A Computerized Method for Automatic Detection of Schizophrenia Using EEG Signals

Diagnosis of schizophrenia (SZ) is traditionally performed through patient's interviews by a skilled psychiatrist. This process is time-consuming, burdensome, subject to error and bias. Hence the aim of this study is to develop an automatic SZ identification scheme using electroencephalogram (E...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 28; no. 11; pp. 2390 - 2400
Main Authors Siuly, Siuly, Khare, Smith K., Bajaj, Varun, Wang, Hua, Zhang, Yanchun
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Diagnosis of schizophrenia (SZ) is traditionally performed through patient's interviews by a skilled psychiatrist. This process is time-consuming, burdensome, subject to error and bias. Hence the aim of this study is to develop an automatic SZ identification scheme using electroencephalogram (EEG) signals that can eradicate the aforementioned problems and support clinicians and researchers. This study introduces a methodology design involving empirical mode decomposition (EMD) technique for diagnosis of SZ from EEG signals to perfectly handle the behavior of non-stationary and nonlinear EEG signals. In this study, each EEG signal is decomposed into intrinsic mode functions (IMFs) by the EMD algorithm and then twenty-two statistical characteristics/features are calculated from these IMFs. Among them, five features are selected as significant feature applying Kruskal Wallis test. The performance of the obtained feature set is tested through several renowned classifierson a SZ EEG dataset. Among the considered classifiers, theensemble bagged tree performed as the best classifier producing 93.21% correct classification rate for SZ, with an overall accuracy of 89.59% for IMF 2. These results indicate that EEG signals discriminate SZ patients from healthy control (HC) subjects efficiently and have the potential to become a tool for the psychiatrist to support the positive diagnosis of SZ.
AbstractList Diagnosis of schizophrenia (SZ) is traditionally performed through patient's interviews by a skilled psychiatrist. This process is time-consuming, burdensome, subject to error and bias. Hence the aim of this study is to develop an automatic SZ identification scheme using electroencephalogram (EEG) signals that can eradicate the aforementioned problems and support clinicians and researchers. This study introduces a methodology design involving empirical mode decomposition (EMD) technique for diagnosis of SZ from EEG signals to perfectly handle the behavior of non-stationary and nonlinear EEG signals. In this study, each EEG signal is decomposed into intrinsic mode functions (IMFs) by the EMD algorithm and then twenty-two statistical characteristics/features are calculated from these IMFs. Among them, five features are selected as significant feature applying Kruskal Wallis test. The performance of the obtained feature set is tested through several renowned classifierson a SZ EEG dataset. Among the considered classifiers, theensemble bagged tree performed as the best classifier producing 93.21% correct classification rate for SZ, with an overall accuracy of 89.59% for IMF 2. These results indicate that EEG signals discriminate SZ patients from healthy control (HC) subjects efficiently and have the potential to become a tool for the psychiatrist to support the positive diagnosis of SZ.
Diagnosis of schizophrenia (SZ) is traditionally performed through patient's interviews by a skilled psychiatrist. This process is time-consuming, burdensome, subject to error and bias. Hence the aim of this study is to develop an automatic SZ identification scheme using electroencephalogram (EEG) signals that can eradicate the aforementioned problems and support clinicians and researchers. This study introduces a methodology design involving empirical mode decomposition (EMD) technique for diagnosis of SZ from EEG signals to perfectly handle the behavior of non-stationary and nonlinear EEG signals. In this study, each EEG signal is decomposed into intrinsic mode functions (IMFs) by the EMD algorithm and then twenty-two statistical characteristics/features are calculated from these IMFs. Among them, five features are selected as significant feature applying Kruskal Wallis test. The performance of the obtained feature set is tested through several renowned classifierson a SZ EEG dataset. Among the considered classifiers, theensemble bagged tree performed as the best classifier producing 93.21% correct classification rate for SZ, with an overall accuracy of 89.59% for IMF 2. These results indicate that EEG signals discriminate SZ patients from healthy control (HC) subjects efficiently and have the potential to become a tool for the psychiatrist to support the positive diagnosis of SZ.Diagnosis of schizophrenia (SZ) is traditionally performed through patient's interviews by a skilled psychiatrist. This process is time-consuming, burdensome, subject to error and bias. Hence the aim of this study is to develop an automatic SZ identification scheme using electroencephalogram (EEG) signals that can eradicate the aforementioned problems and support clinicians and researchers. This study introduces a methodology design involving empirical mode decomposition (EMD) technique for diagnosis of SZ from EEG signals to perfectly handle the behavior of non-stationary and nonlinear EEG signals. In this study, each EEG signal is decomposed into intrinsic mode functions (IMFs) by the EMD algorithm and then twenty-two statistical characteristics/features are calculated from these IMFs. Among them, five features are selected as significant feature applying Kruskal Wallis test. The performance of the obtained feature set is tested through several renowned classifierson a SZ EEG dataset. Among the considered classifiers, theensemble bagged tree performed as the best classifier producing 93.21% correct classification rate for SZ, with an overall accuracy of 89.59% for IMF 2. These results indicate that EEG signals discriminate SZ patients from healthy control (HC) subjects efficiently and have the potential to become a tool for the psychiatrist to support the positive diagnosis of SZ.
Author Siuly, Siuly
Khare, Smith K.
Wang, Hua
Bajaj, Varun
Zhang, Yanchun
Author_xml – sequence: 1
  givenname: Siuly
  orcidid: 0000-0003-2491-0546
  surname: Siuly
  fullname: Siuly, Siuly
  email: siuly.siuly@vu.edu.au
  organization: Institute for Sustainable Industries and Liveable Cities, Victoria University, Footscray, VIC, Australia
– sequence: 2
  givenname: Smith K.
  orcidid: 0000-0001-8365-1092
  surname: Khare
  fullname: Khare, Smith K.
  email: smith7khare@gmail.com
  organization: PDPM Indian Institute of Information Technology, Design, and Manufacturing, Jabalpur, India
– sequence: 3
  givenname: Varun
  orcidid: 0000-0002-8721-1219
  surname: Bajaj
  fullname: Bajaj, Varun
  email: varunb@iiitdmj.ac.in
  organization: PDPM Indian Institute of Information Technology, Design, and Manufacturing, Jabalpur, India
– sequence: 4
  givenname: Hua
  orcidid: 0000-0002-8465-0996
  surname: Wang
  fullname: Wang, Hua
  email: hua.wang@vu.edu.au
  organization: Institute for Sustainable Industries and Liveable Cities, Victoria University, Footscray, VIC, Australia
– sequence: 5
  givenname: Yanchun
  orcidid: 0000-0002-5094-5980
  surname: Zhang
  fullname: Zhang, Yanchun
  email: yanchun.zhang@vu.edu.au
  organization: Institute for Sustainable Industries and Liveable Cities, Victoria University, Footscray, VIC, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32897863$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtvEzEUhS1URNvAHwAJWWLDZsL1a-xZRiEUpPIQadeW49xpXGXGwfYs6K9nhqQsumB1vfi-I-ucS3LWxx4Jec1gzhg0H26-rX-u5hw4zAVwrpl6Ri6YUqYCzuBsegtZScHhnFzmfA_AdK30C3IuuGm0qcUF-bGgy9gdhoIpPOCWfsWyi1vaxkQXQ4mdK8HTj1jQlxB7Glu69rvwEA-7hH1w9DaH_o6uVld0He56t88vyfN2PPjqdGfk9tPqZvm5uv5-9WW5uK68UKxUCFpDzaWWDhWoLTaqrTlrheQMJdfgG902uDHKIbRm45XhG1c7BU60TDExI--PuYcUfw2Yi-1C9rjfux7jkC2XknHDjRYj-u4Jeh-HNH12pGoY08zYxYy8PVHDpsOtPaTQufTbPnY1AuYI-BRzTthaH4qbainJhb1lYKdZ7N9Z7DSLPc0yqvyJ-pj-X-nNUQqI-E9omNFGgvgDi2qWEw
CODEN ITNSB3
CitedBy_id crossref_primary_10_1007_s11571_023_10011_x
crossref_primary_10_1109_ACCESS_2023_3309418
crossref_primary_10_1007_s13755_021_00139_7
crossref_primary_10_1016_j_apacoust_2021_108164
crossref_primary_10_1109_TNSRE_2021_3105669
crossref_primary_10_1007_s00500_023_09492_z
crossref_primary_10_1080_10255842_2024_2369257
crossref_primary_10_1007_s10489_022_03252_6
crossref_primary_10_1016_j_cmpb_2021_106450
crossref_primary_10_1007_s10548_025_01106_1
crossref_primary_10_3389_fnhum_2022_895761
crossref_primary_10_54105_ijainn_C1063_05011224
crossref_primary_10_1142_S0129065724500461
crossref_primary_10_1016_j_bspc_2021_103413
crossref_primary_10_1007_s00034_022_02265_3
crossref_primary_10_1016_j_compbiomed_2021_105028
crossref_primary_10_1186_s40779_023_00502_7
crossref_primary_10_1007_s00521_023_08971_6
crossref_primary_10_1007_s40998_024_00738_6
crossref_primary_10_1109_JSEN_2021_3080135
crossref_primary_10_1007_s11042_023_14489_9
crossref_primary_10_1007_s13246_024_01420_1
crossref_primary_10_1016_j_schres_2023_09_010
crossref_primary_10_1109_TNSRE_2023_3266024
crossref_primary_10_1007_s13246_024_01512_y
crossref_primary_10_1007_s11571_024_10120_1
crossref_primary_10_3390_s23010280
crossref_primary_10_1016_j_apacoust_2021_108078
crossref_primary_10_1109_TIM_2021_3070608
crossref_primary_10_1016_j_bspc_2024_107396
crossref_primary_10_4108_eetsis_v9i5_2011
crossref_primary_10_1007_s11042_024_20205_y
crossref_primary_10_1038_s41386_023_01658_5
crossref_primary_10_1007_s11571_020_09655_w
crossref_primary_10_3389_fnins_2024_1340528
crossref_primary_10_1007_s10044_022_01107_x
crossref_primary_10_1007_s42235_024_00636_x
crossref_primary_10_1111_cns_14014
crossref_primary_10_3934_biophy_2023021
crossref_primary_10_1016_j_bspc_2024_107113
crossref_primary_10_1016_j_bspc_2023_104811
crossref_primary_10_1109_TIM_2022_3217515
crossref_primary_10_1109_TNSRE_2023_3347032
crossref_primary_10_1109_RBME_2021_3055956
crossref_primary_10_3389_fpsyt_2022_885120
crossref_primary_10_1080_21642583_2024_2364033
crossref_primary_10_1186_s12938_024_01250_y
crossref_primary_10_1007_s11277_023_10326_2
crossref_primary_10_1080_21681163_2024_2304574
crossref_primary_10_3390_math12131989
crossref_primary_10_1007_s10462_021_10062_8
crossref_primary_10_1109_TCDS_2024_3386364
crossref_primary_10_1016_j_bspc_2021_102917
crossref_primary_10_1088_1361_6579_acb03c
crossref_primary_10_1109_TCDS_2023_3314639
crossref_primary_10_53070_bbd_1173093
crossref_primary_10_1155_2023_6670869
crossref_primary_10_1016_j_bspc_2024_107163
crossref_primary_10_24012_dumf_1103391
crossref_primary_10_3390_jcm12134375
crossref_primary_10_1109_JSEN_2022_3151465
crossref_primary_10_1109_JSEN_2020_3038440
crossref_primary_10_3389_fpsyg_2022_850159
crossref_primary_10_1007_s11042_022_13809_9
crossref_primary_10_1007_s13246_023_01225_8
crossref_primary_10_1088_1361_6579_acbc06
crossref_primary_10_1109_TTS_2023_3239526
crossref_primary_10_1109_TMRB_2023_3315742
crossref_primary_10_4015_S1016237223500394
crossref_primary_10_1016_j_bspc_2023_105856
crossref_primary_10_1155_2021_6283900
crossref_primary_10_1016_j_eswa_2022_119219
crossref_primary_10_3389_fnhum_2024_1372985
crossref_primary_10_1186_s12916_023_02941_4
crossref_primary_10_1371_journal_pone_0277555
crossref_primary_10_32604_csse_2023_029762
crossref_primary_10_3390_diagnostics15020154
crossref_primary_10_1109_TETCI_2024_3353610
crossref_primary_10_1007_s11042_023_16676_0
crossref_primary_10_7717_peerj_cs_2170
crossref_primary_10_1111_exsy_12957
crossref_primary_10_1088_2057_1976_ad3cde
crossref_primary_10_3390_s23020866
crossref_primary_10_1109_JBHI_2022_3151570
crossref_primary_10_1109_ACCESS_2022_3197645
crossref_primary_10_1007_s13246_022_01135_1
crossref_primary_10_1016_j_engappai_2022_105602
crossref_primary_10_3390_s24206508
crossref_primary_10_1016_j_bspc_2021_102777
crossref_primary_10_1016_j_bspc_2023_105206
crossref_primary_10_3389_fninf_2021_777977
crossref_primary_10_1016_j_medengphy_2023_103949
crossref_primary_10_1016_j_bspc_2021_102936
crossref_primary_10_1007_s13042_022_01668_7
Cites_doi 10.1109/ACCESS.2018.2854555
10.1016/j.schres.2016.05.007
10.1016/j.aeue.2016.12.008
10.1007/978-3-319-68155-9_12
10.1007/s00521-014-1753-3
10.1007/978-1-4302-5990-9_3
10.1016/S0140-6736(18)32279-7
10.1016/j.cogsys.2018.12.007
10.1016/j.sigpro.2012.02.014
10.1142/S0129065712500025
10.1016/j.aci.2014.10.001
10.1049/joe.2017.0878
10.1371/journal.pone.0095943
10.3389/fnins.2018.00308
10.1016/j.jneumeth.2018.11.014
10.1192/S0007125000297584
10.1007/s11280-019-00776-9
10.1109/TNSRE.2019.2913799
10.1098/rspa.1998.0193
10.1016/j.eswa.2008.07.037
10.3390/app9142870
10.1109/TITB.2011.2181403
10.1109/TETCI.2018.2876529
10.1155/2015/576437
10.1016/j.cmpb.2016.01.017
10.1007/s13534-013-0084-0
10.1016/j.bbe.2015.10.006
10.1109/TSMCA.2007.897589
10.1016/j.measurement.2017.10.067
10.1007/s11633-019-1197-4
10.1109/TNSRE.2019.2900725
10.1016/j.future.2018.08.008
10.1186/s40810-016-0017-0
10.1016/j.neulet.2014.12.064
10.3389/fnint.2018.00055
10.1016/j.cmpb.2016.09.008
10.1007/978-3-319-47653-7
10.24251/HICSS.2020.393
10.1109/TNSRE.2012.2184838
10.1016/j.cmpb.2017.09.001
10.1109/89.905995
10.1016/j.physa.2019.122613
10.1016/j.artmed.2019.07.006
10.1016/j.compbiomed.2011.05.004
10.1049/iet-smt.2016.0208
10.3414/ME09-01-0054
10.1049/iet-smt.2018.5358
10.1504/IJAPR.2016.079050
10.1093/schbul/sbt072
10.1146/annurev-clinpsy-032813-153657
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TNSRE.2020.3022715
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 2400
ExternalDocumentID 32897863
10_1109_TNSRE_2020_3022715
9187840
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institute of Mental Health
  grantid: 5R01MH058262-16
  funderid: 10.13039/100000025
– fundername: Australian Research Council Linkage Project
  grantid: LP170100934
  funderid: 10.13039/501100000923
– fundername: NIMH NIH HHS
  grantid: R01 MH058262
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c351t-e077062474ae505de95f621f3421e4270c97f9eb85ae0f8bc582ba6a50a3f1513
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Thu Jul 10 18:01:29 EDT 2025
Fri Jul 25 08:32:53 EDT 2025
Thu Apr 03 06:56:13 EDT 2025
Thu Apr 24 23:11:47 EDT 2025
Tue Jul 01 00:43:21 EDT 2025
Wed Aug 27 02:51:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-e077062474ae505de95f621f3421e4270c97f9eb85ae0f8bc582ba6a50a3f1513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8465-0996
0000-0003-2491-0546
0000-0001-8365-1092
0000-0002-8721-1219
0000-0002-5094-5980
PMID 32897863
PQID 2460151886
PQPubID 85423
PageCount 11
ParticipantIDs proquest_miscellaneous_2441282873
ieee_primary_9187840
pubmed_primary_32897863
proquest_journals_2460151886
crossref_citationtrail_10_1109_TNSRE_2020_3022715
crossref_primary_10_1109_TNSRE_2020_3022715
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref12
ref15
ref14
ref52
ref11
ref54
ref10
ref17
ref16
ref19
ref18
song (ref40) 2015; 27
ref51
ref50
ref46
ref48
ref47
ref42
ref41
(ref1) 2019
ref49
siuly (ref45) 2016
ref8
ref7
ref9
ref4
ref3
ref6
thilakvathi (ref55) 2017; 28
ref5
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref2
alaa (ref44) 2016; 3
ref39
ref38
nguyen (ref28) 2009
yin (ref13) 2019; 16
peter (ref43) 2012
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref27
ref29
sui (ref53) 2014
(ref32) 2019
References_xml – ident: ref14
  doi: 10.1109/ACCESS.2018.2854555
– ident: ref52
  doi: 10.1016/j.schres.2016.05.007
– ident: ref26
  doi: 10.1016/j.aeue.2016.12.008
– ident: ref50
  doi: 10.1007/978-3-319-68155-9_12
– ident: ref37
  doi: 10.1007/s00521-014-1753-3
– ident: ref41
  doi: 10.1007/978-1-4302-5990-9_3
– ident: ref2
  doi: 10.1016/S0140-6736(18)32279-7
– ident: ref8
  doi: 10.1016/j.cogsys.2018.12.007
– ident: ref22
  doi: 10.1016/j.sigpro.2012.02.014
– ident: ref10
  doi: 10.1142/S0129065712500025
– ident: ref42
  doi: 10.1016/j.aci.2014.10.001
– volume: 27
  start-page: 130
  year: 2015
  ident: ref40
  article-title: Decision tree methods: Applications for classification and prediction
  publication-title: Shanghai Archives of Psychiatry
– ident: ref29
  doi: 10.1049/joe.2017.0878
– ident: ref56
  doi: 10.1371/journal.pone.0095943
– ident: ref36
  doi: 10.3389/fnins.2018.00308
– start-page: 3889
  year: 2014
  ident: ref53
  article-title: Combination of FMRI-SMRI-EEG data improves discrimination of schizophrenia patients by ensemble feature selection
  publication-title: Proc 36th Annu Int Conf IEEE Eng Med Biol Soc
– ident: ref12
  doi: 10.1016/j.jneumeth.2018.11.014
– ident: ref5
  doi: 10.1192/S0007125000297584
– ident: ref57
  doi: 10.1007/s11280-019-00776-9
– ident: ref6
  doi: 10.1109/TNSRE.2019.2913799
– ident: ref21
  doi: 10.1098/rspa.1998.0193
– ident: ref54
  doi: 10.1016/j.eswa.2008.07.037
– ident: ref3
  doi: 10.3390/app9142870
– ident: ref23
  doi: 10.1109/TITB.2011.2181403
– ident: ref11
  doi: 10.1109/TETCI.2018.2876529
– ident: ref39
  doi: 10.1155/2015/576437
– ident: ref47
  doi: 10.1016/j.cmpb.2016.01.017
– ident: ref24
  doi: 10.1007/s13534-013-0084-0
– ident: ref25
  doi: 10.1016/j.bbe.2015.10.006
– year: 2012
  ident: ref43
  article-title: Bagging, boosting and ensemble methods
  publication-title: Handbook of Computational Statistics
– volume: 28
  start-page: 1
  year: 2017
  ident: ref55
  article-title: EEG signal complexity analysis for schizophrenia during rest and mental activity
  publication-title: Biomed Res
– ident: ref49
  doi: 10.1109/TSMCA.2007.897589
– ident: ref31
  doi: 10.1016/j.measurement.2017.10.067
– volume: 16
  start-page: 1
  year: 2019
  ident: ref13
  article-title: An integrated spectral-temporal analysis based framework for MCI detection using resting-state EEG signals
  publication-title: Int J Autom Comput
  doi: 10.1007/s11633-019-1197-4
– ident: ref15
  doi: 10.1109/TNSRE.2019.2900725
– ident: ref9
  doi: 10.1016/j.future.2018.08.008
– ident: ref17
  doi: 10.1186/s40810-016-0017-0
– ident: ref18
  doi: 10.1016/j.neulet.2014.12.064
– ident: ref35
  doi: 10.3389/fnint.2018.00055
– ident: ref46
  doi: 10.1016/j.cmpb.2016.09.008
– year: 2019
  ident: ref1
– year: 2016
  ident: ref45
  article-title: EEG signal analysis and classification: Techniques and applications
  publication-title: Health Information Science
  doi: 10.1007/978-3-319-47653-7
– ident: ref16
  doi: 10.24251/HICSS.2020.393
– ident: ref38
  doi: 10.1109/TNSRE.2012.2184838
– ident: ref51
  doi: 10.1016/j.cmpb.2017.09.001
– ident: ref30
  doi: 10.1109/89.905995
– ident: ref34
  doi: 10.1016/j.physa.2019.122613
– ident: ref19
  doi: 10.1016/j.artmed.2019.07.006
– ident: ref20
  doi: 10.1016/j.compbiomed.2011.05.004
– ident: ref27
  doi: 10.1049/iet-smt.2016.0208
– ident: ref48
  doi: 10.3414/ME09-01-0054
– ident: ref7
  doi: 10.1049/iet-smt.2018.5358
– volume: 3
  start-page: 145
  year: 2016
  ident: ref44
  article-title: Linear vs. quadratic discriminant analysis classifier: A tutorial
  publication-title: Int J Appl Pattern Recognit
  doi: 10.1504/IJAPR.2016.079050
– ident: ref33
  doi: 10.1093/schbul/sbt072
– start-page: 5490
  year: 2009
  ident: ref28
  article-title: Pulse rate analysis in case of central sleep apnea: A new algorithm for cardiac rate estimation
  publication-title: Proc Annu Int Conf IEEE Eng Med Biol Soc
– ident: ref4
  doi: 10.1146/annurev-clinpsy-032813-153657
– year: 2019
  ident: ref32
SSID ssj0017657
Score 2.6071866
Snippet Diagnosis of schizophrenia (SZ) is traditionally performed through patient's interviews by a skilled psychiatrist. This process is time-consuming, burdensome,...
Diagnosis of schizophrenia (SZ) is traditionally performed through patient’s interviews by a skilled psychiatrist. This process is time-consuming, burdensome,...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2390
SubjectTerms Algorithms
classification
Classifiers
decision tree
Decomposition
Diagnosis
EEG
Electroencephalogram
Electroencephalography
Electronic mail
empirical mode decomposition
ensemble bagged tree
Feature extraction
Frequency modulation
Interviews
K-nearest neighbor
Mental disorders
Schizophrenia
Statistical analysis
support vector machine
Support vector machines
Time-frequency analysis
Title A Computerized Method for Automatic Detection of Schizophrenia Using EEG Signals
URI https://ieeexplore.ieee.org/document/9187840
https://www.ncbi.nlm.nih.gov/pubmed/32897863
https://www.proquest.com/docview/2460151886
https://www.proquest.com/docview/2441282873
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21PXGBQvkIFGQk4ALZOrYT28cVbKmQtkLdrdRb5DjjqgIlqCSX_nps50MtAsTNUuzE1ozl9-KZNwBv_AnlLOY8rai2qagq6ltYe9aq61wbpU1MFF6fFifn4stFfrEDH-ZcGESMwWe4CM14l1-3tg-_yo50pqQnJLuw64nbkKs13xjIIqp6-g0sUsEZnRJkqD7anm7OVp4KMs9Qg2JeFsrVcM80pCr4nfMoFlj5O9aMZ87xA1hPsx1CTb4t-q5a2JvfhBz_dzn7cH8En2Q5eMtD2MHmEby9LTRMtoPKAHlHzu5oeB_A1yWZSkBc3WBN1rH2NPGglyz7ro3Sr-QTdjG2qyGtI5vbAX0kBieQ1eoz2VxdBtXmx3B-vNp-PEnHegyp5XnWpUilpAUTUhj0wKlGnbuCZY4LlqFgklotncZK5QapU5XNFatMYXJquPPIgj-BvaZt8BkQlTmmPFiTTlRCUjQaUShbW6WdhywmgWyySmnHhYaaGd_LSFqoLqNRy2DUcjRqAu_nMT8GqY5_9j4IFpl7jsZI4HAyfjnu5p8lE562BuW6IoHX82O_D8Plimmw7UMfkQX6KnkCTwenmd89-drzP3_zBdwLMxsyHA9hr7vu8aWHOl31Kvr4L-_79xA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoALr0IJFDAScIFsHceJ7eMKtizQXaHuVuotcpwxqkAJguTSX4_tPNQiQNwsxXlYM9Z8XzzzDcALF6GswSyNS6pMzMuSuhFWjrWqKlNaKh0KhVfrfHnKP55lZzvwZqqFQcSQfIYzPwxn-VVjOv-r7FAlUjhCcg2uu7ifsb5aazozEHnQ9XRbmMc8ZXQskaHqcLvenCwcGWSOo3rNvMQ3rEkd1xAyT69EpNBi5e9oM0Sdo9uwGr-3Tzb5OuvacmYufpNy_N8F3YFbA_wk895f7sIO1vfg5WWpYbLtdQbIK3JyRcV7Dz7PydgE4vwCK7IK3aeJg71k3rVNEH8l77AN2V01aSzZXE7pIyE9gSwW78nm_IvXbb4Pp0eL7dtlPHRkiE2aJW2MVAiaMy64RgedKlSZzVliU84S5ExQo4RVWMpMI7WyNJlkpc51RnVqHbZIH8Bu3dT4EIhMLJMOrgnLSy4oaoXIpamMVNaBFh1BMlqlMMNCfdeMb0WgLVQVwaiFN2oxGDWC19M933uxjn_O3vMWmWYOxojgYDR-MeznnwXjjrh67bo8gufTZbcT_fGKrrHp_ByeeAIr0gj2e6eZnj362qM_v_MZ3FhuV8fF8Yf1p8dw039lX-94ALvtjw6fOODTlk-Dv_8C_X36Wg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Computerized+Method+for+Automatic+Detection+of+Schizophrenia+Using+EEG+Signals&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Siuly%2C+Siuly&rft.au=Khare%2C+Smith+K&rft.au=Bajaj%2C+Varun&rft.au=Wang%2C+Hua&rft.date=2020-11-01&rft.eissn=1558-0210&rft.volume=28&rft.issue=11&rft.spage=2390&rft_id=info:doi/10.1109%2FTNSRE.2020.3022715&rft_id=info%3Apmid%2F32897863&rft.externalDocID=32897863
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon