A Computerized Method for Automatic Detection of Schizophrenia Using EEG Signals

Diagnosis of schizophrenia (SZ) is traditionally performed through patient's interviews by a skilled psychiatrist. This process is time-consuming, burdensome, subject to error and bias. Hence the aim of this study is to develop an automatic SZ identification scheme using electroencephalogram (E...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 28; no. 11; pp. 2390 - 2400
Main Authors Siuly, Siuly, Khare, Smith K., Bajaj, Varun, Wang, Hua, Zhang, Yanchun
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Diagnosis of schizophrenia (SZ) is traditionally performed through patient's interviews by a skilled psychiatrist. This process is time-consuming, burdensome, subject to error and bias. Hence the aim of this study is to develop an automatic SZ identification scheme using electroencephalogram (EEG) signals that can eradicate the aforementioned problems and support clinicians and researchers. This study introduces a methodology design involving empirical mode decomposition (EMD) technique for diagnosis of SZ from EEG signals to perfectly handle the behavior of non-stationary and nonlinear EEG signals. In this study, each EEG signal is decomposed into intrinsic mode functions (IMFs) by the EMD algorithm and then twenty-two statistical characteristics/features are calculated from these IMFs. Among them, five features are selected as significant feature applying Kruskal Wallis test. The performance of the obtained feature set is tested through several renowned classifierson a SZ EEG dataset. Among the considered classifiers, theensemble bagged tree performed as the best classifier producing 93.21% correct classification rate for SZ, with an overall accuracy of 89.59% for IMF 2. These results indicate that EEG signals discriminate SZ patients from healthy control (HC) subjects efficiently and have the potential to become a tool for the psychiatrist to support the positive diagnosis of SZ.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1534-4320
1558-0210
1558-0210
DOI:10.1109/TNSRE.2020.3022715