Importance of exponentially falling variability in heat generation on chemically reactive von kármán nanofluid flows subjected to a radial magnetic field and controlled locally by zero mass flux and convective heating conditions: A differential quadrature analysis

Owing to the various physical aspects of nanofluids as thermally enhanced working fluids and the significance of swirling flows in rheological devices as well as in the spin coating and lubrication applications, the current comprehensive examination aimed to explore the important features of spinnin...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in physics Vol. 10
Main Authors Wakif, Abderrahim, Abderrahmane, Aissa, Guedri, Kamel, Bouallegue, Belgacem, Kaewthongrach, Rungnapa, Kaewmesri, Pramet, Jirawattanapanit, Anuwat
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 20.10.2022
Subjects
Online AccessGet full text
ISSN2296-424X
2296-424X
DOI10.3389/fphy.2022.988275

Cover

Loading…
Abstract Owing to the various physical aspects of nanofluids as thermally enhanced working fluids and the significance of swirling flows in rheological devices as well as in the spin coating and lubrication applications, the current comprehensive examination aimed to explore the important features of spinning flows of chemically reactive Newtonian nanofluids over a uniformly revolving disk in the existence of a radially applied magnetic field along with an exponentially decaying space-dependent heat source, in the case where the disk surface is heated convectively and unaffected by the vertical nanoparticles’ mass flux. Based on feasible boundary layer approximations and Buongiorno’s nanofluid formulation, the leading coupled differential equations are stated properly in the sense of Arrhenius’s and Von Kármán’s approaches. By employing an advanced generalized differential quadrature algorithm, the obtained boundary layer equations are handled numerically with a higher order of accuracy to generate adequate graphical and tabular illustrations for the different values of the influencing flow parameters. As findings, the graphical results confirm that the nanofluid motion decelerates meaningfully thanks to the resistive magnetic influence. A significant thermal amelioration can be achieved by strengthening the magnetic impact, the generation of heat, the thermal convective process, and the thermophoresis mechanism. Moreover, it is found that the thermo-migration of nanoparticles can be reinforced more via the intensification in the convective process, the thermo-migration of nanoparticles, and the activation energy.
AbstractList Owing to the various physical aspects of nanofluids as thermally enhanced working fluids and the significance of swirling flows in rheological devices as well as in the spin coating and lubrication applications, the current comprehensive examination aimed to explore the important features of spinning flows of chemically reactive Newtonian nanofluids over a uniformly revolving disk in the existence of a radially applied magnetic field along with an exponentially decaying space-dependent heat source, in the case where the disk surface is heated convectively and unaffected by the vertical nanoparticles’ mass flux. Based on feasible boundary layer approximations and Buongiorno’s nanofluid formulation, the leading coupled differential equations are stated properly in the sense of Arrhenius’s and Von Kármán’s approaches. By employing an advanced generalized differential quadrature algorithm, the obtained boundary layer equations are handled numerically with a higher order of accuracy to generate adequate graphical and tabular illustrations for the different values of the influencing flow parameters. As findings, the graphical results confirm that the nanofluid motion decelerates meaningfully thanks to the resistive magnetic influence. A significant thermal amelioration can be achieved by strengthening the magnetic impact, the generation of heat, the thermal convective process, and the thermophoresis mechanism. Moreover, it is found that the thermo-migration of nanoparticles can be reinforced more via the intensification in the convective process, the thermo-migration of nanoparticles, and the activation energy.
Owing to the various physical aspects of nanofluids as thermally enhanced working fluids and the significance of swirling flows in rheological devices as well as in the spin coating and lubrication applications, the current comprehensive examination aimed to explore the important features of spinning flows of chemically reactive Newtonian nanofluids over a uniformly revolving disk in the existence of a radially applied magnetic field along with an exponentially decaying space-dependent heat source, in the case where the disk surface is heated convectively and unaffected by the vertical nanoparticles’ mass flux. Based on feasible boundary layer approximations and Buongiorno’s nanofluid formulation, the leading coupled differential equations are stated properly in the sense of Arrhenius’s and Von Kármán’s approaches. By employing an advanced generalized differential quadrature algorithm, the obtained boundary layer equations are handled numerically with a higher order of accuracy to generate adequate graphical and tabular illustrations for the different values of the influencing flow parameters. As findings, the graphical results confirm that the nanofluid motion decelerates meaningfully thanks to the resistive magnetic influence. A significant thermal amelioration can be achieved by strengthening the magnetic impact, the generation of heat, the thermal convective process, and the thermophoresis mechanism. Moreover, it is found that the thermo-migration of nanoparticles can be reinforced more via the intensification in the convective process, the thermo-migration of nanoparticles, and the activation energy.
Author Wakif, Abderrahim
Abderrahmane, Aissa
Bouallegue, Belgacem
Guedri, Kamel
Jirawattanapanit, Anuwat
Kaewmesri, Pramet
Kaewthongrach, Rungnapa
Author_xml – sequence: 1
  givenname: Abderrahim
  surname: Wakif
  fullname: Wakif, Abderrahim
– sequence: 2
  givenname: Aissa
  surname: Abderrahmane
  fullname: Abderrahmane, Aissa
– sequence: 3
  givenname: Kamel
  surname: Guedri
  fullname: Guedri, Kamel
– sequence: 4
  givenname: Belgacem
  surname: Bouallegue
  fullname: Bouallegue, Belgacem
– sequence: 5
  givenname: Rungnapa
  surname: Kaewthongrach
  fullname: Kaewthongrach, Rungnapa
– sequence: 6
  givenname: Pramet
  surname: Kaewmesri
  fullname: Kaewmesri, Pramet
– sequence: 7
  givenname: Anuwat
  surname: Jirawattanapanit
  fullname: Jirawattanapanit, Anuwat
BookMark eNp1Ut1qFDEUHqWCbe29l-cFtmYyP5vxrhStCwVvFLwL-TnZzZpN1iS7dnybPktfzMyOBRGEkITD-X5O8l1UZz54rKq3NbluGja8M_vNeE0JpdcDY3TZvazOKR36RUvbb2d_3V9XVyltCSE17QZG2_MXF6vdPsQsvEIIBvBhX5h9tsK5EUzZrV_DUUQrpHU2j2A9bFBkWKPHKLINHspSG9xZdQJFFCrbI8Kx1L8_Pcbd06MHL3ww7mA1GBd-JkgHuUWVUUMOICAKXSRhJ9Yes1VgLDoNwmtQwecYnCudLswKcoRfGEPpTqnQHR6eG484K08GJ9-lpO1kMb2HG9DWGIzzcPDjIHSxf4hYwMKNyaY31asycMKrP-dl9fXjhy-3nxb3n-9Wtzf3C9V0dV5o2Uu6rGvWdAPpa8KwU71WPSMD0mYgjEjZGt3WyijEVho9lAIjDdOdZuW8rFYzrw5iy_fR7kQceRCWnwohrrmI5REcckVrpTSTAw6iHZatrGXRwEYrarRisnD1M5eKIaWIhiubT7-So7CO14RPAeFTQPgUED4HpADJP8BnI_-F_AYLhcvO
CitedBy_id crossref_primary_10_1007_s00396_024_05264_9
crossref_primary_10_1016_j_jmmm_2023_171311
crossref_primary_10_1016_j_csite_2023_103364
crossref_primary_10_1038_s41598_023_36988_3
crossref_primary_10_1016_j_heliyon_2024_e25102
crossref_primary_10_1080_10407782_2023_2241186
crossref_primary_10_1080_10407790_2023_2211731
crossref_primary_10_1002_htj_23247
crossref_primary_10_1615_JPorMedia_2024049715
crossref_primary_10_1016_j_csite_2024_104637
crossref_primary_10_1080_10407782_2024_2314223
crossref_primary_10_1007_s40819_023_01519_1
crossref_primary_10_1002_zamm_202300536
crossref_primary_10_1016_j_aej_2024_07_083
crossref_primary_10_1177_09544089241275779
crossref_primary_10_1016_j_rineng_2025_104138
crossref_primary_10_1002_mma_9480
crossref_primary_10_1016_j_padiff_2025_101127
crossref_primary_10_1142_S0217984925500216
crossref_primary_10_1142_S0217979224504186
crossref_primary_10_1007_s40819_025_01839_4
crossref_primary_10_1142_S0217984924504888
crossref_primary_10_1080_19942060_2023_2270675
crossref_primary_10_1007_s10973_024_13781_6
crossref_primary_10_1016_j_camwa_2024_07_006
crossref_primary_10_1007_s12668_023_01280_1
crossref_primary_10_1016_j_rineng_2025_104061
crossref_primary_10_1007_s10973_023_12481_x
crossref_primary_10_1108_HFF_02_2023_0071
Cites_doi 10.1016/j.csite.2020.100825
10.3389/fphy.2022.929463
10.1016/j.colsurfa.2021.128077
10.1007/s40819-022-01241-4
10.3390/nano12142390
10.1007/s11051-004-3170-5
10.1115/1.2150834
10.1016/j.jppr.2016.11.002
10.1016/j.ijheatmasstransfer.2005.01.029
10.1063/1.3245330
10.3390/nano12091392
10.1016/j.cis.2015.08.014
10.1016/j.euromechflu.2022.02.011
10.1016/j.enconman.2010.06.072
10.1515/zna-2016-0218
10.1155/2022/2766317
10.1016/j.applthermaleng.2022.118114
10.1016/j.ijheatmasstransfer.2004.02.017
10.1016/J.CJPH.2021.07.036
10.1515/zna-2021-0350
10.1016/j.icheatmasstransfer.2005.05.014
10.1002/zamm.19210010401
10.1016/j.jnnfm.2013.03.001
10.1002/zamm.202000369
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/fphy.2022.988275
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2296-424X
ExternalDocumentID oai_doaj_org_article_c21ccd8b9e9a4974b1be23e3dc2fdc8b
10_3389_fphy_2022_988275
GroupedDBID 5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
ADMLS
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
M~E
OK1
ID FETCH-LOGICAL-c351t-db6b2711835906108e5c6dc6809e239080bb4fd41cfcee4bfd9bb48038d5d8803
IEDL.DBID DOA
ISSN 2296-424X
IngestDate Wed Aug 27 01:27:02 EDT 2025
Tue Jul 01 01:03:04 EDT 2025
Thu Apr 24 23:02:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-db6b2711835906108e5c6dc6809e239080bb4fd41cfcee4bfd9bb48038d5d8803
OpenAccessLink https://doaj.org/article/c21ccd8b9e9a4974b1be23e3dc2fdc8b
ParticipantIDs doaj_primary_oai_doaj_org_article_c21ccd8b9e9a4974b1be23e3dc2fdc8b
crossref_citationtrail_10_3389_fphy_2022_988275
crossref_primary_10_3389_fphy_2022_988275
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-20
PublicationDateYYYYMMDD 2022-10-20
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-20
  day: 20
PublicationDecade 2020
PublicationTitle Frontiers in physics
PublicationYear 2022
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Turkyilmazoglu (B27) 2022; 77
Waini (B21) 2022; 94
Buongiorno (B25) 2006; 128
Von Kármán (B18) 1921; 1
Mandal (B23) 2021; 74
Buongiorno (B1) 2009; 106
Koo (B7) 2005; 48
Waqas (B11) 2022; 2022
Maneengam (B13) 2022; 12
Choi (B4) 1995
Khan (B20) 2021; 24
Corcione (B10) 2011; 52
Angayarkanni (B3) 2015; 225
Kumar (B22) 2022; 635
Alshare (B14) 2022; 12
Bergman (B2) 2011
Koo (B6) 2004; 47
Li (B9) 2008
Shah (B12) 2022; 10
Koo (B8) 2005; 32
Hussain (B16) 2021; 101
Rández (B17) 2022; 206
Magodora (B24) 2022; 8
Ahmadpour (B19) 2013; 197
Latiff (B26) 2016; 5
Liu (B15) 2016; 71
Koo (B5) 2004; 6
References_xml – volume: 24
  start-page: 100825
  year: 2021
  ident: B20
  article-title: Heat transfer in steady slip flow of tangent hyperbolic fluid over the lubricated surface of a stretchable rotatory disk
  publication-title: Case Stud Therm Eng
  doi: 10.1016/j.csite.2020.100825
– volume: 10
  start-page: 1
  year: 2022
  ident: B12
  article-title: Entropy optimization and thermal behavior of a porous system with considering hybrid nanofluid
  publication-title: Front Phys
  doi: 10.3389/fphy.2022.929463
– volume: 635
  start-page: 128077
  year: 2022
  ident: B22
  article-title: Irreversibility analysis of hybrid nanofluid flow over a rotating disk: Effect of thermal radiation and magnetic field
  publication-title: Colloids Surf A: Physicochemical Eng Aspects
  doi: 10.1016/j.colsurfa.2021.128077
– volume: 8
  start-page: 41
  year: 2022
  ident: B24
  article-title: Numerical studies on gold-water nanofluid flow with activation energy Past A rotating disk
  publication-title: Int J Appl Comput Math
  doi: 10.1007/s40819-022-01241-4
– volume: 12
  start-page: 2390
  year: 2022
  ident: B13
  article-title: Numerical study of lid-driven hybrid nanofluid flow in a corrugated porous cavity in the presence of magnetic field
  publication-title: Nanomaterials
  doi: 10.3390/nano12142390
– volume-title: Introduction to heat transfer
  year: 2011
  ident: B2
– volume: 6
  start-page: 577
  year: 2004
  ident: B5
  article-title: A new thermal conductivity model for nanofluids
  publication-title: J Nanopart Res
  doi: 10.1007/s11051-004-3170-5
– volume: 128
  start-page: 240
  year: 2006
  ident: B25
  article-title: Convective transport in nanofluids
  publication-title: J Heat Transfer
  doi: 10.1115/1.2150834
– volume: 5
  start-page: 267
  year: 2016
  ident: B26
  article-title: Stefan blowing effect on bioconvective flow of nanofluid over a solid rotating stretchable disk
  publication-title: Propulsion Power Res
  doi: 10.1016/j.jppr.2016.11.002
– volume: 48
  start-page: 2652
  year: 2005
  ident: B7
  article-title: Laminar nanofluid flow in microheat-sinks
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2005.01.029
– volume-title: Computational analysis of nanofluid flow in micro-channels with applications to micro-heat sinks and bio-MEMS
  year: 2008
  ident: B9
– volume: 106
  start-page: 094312
  year: 2009
  ident: B1
  article-title: A benchmark study on the thermal conductivity of nanofluids
  publication-title: J Appl Phys
  doi: 10.1063/1.3245330
– volume: 12
  start-page: 1392
  year: 2022
  ident: B14
  article-title: Hydrothermal and entropy investigation of nanofluid natural convection in a lid-driven cavity concentric with an elliptical cavity with a wavy boundary heated from below
  publication-title: Nanomaterials
  doi: 10.3390/nano12091392
– volume: 225
  start-page: 146
  year: 2015
  ident: B3
  article-title: Review on thermal properties of nanofluids : Recent Developments
  publication-title: Adv Colloid Interf Sci.
  doi: 10.1016/j.cis.2015.08.014
– volume: 94
  start-page: 121
  year: 2022
  ident: B21
  article-title: Multiple solutions of the unsteady hybrid nanofluid flow over a rotating disk with stability analysis
  publication-title: Eur J Mech - B/Fluids
  doi: 10.1016/j.euromechflu.2022.02.011
– volume: 52
  start-page: 789
  year: 2011
  ident: B10
  article-title: Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2010.06.072
– volume: 71
  start-page: 1003
  year: 2016
  ident: B15
  article-title: Flow and heat transfer of Bingham plastic fluid over a rotating disk with variable thickness
  publication-title: Z Für Naturforsch. A.
  doi: 10.1515/zna-2016-0218
– volume: 2022
  start-page: 1
  year: 2022
  ident: B11
  article-title: Evaluating the higher-order slip consequence in bioconvection nanofluid flow configured by a variable thick surface of disk
  publication-title: J Nanomater
  doi: 10.1155/2022/2766317
– volume: 206
  start-page: 118114
  year: 2022
  ident: B17
  article-title: A novel active volumetric rotating disks solar receiver for concentrated solar power generation
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2022.118114
– volume: 47
  start-page: 3159
  year: 2004
  ident: B6
  article-title: Viscous dissipation effects in microtubes and microchannels
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2004.02.017
– volume: 74
  start-page: 239
  year: 2021
  ident: B23
  article-title: Entropy analysis on unsteady MHD biviscosity nanofluid flow with convective heat transfer in a permeable radiative stretchable rotating disk
  publication-title: Chin J Phys
  doi: 10.1016/J.CJPH.2021.07.036
– volume: 77
  start-page: 329
  year: 2022
  ident: B27
  article-title: Flow and heat over a rotating disk subject to a uniform horizontal magnetic field
  publication-title: Z Für Naturforsch. A. January
  doi: 10.1515/zna-2021-0350
– volume: 32
  start-page: 1111
  year: 2005
  ident: B8
  article-title: Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanofluids
  publication-title: Int Commun Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2005.05.014
– volume: 1
  start-page: 233
  year: 1921
  ident: B18
  article-title: Uber laminare und turbulente Reibung
  publication-title: Z Angew Math Mech
  doi: 10.1002/zamm.19210010401
– start-page: 99
  volume-title: Enhancing conductivity of fluids with nanoparticles, Developments and applications of non-Newtonian flows
  year: 1995
  ident: B4
– volume: 197
  start-page: 41
  year: 2013
  ident: B19
  article-title: Swirling flow of Bingham fluids above a rotating disk: An exact solution
  publication-title: J Nonnewton Fluid Mech
  doi: 10.1016/j.jnnfm.2013.03.001
– volume: 101
  start-page: e202000369
  year: 2021
  ident: B16
  article-title: Unsteady MHD flow due to eccentric rotations of a porous disk and an oscillating fluid at infinity
  publication-title: ZAMM - J Appl Math Mech/Z Angew Mathematik Mechanik
  doi: 10.1002/zamm.202000369
SSID ssj0001259824
Score 2.3819523
Snippet Owing to the various physical aspects of nanofluids as thermally enhanced working fluids and the significance of swirling flows in rheological devices as well...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
SubjectTerms arrhenius kinetics
enhanced swirling nanofluid flow
non-homogeneous model
radial magnetic field
zero mass flux condition
Title Importance of exponentially falling variability in heat generation on chemically reactive von kármán nanofluid flows subjected to a radial magnetic field and controlled locally by zero mass flux and convective heating conditions: A differential quadrature analysis
URI https://doaj.org/article/c21ccd8b9e9a4974b1be23e3dc2fdc8b
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEDaoCKkXxFOUQjUHLhzCJrHzMLflURVEuUCl3iI_q4psUja72y7_pr-lf4wZO1vtCS5IOVljZ-JxZr5xJp8Ze20wBuost4lymJsI6VxSK1clCrF86nkhROCZPf5WHp2IL6fF6dZRX1QTFumB48RNTJ4ZY2stnVQCwa_OtMu549bk3ppak_fFmLeVTMXdFSKmE_G7JGZhcuJRa0wH8_ytRFBJZYVbcWiLrj_ElcOH7MEICGEaFXnE7rruMbsfCjPN8OTO7udZQMhoG-g9uKuLvqMCH9W2a_AqMGrDChPeyLe9hvMOyL_CWeCTpmkHvMzIC4CdECUGHwcrbP95cz2f3Vx30Kmu9-3y3IJv-8sBhqWmHRpnYdGDgjlRGLQwU2cd_fUIofANVGdhrHVvUTLERbyDXsNvN-9RehhwuOXVRnAVvWtQkPTGJhtLxt7BFDZntdDDwa-lspHuGTtH3pSn7OTw048PR8l4fkNieJEtEqtLnVeYwfBCImxIa1eY0pqyTiWaUCJW1Vp4KzLjMVQL7a3EhjrltS0s-hX-jO10OKnPGdii4rlVIquMwRTUSFXySlYe4Zzi3qR7bLKxZmNGcnM6Y6NtMMkh-zdk_4bs30T777E3tz0uIrHHX2Tf0wK5lSNK7tCAC7UZF2rzr4X64n8Mss92SS8Knnn6ku0s5kv3ClHRQh-we9OPx1-_H4QX4Q-zShfN
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Importance+of+exponentially+falling+variability+in+heat+generation+on+chemically+reactive+von+k%C3%A1rm%C3%A1n+nanofluid+flows+subjected+to+a+radial+magnetic+field+and+controlled+locally+by+zero+mass+flux+and+convective+heating+conditions%3A+A+differential+quadrature+analysis&rft.jtitle=Frontiers+in+physics&rft.au=Abderrahim+Wakif&rft.au=Aissa+Abderrahmane&rft.au=Kamel+Guedri&rft.au=Belgacem+Bouallegue&rft.date=2022-10-20&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-424X&rft.volume=10&rft_id=info:doi/10.3389%2Ffphy.2022.988275&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c21ccd8b9e9a4974b1be23e3dc2fdc8b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-424X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-424X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-424X&client=summon