Why Deep-Water Eruptions Are So Different From Subaerial Eruptions
Magmas erupted in deep-water environments (>500 m) are subject to physical constraints very different to those for subaerial eruptions, including hydrostatic pressure, bulk modulus, thermal conductivity, heat capacity and the density of water mass, which are generally orders of magnitude greater...
Saved in:
Published in | Frontiers in earth science (Lausanne) Vol. 6 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
20.11.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 2296-6463 2296-6463 |
DOI | 10.3389/feart.2018.00198 |
Cover
Loading…
Abstract | Magmas erupted in deep-water environments (>500 m) are subject to physical constraints very different to those for subaerial eruptions, including hydrostatic pressure, bulk modulus, thermal conductivity, heat capacity and the density of water mass, which are generally orders of magnitude greater than for air. Generally, the exsolved volatile content of the erupting magma will be lower because magmas decompress to hydrostatic pressures orders of magnitude greater than atmospheric pressure. At water depths and pressures greater than those equivalent to the critical points of H2O and CO2, exsolved volatiles are supercritical fluids, not gas, and so have limited ability to expand, let alone explosively. Gas overpressures are lower in deep submarine magmas relative to subaerial counterparts, limiting explosive expansion of gas bubbles to shallower waters. Explosive intensity is further minimized by the higher bulk modulus of water, relative to air. Higher retention of volatiles makes subaqueously erupted magmas less viscous, and more prone to fire fountaining eruption style compared with compositionally equivalent subaerial counterparts. The high heat capacity and thermal conductivity of (ambient) water makes effusively (and/or explosively) erupted magmas more prone to rapid cooling and quench fragmentation, producing non-explosive hyaloclastite breccia. Gaseous subaqueous eruption columns and hot water plumes form above both explosive and non-explosive eruptions, and these can entrain pyroclasts and pumice autoclasts upward. The height of such plumes is limited by the water depth and will show different buoyancy, dynamics, and height and dispersal capacity compared with subaerial eruption columns. Water ingress and condensation erosion of gas bubbles will be major factors in controlling column dynamics. Autoclasts and pyroclasts with an initial bulk density less than water can rise buoyantly, irrespective of plume buoyancy, which they cannot do in the atmosphere. Dispersal and sedimentation of clasts in water is affected by the rate at which buoyant clasts become water-logged and sink, and by wind, waves, and oceanic currents, which can produce very circuitous dispersal patterns in floating pumice rafts. Floating pumice can abrade by frictional interaction with neighbors in a floating raft, and generate in transit, post-eruptive ash fallout unrelated to explosive activity or quench fragmentation. |
---|---|
AbstractList | Magmas erupted in deep-water environments (>500 m) are subject to physical constraints very different to those for subaerial eruptions, including hydrostatic pressure, bulk modulus, thermal conductivity, heat capacity and the density of water mass, which are generally orders of magnitude greater than for air. Generally, the exsolved volatile content of the erupting magma will be lower because magmas decompress to hydrostatic pressures orders of magnitude greater than atmospheric pressure. At water depths and pressures greater than those equivalent to the critical points of H2O and CO2, exsolved volatiles are supercritical fluids, not gas, and so have limited ability to expand, let alone explosively. Gas overpressures are lower in deep submarine magmas relative to subaerial counterparts, limiting explosive expansion of gas bubbles to shallower waters. Explosive intensity is further minimized by the higher bulk modulus of water, relative to air. Higher retention of volatiles makes subaqueously erupted magmas less viscous, and more prone to fire fountaining eruption style compared with compositionally equivalent subaerial counterparts. The high heat capacity and thermal conductivity of (ambient) water makes effusively (and/or explosively) erupted magmas more prone to rapid cooling and quench fragmentation, producing non-explosive hyaloclastite breccia. Gaseous subaqueous eruption columns and hot water plumes form above both explosive and non-explosive eruptions, and these can entrain pyroclasts and pumice autoclasts upward. The height of such plumes is limited by the water depth and will show different buoyancy, dynamics, and height and dispersal capacity compared with subaerial eruption columns. Water ingress and condensation erosion of gas bubbles will be major factors in controlling column dynamics. Autoclasts and pyroclasts with an initial bulk density less than water can rise buoyantly, irrespective of plume buoyancy, which they cannot do in the atmosphere. Dispersal and sedimentation of clasts in water is affected by the rate at which buoyant clasts become water-logged and sink, and by wind, waves, and oceanic currents, which can produce very circuitous dispersal patterns in floating pumice rafts. Floating pumice can abrade by frictional interaction with neighbors in a floating raft, and generate in transit, post-eruptive ash fallout unrelated to explosive activity or quench fragmentation. |
Author | Cas, Raymond A. F. Simmons, Jack M. |
Author_xml | – sequence: 1 givenname: Raymond A. F. surname: Cas fullname: Cas, Raymond A. F. – sequence: 2 givenname: Jack M. surname: Simmons fullname: Simmons, Jack M. |
BookMark | eNp1kEtPAjEUhRuDiYjsXc4fGOxj2mmXyENJSFygYdm05VZLhinpDAv-vQMYNSau7snNOd_iu0W9OtaA0D3BI8akevBgUjuimMgRxkTJK9SnVIlcFIL1fuUbNGyaLe46jPICqz56XH8csynAPl-bFlI2S4d9G2LdZOME2Spm0-A9JKjbbJ7iLlsdrIEUTPXTvEPX3lQNDL_uAL3NZ6-T53z58rSYjJe5Y5y0OfCNLYVV1khsOXBHuQdhvcSSU-EsCK5YQayVnDlKPCFgC29B0lKAKYEN0OLC3USz1fsUdiYddTRBnx8xvevOQnAV6HJTUGuYA0t44RhWDqsOy5QriOKSdix8YbkUmyaB_-YRrE9K9VmpPinVZ6XdRPyZuNCak4E2mVD9P_wE3Dt9wQ |
CitedBy_id | crossref_primary_10_3389_feart_2020_00237 crossref_primary_10_1007_s00445_021_01514_8 crossref_primary_10_1029_2023GL102763 crossref_primary_10_1016_j_jvolgeores_2020_106806 crossref_primary_10_1016_j_fuel_2023_128996 crossref_primary_10_1007_s00445_019_1298_5 crossref_primary_10_1144_SP520_2021_137 crossref_primary_10_3389_feart_2022_788294 crossref_primary_10_1016_j_precamres_2019_105580 crossref_primary_10_1007_s00445_020_01408_1 crossref_primary_10_2465_jmps_191211 crossref_primary_10_1080_08120099_2020_1669708 crossref_primary_10_1007_s00445_022_01562_8 crossref_primary_10_5800_GT_2019_10_3_0443 crossref_primary_10_1007_s00410_022_01940_7 crossref_primary_10_1038_s41467_021_27817_0 crossref_primary_10_1016_j_jvolgeores_2024_108186 crossref_primary_10_1016_j_sesci_2022_01_001 crossref_primary_10_1038_s41467_023_42261_y crossref_primary_10_1038_s41598_020_63737_7 crossref_primary_10_1126_sciadv_adk6208 crossref_primary_10_1038_s43247_022_00594_4 crossref_primary_10_5382_econgeo_4910 crossref_primary_10_1007_s00710_024_00850_9 crossref_primary_10_1029_2020JB020969 crossref_primary_10_1017_jfm_2023_342 crossref_primary_10_1007_s00445_019_1316_7 crossref_primary_10_1007_s00445_021_01497_6 crossref_primary_10_1016_j_epsl_2020_116320 crossref_primary_10_1038_s41598_020_74361_w crossref_primary_10_1144_SP520_2021_50 crossref_primary_10_3389_feart_2022_1061515 crossref_primary_10_3389_fmars_2019_00593 crossref_primary_10_1515_geo_2019_0048 crossref_primary_10_1016_j_gca_2022_01_002 crossref_primary_10_1016_j_epsl_2021_117328 crossref_primary_10_1038_s41561_023_01160_z crossref_primary_10_14770_jgsk_2019_55_2_165 crossref_primary_10_3389_feart_2022_871951 crossref_primary_10_1080_17445647_2023_2243305 crossref_primary_10_1177_0309133320937998 crossref_primary_10_1016_j_jsg_2021_104397 crossref_primary_10_3389_feart_2021_751216 crossref_primary_10_1016_j_lithos_2023_107313 crossref_primary_10_1016_j_jvolgeores_2019_106710 crossref_primary_10_1038_s43247_022_00355_3 crossref_primary_10_1038_s41561_020_0603_4 crossref_primary_10_1016_j_chemgeo_2023_121739 crossref_primary_10_1016_j_jvolgeores_2020_107045 crossref_primary_10_1007_s00445_019_1317_6 |
Cites_doi | 10.1007/978-1-4615-4151-6_5 10.1139/e78-101 10.1007/s00445-013-0742-1 10.1016/B978-0-12-385938-9.00019-5 10.1007/s00445-018-1211-7 10.1016/j.jvolgeores.2016.05.013 10.1017/S0022112080002662 10.2113/gsecongeo.87.3.825 10.1029/92JB01594 10.1007/BF00280227 10.1007/s00410-016-1265-5 10.1016/S0012-821X(01)00289-8 10.1002/2014EO190001 10.1038/ngeo1275 10.1130/0016-7606197889<1708:SLIPFD<2.0.CO;2 10.1029/92JB00416 10.1007/s00445-005-0042-5 10.1029/140GM14 10.1016/j.epsl.2018.02.025 10.1038/17109 10.1007/s00445-009-0317-3 10.1017/CBO9781139021562.011 10.1093/petroj/38.7.911 10.1016/S0377-0273(01)00278-5 10.5194/os-5-235-2009 10.1007/BF01081757 10.1016/0301-9268(80)90023-6 10.1016/S0377-0273(99)00015-3 10.1002/met.212 10.1016/0016-7037(88)90192-5 10.1029/JB089iB10p08417 10.1016/j.epsl.2004.07.016 10.1126/sciadv.1701121 10.1029/140GM17 10.1016/0377-0273(86)90080-6 10.1016/S0377-0273(99)00127-4 10.1007/978-94-009-3167-1 10.1130/0091-7613(1995)023<0073:QOSLFM>2.3.CO;2 10.1016/B978-0-12-385938-9.00025-0 10.1016/j.epsl.2018.04.053 10.2113/gsecongeo.87.3.511 10.1016/j.earscirev.2015.10.003 10.1016/B978-0-12-385938-9.00005-5 10.1126/science.253.5017.275 10.1007/BF01840108 10.1016/S0377-0273(02)00425-0 10.1016/j.jvolgeores.2017.05.034 10.1029/140GM03 10.1130/SPE212-p77 10.1016/j.rgg.2017.08.005 10.1002/ggge.20240 10.1016/S0377-0273(01)00284-0 10.3389/feart.2018.00147 10.1002/2014GC005387 10.1038/ncomms4660 10.1016/j.jvolgeores.2011.01.003 10.5575/geosoc.77.193 10.1007/s00024-011-0275-5 10.1080/14786440808635681 10.1016/j.jvolgeores.2005.03.021 10.1016/j.epsl.2008.06.050 10.1016/j.pss.2015.01.009 10.1007/s004450050190 10.2465/ganko.86.439 10.1016/j.jvolgeores.2004.03.015 10.1029/98JB01121 10.1029/140GM22 10.3133/pp1250 10.1016/j.jvolgeores.2015.05.021 10.1007/BF01081754 10.1016/0377-0273(95)00077-1 10.1144/gsjgs.141.1.0183 10.1016/B978-0-12-385938-9.00007-9 10.1016/0377-0273(80)90009-8 10.1016/j.epsl.2008.03.038 10.1016/B978-0-12-385938-9.00031-6 10.5004/dwt.2010.1079 10.5772/63579 10.1016/j.jvolgeores.2017.07.008 10.1029/140GM02 10.1130/G32092.1 10.1016/B978-0-12-385938-9.00026-2 10.1146/annurev-earth-060614-105206 10.1016/S0037-0738(98)00057-8 10.1016/j.epsl.2004.08.009 10.1007/BF01079827 10.1002/2016GL071327 10.1007/BF01081756 10.1093/oso/9780195094091.001.0001 10.1029/2007JB005215 10.12681/bgsg.11291 10.1016/j.jvolgeores.2011.05.006 10.1007/s004450050293 10.1371/journal.pone.0040583 10.1130/G30500.1 10.1007/s00445-017-1120-1 10.1029/JB089iB10p08371 10.3301/IJG.2014.46 10.1186/s40517-015-0031-7 10.1016/j.epsl.2016.11.055 10.1007/BF01087675 10.1016/0377-0273(92)90118-W 10.1029/94JB00650 10.1007/BF01046546 10.1007/BF02597304 10.1029/140GM20 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3389/feart.2018.00198 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 2296-6463 |
ExternalDocumentID | oai_doaj_org_article_7d42ba3ceb154c309c0985339c419582 10_3389_feart_2018_00198 |
GroupedDBID | 5VS 9T4 AAFWJ AAYXX ACGFS ACXDI ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ KQ8 M~E OK1 |
ID | FETCH-LOGICAL-c351t-e5db76b9ba80b5e5c25fe6bf808526cbe659341bb853c21f11eb4fbe8276ea7e3 |
IEDL.DBID | DOA |
ISSN | 2296-6463 |
IngestDate | Wed Aug 27 01:28:37 EDT 2025 Tue Jul 01 01:21:30 EDT 2025 Thu Apr 24 22:58:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-e5db76b9ba80b5e5c25fe6bf808526cbe659341bb853c21f11eb4fbe8276ea7e3 |
OpenAccessLink | https://doaj.org/article/7d42ba3ceb154c309c0985339c419582 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7d42ba3ceb154c309c0985339c419582 crossref_primary_10_3389_feart_2018_00198 crossref_citationtrail_10_3389_feart_2018_00198 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-20 |
PublicationDateYYYYMMDD | 2018-11-20 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-20 day: 20 |
PublicationDecade | 2010 |
PublicationTitle | Frontiers in earth science (Lausanne) |
PublicationYear | 2018 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Goto (B60) 2004; 134 White (B117) Hunns (B65) 1999; 88 Campagnola (B18) 2016; 171 Lesher (B74) 2015 Scutter (B99) 1999 Allen (B3) 2008; 274 Chadwick (B33) 2016; 43 Gregg (B61) 1995; 23 McPhie (B80) 1993 McBirney (B79) 1963; 26 Allen (B5) 2000; 95 Cashman (B31) 2015 Scarfe (B97) 1987; 1 Garrison (B54) 2012 Giordano (B56) 2008; 271 Brennen (B12) 1995 Resing (B92) 2011; 4 Simmons (B104) 2016; 324 Rotella (B94) 2015; 301 Gladkikh (B58) 2012; 169 Batiza (B7) 1984 Kato (B71) 1987; 77 Wohletz (B121) 1986; 48 Safarov (B96) 2009; 5 Spieler (B108) 2004; 226 Walker (B112) 1973; 62 Simmons (B103); 341 Druitt (B40) 1999; 19 Wohletz (B120) 2013 Busby-Spera (B15) 1986; 27 Zimanowski (B124) 2003 Clague (B35) 2013; 14 Fujikawa (B52) 1980; 97 Ikegami (B66) 2018; 6 Head (B64) 2003; 121 Fink (B47) 1992; 97 Bischoff (B10) 1988; 52 Bryan (B13) 2004; 227 Cas (B24) 1992; 87 Cas (B23) 1978; 89 Cashman (B30) 1991; 253 Saar (B95) 2001; 187 van Otterloo (B111) 2015; 151 Busby-Spera (B17) 1984; 89 Grosfils (B63) 2000 Mueller (B84) 1992; 54 Cas (B26) Fiske (B49) 1995; 11 Persikov (B87) 2017; 58 Furnes (B53) 1980; 8 Manga (B77) 2018; 489 Rayleigh (B91) 1917; 34 White (B115) 2000; 62 Barreyre (B6) 2011; 205 Cas (B29) 2003 Giordano (B57) 2010; 3 Wohletz (B122) 2003 Allen (B4) 2010; 38 Taylor (B109) 2010; 17 White (B118) 2003 de Rosen-Spence (B36) 1980; 12 Gonnermann (B59) 2015; 43 Kokelaar (B72) 1986; 48 Manville (B78) 1998; 119 Moore (B83) 1975; 63 Bryan (B14) 2012; 7 Embley (B44) 2018; 80 Dimroth (B38) 1978; 15 Binns (B9) 2003 Deardorff (B37) 2011; 202 Cas (B25) 2014; 133 Simmons (B102); 79 Maeno (B76) 2006; 68 Fujibayashi (B51) 2003 Gifkins (B55) 2002; 114 Carey (B22) 1986; 48 Kano (B68) 2003 Wallace (B113) 2000 Mitchell (B82) 2018; 494 Skilling (B105) 2002; 114 Allen (B2) 1992; 87 Fink (B46) 1987; 212 Mills (B81) 1984; 141 Cas (B28) 1991; 53 Dixon (B39) 1997; 38 Wright (B123) 2006; 149 Whitham (B119) 1986; 48 Karagianni (B70) 2010; 43 Poland (B90) 2014 Wallace (B114) 2015 Cashman (B32) 2000 Papale (B86) 1999; 397 Carey (B21) 2014; 95 Lipman (B75) 1981 Kano (B69) 1996; 71 Kurokawa (B73) 1991; 86 Airey (B1) 2015; 113 Soriano (B106) 2016; 12 Cas (B27) 1987 Spera (B107) 2000 Thomas (B110) 1994; 99 Zimanowski (B125) 2015 Jutzeler (B67) 2014; 5 Bonadonna (B11) 2013; 75 Griffiths (B62) 1992; 97 Fauria (B45) 2017; 460 Newhall (B85) 1996 White (B116) Fiske (B48) 1998; 59 Batiza (B8) 2000 Fornari (B50) 1986; 48 Chadwick (B34) 2008 Resnyansky (B93) 2006 Shea (B101) 2011; 39 Carey (B19) 2018; 4 Pioro (B89) 2011 Edgar (B42) 2017; 345 Sharqawy (B100) 2010; 16 Pichler (B88) 1965; 28 Druitt (B41) 2002; 21 Scutter (B98) 1998; 103 Busby-Spera (B16) 1987; 49 Carey (B20) 2010; 72 Embley (B43) 2014; 15 |
References_xml | – start-page: 113 year: 2000 ident: B63 article-title: “Volcanism on earth’s seafloor and Venus,” in publication-title: Environmental Effects on Volcanic Eruptions doi: 10.1007/978-1-4615-4151-6_5 – volume: 15 start-page: 902 year: 1978 ident: B38 article-title: Structure and organization of Archean subaqueous basalt flows, Rouyn–Noranda area, Quebec, Canada. publication-title: Can. J. Earth Sci. doi: 10.1139/e78-101 – volume: 75 start-page: 1 year: 2013 ident: B11 article-title: Plume height, volume, and classification of explosive volcanic eruptions based on the Weibull function. publication-title: Bull. Volcanol. doi: 10.1007/s00445-013-0742-1 – volume: 21 start-page: 645 year: 2002 ident: B41 article-title: The eruption of Soufrière Hills volcano, Montserrat, from 1995 to 1999. publication-title: Geol. Soc. Lon. Mem. – start-page: 363 ident: B116 article-title: “Submarine lavas and hyaloclastite,” in publication-title: Encyclopedia of Volcanoes doi: 10.1016/B978-0-12-385938-9.00019-5 – volume: 80 year: 2018 ident: B44 article-title: Extensive young silicic volcanism produces large deep submarine lava flows in the NE Lau Basin. publication-title: Bull. Volcanol. doi: 10.1007/s00445-018-1211-7 – volume: 324 start-page: 200 year: 2016 ident: B104 article-title: Complex variations during a caldera-forming Plinian eruption, including precursor deposits, thick pumice fallout, co-ignimbrite breccias and climactic lag breccias: the 184ka Lower Pumice 1 eruption sequence, Santorini, Greece. publication-title: J. Volcanol. Geother. Res. doi: 10.1016/j.jvolgeores.2016.05.013 – volume: 97 start-page: 481 year: 1980 ident: B52 article-title: Effects of the non-equilibrium condensation of vapour on the pressure wave produced by the collapse of a bubble in a liquid. publication-title: J. Fluid Mech. doi: 10.1017/S0022112080002662 – volume: 87 start-page: 825 year: 1992 ident: B2 article-title: Reconstruction of the tectonic, volcanic, and sedimentary setting of strongly deformed Zn-Cu massive sulfide deposits at Benambra, Victoria. publication-title: Econ. Geol. doi: 10.2113/gsecongeo.87.3.825 – volume: 97 start-page: 19729 year: 1992 ident: B62 article-title: Solidification and morphology of submarine lavas: a dependence on extrusion rate. publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/92JB01594 – volume: 53 start-page: 357 year: 1991 ident: B28 article-title: Subaqueous pyroclastic flows and ignimbrites: an assessment. publication-title: Bull. Volcanol. doi: 10.1007/BF00280227 – volume: 171 year: 2016 ident: B18 article-title: Confort 15 model of conduit dynamics: applications to Pantelleria Green Tuff and Etna 122 BC eruptions. publication-title: Contribs. Mineral. Petrol. doi: 10.1007/s00410-016-1265-5 – volume: 187 start-page: 367 year: 2001 ident: B95 article-title: Numerical models of the onset of yield strength in crystal–melt suspensions. publication-title: Earth Planet. Sci. Lett. doi: 10.1016/S0012-821X(01)00289-8 – volume: 63 start-page: 269 year: 1975 ident: B83 article-title: Mechanism of formation of pillow lava: pillow lava, produced as fluid lava cools underwater, is the most abundant volcanic rock on earth, but only recently have divers observed it forming. publication-title: Am. Sci. – volume: 95 start-page: 157 year: 2014 ident: B21 article-title: Discovery of the largest historic silicic submarine eruption, Eos. publication-title: Trans. Amer. Geophys. Union doi: 10.1002/2014EO190001 – volume: 4 start-page: 799 year: 2011 ident: B92 article-title: Active submarine eruption of boninite in the northeastern Lau Basin. publication-title: Nat. Geosci. doi: 10.1038/ngeo1275 – volume: 89 start-page: 1708 year: 1978 ident: B23 article-title: Silicic lavas in Paleozoic flyschlike deposits in New South Wales, Australia: behavior of deep subaqueous silicic flows. publication-title: Geol. Soc. Amer. Bull. doi: 10.1130/0016-7606197889<1708:SLIPFD<2.0.CO;2 – volume: 97 start-page: 9073 year: 1992 ident: B47 article-title: Textural constraints on effusive silicic volcanism: beyond the permeable foam model. publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/92JB00416 – volume: 68 start-page: 673 year: 2006 ident: B76 article-title: Silicic lava dome growth in the 1934–1935 Showa Iwo-jima eruption, Kikai caldera, south of Kyushu, Japan. publication-title: Bull. Volcanol. doi: 10.1007/s00445-005-0042-5 – start-page: 213 year: 2003 ident: B68 article-title: “Subaqueous pumice eruptions and their products: a review,” in publication-title: Explosive Subaqueous Volcanism doi: 10.1029/140GM14 – volume: 489 start-page: 49 year: 2018 ident: B77 article-title: The pumice raft-forming 2012 Havre submarine eruption was effusive. publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2018.02.025 – start-page: 1 year: 2003 ident: B118 article-title: “Introduction: a deductive outline and topical overview of subaqueous explosive volcanism,” in publication-title: Explosive subaqueous Volcanism. Geophysical Monograph – volume: 397 start-page: 425 year: 1999 ident: B86 article-title: Strain-induced magma fragmentation in explosive eruptions. publication-title: Nature doi: 10.1038/17109 – volume: 72 start-page: 259 year: 2010 ident: B20 article-title: Tephra dispersal and eruption dynamics of wet and dry phases of the 1875 eruption of Askja Volcano, Iceland. publication-title: Bull. Volcanol. doi: 10.1007/s00445-009-0317-3 – start-page: 550 year: 1999 ident: B99 publication-title: Characteristics and Origins of Subaqueous Silicic Hyaloclastites, Ponza, Italy and Southwestern Hokkaido, Japan. – start-page: 230 year: 2013 ident: B120 article-title: “Magma-water interactions,” in publication-title: Modeling Volcanic Processes: The Physics and Mathematics of Volcanism doi: 10.1017/CBO9781139021562.011 – volume: 38 start-page: 911 year: 1997 ident: B39 article-title: Volatiles in alkalic basalts form the North Arch Volcanic Field, Hawaii: extensive degassing of deep submarine-erupted alkalic series lavas. publication-title: J. Petrol. doi: 10.1093/petroj/38.7.911 – volume: 114 start-page: 1 year: 2002 ident: B105 article-title: Peperite: a review of magma–sediment mingling. publication-title: J. Volcanol. Geother. Res. doi: 10.1016/S0377-0273(01)00278-5 – volume: 5 start-page: 235 year: 2009 ident: B96 article-title: Thermodynamic properties of standard seawater: extensions to high temperatures and pressures. publication-title: Ocean Sci. doi: 10.5194/os-5-235-2009 – volume: 48 start-page: 291 year: 1986 ident: B50 article-title: Submarine lava tubes and channels. publication-title: Bull. Volcanol. doi: 10.1007/BF01081757 – volume: 12 start-page: 43 year: 1980 ident: B36 article-title: Archean subaqueous felsic flows, Rouyn-Noranda, Quebec, Canada, and their Quaternary equivalents. publication-title: Precambr. Res. doi: 10.1016/0301-9268(80)90023-6 – volume: 88 start-page: 239 year: 1999 ident: B65 article-title: Pumiceous peperite in a submarine volcanic succession at Mount Chalmers, Queensland, Australia. publication-title: J. Volcanol. Geother. Res. doi: 10.1016/S0377-0273(99)00015-3 – volume: 17 start-page: 393 year: 2010 ident: B109 article-title: Planetary atmospheres. publication-title: Meteorol. Appl. doi: 10.1002/met.212 – volume: 52 start-page: 2121 year: 1988 ident: B10 article-title: Liquid-vapor relations in the critical region of the system NaCl-H2O from 380 to 415°C: a refined determination of the critical point and two-phase boundary of seawater. publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(88)90192-5 – volume: 89 start-page: 8417 year: 1984 ident: B17 article-title: Large-rhyolite ash flow eruptions and submarine caldera collapse in the Lower Mesozoic Sierra Nevada, California. publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/JB089iB10p08417 – volume: 226 start-page: 139 year: 2004 ident: B108 article-title: The fragmentation threshold of pyroclastic rocks. publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2004.07.016 – volume: 4 year: 2018 ident: B19 article-title: The largest deep-ocean silicic volcanic eruption of the past century. publication-title: Sci. Adv. doi: 10.1126/sciadv.1701121 – start-page: 259 year: 2003 ident: B51 article-title: “Vesiculation and eruption processes of submarine effusive and explosive rocks from the middle miocene ogi basalt, Sado Island, Japan,” in publication-title: Explosive Subaqueous Volcanism doi: 10.1029/140GM17 – volume: 27 start-page: 43 year: 1986 ident: B15 article-title: Depositional features of rhyolitic and andesitic volcaniclastic rocks of the Mineral King submarine caldera complex, Sierra Nevada, California. publication-title: J. Volcanol. Geotherm. Res. doi: 10.1016/0377-0273(86)90080-6 – volume: 19 year: 1999 ident: B40 article-title: Santorini volcano. publication-title: Geol. Soc. Lond. Mem. – start-page: 149 year: 2000 ident: B113 article-title: “Volatiles in magmas,” in publication-title: Encyclopedia of Volcanoes – volume: 95 start-page: 285 year: 2000 ident: B5 article-title: Water-settling and resedimentation of submarine rhyolitic pumice at Yali, eastern Aegean, Greece. publication-title: J. Volcanol. Geotherm. Res. doi: 10.1016/S0377-0273(99)00127-4 – start-page: 528 year: 1987 ident: B27 publication-title: Volcanic Successions: Modern and Ancient. doi: 10.1007/978-94-009-3167-1 – volume: 23 start-page: 73 year: 1995 ident: B61 article-title: Quantification of submarine lava-flow morphology through analog experiments. publication-title: Geology doi: 10.1130/0091-7613(1995)023<0073:QOSLFM>2.3.CO;2 – start-page: 459 year: 2015 ident: B31 article-title: “Magmatic fragmentation,” in publication-title: The Encyclopedia of Volcanoes doi: 10.1016/B978-0-12-385938-9.00025-0 – volume: 494 start-page: 135 year: 2018 ident: B82 article-title: Dynamics of a powerful deep submarine eruption recorded in H2O contents and speciation in rhyolitic glass: the 2012 Havre eruption. publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2018.04.053 – year: 2006 ident: B93 publication-title: Experimental Study of Blast Mitigation in a Water Mist Weapons Systems Division. – volume: 87 start-page: 511 year: 1992 ident: B24 article-title: Submarine volcanism; eruption styles, products, and relevance to understanding the host-rock successions to volcanic-hosted massive sulfide deposits. publication-title: Econ. Geol. doi: 10.2113/gsecongeo.87.3.511 – volume: 11 start-page: 315 year: 1995 ident: B49 article-title: Caldera-forming submarine pyroclastic eruption at Myojin Knoll, Izu-Bonin arc. publication-title: JAMSTEC J. Deep Sea Res. – volume: 151 start-page: 79 year: 2015 ident: B111 article-title: The fracture behaviour of volcanic glass and relevance to quench fragmentation during formation of hyaloclastite and phreatomagmatism. publication-title: Earth-Sci. Rev. doi: 10.1016/j.earscirev.2015.10.003 – start-page: 113 year: 2015 ident: B74 article-title: “Thermodynamic and transport properties of silicate melts and magma,” in publication-title: The Encyclopedia of Volcanoes doi: 10.1016/B978-0-12-385938-9.00005-5 – volume: 253 start-page: 275 year: 1991 ident: B30 article-title: Fallout of pyroclastic debris from submarine volcanic eruptions. publication-title: Science doi: 10.1126/science.253.5017.275 – volume: 62 start-page: 431 year: 1973 ident: B112 article-title: Explosive volcanic eruptions—a new classification scheme. publication-title: Geol. Rundschau doi: 10.1007/BF01840108 – volume: 121 start-page: 155 year: 2003 ident: B64 article-title: Deep submarine pyroclastic eruptions: theory and predicted landforms and deposits. publication-title: J. Volcanol. Geother. Res. doi: 10.1016/S0377-0273(02)00425-0 – volume: 341 start-page: 332 ident: B103 article-title: The initiation and development of a caldera-forming Plinian eruption (172ka Lower Pumice 2 eruption, Santorini, Greece). publication-title: J. Volcanol. Geother. Res. doi: 10.1016/j.jvolgeores.2017.05.034 – start-page: 51 year: 2003 ident: B124 article-title: “Phreatomagmatic explosions in subaqueous volcanism,” in publication-title: Explosive Subaqueous Volcanism doi: 10.1029/140GM03 – volume: 212 start-page: 77 year: 1987 ident: B46 article-title: Origin of pumiceous and glassy textures in rhyolite flows and domes. publication-title: Geol. Soc. Am. Spec. Pap. doi: 10.1130/SPE212-p77 – volume: 58 start-page: 1093 year: 2017 ident: B87 article-title: Viscosity of hydrous kimberlite and basaltic melts at high pressures. publication-title: Russ. Geol. Geophys. doi: 10.1016/j.rgg.2017.08.005 – volume: 14 start-page: 4403 year: 2013 ident: B35 article-title: Geologic history of the summit of Axial Seamount, Juan de Fuca Ridge. publication-title: Geochem. Geophys. Geosyst. doi: 10.1002/ggge.20240 – volume: 114 start-page: 181 year: 2002 ident: B55 article-title: Pumiceous rhyolitic peperite in ancient submarine volcanic successions. publication-title: J. Volcanol. Geother. Res. doi: 10.1016/S0377-0273(01)00284-0 – volume: 6 year: 2018 ident: B66 article-title: The eruption of submarine rhyolite lavas and domes in the deep ocean–Havre 2012, Kermadec Arc. publication-title: Front. Earth Sci. doi: 10.3389/feart.2018.00147 – volume: 15 start-page: 4093 year: 2014 ident: B43 article-title: Eruptive modes and hiatus of volcanism at West Mata seamount, NE Lau basin: 1996–2012. publication-title: Geochem. Geophys. Geosyst. doi: 10.1002/2014GC005387 – volume: 5 year: 2014 ident: B67 article-title: On the fate of pumice rafts formed during the 2012 Havre submarine eruption. publication-title: Nat. Commun. doi: 10.1038/ncomms4660 – start-page: 421 year: 2000 ident: B32 article-title: “Magmatic fragmentation,” in publication-title: Encyclopedia of Volcanoes – volume: 202 start-page: 47 year: 2011 ident: B37 article-title: Observations of eruptive plume dynamics and pyroclastic deposits from submarine explosive eruptions at NW Rota-1, Mariana arc. publication-title: J. Volcanol. Geotherm. Res. doi: 10.1016/j.jvolgeores.2011.01.003 – start-page: 171 year: 2000 ident: B107 article-title: “Physical properties of magma,” in publication-title: Encyclopedia of Volcanoes – volume: 77 start-page: 193 year: 1987 ident: B71 article-title: Woody pumice generated with submarine eruption. publication-title: J. Geol. Soc. Jpn. doi: 10.5575/geosoc.77.193 – volume: 169 start-page: 249 year: 2012 ident: B58 article-title: A mathematical model of the global ocean saltwater density distribution. publication-title: Pure Appl. Geophys. doi: 10.1007/s00024-011-0275-5 – volume: 34 start-page: 94 year: 1917 ident: B91 article-title: On the pressure developed in a liquid during the collapse of a spherical cavity. publication-title: Philos. Mag. doi: 10.1080/14786440808635681 – volume: 149 start-page: 263 year: 2006 ident: B123 article-title: New multibeam mapping and geochemistry of the 30o–35o S sector, and overview, of southern Kermadec arc volcanism. publication-title: J. Volcanol. Geother. Res. doi: 10.1016/j.jvolgeores.2005.03.021 – volume: 274 start-page: 40 year: 2008 ident: B3 article-title: Quenching of steam-charged pumice: implications for submarine pyroclastic volcanism. publication-title: Earth Planet. Sci. Letts. doi: 10.1016/j.epsl.2008.06.050 – volume: 113 start-page: 33 year: 2015 ident: B1 article-title: Explosive volcanic activity on Venus: the roles of volatile contribution, degassing, and external environment. publication-title: Planet. Space Sci. doi: 10.1016/j.pss.2015.01.009 – volume: 59 start-page: 262 year: 1998 ident: B48 article-title: Tephra dispersal from Myojinsho, Japan, during its shallow submarine eruption of 1952–1953. publication-title: Bull. Volcanol. doi: 10.1007/s004450050190 – volume: 86 start-page: 439 year: 1991 ident: B73 article-title: Formation of fesic pumiceous hyaloclastites a case study from Tadami district, Fukushima Prefecture, Japan. publication-title: J. Mineral. Petrol. Econ. Geol. doi: 10.2465/ganko.86.439 – volume: 134 start-page: 255 year: 2004 ident: B60 article-title: Morphology and growth style of a Miocene submarine dacite lava dome at Atsumi, northeast Japan. publication-title: J. Volcanol. Geother. Res. doi: 10.1016/j.jvolgeores.2004.03.015 – volume: 103 start-page: 27551 year: 1998 ident: B98 article-title: Facies architecture and origin of a submarine rhyolitic lava flow-dome complex, Ponza, Italy. publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/98JB01121 – start-page: 329 year: 2003 ident: B9 article-title: “Deep marine pumice from the Woodlark and Manus Basins, Papua New Guinea,” in publication-title: Explosive Subaqueous Volcanism doi: 10.1029/140GM22 – start-page: 844 year: 1981 ident: B75 publication-title: The 1980 Eruptions of Mount St. Helens, Washington doi: 10.3133/pp1250 – volume: 301 start-page: 314 year: 2015 ident: B94 article-title: Dynamics of deep submarine silicic explosive eruptions in the Kermadec arc, as reflected in pumice vesicularity textures. publication-title: J. Volcanol. Geother. Res. doi: 10.1016/j.jvolgeores.2015.05.021 – volume: 48 start-page: 245 year: 1986 ident: B121 article-title: Explosive magma-water interactions: thermodynamics, explosion mechanisms, and field studies. publication-title: Bull. Volcanol. doi: 10.1007/BF01081754 – volume: 71 start-page: 187 year: 1996 ident: B69 article-title: Subaqueous eruption and emplacement of the Shinjima Pumice, Shinjima (Moeshima) Island, Kagoshima Bay, SW Japan. publication-title: J. Volcanol. Geother. Res. doi: 10.1016/0377-0273(95)00077-1 – volume: 141 start-page: 183 year: 1984 ident: B81 article-title: Pillow lavas and the Leidenfrost effect. publication-title: J. Geol. Soc. doi: 10.1144/gsjgs.141.1.0183 – start-page: 163 year: 2015 ident: B114 article-title: “Volatiles in magmas,” in publication-title: The Encyclopedia of Volcanoes doi: 10.1016/B978-0-12-385938-9.00007-9 – volume: 8 start-page: 95 year: 1980 ident: B53 article-title: Subglacial volcanics — On the formation of acid hyaloclastites. publication-title: J. Volcanol. Geother. Res. doi: 10.1016/0377-0273(80)90009-8 – volume: 271 start-page: 123 year: 2008 ident: B56 article-title: Viscosity of magmatic liquids: a model. publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2008.03.038 – start-page: 553 ident: B117 article-title: “Submarine explosive eruptions,” in publication-title: Encyclopedia of Volcanoes doi: 10.1016/B978-0-12-385938-9.00031-6 – volume: 16 start-page: 354 year: 2010 ident: B100 article-title: Thermophysical properties of seawater: a review of existing correlations and data. publication-title: Desalinat. Water Treat. doi: 10.5004/dwt.2010.1079 – volume: 12 year: 2016 ident: B106 article-title: “Submarine volcanism of the cabo de gata magmatic arc in the betic-rif orogen, se spain: processes and products,” in publication-title: Updates in Volcanology – From Volcano Modelling to Volcano Geology doi: 10.5772/63579 – volume: 3 start-page: 43 year: 2010 ident: B57 article-title: Stratigraphy, volcano tectonics and evolution of the Colli Albani volcanic field. publication-title: Geol. Soc. Lon. Spec. Publ. – volume: 345 start-page: 21 year: 2017 ident: B42 article-title: Causes of complexity in one of the largest known Plinian fallout eruption sequences: the 312 ka Fasnia Member of the Diego Hernandez Formation, Tenerife, Spain. publication-title: J. Volcanol. Geother. Res. doi: 10.1016/j.jvolgeores.2017.07.008 – start-page: 25 year: 2003 ident: B122 article-title: “Water/Magma interaction: physical considerations for the deep submarine environment,” in publication-title: Explosive Subaqueous Volcanism doi: 10.1029/140GM02 – volume: 39 start-page: 695 year: 2011 ident: B101 article-title: Column collapse and generation of pyroclastic density currents during the AD 79 eruption of Vesuvius: the role of pyroclast density. publication-title: Geology doi: 10.1130/G32092.1 – start-page: 473 year: 2015 ident: B125 article-title: “Magma-water interaction and phreatomagmatic fragmentation,” in publication-title: The Encyclopedia of Volcanoes doi: 10.1016/B978-0-12-385938-9.00026-2 – volume: 43 start-page: 431 year: 2015 ident: B59 article-title: Magma fragmentation. publication-title: Annu. Rev. Earth Planet. Sci. doi: 10.1146/annurev-earth-060614-105206 – volume: 119 start-page: 5 year: 1998 ident: B78 article-title: The saturation behaviour of pumice and some sedimentological implications. publication-title: Sedimen. Geol. doi: 10.1016/S0037-0738(98)00057-8 – volume: 227 start-page: 135 year: 2004 ident: B13 article-title: Pumice rafting and faunal dispersion during 2001-2002 in the Southwest Pacific: record of a dacitic submarine explosive eruption from Tonga. publication-title: Earth Planet. Sci. Letts. doi: 10.1016/j.epsl.2004.08.009 – volume: 49 start-page: 765 year: 1987 ident: B16 article-title: Variation in peperite textures associated with differing host-sediment properties. publication-title: Bull. Volcanol. doi: 10.1007/BF01079827 – volume: 43 start-page: 12063 year: 2016 ident: B33 article-title: Voluminous eruption from a zoned magma body after an increase in supply rate at Axial Seamount. publication-title: Geophys. Res. Letts. doi: 10.1002/2016GL071327 – volume: 48 start-page: 275 year: 1986 ident: B72 article-title: Magma-water interactions in subaqueous and emergent basaltic volcanism. publication-title: Bull. Volcanol. doi: 10.1007/BF01081756 – year: 1995 ident: B12 publication-title: Cavitation and Bubble Dynamics. doi: 10.1093/oso/9780195094091.001.0001 – start-page: 573 year: 2011 ident: B89 article-title: “Thermophysical properties at critical and supercritical pressures,” in publication-title: Heat Transfer-Theoretical Analysis, Experimental Investigations and Industrial Systems. – start-page: 113 year: 2008 ident: B34 article-title: Direct video and hydrophone observations of submarine explosive eruptions at NW Rota-1 volcano, Mariana arc. publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/2007JB005215 – start-page: 1126 year: 1996 ident: B85 publication-title: Fire and Mud: Eruptions and Lahars of Mount Pinatubo – volume: 43 start-page: 1165 year: 2010 ident: B70 article-title: Elastic properties of rocks. publication-title: Bull. Geol. Soc. Greece doi: 10.12681/bgsg.11291 – volume: 205 start-page: 84 year: 2011 ident: B6 article-title: Dispersal of volcaniclasts during deep-sea eruptions: settling velocities and entrainment in buoyant seawater plumes. publication-title: J. Volcanol. Geotherm. Res. doi: 10.1016/j.jvolgeores.2011.05.006 – volume: 62 start-page: 65 year: 2000 ident: B115 article-title: Peperite: a useful genetic term. publication-title: Bull. Volcanol. doi: 10.1007/s004450050293 – start-page: 361 year: 2000 ident: B8 article-title: “Submarine lavas and hyaloclastite,” in publication-title: Encyclopedia of Volcanoes – volume: 7 year: 2012 ident: B14 article-title: Rapid, long-distance dispersal by pumice rafting. publication-title: PLoS One doi: 10.1371/journal.pone.0040583 – year: 2012 ident: B54 publication-title: Essentials of Oceanography. – volume: 38 start-page: 391 year: 2010 ident: B4 article-title: Effects of water depth on pumice formation in submarine domes at Sumisu, Izu-Bonin arc, western Pacific. publication-title: Geology doi: 10.1130/G30500.1 – volume: 79 ident: B102 article-title: High magma decompression rates at the peak of a violent caldera-forming eruption (Lower Pumice 1 eruption, Santorini, Greece). publication-title: Bull. Volcanol. doi: 10.1007/s00445-017-1120-1 – start-page: 8371 year: 1984 ident: B7 article-title: Craters, calderas, and hyaloclastites on young Pacific seamounts. publication-title: J. Geophys. Res Solid Earth doi: 10.1029/JB089iB10p08371 – volume: 1 start-page: 59 year: 1987 ident: B97 article-title: Pressure dependence of the viscosity of silicate melts. publication-title: Magmat. Process. Physicochem. Princip. – ident: B26 publication-title: Volcanology – Processes, Deposits, Geology and Resources. – volume: 133 start-page: 362 year: 2014 ident: B25 article-title: Submarine volcanism: a review of the constraints, processes and products, and relevance to the Cabo de Gata volcanic succession. publication-title: Ital. J. Geosci. doi: 10.3301/IJG.2014.46 – start-page: 196 year: 1993 ident: B80 publication-title: Volcanic Textures: A Guide to the Interpretation of Textures in Volcanic Rocks. – volume: 28 start-page: 293 year: 1965 ident: B88 article-title: Acid hyaloclastites. publication-title: Bull. Volcanol. doi: 10.1186/s40517-015-0031-7 – volume: 460 start-page: 50 year: 2017 ident: B45 article-title: Trapped bubbles keep pumice afloat and gas diffusion makes pumice sink. publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2016.11.055 – year: 2014 ident: B90 publication-title: Characteristics of Hawaiian Volcanoes: U.S. Geological Survey Professional. – volume: 48 start-page: 209 year: 1986 ident: B119 article-title: Pumice. publication-title: Bull. Volcanol. doi: 10.1007/BF01087675 – volume: 54 start-page: 117 year: 1992 ident: B84 article-title: Felsic fire-fountaining beneath Archean seas: pyroclastic deposits of the 2730 Ma Hunter Mine Group, Quebec, Canada. publication-title: J. Volcanol. Geother. Res. doi: 10.1016/0377-0273(92)90118-W – volume: 99 start-page: 633 year: 1994 ident: B110 article-title: On the vesicularity of pumice. publication-title: J. Geophys. Res. doi: 10.1029/94JB00650 – volume: 48 start-page: 109 year: 1986 ident: B22 article-title: Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. publication-title: Bull. Volcanol. doi: 10.1007/BF01046546 – volume: 26 start-page: 455 year: 1963 ident: B79 article-title: Factors governing the nature of submarine volcanism. publication-title: Bull. Volcanol. doi: 10.1007/BF02597304 – start-page: 299 year: 2003 ident: B29 article-title: “Miocene submarine fire fountain deposits, Ryugazaki Headland, Oshoro Peninsula, Hokkaido, Japan: implications for submarine fountain dynamics and fragmentation processes,” in publication-title: Explosive Subaqueous Volcanism doi: 10.1029/140GM20 |
SSID | ssj0001325409 |
Score | 2.3327322 |
Snippet | Magmas erupted in deep-water environments (>500 m) are subject to physical constraints very different to those for subaerial eruptions, including hydrostatic... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
SubjectTerms | bulk modulus hydrostatic pressure limited volatile exsolution magma properties submarine eruptions supercritical fluid |
Title | Why Deep-Water Eruptions Are So Different From Subaerial Eruptions |
URI | https://doaj.org/article/7d42ba3ceb154c309c0985339c419582 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJSQWxFOUlzKwMFjNw3bskdKWCgkWqNotsp2zGKCtonTov-fshFIWWFijc2R9Pt13l5y_I-RGMZdB7EpqBUjKmLMUaxVFpc5TzI8lg9LfRn56FuMJe5zx2daoL98T1sgDN8D18pKlRmcWYwpnNouVjRVSTKYs8zopIfoi520VU-HrSoaFT6ya_5JYhameQ8fxvZOJ753ESvsHD23J9QdeGR2Q_TYhjO6ajRySHZgfkd2HMHB3fUz607d1NABY0ilmhVU0rFZNGwqugOhlEQ3aCSd1NKoWHxEGAh2c6tvyhExGw9f7MW3nHlCb8aSmwEuTC6OMlrHhwG3KHQjjJKZHqbAGBFdIPsYgDjZNXJKAYc6ATHMBOofslHTmizmckSiVAtkoN0pogSHRqZJxQDiF5lo6q7qk94VCYVtRcD-b4r3A4sDjVgTcCo9bEXDrktvNimUjiPGLbd8Du7HzUtbhAR5w0R5w8dcBn__HSy7Int-Wv0SYxpekU1cruMJsojbXwXE-AXb7xdY |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Why+Deep-Water+Eruptions+Are+So+Different+From+Subaerial+Eruptions&rft.jtitle=Frontiers+in+earth+science+%28Lausanne%29&rft.au=Cas%2C+Raymond+A.+F.&rft.au=Simmons%2C+Jack+M.&rft.date=2018-11-20&rft.issn=2296-6463&rft.eissn=2296-6463&rft.volume=6&rft_id=info:doi/10.3389%2Ffeart.2018.00198&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_feart_2018_00198 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-6463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-6463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-6463&client=summon |