Robust Similarity Measurement Based on a Novel Time Filter for SSVEPs Detection
The steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) has received extensive attention in research for the less training time, excellent recognition performance, and high information translate rate. At present, most of the powerful SSVEPs detection methods are similar...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 34; no. 8; pp. 4096 - 4105 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) has received extensive attention in research for the less training time, excellent recognition performance, and high information translate rate. At present, most of the powerful SSVEPs detection methods are similarity measurements based on spatial filters and Pearson's correlation coefficient. Among them, the task-related component analysis (TRCA)-based method and its variant, the ensemble TRCA (eTRCA)-based method, are two methods with high performance and great potential. However, they have a defect, that is, they can only suppress certain kinds of noise, but not more general noises. To solve this problem, a novel time filter was designed by introducing the temporally local weighting into the objective function of the TRCA-based method and using the singular value decomposition. Based on this, the time filter and (e)TRCA-based similarity measurement methods were proposed, which can perform a robust similarity measure to enhance the detection ability of SSVEPs. A benchmark dataset recorded from 35 subjects was used to evaluate the proposed methods and compare them with the (e)TRCA-based methods. The results indicated that the proposed methods performed significantly better than the (e)TRCA-based methods. Therefore, it is believed that the proposed time filter and the similarity measurement methods have promising potential for SSVEPs detection. |
---|---|
AbstractList | The steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) has received extensive attention in research for the less training time, excellent recognition performance, and high information translate rate. At present, most of the powerful SSVEPs detection methods are similarity measurements based on spatial filters and Pearson's correlation coefficient. Among them, the task-related component analysis (TRCA)-based method and its variant, the ensemble TRCA (eTRCA)-based method, are two methods with high performance and great potential. However, they have a defect, that is, they can only suppress certain kinds of noise, but not more general noises. To solve this problem, a novel time filter was designed by introducing the temporally local weighting into the objective function of the TRCA-based method and using the singular value decomposition. Based on this, the time filter and (e)TRCA-based similarity measurement methods were proposed, which can perform a robust similarity measure to enhance the detection ability of SSVEPs. A benchmark dataset recorded from 35 subjects was used to evaluate the proposed methods and compare them with the (e)TRCA-based methods. The results indicated that the proposed methods performed significantly better than the (e)TRCA-based methods. Therefore, it is believed that the proposed time filter and the similarity measurement methods have promising potential for SSVEPs detection. The steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) has received extensive attention in research for the less training time, excellent recognition performance, and high information translate rate. At present, most of the powerful SSVEPs detection methods are similarity measurements based on spatial filters and Pearson's correlation coefficient. Among them, the task-related component analysis (TRCA)-based method and its variant, the ensemble TRCA (eTRCA)-based method, are two methods with high performance and great potential. However, they have a defect, that is, they can only suppress certain kinds of noise, but not more general noises. To solve this problem, a novel time filter was designed by introducing the temporally local weighting into the objective function of the TRCA-based method and using the singular value decomposition. Based on this, the time filter and (e)TRCA-based similarity measurement methods were proposed, which can perform a robust similarity measure to enhance the detection ability of SSVEPs. A benchmark dataset recorded from 35 subjects was used to evaluate the proposed methods and compare them with the (e)TRCA-based methods. The results indicated that the proposed methods performed significantly better than the (e)TRCA-based methods. Therefore, it is believed that the proposed time filter and the similarity measurement methods have promising potential for SSVEPs detection.The steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) has received extensive attention in research for the less training time, excellent recognition performance, and high information translate rate. At present, most of the powerful SSVEPs detection methods are similarity measurements based on spatial filters and Pearson's correlation coefficient. Among them, the task-related component analysis (TRCA)-based method and its variant, the ensemble TRCA (eTRCA)-based method, are two methods with high performance and great potential. However, they have a defect, that is, they can only suppress certain kinds of noise, but not more general noises. To solve this problem, a novel time filter was designed by introducing the temporally local weighting into the objective function of the TRCA-based method and using the singular value decomposition. Based on this, the time filter and (e)TRCA-based similarity measurement methods were proposed, which can perform a robust similarity measure to enhance the detection ability of SSVEPs. A benchmark dataset recorded from 35 subjects was used to evaluate the proposed methods and compare them with the (e)TRCA-based methods. The results indicated that the proposed methods performed significantly better than the (e)TRCA-based methods. Therefore, it is believed that the proposed time filter and the similarity measurement methods have promising potential for SSVEPs detection. |
Author | Wang, Xingyu Cichocki, Andrzej Wang, Zhiqiang Xu, Ren Jin, Jing Liu, Chang |
Author_xml | – sequence: 1 givenname: Jing orcidid: 0000-0002-6133-5491 surname: Jin fullname: Jin, Jing email: jinjingat@gmail.com organization: Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China – sequence: 2 givenname: Zhiqiang orcidid: 0000-0002-8577-1781 surname: Wang fullname: Wang, Zhiqiang email: wangzhiqiang9610@163.com organization: Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China – sequence: 3 givenname: Ren orcidid: 0000-0001-8887-0235 surname: Xu fullname: Xu, Ren email: renxu2012@gmail.com organization: Guger Technologies OG, Graz, Austria – sequence: 4 givenname: Chang orcidid: 0000-0002-2930-306X surname: Liu fullname: Liu, Chang email: lc13456@foxmail.com organization: Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China – sequence: 5 givenname: Xingyu surname: Wang fullname: Wang, Xingyu email: xywang@ecust.edu.cn organization: Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China – sequence: 6 givenname: Andrzej orcidid: 0000-0002-8364-7226 surname: Cichocki fullname: Cichocki, Andrzej email: a.cichocki@skoltech.ru organization: Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34648459$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUFv1DAQhS1UREvpHwAJWeLCZRd77DjOEUoLSMsWsQviZjn2RHKVxK3tIPXfk2WXPfSAL2ONvjczeu85ORnjiIS85GzJOWvebdfr1WYJDPhScK6l0k_IGXAFCxBanxz_9a9TcpHzLZufYpWSzTNyKqSSWlbNGbn5HtspF7oJQ-htCuWBfkWbp4QDjoV-sBk9jSO1dB1_Y0-3YUB6HfqCiXYx0c3m59W3TD9iQVdCHF-Qp53tM14c6jn5cX21vfy8WN18-nL5frVwouJl4VsO4JVUDMF7653UvNWONdJ3jeMevLDCgbeKtdAp0ABz34Gr0dXWKnFO3u7n3qV4P2EuZgjZYd_bEeOUDVQaNAetduibR-htnNI4X2dgNqGumdT1TL0-UFM7oDd3KQw2PZh_Vs0A7AGXYs4JuyPCmdlFYv5GYnaRmEMks0g_ErlQ7M6okmzo_y99tZcGRDzuaqqa1SDEH570l8o |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_3389_fninf_2022_952474 crossref_primary_10_1007_s11431_024_2882_6 crossref_primary_10_1109_JIOT_2024_3488957 crossref_primary_10_1007_s11571_023_10035_3 crossref_primary_10_1016_j_cmpb_2023_107944 crossref_primary_10_1109_TNSRE_2023_3294815 crossref_primary_10_3389_fncom_2023_1101726 crossref_primary_10_1109_TIM_2024_3476551 crossref_primary_10_1109_TNSRE_2022_3156076 crossref_primary_10_1016_j_bspc_2024_106932 crossref_primary_10_1007_s11571_024_10116_x crossref_primary_10_1088_1741_2552_ad1f7a crossref_primary_10_1109_JSEN_2022_3173433 crossref_primary_10_1109_TNSRE_2022_3198434 crossref_primary_10_1002_wsbm_1635 crossref_primary_10_1109_JSEN_2023_3287983 crossref_primary_10_1007_s11571_022_09923_x crossref_primary_10_1109_THMS_2023_3273538 crossref_primary_10_1109_TII_2022_3170422 crossref_primary_10_1109_ACCESS_2023_3328618 crossref_primary_10_1109_TCDS_2022_3193731 crossref_primary_10_1109_TBME_2024_3406603 crossref_primary_10_1007_s12264_022_00920_y crossref_primary_10_1016_j_neunet_2024_106655 crossref_primary_10_1080_10255842_2024_2333924 crossref_primary_10_1109_TCDS_2022_3214081 crossref_primary_10_1080_0144929X_2024_2312436 crossref_primary_10_1080_10255842_2025_2457122 crossref_primary_10_3389_fncom_2022_942979 crossref_primary_10_1109_JSEN_2024_3445971 crossref_primary_10_1109_TCE_2023_3330423 crossref_primary_10_1109_ACCESS_2024_3454082 crossref_primary_10_1109_TNSRE_2022_3210258 crossref_primary_10_1088_1741_2552_adaf58 crossref_primary_10_1016_j_jneumeth_2024_110325 crossref_primary_10_1109_TNSRE_2022_3192988 crossref_primary_10_3389_fnins_2023_1246940 crossref_primary_10_1007_s11517_024_03193_x crossref_primary_10_3389_fnins_2022_892794 crossref_primary_10_1109_JSEN_2022_3171808 crossref_primary_10_1007_s12264_024_01319_7 crossref_primary_10_1109_TCYB_2022_3166604 crossref_primary_10_1109_JSEN_2021_3130626 crossref_primary_10_1109_TNSRE_2024_3419013 crossref_primary_10_1109_TCSII_2022_3211931 crossref_primary_10_1109_TNSRE_2021_3131497 crossref_primary_10_1109_TIM_2023_3284952 crossref_primary_10_1016_j_cmpb_2024_108425 crossref_primary_10_1109_TCYB_2024_3390805 crossref_primary_10_1007_s11432_022_3440_5 crossref_primary_10_1016_j_bspc_2023_104924 crossref_primary_10_1016_j_neunet_2025_107124 crossref_primary_10_1109_TCDS_2024_3392745 crossref_primary_10_1016_j_neunet_2024_106313 crossref_primary_10_1109_TETCI_2023_3301385 crossref_primary_10_1109_JSEN_2023_3270281 crossref_primary_10_1109_TNSRE_2022_3156546 crossref_primary_10_1016_j_bspc_2024_106282 crossref_primary_10_1109_TNSRE_2022_3198021 crossref_primary_10_1016_j_measurement_2024_114959 crossref_primary_10_1109_TNSRE_2022_3172974 crossref_primary_10_1002_ima_22821 crossref_primary_10_1002_ima_22823 crossref_primary_10_1109_TNSRE_2022_3219450 crossref_primary_10_1109_JTEHM_2024_3454077 crossref_primary_10_1016_j_bbr_2024_115345 crossref_primary_10_1080_10255842_2023_2275244 crossref_primary_10_1109_JSEN_2024_3363754 crossref_primary_10_1109_TNSRE_2022_3162029 crossref_primary_10_1080_10255842_2024_2414069 crossref_primary_10_1088_1741_2552_ad7f89 crossref_primary_10_1080_10255842_2024_2371036 crossref_primary_10_1088_1741_2552_ad558a crossref_primary_10_1007_s11432_022_3548_2 crossref_primary_10_1109_JSEN_2022_3205956 crossref_primary_10_1109_TCDS_2022_3159285 crossref_primary_10_1109_TNSRE_2022_3166224 |
Cites_doi | 10.1109/TNSRE.2019.2956488 10.1142/S0129065714500130 10.1016/j.neucom.2019.10.049 10.1109/TNSRE.2018.2826541 10.1088/1741-2552/ab2373 10.1109/TNSRE.2016.2627556 10.1142/S0129065720500203 10.1109/TBME.2002.803536 10.1088/1741-2560/6/4/046002 10.1080/2326263X.2013.869003 10.1109/TBME.2006.886577 10.1088/1741-2552/ab914e 10.1088/1741-2560/12/4/046008 10.1016/S0031-3203(99)00139-9 10.1016/j.neuroimage.2012.08.044 10.1109/TNSRE.2020.3020975 10.1109/TBME.2020.2975552 10.1016/j.neunet.2018.02.011 10.1073/pnas.1508080112 10.1109/TSP.2010.2052047 10.1142/S0129065714500191 10.1109/TNSRE.2020.2968579 10.1109/TNSRE.2020.2968307 10.1109/TBME.2017.2694818 10.1142/S0129065717500393 10.1016/j.neunet.2019.07.008 10.1109/TBME.2020.2965178 10.1109/TNSRE.2013.2279680 10.1109/TRE.2000.847807 10.1088/1741-2560/2/4/008 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2021.3118468 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 4105 |
ExternalDocumentID | 34648459 10_1109_TNNLS_2021_3118468 9570723 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: National Key Research and Development Program grantid: 2017YFB13003002; 2018YFC2002300; 2018YFC2002301 funderid: 10.13039/501100012166 – fundername: Program of Introducing Talents of Discipline to Universities through the 111 Project grantid: B17017 – fundername: Polish National Science Center grantid: UMO-2016/20/W/NZ4/00354 funderid: 10.13039/501100004281 – fundername: Ministry of Education and Science of the Russian Federation grantid: 14.756.31.0001 funderid: 10.13039/501100003443 – fundername: ShuGuang Project – fundername: Grant National Natural Science Foundation of China grantid: 61573142; 61773164 funderid: 10.13039/501100001809 – fundername: Shanghai Municipal Education Commission and the Shanghai Education Development Foundation grantid: 19SG25 funderid: 10.13039/501100003024 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c351t-db122d6460e2ddadc481b8c094df9c1d2d3a3c2da60b2f62822f9cc2c7ec7aa63 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Fri Jul 11 09:46:45 EDT 2025 Sun Jun 29 15:18:38 EDT 2025 Mon Jul 21 05:59:53 EDT 2025 Tue Jul 01 00:27:42 EDT 2025 Thu Apr 24 22:54:56 EDT 2025 Wed Aug 27 02:55:13 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-db122d6460e2ddadc481b8c094df9c1d2d3a3c2da60b2f62822f9cc2c7ec7aa63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6133-5491 0000-0002-8364-7226 0000-0002-2930-306X 0000-0002-8577-1781 0000-0001-8887-0235 |
PMID | 34648459 |
PQID | 2845770487 |
PQPubID | 85436 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1109_TNNLS_2021_3118468 pubmed_primary_34648459 ieee_primary_9570723 crossref_citationtrail_10_1109_TNNLS_2021_3118468 proquest_journals_2845770487 proquest_miscellaneous_2582812866 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref31 ref30 ref11 ref33 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref4 ref3 ref6 ref5 zhou (ref24) 2009; 22 wai (ref32) 2020 jin (ref9) 2020 |
References_xml | – ident: ref13 doi: 10.1109/TNSRE.2019.2956488 – year: 2020 ident: ref32 article-title: Towards a fast steady-state visual evoked potentials (SSVEP) brain-computer interface (BCI) publication-title: arXiv 2002 01171 – ident: ref28 doi: 10.1142/S0129065714500130 – ident: ref27 doi: 10.1016/j.neucom.2019.10.049 – ident: ref26 doi: 10.1109/TNSRE.2018.2826541 – ident: ref22 doi: 10.1088/1741-2552/ab2373 – ident: ref8 doi: 10.1109/TNSRE.2016.2627556 – ident: ref33 doi: 10.1142/S0129065720500203 – ident: ref17 doi: 10.1109/TBME.2002.803536 – ident: ref14 doi: 10.1088/1741-2560/6/4/046002 – ident: ref4 doi: 10.1080/2326263X.2013.869003 – year: 2020 ident: ref9 article-title: Internal feature selection method of CSP based on L1-norm and Dempster-Shafer theory publication-title: IEEE Trans Neural Netw Learn Syst – ident: ref18 doi: 10.1109/TBME.2006.886577 – ident: ref1 doi: 10.1088/1741-2552/ab914e – ident: ref21 doi: 10.1088/1741-2560/12/4/046008 – ident: ref25 doi: 10.1016/S0031-3203(99)00139-9 – ident: ref30 doi: 10.1016/j.neuroimage.2012.08.044 – ident: ref11 doi: 10.1109/TNSRE.2020.3020975 – volume: 22 start-page: 2286 year: 2009 ident: ref24 article-title: Canonical time warping for alignment of human behavior publication-title: Proc Adv Neural Inf Process Syst – ident: ref15 doi: 10.1109/TBME.2020.2975552 – ident: ref10 doi: 10.1016/j.neunet.2018.02.011 – ident: ref20 doi: 10.1073/pnas.1508080112 – ident: ref23 doi: 10.1109/TSP.2010.2052047 – ident: ref3 doi: 10.1142/S0129065714500191 – ident: ref2 doi: 10.1109/TNSRE.2020.2968579 – ident: ref7 doi: 10.1109/TNSRE.2020.2968307 – ident: ref19 doi: 10.1109/TBME.2017.2694818 – ident: ref31 doi: 10.1142/S0129065717500393 – ident: ref5 doi: 10.1016/j.neunet.2019.07.008 – ident: ref12 doi: 10.1109/TBME.2020.2965178 – ident: ref29 doi: 10.1109/TNSRE.2013.2279680 – ident: ref6 doi: 10.1109/TRE.2000.847807 – ident: ref16 doi: 10.1088/1741-2560/2/4/008 |
SSID | ssj0000605649 |
Score | 2.6660426 |
Snippet | The steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) has received extensive attention in research for the less training time,... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4096 |
SubjectTerms | Brain Brain–computer interface(BCI) Computer applications Correlation Correlation coefficient Correlation coefficients Human-computer interface Implants Linear programming Measurement methods Objective function Robustness Similarity similarity measurement Singular value decomposition Spatial filtering Steady-state steady-state visual evoked potential (SSVEP) Task analysis task-related component analysis (TRCA) time filter Time measurement Training Visual evoked potentials Visualization |
Title | Robust Similarity Measurement Based on a Novel Time Filter for SSVEPs Detection |
URI | https://ieeexplore.ieee.org/document/9570723 https://www.ncbi.nlm.nih.gov/pubmed/34648459 https://www.proquest.com/docview/2845770487 https://www.proquest.com/docview/2582812866 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PXGhlPIILchI3CDb2HHs5MijqwqxC2JbtLfIr0irlgR1kx766zt2HiAEiFuUONnEM975Ps8L4JVSPGcqs7Ev_R1zbbJYG0pjoa3SwlV5GsoXL5bi7IJ_XGfrHXgz5cI450LwmZv5w-DLt43p_FbZSZHJRLJ0F3aRuPW5WtN-SoK4XAS0y6hgMUvlesyRSYqT8-Xy0wrZIKNIUpHUCN-nL-WC59xXKf3FJIUeK3-Hm8HszPdhMb5wH21yOetaPTO3v9Vy_N8vegD3B_xJ3vYKcwA7rn4I-2NvBzIs9UP4_LXR3bYlq833DZJfxOpk8XM7kbxD42dJUxNFls2NuyI-lYTMN973ThAHk9Xq2-mXLfng2hDrVT-Ci_np-fuzeGi-EJs0o21sNWXMCi4Sx6xV1nAEuLlBNmirwlDLbKpSw6wSiWaV8NGoeN4wI52RSon0MezVTe2eAqkSqorcaSF1zq1wRcVkbl2mlHbKySwCOs5_aYbK5L5BxlUZGEpSlEF8pRdfOYgvgtfTPT_6uhz_HH3o534aOUx7BMejmMth6W5LtNeZlPjHJiN4OV3GRec9Kap2TYdjvLMRLbsQETzp1WN69qhVz_78m0dwz3es72MIj2Gvve7cc8Q1rX4RFPoOuIjxlQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB4tywEuLLA8AgsYiRukGzt-JEceWxVoA6Jd1FvkV6SKJUE04cCvx3YeIASIW5RMEsczznzjeQE8kZJmRDIT-9LfMVWaxUpjHHNlpOK2ytJQvnhV8MU5fbNl2wN4NuXCWGtD8Jmd-cPgyzeN7vxW2WnORCJIegkuO73PcJ-tNe2oJA6Z84B3CeYkJqnYjlkySX66KYrl2tmDBDsz1Zk13HfqSymnGfV1Sn9RSqHLyt8BZ1A88yNYjUPu400-zbpWzfT336o5_u83XYdrAwJFz3uRuQEHtr4JR2N3BzQs9mN496FR3b5F693nnTN_HVpHq58biuiFU38GNTWSqGi-2Qvkk0nQfOe978ghYbRefzx7v0evbBuivepbcD4_27xcxEP7hVinDLexUZgQwylPLDFGGk0dxM20swdNlWtsiEllqomRPFGk4j4e1Z3XRAurhZQ8vQ2HdVPbu4CqBMs8s4oLlVHDbV4RkRnLpFRWWsEiwOP8l3qoTe5bZFyUwUZJ8jKwr_TsKwf2RfB0uudLX5njn9THfu4nymHaIzgZ2VwOi3dfOo3NhHC_NhHB4-myW3belyJr23SOxrsbnW7nPII7vXhMzx6l6t6f3_kIriw2q2W5fF28vQ9Xff_6PqLwBA7br5194FBOqx4G4f4Becj03g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Similarity+Measurement+Based+on+a+Novel+Time+Filter+for+SSVEPs+Detection&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Jin%2C+Jing&rft.au=Wang%2C+Zhiqiang&rft.au=Xu%2C+Ren&rft.au=Liu%2C+Chang&rft.date=2023-08-01&rft.eissn=2162-2388&rft.volume=34&rft.issue=8&rft.spage=4096&rft_id=info:doi/10.1109%2FTNNLS.2021.3118468&rft_id=info%3Apmid%2F34648459&rft.externalDocID=34648459 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |