Importance of exponentially falling variability in heat generation on chemically reactive von kármán nanofluid flows subjected to a radial magnetic field and controlled locally by zero mass flux and convective heating conditions: A differential quadrature analysis
Owing to the various physical aspects of nanofluids as thermally enhanced working fluids and the significance of swirling flows in rheological devices as well as in the spin coating and lubrication applications, the current comprehensive examination aimed to explore the important features of spinnin...
Saved in:
Published in | Frontiers in physics Vol. 10 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
20.10.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2296-424X 2296-424X |
DOI | 10.3389/fphy.2022.988275 |
Cover
Loading…
Abstract | Owing to the various physical aspects of nanofluids as thermally enhanced working fluids and the significance of swirling flows in rheological devices as well as in the spin coating and lubrication applications, the current comprehensive examination aimed to explore the important features of spinning flows of chemically reactive Newtonian nanofluids over a uniformly revolving disk in the existence of a radially applied magnetic field along with an exponentially decaying space-dependent heat source, in the case where the disk surface is heated convectively and unaffected by the vertical nanoparticles’ mass flux. Based on feasible boundary layer approximations and Buongiorno’s nanofluid formulation, the leading coupled differential equations are stated properly in the sense of Arrhenius’s and Von Kármán’s approaches. By employing an advanced generalized differential quadrature algorithm, the obtained boundary layer equations are handled numerically with a higher order of accuracy to generate adequate graphical and tabular illustrations for the different values of the influencing flow parameters. As findings, the graphical results confirm that the nanofluid motion decelerates meaningfully thanks to the resistive magnetic influence. A significant thermal amelioration can be achieved by strengthening the magnetic impact, the generation of heat, the thermal convective process, and the thermophoresis mechanism. Moreover, it is found that the thermo-migration of nanoparticles can be reinforced more
via
the intensification in the convective process, the thermo-migration of nanoparticles, and the activation energy. |
---|---|
AbstractList | Owing to the various physical aspects of nanofluids as thermally enhanced working fluids and the significance of swirling flows in rheological devices as well as in the spin coating and lubrication applications, the current comprehensive examination aimed to explore the important features of spinning flows of chemically reactive Newtonian nanofluids over a uniformly revolving disk in the existence of a radially applied magnetic field along with an exponentially decaying space-dependent heat source, in the case where the disk surface is heated convectively and unaffected by the vertical nanoparticles’ mass flux. Based on feasible boundary layer approximations and Buongiorno’s nanofluid formulation, the leading coupled differential equations are stated properly in the sense of Arrhenius’s and Von Kármán’s approaches. By employing an advanced generalized differential quadrature algorithm, the obtained boundary layer equations are handled numerically with a higher order of accuracy to generate adequate graphical and tabular illustrations for the different values of the influencing flow parameters. As findings, the graphical results confirm that the nanofluid motion decelerates meaningfully thanks to the resistive magnetic influence. A significant thermal amelioration can be achieved by strengthening the magnetic impact, the generation of heat, the thermal convective process, and the thermophoresis mechanism. Moreover, it is found that the thermo-migration of nanoparticles can be reinforced more via the intensification in the convective process, the thermo-migration of nanoparticles, and the activation energy. Owing to the various physical aspects of nanofluids as thermally enhanced working fluids and the significance of swirling flows in rheological devices as well as in the spin coating and lubrication applications, the current comprehensive examination aimed to explore the important features of spinning flows of chemically reactive Newtonian nanofluids over a uniformly revolving disk in the existence of a radially applied magnetic field along with an exponentially decaying space-dependent heat source, in the case where the disk surface is heated convectively and unaffected by the vertical nanoparticles’ mass flux. Based on feasible boundary layer approximations and Buongiorno’s nanofluid formulation, the leading coupled differential equations are stated properly in the sense of Arrhenius’s and Von Kármán’s approaches. By employing an advanced generalized differential quadrature algorithm, the obtained boundary layer equations are handled numerically with a higher order of accuracy to generate adequate graphical and tabular illustrations for the different values of the influencing flow parameters. As findings, the graphical results confirm that the nanofluid motion decelerates meaningfully thanks to the resistive magnetic influence. A significant thermal amelioration can be achieved by strengthening the magnetic impact, the generation of heat, the thermal convective process, and the thermophoresis mechanism. Moreover, it is found that the thermo-migration of nanoparticles can be reinforced more via the intensification in the convective process, the thermo-migration of nanoparticles, and the activation energy. |
Author | Wakif, Abderrahim Abderrahmane, Aissa Bouallegue, Belgacem Guedri, Kamel Jirawattanapanit, Anuwat Kaewmesri, Pramet Kaewthongrach, Rungnapa |
Author_xml | – sequence: 1 givenname: Abderrahim surname: Wakif fullname: Wakif, Abderrahim – sequence: 2 givenname: Aissa surname: Abderrahmane fullname: Abderrahmane, Aissa – sequence: 3 givenname: Kamel surname: Guedri fullname: Guedri, Kamel – sequence: 4 givenname: Belgacem surname: Bouallegue fullname: Bouallegue, Belgacem – sequence: 5 givenname: Rungnapa surname: Kaewthongrach fullname: Kaewthongrach, Rungnapa – sequence: 6 givenname: Pramet surname: Kaewmesri fullname: Kaewmesri, Pramet – sequence: 7 givenname: Anuwat surname: Jirawattanapanit fullname: Jirawattanapanit, Anuwat |
BookMark | eNp1Ut1qFDEUHqWCbe29l-cFtmYyP5vxrhStCwVvFLwL-TnZzZpN1iS7dnybPktfzMyOBRGEkITD-X5O8l1UZz54rKq3NbluGja8M_vNeE0JpdcDY3TZvazOKR36RUvbb2d_3V9XVyltCSE17QZG2_MXF6vdPsQsvEIIBvBhX5h9tsK5EUzZrV_DUUQrpHU2j2A9bFBkWKPHKLINHspSG9xZdQJFFCrbI8Kx1L8_Pcbd06MHL3ww7mA1GBd-JkgHuUWVUUMOICAKXSRhJ9Yes1VgLDoNwmtQwecYnCudLswKcoRfGEPpTqnQHR6eG484K08GJ9-lpO1kMb2HG9DWGIzzcPDjIHSxf4hYwMKNyaY31asycMKrP-dl9fXjhy-3nxb3n-9Wtzf3C9V0dV5o2Uu6rGvWdAPpa8KwU71WPSMD0mYgjEjZGt3WyijEVho9lAIjDdOdZuW8rFYzrw5iy_fR7kQceRCWnwohrrmI5REcckVrpTSTAw6iHZatrGXRwEYrarRisnD1M5eKIaWIhiubT7-So7CO14RPAeFTQPgUED4HpADJP8BnI_-F_AYLhcvO |
CitedBy_id | crossref_primary_10_1007_s00396_024_05264_9 crossref_primary_10_1016_j_jmmm_2023_171311 crossref_primary_10_1016_j_csite_2023_103364 crossref_primary_10_1038_s41598_023_36988_3 crossref_primary_10_1016_j_heliyon_2024_e25102 crossref_primary_10_1080_10407782_2023_2241186 crossref_primary_10_1080_10407790_2023_2211731 crossref_primary_10_1002_htj_23247 crossref_primary_10_1615_JPorMedia_2024049715 crossref_primary_10_1016_j_csite_2024_104637 crossref_primary_10_1080_10407782_2024_2314223 crossref_primary_10_1007_s40819_023_01519_1 crossref_primary_10_1002_zamm_202300536 crossref_primary_10_1016_j_aej_2024_07_083 crossref_primary_10_1177_09544089241275779 crossref_primary_10_1016_j_rineng_2025_104138 crossref_primary_10_1002_mma_9480 crossref_primary_10_1016_j_padiff_2025_101127 crossref_primary_10_1142_S0217984925500216 crossref_primary_10_1142_S0217979224504186 crossref_primary_10_1007_s40819_025_01839_4 crossref_primary_10_1142_S0217984924504888 crossref_primary_10_1080_19942060_2023_2270675 crossref_primary_10_1007_s10973_024_13781_6 crossref_primary_10_1016_j_camwa_2024_07_006 crossref_primary_10_1007_s12668_023_01280_1 crossref_primary_10_1016_j_rineng_2025_104061 crossref_primary_10_1007_s10973_023_12481_x crossref_primary_10_1108_HFF_02_2023_0071 |
Cites_doi | 10.1016/j.csite.2020.100825 10.3389/fphy.2022.929463 10.1016/j.colsurfa.2021.128077 10.1007/s40819-022-01241-4 10.3390/nano12142390 10.1007/s11051-004-3170-5 10.1115/1.2150834 10.1016/j.jppr.2016.11.002 10.1016/j.ijheatmasstransfer.2005.01.029 10.1063/1.3245330 10.3390/nano12091392 10.1016/j.cis.2015.08.014 10.1016/j.euromechflu.2022.02.011 10.1016/j.enconman.2010.06.072 10.1515/zna-2016-0218 10.1155/2022/2766317 10.1016/j.applthermaleng.2022.118114 10.1016/j.ijheatmasstransfer.2004.02.017 10.1016/J.CJPH.2021.07.036 10.1515/zna-2021-0350 10.1016/j.icheatmasstransfer.2005.05.014 10.1002/zamm.19210010401 10.1016/j.jnnfm.2013.03.001 10.1002/zamm.202000369 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3389/fphy.2022.988275 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2296-424X |
ExternalDocumentID | oai_doaj_org_article_c21ccd8b9e9a4974b1be23e3dc2fdc8b 10_3389_fphy_2022_988275 |
GroupedDBID | 5VS 9T4 AAFWJ AAYXX ACGFS ACXDI ADBBV ADMLS AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ KQ8 M~E OK1 |
ID | FETCH-LOGICAL-c351t-db6b2711835906108e5c6dc6809e239080bb4fd41cfcee4bfd9bb48038d5d8803 |
IEDL.DBID | DOA |
ISSN | 2296-424X |
IngestDate | Wed Aug 27 01:27:02 EDT 2025 Tue Jul 01 01:03:04 EDT 2025 Thu Apr 24 23:02:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-db6b2711835906108e5c6dc6809e239080bb4fd41cfcee4bfd9bb48038d5d8803 |
OpenAccessLink | https://doaj.org/article/c21ccd8b9e9a4974b1be23e3dc2fdc8b |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c21ccd8b9e9a4974b1be23e3dc2fdc8b crossref_citationtrail_10_3389_fphy_2022_988275 crossref_primary_10_3389_fphy_2022_988275 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-20 |
PublicationDateYYYYMMDD | 2022-10-20 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-20 day: 20 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in physics |
PublicationYear | 2022 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Turkyilmazoglu (B27) 2022; 77 Waini (B21) 2022; 94 Buongiorno (B25) 2006; 128 Von Kármán (B18) 1921; 1 Mandal (B23) 2021; 74 Buongiorno (B1) 2009; 106 Koo (B7) 2005; 48 Waqas (B11) 2022; 2022 Maneengam (B13) 2022; 12 Choi (B4) 1995 Khan (B20) 2021; 24 Corcione (B10) 2011; 52 Angayarkanni (B3) 2015; 225 Kumar (B22) 2022; 635 Alshare (B14) 2022; 12 Bergman (B2) 2011 Koo (B6) 2004; 47 Li (B9) 2008 Shah (B12) 2022; 10 Koo (B8) 2005; 32 Hussain (B16) 2021; 101 Rández (B17) 2022; 206 Magodora (B24) 2022; 8 Ahmadpour (B19) 2013; 197 Latiff (B26) 2016; 5 Liu (B15) 2016; 71 Koo (B5) 2004; 6 |
References_xml | – volume: 24 start-page: 100825 year: 2021 ident: B20 article-title: Heat transfer in steady slip flow of tangent hyperbolic fluid over the lubricated surface of a stretchable rotatory disk publication-title: Case Stud Therm Eng doi: 10.1016/j.csite.2020.100825 – volume: 10 start-page: 1 year: 2022 ident: B12 article-title: Entropy optimization and thermal behavior of a porous system with considering hybrid nanofluid publication-title: Front Phys doi: 10.3389/fphy.2022.929463 – volume: 635 start-page: 128077 year: 2022 ident: B22 article-title: Irreversibility analysis of hybrid nanofluid flow over a rotating disk: Effect of thermal radiation and magnetic field publication-title: Colloids Surf A: Physicochemical Eng Aspects doi: 10.1016/j.colsurfa.2021.128077 – volume: 8 start-page: 41 year: 2022 ident: B24 article-title: Numerical studies on gold-water nanofluid flow with activation energy Past A rotating disk publication-title: Int J Appl Comput Math doi: 10.1007/s40819-022-01241-4 – volume: 12 start-page: 2390 year: 2022 ident: B13 article-title: Numerical study of lid-driven hybrid nanofluid flow in a corrugated porous cavity in the presence of magnetic field publication-title: Nanomaterials doi: 10.3390/nano12142390 – volume-title: Introduction to heat transfer year: 2011 ident: B2 – volume: 6 start-page: 577 year: 2004 ident: B5 article-title: A new thermal conductivity model for nanofluids publication-title: J Nanopart Res doi: 10.1007/s11051-004-3170-5 – volume: 128 start-page: 240 year: 2006 ident: B25 article-title: Convective transport in nanofluids publication-title: J Heat Transfer doi: 10.1115/1.2150834 – volume: 5 start-page: 267 year: 2016 ident: B26 article-title: Stefan blowing effect on bioconvective flow of nanofluid over a solid rotating stretchable disk publication-title: Propulsion Power Res doi: 10.1016/j.jppr.2016.11.002 – volume: 48 start-page: 2652 year: 2005 ident: B7 article-title: Laminar nanofluid flow in microheat-sinks publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2005.01.029 – volume-title: Computational analysis of nanofluid flow in micro-channels with applications to micro-heat sinks and bio-MEMS year: 2008 ident: B9 – volume: 106 start-page: 094312 year: 2009 ident: B1 article-title: A benchmark study on the thermal conductivity of nanofluids publication-title: J Appl Phys doi: 10.1063/1.3245330 – volume: 12 start-page: 1392 year: 2022 ident: B14 article-title: Hydrothermal and entropy investigation of nanofluid natural convection in a lid-driven cavity concentric with an elliptical cavity with a wavy boundary heated from below publication-title: Nanomaterials doi: 10.3390/nano12091392 – volume: 225 start-page: 146 year: 2015 ident: B3 article-title: Review on thermal properties of nanofluids : Recent Developments publication-title: Adv Colloid Interf Sci. doi: 10.1016/j.cis.2015.08.014 – volume: 94 start-page: 121 year: 2022 ident: B21 article-title: Multiple solutions of the unsteady hybrid nanofluid flow over a rotating disk with stability analysis publication-title: Eur J Mech - B/Fluids doi: 10.1016/j.euromechflu.2022.02.011 – volume: 52 start-page: 789 year: 2011 ident: B10 article-title: Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2010.06.072 – volume: 71 start-page: 1003 year: 2016 ident: B15 article-title: Flow and heat transfer of Bingham plastic fluid over a rotating disk with variable thickness publication-title: Z Für Naturforsch. A. doi: 10.1515/zna-2016-0218 – volume: 2022 start-page: 1 year: 2022 ident: B11 article-title: Evaluating the higher-order slip consequence in bioconvection nanofluid flow configured by a variable thick surface of disk publication-title: J Nanomater doi: 10.1155/2022/2766317 – volume: 206 start-page: 118114 year: 2022 ident: B17 article-title: A novel active volumetric rotating disks solar receiver for concentrated solar power generation publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2022.118114 – volume: 47 start-page: 3159 year: 2004 ident: B6 article-title: Viscous dissipation effects in microtubes and microchannels publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2004.02.017 – volume: 74 start-page: 239 year: 2021 ident: B23 article-title: Entropy analysis on unsteady MHD biviscosity nanofluid flow with convective heat transfer in a permeable radiative stretchable rotating disk publication-title: Chin J Phys doi: 10.1016/J.CJPH.2021.07.036 – volume: 77 start-page: 329 year: 2022 ident: B27 article-title: Flow and heat over a rotating disk subject to a uniform horizontal magnetic field publication-title: Z Für Naturforsch. A. January doi: 10.1515/zna-2021-0350 – volume: 32 start-page: 1111 year: 2005 ident: B8 article-title: Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanofluids publication-title: Int Commun Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2005.05.014 – volume: 1 start-page: 233 year: 1921 ident: B18 article-title: Uber laminare und turbulente Reibung publication-title: Z Angew Math Mech doi: 10.1002/zamm.19210010401 – start-page: 99 volume-title: Enhancing conductivity of fluids with nanoparticles, Developments and applications of non-Newtonian flows year: 1995 ident: B4 – volume: 197 start-page: 41 year: 2013 ident: B19 article-title: Swirling flow of Bingham fluids above a rotating disk: An exact solution publication-title: J Nonnewton Fluid Mech doi: 10.1016/j.jnnfm.2013.03.001 – volume: 101 start-page: e202000369 year: 2021 ident: B16 article-title: Unsteady MHD flow due to eccentric rotations of a porous disk and an oscillating fluid at infinity publication-title: ZAMM - J Appl Math Mech/Z Angew Mathematik Mechanik doi: 10.1002/zamm.202000369 |
SSID | ssj0001259824 |
Score | 2.3819523 |
Snippet | Owing to the various physical aspects of nanofluids as thermally enhanced working fluids and the significance of swirling flows in rheological devices as well... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
SubjectTerms | arrhenius kinetics enhanced swirling nanofluid flow non-homogeneous model radial magnetic field zero mass flux condition |
Title | Importance of exponentially falling variability in heat generation on chemically reactive von kármán nanofluid flows subjected to a radial magnetic field and controlled locally by zero mass flux and convective heating conditions: A differential quadrature analysis |
URI | https://doaj.org/article/c21ccd8b9e9a4974b1be23e3dc2fdc8b |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEDaoCKkXxFOUQjUHLhzCJrHzMLflURVEuUCl3iI_q4psUja72y7_pr-lf4wZO1vtCS5IOVljZ-JxZr5xJp8Ze20wBuost4lymJsI6VxSK1clCrF86nkhROCZPf5WHp2IL6fF6dZRX1QTFumB48RNTJ4ZY2stnVQCwa_OtMu549bk3ppak_fFmLeVTMXdFSKmE_G7JGZhcuJRa0wH8_ytRFBJZYVbcWiLrj_ElcOH7MEICGEaFXnE7rruMbsfCjPN8OTO7udZQMhoG-g9uKuLvqMCH9W2a_AqMGrDChPeyLe9hvMOyL_CWeCTpmkHvMzIC4CdECUGHwcrbP95cz2f3Vx30Kmu9-3y3IJv-8sBhqWmHRpnYdGDgjlRGLQwU2cd_fUIofANVGdhrHVvUTLERbyDXsNvN-9RehhwuOXVRnAVvWtQkPTGJhtLxt7BFDZntdDDwa-lspHuGTtH3pSn7OTw048PR8l4fkNieJEtEqtLnVeYwfBCImxIa1eY0pqyTiWaUCJW1Vp4KzLjMVQL7a3EhjrltS0s-hX-jO10OKnPGdii4rlVIquMwRTUSFXySlYe4Zzi3qR7bLKxZmNGcnM6Y6NtMMkh-zdk_4bs30T777E3tz0uIrHHX2Tf0wK5lSNK7tCAC7UZF2rzr4X64n8Mss92SS8Knnn6ku0s5kv3ClHRQh-we9OPx1-_H4QX4Q-zShfN |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Importance+of+exponentially+falling+variability+in+heat+generation+on+chemically+reactive+von+k%C3%A1rm%C3%A1n+nanofluid+flows+subjected+to+a+radial+magnetic+field+and+controlled+locally+by+zero+mass+flux+and+convective+heating+conditions%3A+A+differential+quadrature+analysis&rft.jtitle=Frontiers+in+physics&rft.au=Abderrahim+Wakif&rft.au=Aissa+Abderrahmane&rft.au=Kamel+Guedri&rft.au=Belgacem+Bouallegue&rft.date=2022-10-20&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-424X&rft.volume=10&rft_id=info:doi/10.3389%2Ffphy.2022.988275&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c21ccd8b9e9a4974b1be23e3dc2fdc8b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-424X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-424X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-424X&client=summon |