Robust Similarity Measurement Based on a Novel Time Filter for SSVEPs Detection

The steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) has received extensive attention in research for the less training time, excellent recognition performance, and high information translate rate. At present, most of the powerful SSVEPs detection methods are similar...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 34; no. 8; pp. 4096 - 4105
Main Authors Jin, Jing, Wang, Zhiqiang, Xu, Ren, Liu, Chang, Wang, Xingyu, Cichocki, Andrzej
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) has received extensive attention in research for the less training time, excellent recognition performance, and high information translate rate. At present, most of the powerful SSVEPs detection methods are similarity measurements based on spatial filters and Pearson's correlation coefficient. Among them, the task-related component analysis (TRCA)-based method and its variant, the ensemble TRCA (eTRCA)-based method, are two methods with high performance and great potential. However, they have a defect, that is, they can only suppress certain kinds of noise, but not more general noises. To solve this problem, a novel time filter was designed by introducing the temporally local weighting into the objective function of the TRCA-based method and using the singular value decomposition. Based on this, the time filter and (e)TRCA-based similarity measurement methods were proposed, which can perform a robust similarity measure to enhance the detection ability of SSVEPs. A benchmark dataset recorded from 35 subjects was used to evaluate the proposed methods and compare them with the (e)TRCA-based methods. The results indicated that the proposed methods performed significantly better than the (e)TRCA-based methods. Therefore, it is believed that the proposed time filter and the similarity measurement methods have promising potential for SSVEPs detection.
AbstractList The steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) has received extensive attention in research for the less training time, excellent recognition performance, and high information translate rate. At present, most of the powerful SSVEPs detection methods are similarity measurements based on spatial filters and Pearson's correlation coefficient. Among them, the task-related component analysis (TRCA)-based method and its variant, the ensemble TRCA (eTRCA)-based method, are two methods with high performance and great potential. However, they have a defect, that is, they can only suppress certain kinds of noise, but not more general noises. To solve this problem, a novel time filter was designed by introducing the temporally local weighting into the objective function of the TRCA-based method and using the singular value decomposition. Based on this, the time filter and (e)TRCA-based similarity measurement methods were proposed, which can perform a robust similarity measure to enhance the detection ability of SSVEPs. A benchmark dataset recorded from 35 subjects was used to evaluate the proposed methods and compare them with the (e)TRCA-based methods. The results indicated that the proposed methods performed significantly better than the (e)TRCA-based methods. Therefore, it is believed that the proposed time filter and the similarity measurement methods have promising potential for SSVEPs detection.
The steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) has received extensive attention in research for the less training time, excellent recognition performance, and high information translate rate. At present, most of the powerful SSVEPs detection methods are similarity measurements based on spatial filters and Pearson's correlation coefficient. Among them, the task-related component analysis (TRCA)-based method and its variant, the ensemble TRCA (eTRCA)-based method, are two methods with high performance and great potential. However, they have a defect, that is, they can only suppress certain kinds of noise, but not more general noises. To solve this problem, a novel time filter was designed by introducing the temporally local weighting into the objective function of the TRCA-based method and using the singular value decomposition. Based on this, the time filter and (e)TRCA-based similarity measurement methods were proposed, which can perform a robust similarity measure to enhance the detection ability of SSVEPs. A benchmark dataset recorded from 35 subjects was used to evaluate the proposed methods and compare them with the (e)TRCA-based methods. The results indicated that the proposed methods performed significantly better than the (e)TRCA-based methods. Therefore, it is believed that the proposed time filter and the similarity measurement methods have promising potential for SSVEPs detection.The steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) has received extensive attention in research for the less training time, excellent recognition performance, and high information translate rate. At present, most of the powerful SSVEPs detection methods are similarity measurements based on spatial filters and Pearson's correlation coefficient. Among them, the task-related component analysis (TRCA)-based method and its variant, the ensemble TRCA (eTRCA)-based method, are two methods with high performance and great potential. However, they have a defect, that is, they can only suppress certain kinds of noise, but not more general noises. To solve this problem, a novel time filter was designed by introducing the temporally local weighting into the objective function of the TRCA-based method and using the singular value decomposition. Based on this, the time filter and (e)TRCA-based similarity measurement methods were proposed, which can perform a robust similarity measure to enhance the detection ability of SSVEPs. A benchmark dataset recorded from 35 subjects was used to evaluate the proposed methods and compare them with the (e)TRCA-based methods. The results indicated that the proposed methods performed significantly better than the (e)TRCA-based methods. Therefore, it is believed that the proposed time filter and the similarity measurement methods have promising potential for SSVEPs detection.
Author Wang, Xingyu
Cichocki, Andrzej
Wang, Zhiqiang
Xu, Ren
Jin, Jing
Liu, Chang
Author_xml – sequence: 1
  givenname: Jing
  orcidid: 0000-0002-6133-5491
  surname: Jin
  fullname: Jin, Jing
  email: jinjingat@gmail.com
  organization: Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China
– sequence: 2
  givenname: Zhiqiang
  orcidid: 0000-0002-8577-1781
  surname: Wang
  fullname: Wang, Zhiqiang
  email: wangzhiqiang9610@163.com
  organization: Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China
– sequence: 3
  givenname: Ren
  orcidid: 0000-0001-8887-0235
  surname: Xu
  fullname: Xu, Ren
  email: renxu2012@gmail.com
  organization: Guger Technologies OG, Graz, Austria
– sequence: 4
  givenname: Chang
  orcidid: 0000-0002-2930-306X
  surname: Liu
  fullname: Liu, Chang
  email: lc13456@foxmail.com
  organization: Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China
– sequence: 5
  givenname: Xingyu
  surname: Wang
  fullname: Wang, Xingyu
  email: xywang@ecust.edu.cn
  organization: Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China
– sequence: 6
  givenname: Andrzej
  orcidid: 0000-0002-8364-7226
  surname: Cichocki
  fullname: Cichocki, Andrzej
  email: a.cichocki@skoltech.ru
  organization: Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34648459$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFv1DAQhS1UREvpHwAJWeLCZRd77DjOEUoLSMsWsQviZjn2RHKVxK3tIPXfk2WXPfSAL2ONvjczeu85ORnjiIS85GzJOWvebdfr1WYJDPhScK6l0k_IGXAFCxBanxz_9a9TcpHzLZufYpWSzTNyKqSSWlbNGbn5HtspF7oJQ-htCuWBfkWbp4QDjoV-sBk9jSO1dB1_Y0-3YUB6HfqCiXYx0c3m59W3TD9iQVdCHF-Qp53tM14c6jn5cX21vfy8WN18-nL5frVwouJl4VsO4JVUDMF7653UvNWONdJ3jeMevLDCgbeKtdAp0ABz34Gr0dXWKnFO3u7n3qV4P2EuZgjZYd_bEeOUDVQaNAetduibR-htnNI4X2dgNqGumdT1TL0-UFM7oDd3KQw2PZh_Vs0A7AGXYs4JuyPCmdlFYv5GYnaRmEMks0g_ErlQ7M6okmzo_y99tZcGRDzuaqqa1SDEH570l8o
CODEN ITNNAL
CitedBy_id crossref_primary_10_3389_fninf_2022_952474
crossref_primary_10_1007_s11431_024_2882_6
crossref_primary_10_1109_JIOT_2024_3488957
crossref_primary_10_1007_s11571_023_10035_3
crossref_primary_10_1016_j_cmpb_2023_107944
crossref_primary_10_1109_TNSRE_2023_3294815
crossref_primary_10_3389_fncom_2023_1101726
crossref_primary_10_1109_TIM_2024_3476551
crossref_primary_10_1109_TNSRE_2022_3156076
crossref_primary_10_1016_j_bspc_2024_106932
crossref_primary_10_1007_s11571_024_10116_x
crossref_primary_10_1088_1741_2552_ad1f7a
crossref_primary_10_1109_JSEN_2022_3173433
crossref_primary_10_1109_TNSRE_2022_3198434
crossref_primary_10_1002_wsbm_1635
crossref_primary_10_1109_JSEN_2023_3287983
crossref_primary_10_1007_s11571_022_09923_x
crossref_primary_10_1109_THMS_2023_3273538
crossref_primary_10_1109_TII_2022_3170422
crossref_primary_10_1109_ACCESS_2023_3328618
crossref_primary_10_1109_TCDS_2022_3193731
crossref_primary_10_1109_TBME_2024_3406603
crossref_primary_10_1007_s12264_022_00920_y
crossref_primary_10_1016_j_neunet_2024_106655
crossref_primary_10_1080_10255842_2024_2333924
crossref_primary_10_1109_TCDS_2022_3214081
crossref_primary_10_1080_0144929X_2024_2312436
crossref_primary_10_1080_10255842_2025_2457122
crossref_primary_10_3389_fncom_2022_942979
crossref_primary_10_1109_JSEN_2024_3445971
crossref_primary_10_1109_TCE_2023_3330423
crossref_primary_10_1109_ACCESS_2024_3454082
crossref_primary_10_1109_TNSRE_2022_3210258
crossref_primary_10_1088_1741_2552_adaf58
crossref_primary_10_1016_j_jneumeth_2024_110325
crossref_primary_10_1109_TNSRE_2022_3192988
crossref_primary_10_3389_fnins_2023_1246940
crossref_primary_10_1007_s11517_024_03193_x
crossref_primary_10_3389_fnins_2022_892794
crossref_primary_10_1109_JSEN_2022_3171808
crossref_primary_10_1007_s12264_024_01319_7
crossref_primary_10_1109_TCYB_2022_3166604
crossref_primary_10_1109_JSEN_2021_3130626
crossref_primary_10_1109_TNSRE_2024_3419013
crossref_primary_10_1109_TCSII_2022_3211931
crossref_primary_10_1109_TNSRE_2021_3131497
crossref_primary_10_1109_TIM_2023_3284952
crossref_primary_10_1016_j_cmpb_2024_108425
crossref_primary_10_1109_TCYB_2024_3390805
crossref_primary_10_1007_s11432_022_3440_5
crossref_primary_10_1016_j_bspc_2023_104924
crossref_primary_10_1016_j_neunet_2025_107124
crossref_primary_10_1109_TCDS_2024_3392745
crossref_primary_10_1016_j_neunet_2024_106313
crossref_primary_10_1109_TETCI_2023_3301385
crossref_primary_10_1109_JSEN_2023_3270281
crossref_primary_10_1109_TNSRE_2022_3156546
crossref_primary_10_1016_j_bspc_2024_106282
crossref_primary_10_1109_TNSRE_2022_3198021
crossref_primary_10_1016_j_measurement_2024_114959
crossref_primary_10_1109_TNSRE_2022_3172974
crossref_primary_10_1002_ima_22821
crossref_primary_10_1002_ima_22823
crossref_primary_10_1109_TNSRE_2022_3219450
crossref_primary_10_1109_JTEHM_2024_3454077
crossref_primary_10_1016_j_bbr_2024_115345
crossref_primary_10_1080_10255842_2023_2275244
crossref_primary_10_1109_JSEN_2024_3363754
crossref_primary_10_1109_TNSRE_2022_3162029
crossref_primary_10_1080_10255842_2024_2414069
crossref_primary_10_1088_1741_2552_ad7f89
crossref_primary_10_1080_10255842_2024_2371036
crossref_primary_10_1088_1741_2552_ad558a
crossref_primary_10_1007_s11432_022_3548_2
crossref_primary_10_1109_JSEN_2022_3205956
crossref_primary_10_1109_TCDS_2022_3159285
crossref_primary_10_1109_TNSRE_2022_3166224
Cites_doi 10.1109/TNSRE.2019.2956488
10.1142/S0129065714500130
10.1016/j.neucom.2019.10.049
10.1109/TNSRE.2018.2826541
10.1088/1741-2552/ab2373
10.1109/TNSRE.2016.2627556
10.1142/S0129065720500203
10.1109/TBME.2002.803536
10.1088/1741-2560/6/4/046002
10.1080/2326263X.2013.869003
10.1109/TBME.2006.886577
10.1088/1741-2552/ab914e
10.1088/1741-2560/12/4/046008
10.1016/S0031-3203(99)00139-9
10.1016/j.neuroimage.2012.08.044
10.1109/TNSRE.2020.3020975
10.1109/TBME.2020.2975552
10.1016/j.neunet.2018.02.011
10.1073/pnas.1508080112
10.1109/TSP.2010.2052047
10.1142/S0129065714500191
10.1109/TNSRE.2020.2968579
10.1109/TNSRE.2020.2968307
10.1109/TBME.2017.2694818
10.1142/S0129065717500393
10.1016/j.neunet.2019.07.008
10.1109/TBME.2020.2965178
10.1109/TNSRE.2013.2279680
10.1109/TRE.2000.847807
10.1088/1741-2560/2/4/008
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2021.3118468
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 4105
ExternalDocumentID 34648459
10_1109_TNNLS_2021_3118468
9570723
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Key Research and Development Program
  grantid: 2017YFB13003002; 2018YFC2002300; 2018YFC2002301
  funderid: 10.13039/501100012166
– fundername: Program of Introducing Talents of Discipline to Universities through the 111 Project
  grantid: B17017
– fundername: Polish National Science Center
  grantid: UMO-2016/20/W/NZ4/00354
  funderid: 10.13039/501100004281
– fundername: Ministry of Education and Science of the Russian Federation
  grantid: 14.756.31.0001
  funderid: 10.13039/501100003443
– fundername: ShuGuang Project
– fundername: Grant National Natural Science Foundation of China
  grantid: 61573142; 61773164
  funderid: 10.13039/501100001809
– fundername: Shanghai Municipal Education Commission and the Shanghai Education Development Foundation
  grantid: 19SG25
  funderid: 10.13039/501100003024
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-db122d6460e2ddadc481b8c094df9c1d2d3a3c2da60b2f62822f9cc2c7ec7aa63
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Fri Jul 11 09:46:45 EDT 2025
Sun Jun 29 15:18:38 EDT 2025
Mon Jul 21 05:59:53 EDT 2025
Tue Jul 01 00:27:42 EDT 2025
Thu Apr 24 22:54:56 EDT 2025
Wed Aug 27 02:55:13 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-db122d6460e2ddadc481b8c094df9c1d2d3a3c2da60b2f62822f9cc2c7ec7aa63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6133-5491
0000-0002-8364-7226
0000-0002-2930-306X
0000-0002-8577-1781
0000-0001-8887-0235
PMID 34648459
PQID 2845770487
PQPubID 85436
PageCount 10
ParticipantIDs crossref_primary_10_1109_TNNLS_2021_3118468
pubmed_primary_34648459
ieee_primary_9570723
crossref_citationtrail_10_1109_TNNLS_2021_3118468
proquest_journals_2845770487
proquest_miscellaneous_2582812866
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref33
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref4
ref3
ref6
ref5
zhou (ref24) 2009; 22
wai (ref32) 2020
jin (ref9) 2020
References_xml – ident: ref13
  doi: 10.1109/TNSRE.2019.2956488
– year: 2020
  ident: ref32
  article-title: Towards a fast steady-state visual evoked potentials (SSVEP) brain-computer interface (BCI)
  publication-title: arXiv 2002 01171
– ident: ref28
  doi: 10.1142/S0129065714500130
– ident: ref27
  doi: 10.1016/j.neucom.2019.10.049
– ident: ref26
  doi: 10.1109/TNSRE.2018.2826541
– ident: ref22
  doi: 10.1088/1741-2552/ab2373
– ident: ref8
  doi: 10.1109/TNSRE.2016.2627556
– ident: ref33
  doi: 10.1142/S0129065720500203
– ident: ref17
  doi: 10.1109/TBME.2002.803536
– ident: ref14
  doi: 10.1088/1741-2560/6/4/046002
– ident: ref4
  doi: 10.1080/2326263X.2013.869003
– year: 2020
  ident: ref9
  article-title: Internal feature selection method of CSP based on L1-norm and Dempster-Shafer theory
  publication-title: IEEE Trans Neural Netw Learn Syst
– ident: ref18
  doi: 10.1109/TBME.2006.886577
– ident: ref1
  doi: 10.1088/1741-2552/ab914e
– ident: ref21
  doi: 10.1088/1741-2560/12/4/046008
– ident: ref25
  doi: 10.1016/S0031-3203(99)00139-9
– ident: ref30
  doi: 10.1016/j.neuroimage.2012.08.044
– ident: ref11
  doi: 10.1109/TNSRE.2020.3020975
– volume: 22
  start-page: 2286
  year: 2009
  ident: ref24
  article-title: Canonical time warping for alignment of human behavior
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref15
  doi: 10.1109/TBME.2020.2975552
– ident: ref10
  doi: 10.1016/j.neunet.2018.02.011
– ident: ref20
  doi: 10.1073/pnas.1508080112
– ident: ref23
  doi: 10.1109/TSP.2010.2052047
– ident: ref3
  doi: 10.1142/S0129065714500191
– ident: ref2
  doi: 10.1109/TNSRE.2020.2968579
– ident: ref7
  doi: 10.1109/TNSRE.2020.2968307
– ident: ref19
  doi: 10.1109/TBME.2017.2694818
– ident: ref31
  doi: 10.1142/S0129065717500393
– ident: ref5
  doi: 10.1016/j.neunet.2019.07.008
– ident: ref12
  doi: 10.1109/TBME.2020.2965178
– ident: ref29
  doi: 10.1109/TNSRE.2013.2279680
– ident: ref6
  doi: 10.1109/TRE.2000.847807
– ident: ref16
  doi: 10.1088/1741-2560/2/4/008
SSID ssj0000605649
Score 2.6660426
Snippet The steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) has received extensive attention in research for the less training time,...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4096
SubjectTerms Brain
Brain–computer interface(BCI)
Computer applications
Correlation
Correlation coefficient
Correlation coefficients
Human-computer interface
Implants
Linear programming
Measurement methods
Objective function
Robustness
Similarity
similarity measurement
Singular value decomposition
Spatial filtering
Steady-state
steady-state visual evoked potential (SSVEP)
Task analysis
task-related component analysis (TRCA)
time filter
Time measurement
Training
Visual evoked potentials
Visualization
Title Robust Similarity Measurement Based on a Novel Time Filter for SSVEPs Detection
URI https://ieeexplore.ieee.org/document/9570723
https://www.ncbi.nlm.nih.gov/pubmed/34648459
https://www.proquest.com/docview/2845770487
https://www.proquest.com/docview/2582812866
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PXGhlPIILchI3CDb2HHs5MijqwqxC2JbtLfIr0irlgR1kx766zt2HiAEiFuUONnEM975Ps8L4JVSPGcqs7Ev_R1zbbJYG0pjoa3SwlV5GsoXL5bi7IJ_XGfrHXgz5cI450LwmZv5w-DLt43p_FbZSZHJRLJ0F3aRuPW5WtN-SoK4XAS0y6hgMUvlesyRSYqT8-Xy0wrZIKNIUpHUCN-nL-WC59xXKf3FJIUeK3-Hm8HszPdhMb5wH21yOetaPTO3v9Vy_N8vegD3B_xJ3vYKcwA7rn4I-2NvBzIs9UP4_LXR3bYlq833DZJfxOpk8XM7kbxD42dJUxNFls2NuyI-lYTMN973ThAHk9Xq2-mXLfng2hDrVT-Ci_np-fuzeGi-EJs0o21sNWXMCi4Sx6xV1nAEuLlBNmirwlDLbKpSw6wSiWaV8NGoeN4wI52RSon0MezVTe2eAqkSqorcaSF1zq1wRcVkbl2mlHbKySwCOs5_aYbK5L5BxlUZGEpSlEF8pRdfOYgvgtfTPT_6uhz_HH3o534aOUx7BMejmMth6W5LtNeZlPjHJiN4OV3GRec9Kap2TYdjvLMRLbsQETzp1WN69qhVz_78m0dwz3es72MIj2Gvve7cc8Q1rX4RFPoOuIjxlQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB4tywEuLLA8AgsYiRukGzt-JEceWxVoA6Jd1FvkV6SKJUE04cCvx3YeIASIW5RMEsczznzjeQE8kZJmRDIT-9LfMVWaxUpjHHNlpOK2ytJQvnhV8MU5fbNl2wN4NuXCWGtD8Jmd-cPgyzeN7vxW2WnORCJIegkuO73PcJ-tNe2oJA6Z84B3CeYkJqnYjlkySX66KYrl2tmDBDsz1Zk13HfqSymnGfV1Sn9RSqHLyt8BZ1A88yNYjUPu400-zbpWzfT336o5_u83XYdrAwJFz3uRuQEHtr4JR2N3BzQs9mN496FR3b5F693nnTN_HVpHq58biuiFU38GNTWSqGi-2Qvkk0nQfOe978ghYbRefzx7v0evbBuivepbcD4_27xcxEP7hVinDLexUZgQwylPLDFGGk0dxM20swdNlWtsiEllqomRPFGk4j4e1Z3XRAurhZQ8vQ2HdVPbu4CqBMs8s4oLlVHDbV4RkRnLpFRWWsEiwOP8l3qoTe5bZFyUwUZJ8jKwr_TsKwf2RfB0uudLX5njn9THfu4nymHaIzgZ2VwOi3dfOo3NhHC_NhHB4-myW3belyJr23SOxrsbnW7nPII7vXhMzx6l6t6f3_kIriw2q2W5fF28vQ9Xff_6PqLwBA7br5194FBOqx4G4f4Becj03g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Similarity+Measurement+Based+on+a+Novel+Time+Filter+for+SSVEPs+Detection&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Jin%2C+Jing&rft.au=Wang%2C+Zhiqiang&rft.au=Xu%2C+Ren&rft.au=Liu%2C+Chang&rft.date=2023-08-01&rft.eissn=2162-2388&rft.volume=34&rft.issue=8&rft.spage=4096&rft_id=info:doi/10.1109%2FTNNLS.2021.3118468&rft_id=info%3Apmid%2F34648459&rft.externalDocID=34648459
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon