout unrelated to explosive activity or quench fragmentation.
Author Cas, Raymond A. F.
Simmons, Jack M.
Author_xml – sequence: 1
  givenname: Raymond A. F.
  surname: Cas
  fullname: Cas, Raymond A. F.
– sequence: 2
  givenname: Jack M.
  surname: Simmons
  fullname: Simmons, Jack M.
BookMark eNp1kEtPAjEUhRuDiYjsXc4fGOxj2mmXyENJSFygYdm05VZLhinpDAv-vQMYNSau7snNOd_iu0W9OtaA0D3BI8akevBgUjuimMgRxkTJK9SnVIlcFIL1fuUbNGyaLe46jPICqz56XH8csynAPl-bFlI2S4d9G2LdZOME2Spm0-A9JKjbbJ7iLlsdrIEUTPXTvEPX3lQNDL_uAL3NZ6-T53z58rSYjJe5Y5y0OfCNLYVV1khsOXBHuQdhvcSSU-EsCK5YQayVnDlKPCFgC29B0lKAKYEN0OLC3USz1fsUdiYddTRBnx8xvevOQnAV6HJTUGuYA0t44RhWDqsOy5QriOKSdix8YbkUmyaB_-YRrE9K9VmpPinVZ6XdRPyZuNCak4E2mVD9P_wE3Dt9wQ
CitedBy_id crossref_primary_10_3389_feart_2020_00237
crossref_primary_10_1007_s00445_021_01514_8
crossref_primary_10_1029_2023GL102763
crossref_primary_10_1016_j_jvolgeores_2020_106806
crossref_primary_10_1016_j_fuel_2023_128996
crossref_primary_10_1007_s00445_019_1298_5
crossref_primary_10_1144_SP520_2021_137
crossref_primary_10_3389_feart_2022_788294
crossref_primary_10_1016_j_precamres_2019_105580
crossref_primary_10_1007_s00445_020_01408_1
crossref_primary_10_2465_jmps_191211
crossref_primary_10_1080_08120099_2020_1669708
crossref_primary_10_1007_s00445_022_01562_8
crossref_primary_10_5800_GT_2019_10_3_0443
crossref_primary_10_1007_s00410_022_01940_7
crossref_primary_10_1038_s41467_021_27817_0
crossref_primary_10_1016_j_jvolgeores_2024_108186
crossref_primary_10_1016_j_sesci_2022_01_001
crossref_primary_10_1038_s41467_023_42261_y
crossref_primary_10_1038_s41598_020_63737_7
crossref_primary_10_1126_sciadv_adk6208
crossref_primary_10_1038_s43247_022_00594_4
crossref_primary_10_5382_econgeo_4910
crossref_primary_10_1007_s00710_024_00850_9
crossref_primary_10_1029_2020JB020969
crossref_primary_10_1017_jfm_2023_342
crossref_primary_10_1007_s00445_019_1316_7
crossref_primary_10_1007_s00445_021_01497_6
crossref_primary_10_1016_j_epsl_2020_116320
crossref_primary_10_1038_s41598_020_74361_w
crossref_primary_10_1144_SP520_2021_50
crossref_primary_10_3389_feart_2022_1061515
crossref_primary_10_3389_fmars_2019_00593
crossref_primary_10_1515_geo_2019_0048
crossref_primary_10_1016_j_gca_2022_01_002
crossref_primary_10_1016_j_epsl_2021_117328
crossref_primary_10_1038_s41561_023_01160_z
crossref_primary_10_14770_jgsk_2019_55_2_165
crossref_primary_10_3389_feart_2022_871951
crossref_primary_10_1080_17445647_2023_2243305
crossref_primary_10_1177_0309133320937998
crossref_primary_10_1016_j_jsg_2021_104397
crossref_primary_10_3389_feart_2021_751216
crossref_primary_10_1016_j_lithos_2023_107313
crossref_primary_10_1016_j_jvolgeores_2019_106710
crossref_primary_10_1038_s43247_022_00355_3
crossref_primary_10_1038_s41561_020_0603_4
crossref_primary_10_1016_j_chemgeo_2023_121739
crossref_primary_10_1016_j_jvolgeores_2020_107045
crossref_primary_10_1007_s00445_019_1317_6
Cites_doi 10.1007/978-1-4615-4151-6_5
10.1139/e78-101
10.1007/s00445-013-0742-1
10.1016/B978-0-12-385938-9.00019-5
10.1007/s00445-018-1211-7
10.1016/j.jvolgeores.2016.05.013
10.1017/S0022112080002662
10.2113/gsecongeo.87.3.825
10.1029/92JB01594
10.1007/BF00280227
10.1007/s00410-016-1265-5
10.1016/S0012-821X(01)00289-8
10.1002/2014EO190001
10.1038/ngeo1275
10.1130/0016-7606197889<1708:SLIPFD<2.0.CO;2
10.1029/92JB00416
10.1007/s00445-005-0042-5
10.1029/140GM14
10.1016/j.epsl.2018.02.025
10.1038/17109
10.1007/s00445-009-0317-3
10.1017/CBO9781139021562.011
10.1093/petroj/38.7.911
10.1016/S0377-0273(01)00278-5
10.5194/os-5-235-2009
10.1007/BF01081757
10.1016/0301-9268(80)90023-6
10.1016/S0377-0273(99)00015-3
10.1002/met.212
10.1016/0016-7037(88)90192-5
10.1029/JB089iB10p08417
10.1016/j.epsl.2004.07.016
10.1126/sciadv.1701121
10.1029/140GM17
10.1016/0377-0273(86)90080-6
10.1016/S0377-0273(99)00127-4
10.1007/978-94-009-3167-1
10.1130/0091-7613(1995)023<0073:QOSLFM>2.3.CO;2
10.1016/B978-0-12-385938-9.00025-0
10.1016/j.epsl.2018.04.053
10.2113/gsecongeo.87.3.511
10.1016/j.earscirev.2015.10.003
10.1016/B978-0-12-385938-9.00005-5
10.1126/science.253.5017.275
10.1007/BF01840108
10.1016/S0377-0273(02)00425-0
10.1016/j.jvolgeores.2017.05.034
10.1029/140GM03
10.1130/SPE212-p77
10.1016/j.rgg.2017.08.005
10.1002/ggge.20240
10.1016/S0377-0273(01)00284-0
10.3389/feart.2018.00147
10.1002/2014GC005387
10.1038/ncomms4660
10.1016/j.jvolgeores.2011.01.003
10.5575/geosoc.77.193
10.1007/s00024-011-0275-5
10.1080/14786440808635681
10.1016/j.jvolgeores.2005.03.021
10.1016/j.epsl.2008.06.050
10.1016/j.pss.2015.01.009
10.1007/s004450050190
10.2465/ganko.86.439
10.1016/j.jvolgeores.2004.03.015
10.1029/98JB01121
10.1029/140GM22
10.3133/pp1250
10.1016/j.jvolgeores.2015.05.021
10.1007/BF01081754
10.1016/0377-0273(95)00077-1
10.1144/gsjgs.141.1.0183
10.1016/B978-0-12-385938-9.00007-9
10.1016/0377-0273(80)90009-8
10.1016/j.epsl.2008.03.038
10.1016/B978-0-12-385938-9.00031-6
10.5004/dwt.2010.1079
10.5772/63579
10.1016/j.jvolgeores.2017.07.008
10.1029/140GM02
10.1130/G32092.1
10.1016/B978-0-12-385938-9.00026-2
10.1146/annurev-earth-060614-105206
10.1016/S0037-0738(98)00057-8
10.1016/j.epsl.2004.08.009
10.1007/BF01079827
10.1002/2016GL071327
10.1007/BF01081756
10.1093/oso/9780195094091.001.0001
10.1029/2007JB005215
10.12681/bgsg.11291
10.1016/j.jvolgeores.2011.05.006
10.1007/s004450050293
10.1371/journal.pone.0040583
10.1130/G30500.1
10.1007/s00445-017-1120-1
10.1029/JB089iB10p08371
10.3301/IJG.2014.46
10.1186/s40517-015-0031-7
10.1016/j.epsl.2016.11.055
10.1007/BF01087675
10.1016/0377-0273(92)90118-W
10.1029/94JB00650
10.1007/BF01046546
10.1007/BF02597304
10.1029/140GM20
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/feart.2018.00198
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2296-6463
ExternalDocumentID oai_doaj_org_article_7d42ba3ceb154c309c0985339c419582
10_3389_feart_2018_00198
GroupedDBID 5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
M~E
OK1
ID FETCH-LOGICAL-c351t-e5db76b9ba80b5e5c25fe6bf808526cbe659341bb853c21f11eb4fbe8276ea7e3
IEDL.DBID DOA
ISSN 2296-6463
IngestDate Wed Aug 27 01:28:37 EDT 2025
Tue Jul 01 01:21:30 EDT 2025
Thu Apr 24 22:58:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-e5db76b9ba80b5e5c25fe6bf808526cbe659341bb853c21f11eb4fbe8276ea7e3
OpenAccessLink https://doaj.org/article/7d42ba3ceb154c309c0985339c419582
ParticipantIDs doaj_primary_oai_doaj_org_article_7d42ba3ceb154c309c0985339c419582
crossref_primary_10_3389_feart_2018_00198
crossref_citationtrail_10_3389_feart_2018_00198
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-20
PublicationDateYYYYMMDD 2018-11-20
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-20
  day: 20
PublicationDecade 2010
PublicationTitle Frontiers in earth science (Lausanne)
PublicationYear 2018
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Goto (B60) 2004; 134
White (B117)
Hunns (B65) 1999; 88
Campagnola (B18) 2016; 171
Lesher (B74) 2015
Scutter (B99) 1999
Allen (B3) 2008; 274
Chadwick (B33) 2016; 43
Gregg (B61) 1995; 23
McPhie (B80) 1993
McBirney (B79) 1963; 26
Allen (B5) 2000; 95
Cashman (B31) 2015
Scarfe (B97) 1987; 1
Garrison (B54) 2012
Giordano (B56) 2008; 271
Brennen (B12) 1995
Resing (B92) 2011; 4
Simmons (B104) 2016; 324
Rotella (B94) 2015; 301
Gladkikh (B58) 2012; 169
Batiza (B7) 1984
Kato (B71) 1987; 77
Wohletz (B121) 1986; 48
Safarov (B96) 2009; 5
Spieler (B108) 2004; 226
Walker (B112) 1973; 62
Simmons (B103); 341
Druitt (B40) 1999; 19
Wohletz (B120) 2013
Busby-Spera (B15) 1986; 27
Zimanowski (B124) 2003
Clague (B35) 2013; 14
Fujikawa (B52) 1980; 97
Ikegami (B66) 2018; 6
Head (B64) 2003; 121
Fink (B47) 1992; 97
Bischoff (B10) 1988; 52
Bryan (B13) 2004; 227
Cas (B24) 1992; 87
Cas (B23) 1978; 89
Cashman (B30) 1991; 253
Saar (B95) 2001; 187
van Otterloo (B111) 2015; 151
Busby-Spera (B17) 1984; 89
Grosfils (B63) 2000
Mueller (B84) 1992; 54
Cas (B26)
Fiske (B49) 1995; 11
Persikov (B87) 2017; 58
Furnes (B53) 1980; 8
Manga (B77) 2018; 489
Rayleigh (B91) 1917; 34
White (B115) 2000; 62
Barreyre (B6) 2011; 205
Cas (B29) 2003
Giordano (B57) 2010; 3
Wohletz (B122) 2003
Allen (B4) 2010; 38
Taylor (B109) 2010; 17
White (B118) 2003
de Rosen-Spence (B36) 1980; 12
Gonnermann (B59) 2015; 43
Kokelaar (B72) 1986; 48
Manville (B78) 1998; 119
Moore (B83) 1975; 63
Bryan (B14) 2012; 7
Embley (B44) 2018; 80
Dimroth (B38) 1978; 15
Binns (B9) 2003
Deardorff (B37) 2011; 202
Cas (B25) 2014; 133
Simmons (B102); 79
Maeno (B76) 2006; 68
Fujibayashi (B51) 2003
Gifkins (B55) 2002; 114
Carey (B22) 1986; 48
Kano (B68) 2003
Wallace (B113) 2000
Mitchell (B82) 2018; 494
Skilling (B105) 2002; 114
Allen (B2) 1992; 87
Fink (B46) 1987; 212
Mills (B81) 1984; 141
Cas (B28) 1991; 53
Dixon (B39) 1997; 38
Wright (B123) 2006; 149
Whitham (B119) 1986; 48
Karagianni (B70) 2010; 43
Poland (B90) 2014
Wallace (B114) 2015
Cashman (B32) 2000
Papale (B86) 1999; 397
Carey (B21) 2014; 95
Lipman (B75) 1981
Kano (B69) 1996; 71
Kurokawa (B73) 1991; 86
Airey (B1) 2015; 113
Soriano (B106) 2016; 12
Cas (B27) 1987
Spera (B107) 2000
Thomas (B110) 1994; 99
Zimanowski (B125) 2015
Jutzeler (B67) 2014; 5
Bonadonna (B11) 2013; 75
Griffiths (B62) 1992; 97
Fauria (B45) 2017; 460
Newhall (B85) 1996
White (B116)
Fiske (B48) 1998; 59
Batiza (B8) 2000
Fornari (B50) 1986; 48
Chadwick (B34) 2008
Resnyansky (B93) 2006
Shea (B101) 2011; 39
Carey (B19) 2018; 4
Pioro (B89) 2011
Edgar (B42) 2017; 345
Sharqawy (B100) 2010; 16
Pichler (B88) 1965; 28
Druitt (B41) 2002; 21
Scutter (B98) 1998; 103
Busby-Spera (B16) 1987; 49
Carey (B20) 2010; 72
Embley (B43) 2014; 15
References_xml – start-page: 113
  year: 2000
  ident: B63
  article-title: “Volcanism on earth’s seafloor and Venus,” in
  publication-title: Environmental Effects on Volcanic Eruptions
  doi: 10.1007/978-1-4615-4151-6_5
– volume: 15
  start-page: 902
  year: 1978
  ident: B38
  article-title: Structure and organization of Archean subaqueous basalt flows, Rouyn–Noranda area, Quebec, Canada.
  publication-title: Can. J. Earth Sci.
  doi: 10.1139/e78-101
– volume: 75
  start-page: 1
  year: 2013
  ident: B11
  article-title: Plume height, volume, and classification of explosive volcanic eruptions based on the Weibull function.
  publication-title: Bull. Volcanol.
  doi: 10.1007/s00445-013-0742-1
– volume: 21
  start-page: 645
  year: 2002
  ident: B41
  article-title: The eruption of Soufrière Hills volcano, Montserrat, from 1995 to 1999.
  publication-title: Geol. Soc. Lon. Mem.
– start-page: 363
  ident: B116
  article-title: “Submarine lavas and hyaloclastite,” in
  publication-title: Encyclopedia of Volcanoes
  doi: 10.1016/B978-0-12-385938-9.00019-5
– volume: 80
  year: 2018
  ident: B44
  article-title: Extensive young silicic volcanism produces large deep submarine lava flows in the NE Lau Basin.
  publication-title: Bull. Volcanol.
  doi: 10.1007/s00445-018-1211-7
– volume: 324
  start-page: 200
  year: 2016
  ident: B104
  article-title: Complex variations during a caldera-forming Plinian eruption, including precursor deposits, thick pumice fallout, co-ignimbrite breccias and climactic lag breccias: the 184ka Lower Pumice 1 eruption sequence, Santorini, Greece.
  publication-title: J. Volcanol. Geother. Res.
  doi: 10.1016/j.jvolgeores.2016.05.013
– volume: 97
  start-page: 481
  year: 1980
  ident: B52
  article-title: Effects of the non-equilibrium condensation of vapour on the pressure wave produced by the collapse of a bubble in a liquid.
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112080002662
– volume: 87
  start-page: 825
  year: 1992
  ident: B2
  article-title: Reconstruction of the tectonic, volcanic, and sedimentary setting of strongly deformed Zn-Cu massive sulfide deposits at Benambra, Victoria.
  publication-title: Econ. Geol.
  doi: 10.2113/gsecongeo.87.3.825
– volume: 97
  start-page: 19729
  year: 1992
  ident: B62
  article-title: Solidification and morphology of submarine lavas: a dependence on extrusion rate.
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1029/92JB01594
– volume: 53
  start-page: 357
  year: 1991
  ident: B28
  article-title: Subaqueous pyroclastic flows and ignimbrites: an assessment.
  publication-title: Bull. Volcanol.
  doi: 10.1007/BF00280227
– volume: 171
  year: 2016
  ident: B18
  article-title: Confort 15 model of conduit dynamics: applications to Pantelleria Green Tuff and Etna 122 BC eruptions.
  publication-title: Contribs. Mineral. Petrol.
  doi: 10.1007/s00410-016-1265-5
– volume: 187
  start-page: 367
  year: 2001
  ident: B95
  article-title: Numerical models of the onset of yield strength in crystal–melt suspensions.
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/S0012-821X(01)00289-8
– volume: 63
  start-page: 269
  year: 1975
  ident: B83
  article-title: Mechanism of formation of pillow lava: pillow lava, produced as fluid lava cools underwater, is the most abundant volcanic rock on earth, but only recently have divers observed it forming.
  publication-title: Am. Sci.
– volume: 95
  start-page: 157
  year: 2014
  ident: B21
  article-title: Discovery of the largest historic silicic submarine eruption, Eos.
  publication-title: Trans. Amer. Geophys. Union
  doi: 10.1002/2014EO190001
– volume: 4
  start-page: 799
  year: 2011
  ident: B92
  article-title: Active submarine eruption of boninite in the northeastern Lau Basin.
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo1275
– volume: 89
  start-page: 1708
  year: 1978
  ident: B23
  article-title: Silicic lavas in Paleozoic flyschlike deposits in New South Wales, Australia: behavior of deep subaqueous silicic flows.
  publication-title: Geol. Soc. Amer. Bull.
  doi: 10.1130/0016-7606197889<1708:SLIPFD<2.0.CO;2
– volume: 97
  start-page: 9073
  year: 1992
  ident: B47
  article-title: Textural constraints on effusive silicic volcanism: beyond the permeable foam model.
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1029/92JB00416
– volume: 68
  start-page: 673
  year: 2006
  ident: B76
  article-title: Silicic lava dome growth in the 1934–1935 Showa Iwo-jima eruption, Kikai caldera, south of Kyushu, Japan.
  publication-title: Bull. Volcanol.
  doi: 10.1007/s00445-005-0042-5
– start-page: 213
  year: 2003
  ident: B68
  article-title: “Subaqueous pumice eruptions and their products: a review,” in
  publication-title: Explosive Subaqueous Volcanism
  doi: 10.1029/140GM14
– volume: 489
  start-page: 49
  year: 2018
  ident: B77
  article-title: The pumice raft-forming 2012 Havre submarine eruption was effusive.
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2018.02.025
– start-page: 1
  year: 2003
  ident: B118
  article-title: “Introduction: a deductive outline and topical overview of subaqueous explosive volcanism,” in
  publication-title: Explosive subaqueous Volcanism. Geophysical Monograph
– volume: 397
  start-page: 425
  year: 1999
  ident: B86
  article-title: Strain-induced magma fragmentation in explosive eruptions.
  publication-title: Nature
  doi: 10.1038/17109
– volume: 72
  start-page: 259
  year: 2010
  ident: B20
  article-title: Tephra dispersal and eruption dynamics of wet and dry phases of the 1875 eruption of Askja Volcano, Iceland.
  publication-title: Bull. Volcanol.
  doi: 10.1007/s00445-009-0317-3
– start-page: 550
  year: 1999
  ident: B99
  publication-title: Characteristics and Origins of Subaqueous Silicic Hyaloclastites, Ponza, Italy and Southwestern Hokkaido, Japan.
– start-page: 230
  year: 2013
  ident: B120
  article-title: “Magma-water interactions,” in
  publication-title: Modeling Volcanic Processes: The Physics and Mathematics of Volcanism
  doi: 10.1017/CBO9781139021562.011
– volume: 38
  start-page: 911
  year: 1997
  ident: B39
  article-title: Volatiles in alkalic basalts form the North Arch Volcanic Field, Hawaii: extensive degassing of deep submarine-erupted alkalic series lavas.
  publication-title: J. Petrol.
  doi: 10.1093/petroj/38.7.911
– volume: 114
  start-page: 1
  year: 2002
  ident: B105
  article-title: Peperite: a review of magma–sediment mingling.
  publication-title: J. Volcanol. Geother. Res.
  doi: 10.1016/S0377-0273(01)00278-5
– volume: 5
  start-page: 235
  year: 2009
  ident: B96
  article-title: Thermodynamic properties of standard seawater: extensions to high temperatures and pressures.
  publication-title: Ocean Sci.
  doi: 10.5194/os-5-235-2009
– volume: 48
  start-page: 291
  year: 1986
  ident: B50
  article-title: Submarine lava tubes and channels.
  publication-title: Bull. Volcanol.
  doi: 10.1007/BF01081757
– volume: 12
  start-page: 43
  year: 1980
  ident: B36
  article-title: Archean subaqueous felsic flows, Rouyn-Noranda, Quebec, Canada, and their Quaternary equivalents.
  publication-title: Precambr. Res.
  doi: 10.1016/0301-9268(80)90023-6
– volume: 88
  start-page: 239
  year: 1999
  ident: B65
  article-title: Pumiceous peperite in a submarine volcanic succession at Mount Chalmers, Queensland, Australia.
  publication-title: J. Volcanol. Geother. Res.
  doi: 10.1016/S0377-0273(99)00015-3
– volume: 17
  start-page: 393
  year: 2010
  ident: B109
  article-title: Planetary atmospheres.
  publication-title: Meteorol. Appl.
  doi: 10.1002/met.212
– volume: 52
  start-page: 2121
  year: 1988
  ident: B10
  article-title: Liquid-vapor relations in the critical region of the system NaCl-H2O from 380 to 415°C: a refined determination of the critical point and two-phase boundary of seawater.
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(88)90192-5
– volume: 89
  start-page: 8417
  year: 1984
  ident: B17
  article-title: Large-rhyolite ash flow eruptions and submarine caldera collapse in the Lower Mesozoic Sierra Nevada, California.
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1029/JB089iB10p08417
– volume: 226
  start-page: 139
  year: 2004
  ident: B108
  article-title: The fragmentation threshold of pyroclastic rocks.
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2004.07.016
– volume: 4
  year: 2018
  ident: B19
  article-title: The largest deep-ocean silicic volcanic eruption of the past century.
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1701121
– start-page: 259
  year: 2003
  ident: B51
  article-title: “Vesiculation and eruption processes of submarine effusive and explosive rocks from the middle miocene ogi basalt, Sado Island, Japan,” in
  publication-title: Explosive Subaqueous Volcanism
  doi: 10.1029/140GM17
– volume: 27
  start-page: 43
  year: 1986
  ident: B15
  article-title: Depositional features of rhyolitic and andesitic volcaniclastic rocks of the Mineral King submarine caldera complex, Sierra Nevada, California.
  publication-title: J. Volcanol. Geotherm. Res.
  doi: 10.1016/0377-0273(86)90080-6
– volume: 19
  year: 1999
  ident: B40
  article-title: Santorini volcano.
  publication-title: Geol. Soc. Lond. Mem.
– start-page: 149
  year: 2000
  ident: B113
  article-title: “Volatiles in magmas,” in
  publication-title: Encyclopedia of Volcanoes
– volume: 95
  start-page: 285
  year: 2000
  ident: B5
  article-title: Water-settling and resedimentation of submarine rhyolitic pumice at Yali, eastern Aegean, Greece.
  publication-title: J. Volcanol. Geotherm. Res.
  doi: 10.1016/S0377-0273(99)00127-4
– start-page: 528
  year: 1987
  ident: B27
  publication-title: Volcanic Successions: Modern and Ancient.
  doi: 10.1007/978-94-009-3167-1
– volume: 23
  start-page: 73
  year: 1995
  ident: B61
  article-title: Quantification of submarine lava-flow morphology through analog experiments.
  publication-title: Geology
  doi: 10.1130/0091-7613(1995)023<0073:QOSLFM>2.3.CO;2
– start-page: 459
  year: 2015
  ident: B31
  article-title: “Magmatic fragmentation,” in
  publication-title: The Encyclopedia of Volcanoes
  doi: 10.1016/B978-0-12-385938-9.00025-0
– volume: 494
  start-page: 135
  year: 2018
  ident: B82
  article-title: Dynamics of a powerful deep submarine eruption recorded in H2O contents and speciation in rhyolitic glass: the 2012 Havre eruption.
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2018.04.053
– year: 2006
  ident: B93
  publication-title: Experimental Study of Blast Mitigation in a Water Mist Weapons Systems Division.
– volume: 87
  start-page: 511
  year: 1992
  ident: B24
  article-title: Submarine volcanism; eruption styles, products, and relevance to understanding the host-rock successions to volcanic-hosted massive sulfide deposits.
  publication-title: Econ. Geol.
  doi: 10.2113/gsecongeo.87.3.511
– volume: 11
  start-page: 315
  year: 1995
  ident: B49
  article-title: Caldera-forming submarine pyroclastic eruption at Myojin Knoll, Izu-Bonin arc.
  publication-title: JAMSTEC J. Deep Sea Res.
– volume: 151
  start-page: 79
  year: 2015
  ident: B111
  article-title: The fracture behaviour of volcanic glass and relevance to quench fragmentation during formation of hyaloclastite and phreatomagmatism.
  publication-title: Earth-Sci. Rev.
  doi: 10.1016/j.earscirev.2015.10.003
– start-page: 113
  year: 2015
  ident: B74
  article-title: “Thermodynamic and transport properties of silicate melts and magma,” in
  publication-title: The Encyclopedia of Volcanoes
  doi: 10.1016/B978-0-12-385938-9.00005-5
– volume: 253
  start-page: 275
  year: 1991
  ident: B30
  article-title: Fallout of pyroclastic debris from submarine volcanic eruptions.
  publication-title: Science
  doi: 10.1126/science.253.5017.275
– volume: 62
  start-page: 431
  year: 1973
  ident: B112
  article-title: Explosive volcanic eruptions—a new classification scheme.
  publication-title: Geol. Rundschau
  doi: 10.1007/BF01840108
– volume: 121
  start-page: 155
  year: 2003
  ident: B64
  article-title: Deep submarine pyroclastic eruptions: theory and predicted landforms and deposits.
  publication-title: J. Volcanol. Geother. Res.
  doi: 10.1016/S0377-0273(02)00425-0
– volume: 341
  start-page: 332
  ident: B103
  article-title: The initiation and development of a caldera-forming Plinian eruption (172ka Lower Pumice 2 eruption, Santorini, Greece).
  publication-title: J. Volcanol. Geother. Res.
  doi: 10.1016/j.jvolgeores.2017.05.034
– start-page: 51
  year: 2003
  ident: B124
  article-title: “Phreatomagmatic explosions in subaqueous volcanism,” in
  publication-title: Explosive Subaqueous Volcanism
  doi: 10.1029/140GM03
– volume: 212
  start-page: 77
  year: 1987
  ident: B46
  article-title: Origin of pumiceous and glassy textures in rhyolite flows and domes.
  publication-title: Geol. Soc. Am. Spec. Pap.
  doi: 10.1130/SPE212-p77
– volume: 58
  start-page: 1093
  year: 2017
  ident: B87
  article-title: Viscosity of hydrous kimberlite and basaltic melts at high pressures.
  publication-title: Russ. Geol. Geophys.
  doi: 10.1016/j.rgg.2017.08.005
– volume: 14
  start-page: 4403
  year: 2013
  ident: B35
  article-title: Geologic history of the summit of Axial Seamount, Juan de Fuca Ridge.
  publication-title: Geochem. Geophys. Geosyst.
  doi: 10.1002/ggge.20240
– volume: 114
  start-page: 181
  year: 2002
  ident: B55
  article-title: Pumiceous rhyolitic peperite in ancient submarine volcanic successions.
  publication-title: J. Volcanol. Geother. Res.
  doi: 10.1016/S0377-0273(01)00284-0
– volume: 6
  year: 2018
  ident: B66
  article-title: The eruption of submarine rhyolite lavas and domes in the deep ocean–Havre 2012, Kermadec Arc.
  publication-title: Front. Earth Sci.
  doi: 10.3389/feart.2018.00147
– volume: 15
  start-page: 4093
  year: 2014
  ident: B43
  article-title: Eruptive modes and hiatus of volcanism at West Mata seamount, NE Lau basin: 1996–2012.
  publication-title: Geochem. Geophys. Geosyst.
  doi: 10.1002/2014GC005387
– volume: 5
  year: 2014
  ident: B67
  article-title: On the fate of pumice rafts formed during the 2012 Havre submarine eruption.
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4660
– start-page: 421
  year: 2000
  ident: B32
  article-title: “Magmatic fragmentation,” in
  publication-title: Encyclopedia of Volcanoes
– volume: 202
  start-page: 47
  year: 2011
  ident: B37
  article-title: Observations of eruptive plume dynamics and pyroclastic deposits from submarine explosive eruptions at NW Rota-1, Mariana arc.
  publication-title: J. Volcanol. Geotherm. Res.
  doi: 10.1016/j.jvolgeores.2011.01.003
– start-page: 171
  year: 2000
  ident: B107
  article-title: “Physical properties of magma,” in
  publication-title: Encyclopedia of Volcanoes
– volume: 77
  start-page: 193
  year: 1987
  ident: B71
  article-title: Woody pumice generated with submarine eruption.
  publication-title: J. Geol. Soc. Jpn.
  doi: 10.5575/geosoc.77.193
– volume: 169
  start-page: 249
  year: 2012
  ident: B58
  article-title: A mathematical model of the global ocean saltwater density distribution.
  publication-title: Pure Appl. Geophys.
  doi: 10.1007/s00024-011-0275-5
– volume: 34
  start-page: 94
  year: 1917
  ident: B91
  article-title: On the pressure developed in a liquid during the collapse of a spherical cavity.
  publication-title: Philos. Mag.
  doi: 10.1080/14786440808635681
– volume: 149
  start-page: 263
  year: 2006
  ident: B123
  article-title: New multibeam mapping and geochemistry of the 30o–35o S sector, and overview, of southern Kermadec arc volcanism.
  publication-title: J. Volcanol. Geother. Res.
  doi: 10.1016/j.jvolgeores.2005.03.021
– volume: 274
  start-page: 40
  year: 2008
  ident: B3
  article-title: Quenching of steam-charged pumice: implications for submarine pyroclastic volcanism.
  publication-title: Earth Planet. Sci. Letts.
  doi: 10.1016/j.epsl.2008.06.050
– volume: 113
  start-page: 33
  year: 2015
  ident: B1
  article-title: Explosive volcanic activity on Venus: the roles of volatile contribution, degassing, and external environment.
  publication-title: Planet. Space Sci.
  doi: 10.1016/j.pss.2015.01.009
– volume: 59
  start-page: 262
  year: 1998
  ident: B48
  article-title: Tephra dispersal from Myojinsho, Japan, during its shallow submarine eruption of 1952–1953.
  publication-title: Bull. Volcanol.
  doi: 10.1007/s004450050190
– volume: 86
  start-page: 439
  year: 1991
  ident: B73
  article-title: Formation of fesic pumiceous hyaloclastites a case study from Tadami district, Fukushima Prefecture, Japan.
  publication-title: J. Mineral. Petrol. Econ. Geol.
  doi: 10.2465/ganko.86.439
– volume: 134
  start-page: 255
  year: 2004
  ident: B60
  article-title: Morphology and growth style of a Miocene submarine dacite lava dome at Atsumi, northeast Japan.
  publication-title: J. Volcanol. Geother. Res.
  doi: 10.1016/j.jvolgeores.2004.03.015
– volume: 103
  start-page: 27551
  year: 1998
  ident: B98
  article-title: Facies architecture and origin of a submarine rhyolitic lava flow-dome complex, Ponza, Italy.
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1029/98JB01121
– start-page: 329
  year: 2003
  ident: B9
  article-title: “Deep marine pumice from the Woodlark and Manus Basins, Papua New Guinea,” in
  publication-title: Explosive Subaqueous Volcanism
  doi: 10.1029/140GM22
– start-page: 844
  year: 1981
  ident: B75
  publication-title: The 1980 Eruptions of Mount St. Helens, Washington
  doi: 10.3133/pp1250
– volume: 301
  start-page: 314
  year: 2015
  ident: B94
  article-title: Dynamics of deep submarine silicic explosive eruptions in the Kermadec arc, as reflected in pumice vesicularity textures.
  publication-title: J. Volcanol. Geother. Res.
  doi: 10.1016/j.jvolgeores.2015.05.021
– volume: 48
  start-page: 245
  year: 1986
  ident: B121
  article-title: Explosive magma-water interactions: thermodynamics, explosion mechanisms, and field studies.
  publication-title: Bull. Volcanol.
  doi: 10.1007/BF01081754
– volume: 71
  start-page: 187
  year: 1996
  ident: B69
  article-title: Subaqueous eruption and emplacement of the Shinjima Pumice, Shinjima (Moeshima) Island, Kagoshima Bay, SW Japan.
  publication-title: J. Volcanol. Geother. Res.
  doi: 10.1016/0377-0273(95)00077-1
– volume: 141
  start-page: 183
  year: 1984
  ident: B81
  article-title: Pillow lavas and the Leidenfrost effect.
  publication-title: J. Geol. Soc.
  doi: 10.1144/gsjgs.141.1.0183
– start-page: 163
  year: 2015
  ident: B114
  article-title: “Volatiles in magmas,” in
  publication-title: The Encyclopedia of Volcanoes
  doi: 10.1016/B978-0-12-385938-9.00007-9
– volume: 8
  start-page: 95
  year: 1980
  ident: B53
  article-title: Subglacial volcanics — On the formation of acid hyaloclastites.
  publication-title: J. Volcanol. Geother. Res.
  doi: 10.1016/0377-0273(80)90009-8
– volume: 271
  start-page: 123
  year: 2008
  ident: B56
  article-title: Viscosity of magmatic liquids: a model.
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2008.03.038
– start-page: 553
  ident: B117
  article-title: “Submarine explosive eruptions,” in
  publication-title: Encyclopedia of Volcanoes
  doi: 10.1016/B978-0-12-385938-9.00031-6
– volume: 16
  start-page: 354
  year: 2010
  ident: B100
  article-title: Thermophysical properties of seawater: a review of existing correlations and data.
  publication-title: Desalinat. Water Treat.
  doi: 10.5004/dwt.2010.1079
– volume: 12
  year: 2016
  ident: B106
  article-title: “Submarine volcanism of the cabo de gata magmatic arc in the betic-rif orogen, se spain: processes and products,” in
  publication-title: Updates in Volcanology – From Volcano Modelling to Volcano Geology
  doi: 10.5772/63579
– volume: 3
  start-page: 43
  year: 2010
  ident: B57
  article-title: Stratigraphy, volcano tectonics and evolution of the Colli Albani volcanic field.
  publication-title: Geol. Soc. Lon. Spec. Publ.
– volume: 345
  start-page: 21
  year: 2017
  ident: B42
  article-title: Causes of complexity in one of the largest known Plinian fallout eruption sequences: the 312 ka Fasnia Member of the Diego Hernandez Formation, Tenerife, Spain.
  publication-title: J. Volcanol. Geother. Res.
  doi: 10.1016/j.jvolgeores.2017.07.008
– start-page: 25
  year: 2003
  ident: B122
  article-title: “Water/Magma interaction: physical considerations for the deep submarine environment,” in
  publication-title: Explosive Subaqueous Volcanism
  doi: 10.1029/140GM02
– volume: 39
  start-page: 695
  year: 2011
  ident: B101
  article-title: Column collapse and generation of pyroclastic density currents during the AD 79 eruption of Vesuvius: the role of pyroclast density.
  publication-title: Geology
  doi: 10.1130/G32092.1
– start-page: 473
  year: 2015
  ident: B125
  article-title: “Magma-water interaction and phreatomagmatic fragmentation,” in
  publication-title: The Encyclopedia of Volcanoes
  doi: 10.1016/B978-0-12-385938-9.00026-2
– volume: 43
  start-page: 431
  year: 2015
  ident: B59
  article-title: Magma fragmentation.
  publication-title: Annu. Rev. Earth Planet. Sci.
  doi: 10.1146/annurev-earth-060614-105206
– volume: 119
  start-page: 5
  year: 1998
  ident: B78
  article-title: The saturation behaviour of pumice and some sedimentological implications.
  publication-title: Sedimen. Geol.
  doi: 10.1016/S0037-0738(98)00057-8
– volume: 227
  start-page: 135
  year: 2004
  ident: B13
  article-title: Pumice rafting and faunal dispersion during 2001-2002 in the Southwest Pacific: record of a dacitic submarine explosive eruption from Tonga.
  publication-title: Earth Planet. Sci. Letts.
  doi: 10.1016/j.epsl.2004.08.009
– volume: 49
  start-page: 765
  year: 1987
  ident: B16
  article-title: Variation in peperite textures associated with differing host-sediment properties.
  publication-title: Bull. Volcanol.
  doi: 10.1007/BF01079827
– volume: 43
  start-page: 12063
  year: 2016
  ident: B33
  article-title: Voluminous eruption from a zoned magma body after an increase in supply rate at Axial Seamount.
  publication-title: Geophys. Res. Letts.
  doi: 10.1002/2016GL071327
– volume: 48
  start-page: 275
  year: 1986
  ident: B72
  article-title: Magma-water interactions in subaqueous and emergent basaltic volcanism.
  publication-title: Bull. Volcanol.
  doi: 10.1007/BF01081756
– year: 1995
  ident: B12
  publication-title: Cavitation and Bubble Dynamics.
  doi: 10.1093/oso/9780195094091.001.0001
– start-page: 573
  year: 2011
  ident: B89
  article-title: “Thermophysical properties at critical and supercritical pressures,” in
  publication-title: Heat Transfer-Theoretical Analysis, Experimental Investigations and Industrial Systems.
– start-page: 113
  year: 2008
  ident: B34
  article-title: Direct video and hydrophone observations of submarine explosive eruptions at NW Rota-1 volcano, Mariana arc.
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1029/2007JB005215
– start-page: 1126
  year: 1996
  ident: B85
  publication-title: Fire and Mud: Eruptions and Lahars of Mount Pinatubo
– volume: 43
  start-page: 1165
  year: 2010
  ident: B70
  article-title: Elastic properties of rocks.
  publication-title: Bull. Geol. Soc. Greece
  doi: 10.12681/bgsg.11291
– volume: 205
  start-page: 84
  year: 2011
  ident: B6
  article-title: Dispersal of volcaniclasts during deep-sea eruptions: settling velocities and entrainment in buoyant seawater plumes.
  publication-title: J. Volcanol. Geotherm. Res.
  doi: 10.1016/j.jvolgeores.2011.05.006
– volume: 62
  start-page: 65
  year: 2000
  ident: B115
  article-title: Peperite: a useful genetic term.
  publication-title: Bull. Volcanol.
  doi: 10.1007/s004450050293
– start-page: 361
  year: 2000
  ident: B8
  article-title: “Submarine lavas and hyaloclastite,” in
  publication-title: Encyclopedia of Volcanoes
– volume: 7
  year: 2012
  ident: B14
  article-title: Rapid, long-distance dispersal by pumice rafting.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0040583
– year: 2012
  ident: B54
  publication-title: Essentials of Oceanography.
– volume: 38
  start-page: 391
  year: 2010
  ident: B4
  article-title: Effects of water depth on pumice formation in submarine domes at Sumisu, Izu-Bonin arc, western Pacific.
  publication-title: Geology
  doi: 10.1130/G30500.1
– volume: 79
  ident: B102
  article-title: High magma decompression rates at the peak of a violent caldera-forming eruption (Lower Pumice 1 eruption, Santorini, Greece).
  publication-title: Bull. Volcanol.
  doi: 10.1007/s00445-017-1120-1
– start-page: 8371
  year: 1984
  ident: B7
  article-title: Craters, calderas, and hyaloclastites on young Pacific seamounts.
  publication-title: J. Geophys. Res Solid Earth
  doi: 10.1029/JB089iB10p08371
– volume: 1
  start-page: 59
  year: 1987
  ident: B97
  article-title: Pressure dependence of the viscosity of silicate melts.
  publication-title: Magmat. Process. Physicochem. Princip.
– ident: B26
  publication-title: Volcanology – Processes, Deposits, Geology and Resources.
– volume: 133
  start-page: 362
  year: 2014
  ident: B25
  article-title: Submarine volcanism: a review of the constraints, processes and products, and relevance to the Cabo de Gata volcanic succession.
  publication-title: Ital. J. Geosci.
  doi: 10.3301/IJG.2014.46
– start-page: 196
  year: 1993
  ident: B80
  publication-title: Volcanic Textures: A Guide to the Interpretation of Textures in Volcanic Rocks.
– volume: 28
  start-page: 293
  year: 1965
  ident: B88
  article-title: Acid hyaloclastites.
  publication-title: Bull. Volcanol.
  doi: 10.1186/s40517-015-0031-7
– volume: 460
  start-page: 50
  year: 2017
  ident: B45
  article-title: Trapped bubbles keep pumice afloat and gas diffusion makes pumice sink.
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2016.11.055
– year: 2014
  ident: B90
  publication-title: Characteristics of Hawaiian Volcanoes: U.S. Geological Survey Professional.
– volume: 48
  start-page: 209
  year: 1986
  ident: B119
  article-title: Pumice.
  publication-title: Bull. Volcanol.
  doi: 10.1007/BF01087675
– volume: 54
  start-page: 117
  year: 1992
  ident: B84
  article-title: Felsic fire-fountaining beneath Archean seas: pyroclastic deposits of the 2730 Ma Hunter Mine Group, Quebec, Canada.
  publication-title: J. Volcanol. Geother. Res.
  doi: 10.1016/0377-0273(92)90118-W
– volume: 99
  start-page: 633
  year: 1994
  ident: B110
  article-title: On the vesicularity of pumice.
  publication-title: J. Geophys. Res.
  doi: 10.1029/94JB00650
– volume: 48
  start-page: 109
  year: 1986
  ident: B22
  article-title: Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns.
  publication-title: Bull. Volcanol.
  doi: 10.1007/BF01046546
– volume: 26
  start-page: 455
  year: 1963
  ident: B79
  article-title: Factors governing the nature of submarine volcanism.
  publication-title: Bull. Volcanol.
  doi: 10.1007/BF02597304
– start-page: 299
  year: 2003
  ident: B29
  article-title: “Miocene submarine fire fountain deposits, Ryugazaki Headland, Oshoro Peninsula, Hokkaido, Japan: implications for submarine fountain dynamics and fragmentation processes,” in
  publication-title: Explosive Subaqueous Volcanism
  doi: 10.1029/140GM20
SSID ssj0001325409
Score 2.3327322
Snippet Magmas erupted in deep-water environments (>500 m) are subject to physical constraints very different to those for subaerial eruptions, including hydrostatic...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
SubjectTerms bulk modulus
hydrostatic pressure
limited volatile exsolution
magma properties
submarine eruptions
supercritical fluid
Title Why Deep-Water Eruptions Are So Different From Subaerial Eruptions
URI https://doaj.org/article/7d42ba3ceb154c309c0985339c419582
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJSQWxFOUlzKwMFjNw3bskdKWCgkWqNotsp2zGKCtonTov-fshFIWWFijc2R9Pt13l5y_I-RGMZdB7EpqBUjKmLMUaxVFpc5TzI8lg9LfRn56FuMJe5zx2daoL98T1sgDN8D18pKlRmcWYwpnNouVjRVSTKYs8zopIfoi520VU-HrSoaFT6ya_5JYhameQ8fxvZOJ753ESvsHD23J9QdeGR2Q_TYhjO6ajRySHZgfkd2HMHB3fUz607d1NABY0ilmhVU0rFZNGwqugOhlEQ3aCSd1NKoWHxEGAh2c6tvyhExGw9f7MW3nHlCb8aSmwEuTC6OMlrHhwG3KHQjjJKZHqbAGBFdIPsYgDjZNXJKAYc6ATHMBOofslHTmizmckSiVAtkoN0pogSHRqZJxQDiF5lo6q7qk94VCYVtRcD-b4r3A4sDjVgTcCo9bEXDrktvNimUjiPGLbd8Du7HzUtbhAR5w0R5w8dcBn__HSy7Int-Wv0SYxpekU1cruMJsojbXwXE-AXb7xdY
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Why+Deep-Water+Eruptions+Are+So+Different+From+Subaerial+Eruptions&rft.jtitle=Frontiers+in+earth+science+%28Lausanne%29&rft.au=Cas%2C+Raymond+A.+F.&rft.au=Simmons%2C+Jack+M.&rft.date=2018-11-20&rft.issn=2296-6463&rft.eissn=2296-6463&rft.volume=6&rft_id=info:doi/10.3389%2Ffeart.2018.00198&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_feart_2018_00198
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-6463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-6463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-6463&client=summon