A Computerized Method for Automatic Detection of Schizophrenia Using EEG Signals
Diagnosis of schizophrenia (SZ) is traditionally performed through patient's interviews by a skilled psychiatrist. This process is time-consuming, burdensome, subject to error and bias. Hence the aim of this study is to develop an automatic SZ identification scheme using electroencephalogram (E...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 28; no. 11; pp. 2390 - 2400 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.11.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Diagnosis of schizophrenia (SZ) is traditionally performed through patient's interviews by a skilled psychiatrist. This process is time-consuming, burdensome, subject to error and bias. Hence the aim of this study is to develop an automatic SZ identification scheme using electroencephalogram (EEG) signals that can eradicate the aforementioned problems and support clinicians and researchers. This study introduces a methodology design involving empirical mode decomposition (EMD) technique for diagnosis of SZ from EEG signals to perfectly handle the behavior of non-stationary and nonlinear EEG signals. In this study, each EEG signal is decomposed into intrinsic mode functions (IMFs) by the EMD algorithm and then twenty-two statistical characteristics/features are calculated from these IMFs. Among them, five features are selected as significant feature applying Kruskal Wallis test. The performance of the obtained feature set is tested through several renowned classifierson a SZ EEG dataset. Among the considered classifiers, theensemble bagged tree performed as the best classifier producing 93.21% correct classification rate for SZ, with an overall accuracy of 89.59% for IMF 2. These results indicate that EEG signals discriminate SZ patients from healthy control (HC) subjects efficiently and have the potential to become a tool for the psychiatrist to support the positive diagnosis of SZ. |
---|---|
AbstractList | Diagnosis of schizophrenia (SZ) is traditionally performed through patient's interviews by a skilled psychiatrist. This process is time-consuming, burdensome, subject to error and bias. Hence the aim of this study is to develop an automatic SZ identification scheme using electroencephalogram (EEG) signals that can eradicate the aforementioned problems and support clinicians and researchers. This study introduces a methodology design involving empirical mode decomposition (EMD) technique for diagnosis of SZ from EEG signals to perfectly handle the behavior of non-stationary and nonlinear EEG signals. In this study, each EEG signal is decomposed into intrinsic mode functions (IMFs) by the EMD algorithm and then twenty-two statistical characteristics/features are calculated from these IMFs. Among them, five features are selected as significant feature applying Kruskal Wallis test. The performance of the obtained feature set is tested through several renowned classifierson a SZ EEG dataset. Among the considered classifiers, theensemble bagged tree performed as the best classifier producing 93.21% correct classification rate for SZ, with an overall accuracy of 89.59% for IMF 2. These results indicate that EEG signals discriminate SZ patients from healthy control (HC) subjects efficiently and have the potential to become a tool for the psychiatrist to support the positive diagnosis of SZ. Diagnosis of schizophrenia (SZ) is traditionally performed through patient's interviews by a skilled psychiatrist. This process is time-consuming, burdensome, subject to error and bias. Hence the aim of this study is to develop an automatic SZ identification scheme using electroencephalogram (EEG) signals that can eradicate the aforementioned problems and support clinicians and researchers. This study introduces a methodology design involving empirical mode decomposition (EMD) technique for diagnosis of SZ from EEG signals to perfectly handle the behavior of non-stationary and nonlinear EEG signals. In this study, each EEG signal is decomposed into intrinsic mode functions (IMFs) by the EMD algorithm and then twenty-two statistical characteristics/features are calculated from these IMFs. Among them, five features are selected as significant feature applying Kruskal Wallis test. The performance of the obtained feature set is tested through several renowned classifierson a SZ EEG dataset. Among the considered classifiers, theensemble bagged tree performed as the best classifier producing 93.21% correct classification rate for SZ, with an overall accuracy of 89.59% for IMF 2. These results indicate that EEG signals discriminate SZ patients from healthy control (HC) subjects efficiently and have the potential to become a tool for the psychiatrist to support the positive diagnosis of SZ.Diagnosis of schizophrenia (SZ) is traditionally performed through patient's interviews by a skilled psychiatrist. This process is time-consuming, burdensome, subject to error and bias. Hence the aim of this study is to develop an automatic SZ identification scheme using electroencephalogram (EEG) signals that can eradicate the aforementioned problems and support clinicians and researchers. This study introduces a methodology design involving empirical mode decomposition (EMD) technique for diagnosis of SZ from EEG signals to perfectly handle the behavior of non-stationary and nonlinear EEG signals. In this study, each EEG signal is decomposed into intrinsic mode functions (IMFs) by the EMD algorithm and then twenty-two statistical characteristics/features are calculated from these IMFs. Among them, five features are selected as significant feature applying Kruskal Wallis test. The performance of the obtained feature set is tested through several renowned classifierson a SZ EEG dataset. Among the considered classifiers, theensemble bagged tree performed as the best classifier producing 93.21% correct classification rate for SZ, with an overall accuracy of 89.59% for IMF 2. These results indicate that EEG signals discriminate SZ patients from healthy control (HC) subjects efficiently and have the potential to become a tool for the psychiatrist to support the positive diagnosis of SZ. |
Author | Siuly, Siuly Khare, Smith K. Wang, Hua Bajaj, Varun Zhang, Yanchun |
Author_xml | – sequence: 1 givenname: Siuly orcidid: 0000-0003-2491-0546 surname: Siuly fullname: Siuly, Siuly email: siuly.siuly@vu.edu.au organization: Institute for Sustainable Industries and Liveable Cities, Victoria University, Footscray, VIC, Australia – sequence: 2 givenname: Smith K. orcidid: 0000-0001-8365-1092 surname: Khare fullname: Khare, Smith K. email: smith7khare@gmail.com organization: PDPM Indian Institute of Information Technology, Design, and Manufacturing, Jabalpur, India – sequence: 3 givenname: Varun orcidid: 0000-0002-8721-1219 surname: Bajaj fullname: Bajaj, Varun email: varunb@iiitdmj.ac.in organization: PDPM Indian Institute of Information Technology, Design, and Manufacturing, Jabalpur, India – sequence: 4 givenname: Hua orcidid: 0000-0002-8465-0996 surname: Wang fullname: Wang, Hua email: hua.wang@vu.edu.au organization: Institute for Sustainable Industries and Liveable Cities, Victoria University, Footscray, VIC, Australia – sequence: 5 givenname: Yanchun orcidid: 0000-0002-5094-5980 surname: Zhang fullname: Zhang, Yanchun email: yanchun.zhang@vu.edu.au organization: Institute for Sustainable Industries and Liveable Cities, Victoria University, Footscray, VIC, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32897863$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtvEzEUhS1URNvAHwAJWWLDZsL1a-xZRiEUpPIQadeW49xpXGXGwfYs6K9nhqQsumB1vfi-I-ucS3LWxx4Jec1gzhg0H26-rX-u5hw4zAVwrpl6Ri6YUqYCzuBsegtZScHhnFzmfA_AdK30C3IuuGm0qcUF-bGgy9gdhoIpPOCWfsWyi1vaxkQXQ4mdK8HTj1jQlxB7Glu69rvwEA-7hH1w9DaH_o6uVld0He56t88vyfN2PPjqdGfk9tPqZvm5uv5-9WW5uK68UKxUCFpDzaWWDhWoLTaqrTlrheQMJdfgG902uDHKIbRm45XhG1c7BU60TDExI--PuYcUfw2Yi-1C9rjfux7jkC2XknHDjRYj-u4Jeh-HNH12pGoY08zYxYy8PVHDpsOtPaTQufTbPnY1AuYI-BRzTthaH4qbainJhb1lYKdZ7N9Z7DSLPc0yqvyJ-pj-X-nNUQqI-E9omNFGgvgDi2qWEw |
CODEN | ITNSB3 |
CitedBy_id | crossref_primary_10_1007_s11571_023_10011_x crossref_primary_10_1109_ACCESS_2023_3309418 crossref_primary_10_1007_s13755_021_00139_7 crossref_primary_10_1016_j_apacoust_2021_108164 crossref_primary_10_1109_TNSRE_2021_3105669 crossref_primary_10_1007_s00500_023_09492_z crossref_primary_10_1080_10255842_2024_2369257 crossref_primary_10_1007_s10489_022_03252_6 crossref_primary_10_1016_j_cmpb_2021_106450 crossref_primary_10_1007_s10548_025_01106_1 crossref_primary_10_3389_fnhum_2022_895761 crossref_primary_10_54105_ijainn_C1063_05011224 crossref_primary_10_1142_S0129065724500461 crossref_primary_10_1016_j_bspc_2021_103413 crossref_primary_10_1007_s00034_022_02265_3 crossref_primary_10_1016_j_compbiomed_2021_105028 crossref_primary_10_1186_s40779_023_00502_7 crossref_primary_10_1007_s00521_023_08971_6 crossref_primary_10_1007_s40998_024_00738_6 crossref_primary_10_1109_JSEN_2021_3080135 crossref_primary_10_1007_s11042_023_14489_9 crossref_primary_10_1007_s13246_024_01420_1 crossref_primary_10_1016_j_schres_2023_09_010 crossref_primary_10_1109_TNSRE_2023_3266024 crossref_primary_10_1007_s13246_024_01512_y crossref_primary_10_1007_s11571_024_10120_1 crossref_primary_10_3390_s23010280 crossref_primary_10_1016_j_apacoust_2021_108078 crossref_primary_10_1109_TIM_2021_3070608 crossref_primary_10_1016_j_bspc_2024_107396 crossref_primary_10_4108_eetsis_v9i5_2011 crossref_primary_10_1007_s11042_024_20205_y crossref_primary_10_1038_s41386_023_01658_5 crossref_primary_10_1007_s11571_020_09655_w crossref_primary_10_3389_fnins_2024_1340528 crossref_primary_10_1007_s10044_022_01107_x crossref_primary_10_1007_s42235_024_00636_x crossref_primary_10_1111_cns_14014 crossref_primary_10_3934_biophy_2023021 crossref_primary_10_1016_j_bspc_2024_107113 crossref_primary_10_1016_j_bspc_2023_104811 crossref_primary_10_1109_TIM_2022_3217515 crossref_primary_10_1109_TNSRE_2023_3347032 crossref_primary_10_1109_RBME_2021_3055956 crossref_primary_10_3389_fpsyt_2022_885120 crossref_primary_10_1080_21642583_2024_2364033 crossref_primary_10_1186_s12938_024_01250_y crossref_primary_10_1007_s11277_023_10326_2 crossref_primary_10_1080_21681163_2024_2304574 crossref_primary_10_3390_math12131989 crossref_primary_10_1007_s10462_021_10062_8 crossref_primary_10_1109_TCDS_2024_3386364 crossref_primary_10_1016_j_bspc_2021_102917 crossref_primary_10_1088_1361_6579_acb03c crossref_primary_10_1109_TCDS_2023_3314639 crossref_primary_10_53070_bbd_1173093 crossref_primary_10_1155_2023_6670869 crossref_primary_10_1016_j_bspc_2024_107163 crossref_primary_10_24012_dumf_1103391 crossref_primary_10_3390_jcm12134375 crossref_primary_10_1109_JSEN_2022_3151465 crossref_primary_10_1109_JSEN_2020_3038440 crossref_primary_10_3389_fpsyg_2022_850159 crossref_primary_10_1007_s11042_022_13809_9 crossref_primary_10_1007_s13246_023_01225_8 crossref_primary_10_1088_1361_6579_acbc06 crossref_primary_10_1109_TTS_2023_3239526 crossref_primary_10_1109_TMRB_2023_3315742 crossref_primary_10_4015_S1016237223500394 crossref_primary_10_1016_j_bspc_2023_105856 crossref_primary_10_1155_2021_6283900 crossref_primary_10_1016_j_eswa_2022_119219 crossref_primary_10_3389_fnhum_2024_1372985 crossref_primary_10_1186_s12916_023_02941_4 crossref_primary_10_1371_journal_pone_0277555 crossref_primary_10_32604_csse_2023_029762 crossref_primary_10_3390_diagnostics15020154 crossref_primary_10_1109_TETCI_2024_3353610 crossref_primary_10_1007_s11042_023_16676_0 crossref_primary_10_7717_peerj_cs_2170 crossref_primary_10_1111_exsy_12957 crossref_primary_10_1088_2057_1976_ad3cde crossref_primary_10_3390_s23020866 crossref_primary_10_1109_JBHI_2022_3151570 crossref_primary_10_1109_ACCESS_2022_3197645 crossref_primary_10_1007_s13246_022_01135_1 crossref_primary_10_1016_j_engappai_2022_105602 crossref_primary_10_3390_s24206508 crossref_primary_10_1016_j_bspc_2021_102777 crossref_primary_10_1016_j_bspc_2023_105206 crossref_primary_10_3389_fninf_2021_777977 crossref_primary_10_1016_j_medengphy_2023_103949 crossref_primary_10_1016_j_bspc_2021_102936 crossref_primary_10_1007_s13042_022_01668_7 |
Cites_doi | 10.1109/ACCESS.2018.2854555 10.1016/j.schres.2016.05.007 10.1016/j.aeue.2016.12.008 10.1007/978-3-319-68155-9_12 10.1007/s00521-014-1753-3 10.1007/978-1-4302-5990-9_3 10.1016/S0140-6736(18)32279-7 10.1016/j.cogsys.2018.12.007 10.1016/j.sigpro.2012.02.014 10.1142/S0129065712500025 10.1016/j.aci.2014.10.001 10.1049/joe.2017.0878 10.1371/journal.pone.0095943 10.3389/fnins.2018.00308 10.1016/j.jneumeth.2018.11.014 10.1192/S0007125000297584 10.1007/s11280-019-00776-9 10.1109/TNSRE.2019.2913799 10.1098/rspa.1998.0193 10.1016/j.eswa.2008.07.037 10.3390/app9142870 10.1109/TITB.2011.2181403 10.1109/TETCI.2018.2876529 10.1155/2015/576437 10.1016/j.cmpb.2016.01.017 10.1007/s13534-013-0084-0 10.1016/j.bbe.2015.10.006 10.1109/TSMCA.2007.897589 10.1016/j.measurement.2017.10.067 10.1007/s11633-019-1197-4 10.1109/TNSRE.2019.2900725 10.1016/j.future.2018.08.008 10.1186/s40810-016-0017-0 10.1016/j.neulet.2014.12.064 10.3389/fnint.2018.00055 10.1016/j.cmpb.2016.09.008 10.1007/978-3-319-47653-7 10.24251/HICSS.2020.393 10.1109/TNSRE.2012.2184838 10.1016/j.cmpb.2017.09.001 10.1109/89.905995 10.1016/j.physa.2019.122613 10.1016/j.artmed.2019.07.006 10.1016/j.compbiomed.2011.05.004 10.1049/iet-smt.2016.0208 10.3414/ME09-01-0054 10.1049/iet-smt.2018.5358 10.1504/IJAPR.2016.079050 10.1093/schbul/sbt072 10.1146/annurev-clinpsy-032813-153657 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/TNSRE.2020.3022715 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 2400 |
ExternalDocumentID | 32897863 10_1109_TNSRE_2020_3022715 9187840 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institute of Mental Health grantid: 5R01MH058262-16 funderid: 10.13039/100000025 – fundername: Australian Research Council Linkage Project grantid: LP170100934 funderid: 10.13039/501100000923 – fundername: NIMH NIH HHS grantid: R01 MH058262 |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c351t-e077062474ae505de95f621f3421e4270c97f9eb85ae0f8bc582ba6a50a3f1513 |
IEDL.DBID | RIE |
ISSN | 1534-4320 1558-0210 |
IngestDate | Thu Jul 10 18:01:29 EDT 2025 Fri Jul 25 08:32:53 EDT 2025 Thu Apr 03 06:56:13 EDT 2025 Thu Apr 24 23:11:47 EDT 2025 Tue Jul 01 00:43:21 EDT 2025 Wed Aug 27 02:51:14 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-e077062474ae505de95f621f3421e4270c97f9eb85ae0f8bc582ba6a50a3f1513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8465-0996 0000-0003-2491-0546 0000-0001-8365-1092 0000-0002-8721-1219 0000-0002-5094-5980 |
PMID | 32897863 |
PQID | 2460151886 |
PQPubID | 85423 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2441282873 ieee_primary_9187840 pubmed_primary_32897863 proquest_journals_2460151886 crossref_citationtrail_10_1109_TNSRE_2020_3022715 crossref_primary_10_1109_TNSRE_2020_3022715 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-01 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref56 ref12 ref15 ref14 ref52 ref11 ref54 ref10 ref17 ref16 ref19 ref18 song (ref40) 2015; 27 ref51 ref50 ref46 ref48 ref47 ref42 ref41 (ref1) 2019 ref49 siuly (ref45) 2016 ref8 ref7 ref9 ref4 ref3 ref6 thilakvathi (ref55) 2017; 28 ref5 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref2 alaa (ref44) 2016; 3 ref39 ref38 nguyen (ref28) 2009 yin (ref13) 2019; 16 peter (ref43) 2012 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref27 ref29 sui (ref53) 2014 (ref32) 2019 |
References_xml | – ident: ref14 doi: 10.1109/ACCESS.2018.2854555 – ident: ref52 doi: 10.1016/j.schres.2016.05.007 – ident: ref26 doi: 10.1016/j.aeue.2016.12.008 – ident: ref50 doi: 10.1007/978-3-319-68155-9_12 – ident: ref37 doi: 10.1007/s00521-014-1753-3 – ident: ref41 doi: 10.1007/978-1-4302-5990-9_3 – ident: ref2 doi: 10.1016/S0140-6736(18)32279-7 – ident: ref8 doi: 10.1016/j.cogsys.2018.12.007 – ident: ref22 doi: 10.1016/j.sigpro.2012.02.014 – ident: ref10 doi: 10.1142/S0129065712500025 – ident: ref42 doi: 10.1016/j.aci.2014.10.001 – volume: 27 start-page: 130 year: 2015 ident: ref40 article-title: Decision tree methods: Applications for classification and prediction publication-title: Shanghai Archives of Psychiatry – ident: ref29 doi: 10.1049/joe.2017.0878 – ident: ref56 doi: 10.1371/journal.pone.0095943 – ident: ref36 doi: 10.3389/fnins.2018.00308 – start-page: 3889 year: 2014 ident: ref53 article-title: Combination of FMRI-SMRI-EEG data improves discrimination of schizophrenia patients by ensemble feature selection publication-title: Proc 36th Annu Int Conf IEEE Eng Med Biol Soc – ident: ref12 doi: 10.1016/j.jneumeth.2018.11.014 – ident: ref5 doi: 10.1192/S0007125000297584 – ident: ref57 doi: 10.1007/s11280-019-00776-9 – ident: ref6 doi: 10.1109/TNSRE.2019.2913799 – ident: ref21 doi: 10.1098/rspa.1998.0193 – ident: ref54 doi: 10.1016/j.eswa.2008.07.037 – ident: ref3 doi: 10.3390/app9142870 – ident: ref23 doi: 10.1109/TITB.2011.2181403 – ident: ref11 doi: 10.1109/TETCI.2018.2876529 – ident: ref39 doi: 10.1155/2015/576437 – ident: ref47 doi: 10.1016/j.cmpb.2016.01.017 – ident: ref24 doi: 10.1007/s13534-013-0084-0 – ident: ref25 doi: 10.1016/j.bbe.2015.10.006 – year: 2012 ident: ref43 article-title: Bagging, boosting and ensemble methods publication-title: Handbook of Computational Statistics – volume: 28 start-page: 1 year: 2017 ident: ref55 article-title: EEG signal complexity analysis for schizophrenia during rest and mental activity publication-title: Biomed Res – ident: ref49 doi: 10.1109/TSMCA.2007.897589 – ident: ref31 doi: 10.1016/j.measurement.2017.10.067 – volume: 16 start-page: 1 year: 2019 ident: ref13 article-title: An integrated spectral-temporal analysis based framework for MCI detection using resting-state EEG signals publication-title: Int J Autom Comput doi: 10.1007/s11633-019-1197-4 – ident: ref15 doi: 10.1109/TNSRE.2019.2900725 – ident: ref9 doi: 10.1016/j.future.2018.08.008 – ident: ref17 doi: 10.1186/s40810-016-0017-0 – ident: ref18 doi: 10.1016/j.neulet.2014.12.064 – ident: ref35 doi: 10.3389/fnint.2018.00055 – ident: ref46 doi: 10.1016/j.cmpb.2016.09.008 – year: 2019 ident: ref1 – year: 2016 ident: ref45 article-title: EEG signal analysis and classification: Techniques and applications publication-title: Health Information Science doi: 10.1007/978-3-319-47653-7 – ident: ref16 doi: 10.24251/HICSS.2020.393 – ident: ref38 doi: 10.1109/TNSRE.2012.2184838 – ident: ref51 doi: 10.1016/j.cmpb.2017.09.001 – ident: ref30 doi: 10.1109/89.905995 – ident: ref34 doi: 10.1016/j.physa.2019.122613 – ident: ref19 doi: 10.1016/j.artmed.2019.07.006 – ident: ref20 doi: 10.1016/j.compbiomed.2011.05.004 – ident: ref27 doi: 10.1049/iet-smt.2016.0208 – ident: ref48 doi: 10.3414/ME09-01-0054 – ident: ref7 doi: 10.1049/iet-smt.2018.5358 – volume: 3 start-page: 145 year: 2016 ident: ref44 article-title: Linear vs. quadratic discriminant analysis classifier: A tutorial publication-title: Int J Appl Pattern Recognit doi: 10.1504/IJAPR.2016.079050 – ident: ref33 doi: 10.1093/schbul/sbt072 – start-page: 5490 year: 2009 ident: ref28 article-title: Pulse rate analysis in case of central sleep apnea: A new algorithm for cardiac rate estimation publication-title: Proc Annu Int Conf IEEE Eng Med Biol Soc – ident: ref4 doi: 10.1146/annurev-clinpsy-032813-153657 – year: 2019 ident: ref32 |
SSID | ssj0017657 |
Score | 2.6071866 |
Snippet | Diagnosis of schizophrenia (SZ) is traditionally performed through patient's interviews by a skilled psychiatrist. This process is time-consuming, burdensome,... Diagnosis of schizophrenia (SZ) is traditionally performed through patient’s interviews by a skilled psychiatrist. This process is time-consuming, burdensome,... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2390 |
SubjectTerms | Algorithms classification Classifiers decision tree Decomposition Diagnosis EEG Electroencephalogram Electroencephalography Electronic mail empirical mode decomposition ensemble bagged tree Feature extraction Frequency modulation Interviews K-nearest neighbor Mental disorders Schizophrenia Statistical analysis support vector machine Support vector machines Time-frequency analysis |
Title | A Computerized Method for Automatic Detection of Schizophrenia Using EEG Signals |
URI | https://ieeexplore.ieee.org/document/9187840 https://www.ncbi.nlm.nih.gov/pubmed/32897863 https://www.proquest.com/docview/2460151886 https://www.proquest.com/docview/2441282873 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21PXGBQvkIFGQk4ALZOrYT28cVbKmQtkLdrdRb5DjjqgIlqCSX_nps50MtAsTNUuzE1ozl9-KZNwBv_AnlLOY8rai2qagq6ltYe9aq61wbpU1MFF6fFifn4stFfrEDH-ZcGESMwWe4CM14l1-3tg-_yo50pqQnJLuw64nbkKs13xjIIqp6-g0sUsEZnRJkqD7anm7OVp4KMs9Qg2JeFsrVcM80pCr4nfMoFlj5O9aMZ87xA1hPsx1CTb4t-q5a2JvfhBz_dzn7cH8En2Q5eMtD2MHmEby9LTRMtoPKAHlHzu5oeB_A1yWZSkBc3WBN1rH2NPGglyz7ro3Sr-QTdjG2qyGtI5vbAX0kBieQ1eoz2VxdBtXmx3B-vNp-PEnHegyp5XnWpUilpAUTUhj0wKlGnbuCZY4LlqFgklotncZK5QapU5XNFatMYXJquPPIgj-BvaZt8BkQlTmmPFiTTlRCUjQaUShbW6WdhywmgWyySmnHhYaaGd_LSFqoLqNRy2DUcjRqAu_nMT8GqY5_9j4IFpl7jsZI4HAyfjnu5p8lE562BuW6IoHX82O_D8Plimmw7UMfkQX6KnkCTwenmd89-drzP3_zBdwLMxsyHA9hr7vu8aWHOl31Kvr4L-_79xA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoALr0IJFDAScIFsHceJ7eMKtizQXaHuVuotcpwxqkAJguTSX4_tPNQiQNwsxXlYM9Z8XzzzDcALF6GswSyNS6pMzMuSuhFWjrWqKlNaKh0KhVfrfHnKP55lZzvwZqqFQcSQfIYzPwxn-VVjOv-r7FAlUjhCcg2uu7ifsb5aazozEHnQ9XRbmMc8ZXQskaHqcLvenCwcGWSOo3rNvMQ3rEkd1xAyT69EpNBi5e9oM0Sdo9uwGr-3Tzb5OuvacmYufpNy_N8F3YFbA_wk895f7sIO1vfg5WWpYbLtdQbIK3JyRcV7Dz7PydgE4vwCK7IK3aeJg71k3rVNEH8l77AN2V01aSzZXE7pIyE9gSwW78nm_IvXbb4Pp0eL7dtlPHRkiE2aJW2MVAiaMy64RgedKlSZzVliU84S5ExQo4RVWMpMI7WyNJlkpc51RnVqHbZIH8Bu3dT4EIhMLJMOrgnLSy4oaoXIpamMVNaBFh1BMlqlMMNCfdeMb0WgLVQVwaiFN2oxGDWC19M933uxjn_O3vMWmWYOxojgYDR-MeznnwXjjrh67bo8gufTZbcT_fGKrrHp_ByeeAIr0gj2e6eZnj362qM_v_MZ3FhuV8fF8Yf1p8dw039lX-94ALvtjw6fOODTlk-Dv_8C_X36Wg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Computerized+Method+for+Automatic+Detection+of+Schizophrenia+Using+EEG+Signals&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Siuly%2C+Siuly&rft.au=Khare%2C+Smith+K&rft.au=Bajaj%2C+Varun&rft.au=Wang%2C+Hua&rft.date=2020-11-01&rft.eissn=1558-0210&rft.volume=28&rft.issue=11&rft.spage=2390&rft_id=info:doi/10.1109%2FTNSRE.2020.3022715&rft_id=info%3Apmid%2F32897863&rft.externalDocID=32897863 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |