Deep Hough Transform for Semantic Line Detection
We focus on a fundamental task of detecting meaningful line structures, a.k.a. , semantic line, in natural scenes. Many previous methods regard this problem as a special case of object detection and adjust existing object detectors for semantic line detection. However, these methods neglect the inhe...
Saved in:
Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 44; no. 9; pp. 4793 - 4806 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We focus on a fundamental task of detecting meaningful line structures, a.k.a. , semantic line, in natural scenes. Many previous methods regard this problem as a special case of object detection and adjust existing object detectors for semantic line detection. However, these methods neglect the inherent characteristics of lines, leading to sub-optimal performance. Lines enjoy much simpler geometric property than complex objects and thus can be compactly parameterized by a few arguments. To better exploit the property of lines, in this paper, we incorporate the classical Hough transform technique into deeply learned representations and propose a one-shot end-to-end learning framework for line detection. By parameterizing lines with slopes and biases, we perform Hough transform to translate deep representations into the parametric domain, in which we perform line detection. Specifically, we aggregate features along candidate lines on the feature map plane and then assign the aggregated features to corresponding locations in the parametric domain. Consequently, the problem of detecting semantic lines in the spatial domain is transformed into spotting individual points in the parametric domain, making the post-processing steps, i.e., non-maximal suppression, more efficient. Furthermore, our method makes it easy to extract contextual line features that are critical for accurate line detection. In addition to the proposed method, we design an evaluation metric to assess the quality of line detection and construct a large scale dataset for the line detection task. Experimental results on our proposed dataset and another public dataset demonstrate the advantages of our method over previous state-of-the-art alternatives. The dataset and source code is available at https://mmcheng.net/dhtline/ . |
---|---|
AbstractList | We focus on a fundamental task of detecting meaningful line structures, a.k.a. , semantic line, in natural scenes. Many previous methods regard this problem as a special case of object detection and adjust existing object detectors for semantic line detection. However, these methods neglect the inherent characteristics of lines, leading to sub-optimal performance. Lines enjoy much simpler geometric property than complex objects and thus can be compactly parameterized by a few arguments. To better exploit the property of lines, in this paper, we incorporate the classical Hough transform technique into deeply learned representations and propose a one-shot end-to-end learning framework for line detection. By parameterizing lines with slopes and biases, we perform Hough transform to translate deep representations into the parametric domain, in which we perform line detection. Specifically, we aggregate features along candidate lines on the feature map plane and then assign the aggregated features to corresponding locations in the parametric domain. Consequently, the problem of detecting semantic lines in the spatial domain is transformed into spotting individual points in the parametric domain, making the post-processing steps, i.e., non-maximal suppression, more efficient. Furthermore, our method makes it easy to extract contextual line features that are critical for accurate line detection. In addition to the proposed method, we design an evaluation metric to assess the quality of line detection and construct a large scale dataset for the line detection task. Experimental results on our proposed dataset and another public dataset demonstrate the advantages of our method over previous state-of-the-art alternatives. The dataset and source code is available at https://mmcheng.net/dhtline/ . We focus on a fundamental task of detecting meaningful line structures, a.k.a., semantic line, in natural scenes. Many previous methods regard this problem as a special case of object detection and adjust existing object detectors for semantic line detection. However, these methods neglect the inherent characteristics of lines, leading to sub-optimal performance. Lines enjoy much simpler geometric property than complex objects and thus can be compactly parameterized by a few arguments. In this paper, we incorporate the classical Hough transform technique into deeply learned representations and propose a one-shot end-to-end learning framework for line detection. By parameterizing lines with slopes and biases, we perform Hough transform to translate deep representations into the parametric domain, in which we perform line detection. Specifically, we aggregate features along candidate lines on the feature map plane and then assign the aggregated features to corresponding locations in the parametric domain. The problem of detecting semantic lines in the spatial domain is transformed into spotting individual points in the parametric domain, making the post-processing steps, i.e., non-maximal suppression, more efficient. Experimental results on our proposed dataset and another public dataset demonstrate the advantages of our method over previous state-of-the-art alternatives. We focus on a fundamental task of detecting meaningful line structures, a.k.a., semantic line, in natural scenes. Many previous methods regard this problem as a special case of object detection and adjust existing object detectors for semantic line detection. However, these methods neglect the inherent characteristics of lines, leading to sub-optimal performance. Lines enjoy much simpler geometric property than complex objects and thus can be compactly parameterized by a few arguments. To better exploit the property of lines, in this paper, we incorporate the classical Hough transform technique into deeply learned representations and propose a one-shot end-to-end learning framework for line detection. By parameterizing lines with slopes and biases, we perform Hough transform to translate deep representations into the parametric domain, in which we perform line detection. Specifically, we aggregate features along candidate lines on the feature map plane and then assign the aggregated features to corresponding locations in the parametric domain. Consequently, the problem of detecting semantic lines in the spatial domain is transformed into spotting individual points in the parametric domain, making the post-processing steps, i.e., non-maximal suppression, more efficient. Furthermore, our method makes it easy to extract contextual line features that are critical for accurate line detection. In addition to the proposed method, we design an evaluation metric to assess the quality of line detection and construct a large scale dataset for the line detection task. Experimental results on our proposed dataset and another public dataset demonstrate the advantages of our method over previous state-of-the-art alternatives. The dataset and source code is available at https://mmcheng.net/dhtline/.We focus on a fundamental task of detecting meaningful line structures, a.k.a., semantic line, in natural scenes. Many previous methods regard this problem as a special case of object detection and adjust existing object detectors for semantic line detection. However, these methods neglect the inherent characteristics of lines, leading to sub-optimal performance. Lines enjoy much simpler geometric property than complex objects and thus can be compactly parameterized by a few arguments. To better exploit the property of lines, in this paper, we incorporate the classical Hough transform technique into deeply learned representations and propose a one-shot end-to-end learning framework for line detection. By parameterizing lines with slopes and biases, we perform Hough transform to translate deep representations into the parametric domain, in which we perform line detection. Specifically, we aggregate features along candidate lines on the feature map plane and then assign the aggregated features to corresponding locations in the parametric domain. Consequently, the problem of detecting semantic lines in the spatial domain is transformed into spotting individual points in the parametric domain, making the post-processing steps, i.e., non-maximal suppression, more efficient. Furthermore, our method makes it easy to extract contextual line features that are critical for accurate line detection. In addition to the proposed method, we design an evaluation metric to assess the quality of line detection and construct a large scale dataset for the line detection task. Experimental results on our proposed dataset and another public dataset demonstrate the advantages of our method over previous state-of-the-art alternatives. The dataset and source code is available at https://mmcheng.net/dhtline/. |
Author | Zhao, Kai Han, Qi Zhang, Chang-Bin Cheng, Ming-Ming Xu, Jun |
Author_xml | – sequence: 1 givenname: Kai orcidid: 0000-0002-2496-0829 surname: Zhao fullname: Zhao, Kai email: kz@kaizhao.net organization: TKLNDST, College of Computer Science, Nankai University, Tianjin, China – sequence: 2 givenname: Qi surname: Han fullname: Han, Qi email: hqer@foxmail.com organization: TKLNDST, College of Computer Science, Nankai University, Tianjin, China – sequence: 3 givenname: Chang-Bin orcidid: 0000-0003-0043-8240 surname: Zhang fullname: Zhang, Chang-Bin email: zhangchbin@mail.nankai.edu.cn organization: TKLNDST, College of Computer Science, Nankai University, Tianjin, China – sequence: 4 givenname: Jun surname: Xu fullname: Xu, Jun email: nankaimathxujun@gmail.com organization: School of Statistics and Data Science, Nankai University, Tianjin, China – sequence: 5 givenname: Ming-Ming orcidid: 0000-0001-5550-8758 surname: Cheng fullname: Cheng, Ming-Ming email: cmm@nankai.edu.cn organization: TKLNDST, College of Computer Science, Nankai University, Tianjin, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33939606$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kD1PwzAQhi0EouXjD4CEIrGwpJzPSWqPqOVLKgKJMlt2coagJil2MvDvSWnp0IHlbnne-3iO2H7d1MTYGYcR56Cu5y83T48jBOQjAeMxR7XHhsgziBUq3GdD4BnGUqIcsKMQPgF4koI4ZAMhlFAZZEMGU6Jl9NB07x_R3Js6uMZXUV-iV6pM3ZZ5NCtriqbUUt6WTX3CDpxZBDrd9GP2dnc7nzzEs-f7x8nNLM5Fytu4cE4Ya2VhTTJOhUMARyCLgtA5Mjy1yhbcYuqkS8CpsUkQncissLk0MhHH7Go9d-mbr45Cq6sy5LRYmJqaLmhMEbniCniPXu6gn03n6_46jZla_Q9C9tTFhupsRYVe-rIy_lv_uegBXAO5b0Lw5LYIB70Srn-F65VwvRHeh-ROKC9bsxLVelMu_o-er6MlEW13qd5DL0v8AP8ZjAA |
CODEN | ITPIDJ |
CitedBy_id | crossref_primary_10_1007_s00371_021_02321_0 crossref_primary_10_1109_ACCESS_2022_3190404 crossref_primary_10_1016_j_patcog_2024_110952 crossref_primary_10_1109_ACCESS_2023_3329300 crossref_primary_10_1109_LRA_2021_3097052 crossref_primary_10_1109_TGRS_2021_3128989 crossref_primary_10_3390_jimaging7070120 crossref_primary_10_1109_TIM_2024_3418107 crossref_primary_10_1109_TIM_2024_3522395 crossref_primary_10_1007_s11548_022_02812_y crossref_primary_10_1016_j_autcon_2023_105024 crossref_primary_10_1080_01431161_2023_2229495 crossref_primary_10_1109_TIM_2024_3436114 crossref_primary_10_1109_ACCESS_2023_3262703 crossref_primary_10_1109_ACCESS_2024_3382140 crossref_primary_10_1109_ACCESS_2024_3506613 crossref_primary_10_1109_TMM_2022_3172852 crossref_primary_10_1109_ACCESS_2024_3355154 crossref_primary_10_1007_s00371_022_02455_9 crossref_primary_10_1109_JESTIE_2023_3322111 crossref_primary_10_1016_j_jclepro_2022_132575 crossref_primary_10_1109_ACCESS_2024_3509342 crossref_primary_10_3390_s21144648 crossref_primary_10_1109_TMM_2022_3204440 crossref_primary_10_1016_j_compmedimag_2023_102284 crossref_primary_10_1109_ACCESS_2021_3113155 crossref_primary_10_1007_s00530_024_01307_x crossref_primary_10_1109_ACCESS_2024_3369035 crossref_primary_10_1109_TVCG_2022_3230369 crossref_primary_10_3390_s23198208 crossref_primary_10_1111_mice_12900 crossref_primary_10_1109_TCSVT_2023_3239381 crossref_primary_10_3390_s22134722 crossref_primary_10_1109_TIM_2024_3413189 crossref_primary_10_1016_j_image_2023_116970 crossref_primary_10_1109_JSTARS_2024_3396522 crossref_primary_10_1109_TGRS_2022_3158901 crossref_primary_10_1109_TCSVT_2022_3215979 crossref_primary_10_1109_LGRS_2024_3400514 crossref_primary_10_1109_TPAMI_2023_3269202 crossref_primary_10_3390_s21175750 crossref_primary_10_1007_s00371_024_03268_8 |
Cites_doi | 10.1109/TPAMI.2014.2345401 10.1109/ICCV.2017.350 10.1109/CVPR.2019.00727 10.1007/978-3-319-46448-0_40 10.1016/j.patrec.2011.06.001 10.1109/TPAMI.2018.2815688 10.1109/CVPR.2014.360 10.1109/TIM.2013.2283741 10.1109/TIP.2019.2936746 10.1109/TPAMI.1986.4767851 10.1145/2508363.2508381 10.1109/ICIP.2018.8451621 10.1109/ICCV.2015.164 10.1109/CVPR42600.2020.00893 10.1109/TIP.2005.863021 10.1007/s41095-019-0160-1 10.1109/CVPR.2018.00813 10.1109/TC.1976.1674627 10.1109/CVPR42600.2020.00011 10.1145/2508363.2508371 10.1109/CVPR.2016.60 10.1109/ICPR.1996.546737 10.1109/ICCV.2019.00105 10.1049/ip-vis:19951434 10.1007/s11432-020-3097-4 10.1016/j.patcog.2012.09.020 10.4324/9780080556161 10.1002/nav.3800020109 10.48550/arXiv.1802.02611 10.1007/978-3-030-58545-7_15 10.1109/TPAMI.2019.2924417 10.1016/S0734-189X(86)80047-0 10.1109/CVPR.2017.660 10.1007/s41095-020-0173-9 10.1016/0031-3203(81)90009-1 10.1109/CVPR42600.2020.00012 10.1007/978-3-030-58539-6_42 10.5555/3454287.3455008 10.1109/CVPR42600.2020.00286 10.1016/0734-189X(90)90123-D 10.1007/978-3-030-01264-9_45 10.1109/ICCV.2019.00349 10.1145/1661412.1618470 10.1109/CVPR.2019.00524 10.1109/TPAMI.2008.300 10.1109/TPAMI.2017.2723009 10.1109/TPAMI.2019.2938758 10.1111/j.1467-8659.2009.01616.x 10.1023/A:1026543900054 10.1007/s41095-019-0149-9 10.1109/CVPR.2016.90 10.1109/IJCNN.2017.7966418 10.1016/j.patcog.2014.12.020 10.1016/0031-3203(91)90073-E 10.1109/CVPR.2017.106 10.1145/361237.361242 10.1109/CVPR.2018.00072 10.1109/ICCV.2019.00069 10.1109/ICCV.2015.169 10.1007/s41095-020-0158-8 10.1109/TPAMI.2016.2577031 10.1109/TPAMI.2018.2878849 10.1109/ICCV.2019.00894 10.1109/TPAMI.1987.4767964 10.1109/ICCV.2019.00625 10.1109/ICCV.2019.00937 10.1109/TPAMI.1986.4767808 10.1016/j.patcog.2007.04.003 10.1109/ACCESS.2019.2936289 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TPAMI.2021.3077129 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Technology Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 2160-9292 1939-3539 |
EndPage | 4806 |
ExternalDocumentID | 33939606 10_1109_TPAMI_2021_3077129 9422200 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: NSFC grantid: 61922046; 61620106008; 62002176 – fundername: National Key Research and Development Program of China grantid: 2018AAA0100400 – fundername: Chinese Ministry of Education – fundername: Tianjin Natural Science Foundation grantid: 17JCJQJC43700 |
GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB ~02 5VS 9M8 AAYOK AAYXX ABFSI ADRHT AETEA AETIX AGSQL AI. AIBXA ALLEH CITATION FA8 H~9 IBMZZ ICLAB IFJZH RIG RNI RZB VH1 XJT NPM RIC Z5M 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c351t-dff3abb8dba4753f200fe08dde2ffea15b9bd1b25f8f40f97a422f36b3bc8a843 |
IEDL.DBID | RIE |
ISSN | 0162-8828 1939-3539 |
IngestDate | Fri Jul 11 12:24:42 EDT 2025 Mon Jun 30 04:42:48 EDT 2025 Wed Feb 19 02:27:52 EST 2025 Thu Apr 24 23:06:46 EDT 2025 Tue Jul 01 03:18:26 EDT 2025 Wed Aug 27 02:29:16 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-dff3abb8dba4753f200fe08dde2ffea15b9bd1b25f8f40f97a422f36b3bc8a843 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5550-8758 0000-0002-2496-0829 0000-0003-0043-8240 |
PMID | 33939606 |
PQID | 2698828038 |
PQPubID | 85458 |
PageCount | 14 |
ParticipantIDs | pubmed_primary_33939606 crossref_citationtrail_10_1109_TPAMI_2021_3077129 proquest_journals_2698828038 crossref_primary_10_1109_TPAMI_2021_3077129 ieee_primary_9422200 proquest_miscellaneous_2522191901 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
PublicationTitleAbbrev | TPAMI |
PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 Kingma (ref78) ref48 ref47 ref42 ref41 Simonyan (ref73) ref44 Sobel (ref45) 1973 ref49 Yu (ref77) ref8 ref7 ref9 Krages (ref21) 2012 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref75 ref30 ref74 ref32 ref76 Etemadi (ref54) ref2 ref1 ref39 ref38 Caplin (ref33) 2008 Radon (ref43) 2005; 69 ref71 ref70 ref72 ref24 ref68 ref23 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref65 Hough (ref27) 1962 ref28 ref29 Rubner (ref67) 2000; 40 ref60 ref62 ref61 |
References_xml | – ident: ref8 doi: 10.1109/TPAMI.2014.2345401 – ident: ref11 doi: 10.1109/ICCV.2017.350 – ident: ref34 doi: 10.1109/CVPR.2019.00727 – ident: ref18 doi: 10.1007/978-3-319-46448-0_40 – ident: ref32 doi: 10.1016/j.patrec.2011.06.001 – ident: ref4 doi: 10.1109/TPAMI.2018.2815688 – ident: ref9 doi: 10.1109/CVPR.2014.360 – ident: ref58 doi: 10.1109/TIM.2013.2283741 – ident: ref14 doi: 10.1109/TIP.2019.2936746 – volume: 69 start-page: 262 volume-title: Classic Papers in Modern Diagnostic Radiology year: 2005 ident: ref43 article-title: über die bestimmung von funktionen durch ihre integralwerte längs gewisser mannigfaltigkeiten, – ident: ref44 doi: 10.1109/TPAMI.1986.4767851 – ident: ref15 doi: 10.1145/2508363.2508381 – ident: ref16 doi: 10.1109/ICIP.2018.8451621 – ident: ref41 doi: 10.1109/ICCV.2015.164 – ident: ref66 doi: 10.1109/CVPR42600.2020.00893 – volume-title: Photography: The Art of Composition year: 2012 ident: ref21 – start-page: 311 volume-title: Proc. Int. Conf. Image Process. Appl. ident: ref54 article-title: Robust segmentation of edge data, – ident: ref51 doi: 10.1109/TIP.2005.863021 – ident: ref20 doi: 10.1007/s41095-019-0160-1 – year: 1962 ident: ref27 article-title: Method and means for recognizing complex patterns, – ident: ref38 doi: 10.1109/CVPR.2018.00813 – ident: ref48 doi: 10.1109/TC.1976.1674627 – ident: ref47 doi: 10.1109/CVPR42600.2020.00011 – ident: ref22 doi: 10.1145/2508363.2508371 – ident: ref19 doi: 10.1109/CVPR.2016.60 – ident: ref55 doi: 10.1109/ICPR.1996.546737 – start-page: 271 year: 1973 ident: ref45 article-title: A 3x3 Isotropic Gradient Operator for Image Processing, publication-title: Pattern Classification Scene Anal. – ident: ref61 doi: 10.1109/ICCV.2019.00105 – ident: ref29 doi: 10.1049/ip-vis:19951434 – ident: ref72 doi: 10.1007/s11432-020-3097-4 – ident: ref57 doi: 10.1016/j.patcog.2012.09.020 – ident: ref13 doi: 10.4324/9780080556161 – volume-title: Proc. Int. Conf. Learn. Representation ident: ref73 article-title: Very deep convolutional networks for large-scale image recognition, – ident: ref42 doi: 10.1002/nav.3800020109 – ident: ref75 doi: 10.48550/arXiv.1802.02611 – ident: ref1 doi: 10.1007/978-3-030-58545-7_15 – ident: ref7 doi: 10.1109/TPAMI.2019.2924417 – ident: ref68 doi: 10.1016/S0734-189X(86)80047-0 – ident: ref74 doi: 10.1109/CVPR.2017.660 – ident: ref10 doi: 10.1007/s41095-020-0173-9 – ident: ref26 doi: 10.1016/0031-3203(81)90009-1 – ident: ref46 doi: 10.1109/CVPR42600.2020.00012 – ident: ref5 doi: 10.1007/978-3-030-58539-6_42 – ident: ref71 doi: 10.5555/3454287.3455008 – ident: ref62 doi: 10.1109/CVPR42600.2020.00286 – ident: ref30 doi: 10.1016/0734-189X(90)90123-D – ident: ref36 doi: 10.1007/978-3-030-01264-9_45 – ident: ref53 doi: 10.1109/ICCV.2019.00349 – ident: ref23 doi: 10.1145/1661412.1618470 – ident: ref64 doi: 10.1109/CVPR.2019.00524 – ident: ref56 doi: 10.1109/TPAMI.2008.300 – ident: ref70 doi: 10.1109/TPAMI.2017.2723009 – volume-title: Proc. Int. Conf. Learn. Representation ident: ref78 article-title: Adam: A method for stochastic optimization, – ident: ref76 doi: 10.1109/TPAMI.2019.2938758 – ident: ref12 doi: 10.1111/j.1467-8659.2009.01616.x – volume-title: Proc. Int. Conf. Learn. Representation ident: ref77 article-title: Multi-scale context aggregation by dilated convolutions, – volume: 40 start-page: 99 issue: 2 year: 2000 ident: ref67 article-title: The earth mover’s distance as a metric for image retrieval, publication-title: Int. J. Comput. Vis. doi: 10.1023/A:1026543900054 – ident: ref6 doi: 10.1007/s41095-019-0149-9 – ident: ref69 doi: 10.1109/CVPR.2016.90 – ident: ref59 doi: 10.1109/IJCNN.2017.7966418 – ident: ref49 doi: 10.1016/j.patcog.2014.12.020 – ident: ref31 doi: 10.1016/0031-3203(91)90073-E – ident: ref63 doi: 10.1109/CVPR.2017.106 – ident: ref25 doi: 10.1145/361237.361242 – ident: ref60 doi: 10.1109/CVPR.2018.00072 – ident: ref39 doi: 10.1109/ICCV.2019.00069 – ident: ref37 doi: 10.1109/ICCV.2015.169 – ident: ref24 doi: 10.1007/s41095-020-0158-8 – ident: ref35 doi: 10.1109/TPAMI.2016.2577031 – ident: ref40 doi: 10.1109/TPAMI.2018.2878849 – ident: ref3 doi: 10.1109/ICCV.2019.00894 – ident: ref50 doi: 10.1109/TPAMI.1987.4767964 – ident: ref65 doi: 10.1109/ICCV.2019.00625 – volume-title: Art and Design in Photoshop year: 2008 ident: ref33 – ident: ref52 doi: 10.1109/ICCV.2019.00937 – ident: ref2 doi: 10.1109/TPAMI.1986.4767808 – ident: ref28 doi: 10.1016/j.patcog.2007.04.003 – ident: ref17 doi: 10.1109/ACCESS.2019.2936289 |
SSID | ssj0014503 |
Score | 2.6820772 |
Snippet | We focus on a fundamental task of detecting meaningful line structures, a.k.a. , semantic line, in natural scenes. Many previous methods regard this problem as... We focus on a fundamental task of detecting meaningful line structures, a.k.a., semantic line, in natural scenes. Many previous methods regard this problem as... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4793 |
SubjectTerms | CNN Datasets deep learning Detectors Domains Feature extraction Feature maps hough transform Hough transformation Image edge detection Measurement Object recognition Quality assessment Representations Semantic line detection Semantics Source code Task analysis Transforms |
Title | Deep Hough Transform for Semantic Line Detection |
URI | https://ieeexplore.ieee.org/document/9422200 https://www.ncbi.nlm.nih.gov/pubmed/33939606 https://www.proquest.com/docview/2698828038 https://www.proquest.com/docview/2522191901 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB50D6IH34_6IoI33bVt2m1zFHVZhRXBFbyVJE1A1K5o9-KvdyZ9oKLipRSatmlmpvm-ZB4Ah0gBdKJDjRKIKSQHbU6Fkg4GwX4uZCwowHl03R_eRVf38f0MHLexMMYY53xmenTq9vLziZ7SUtmJoPUKHwn6LBK3Klar3TGIYlcFGREMWjjSiCZAxhcn45vT0SVSwTDooUYnOMPNwxznghN6_zIfuQIrv2NNN-cMlmDU9LZyNXnsTUvV0-_fEjn-93OWYbEGn-y00pYVmDHFKiw1hR1YbeersPApS-Ea-OfGvLAhlfNh4wbnMjywW_OMgnnQDBmtYeemdH5dxTrcDS7GZ8NuXWihq3kclN3cWi6VSnMlI6QvFjtljZ_iny-01sggVkLlgQpjm9rItyKR2HPL-4ornco04hvQKSaF2QKWICMjGfdxcox4ahVFxgqpaM0yTxLuQdAMd6brLORUDOMpc2zEF5mTVkbSymppeXDU3vNS5eD4s_UaDXXbsh5lD3YbqWa1mb5lYV-Qrvg89eCgvYwGRrsmsjCTKbZBhIoajbjJg81KG9pnN0q0_fM7d2A-pGgJ55K2C53ydWr2EMOUat8p7wdC1ueE |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED4hkAZ7oKPACHTDk3iDliROmvgRwaoy2gqJIvEW2Y4tTYMUsfRlfz13zg_BBNNeokhxEsd3l_s-23cHcIQUQCc61CiBmEJy0OZUKOlgEOznQsaCApyns-H4NvpxF9-twEkbC2OMcZvPzIBO3Vp-vtBLmio7FTRf4SNBX0O_HwdVtFa7ZhDFrg4yYhi0cSQSTYiML07n12fTSySDYTBAnU7Qx23AB84FJ_z-yiO5Eivvo03ndUYdmDb9rTab_BosSzXQf_5K5fi_H_QJNmv4yc4qfdmCFVN0odOUdmC1pXfh44s8hdvgXxjzyMZU0IfNG6TL8MBuzAOK5qdmyGkNuzCl29lV7MDt6Pv8fNyvSy30NY-Dsp9by6VSaa5khATGYqes8VP894XWGhnESqg8UGFsUxv5ViQSe275UHGlU5lGfBdWi0Vh9oAlyMlIykN0jxFPraLYWCEVzVrmScI9CJrhznSdh5zKYdxnjo_4InPSykhaWS0tD47bex6rLBz_bL1NQ922rEfZg14j1aw21N9ZOBSkKz5PPfjWXkYTo3UTWZjFEtsgRkWdRuTkwedKG9pnN0q0__Y7D2F9PJ9Ossnl7OoANkKKnXAb1HqwWj4tzRdENKX66hT5GYIj6s0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Hough+Transform+for+Semantic+Line+Detection&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Zhao%2C+Kai&rft.au=Han%2C+Qi&rft.au=Zhang%2C+Chang-Bin&rft.au=Xu%2C+Jun&rft.date=2022-09-01&rft.pub=IEEE&rft.issn=0162-8828&rft.volume=44&rft.issue=9&rft.spage=4793&rft.epage=4806&rft_id=info:doi/10.1109%2FTPAMI.2021.3077129&rft_id=info%3Apmid%2F33939606&rft.externalDocID=9422200 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |