Lithium-ion battery state of health estimation with short-term current pulse test and support vector machine
State of Health (SOH) of Lithium-ion (Li-ion) battery plays a pivotal role in the reliability and safety of the Battery Energy Storage System (BESS) in the power system. Utilizing the features from the terminal voltage response of the Li-ion battery under current pulse test, a new method is proposed...
Saved in:
Published in | Microelectronics and reliability Vol. 88-90; pp. 1216 - 1220 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | State of Health (SOH) of Lithium-ion (Li-ion) battery plays a pivotal role in the reliability and safety of the Battery Energy Storage System (BESS) in the power system. Utilizing the features from the terminal voltage response of the Li-ion battery under current pulse test, a new method is proposed in this paper by using the Support Vector Machine (SVM) technique for accurately estimating the battery SOH. Since the terminal voltage measured at the same condition varies with the battery aging process, the features for SOH estimation are extracted from the voltage response under a specific current pulse test. The benefit of the proposed method is that the features come from the short-term test, which is much convenient to be obtained in real applications. After applying the short term current pulse test (few seconds), the keen points and the slopes in the voltage response curve are selected as the potential candidate features. In order to find the most effective feature for SOH estimation, all the possible combinations of the features are investigated and compared. Afterwards, SVM is able to establish the optimal SOH estimator on the basis of the optimal feature combination and the battery SOH. A LiFePO4 battery is tested in the test station for 37 weeks to verify the validation of the proposed method.
•Features for SOH estimation are extracted from the short-term current pulse test.•Optimal feature is selected from all the candidate features.•Support vector machine is used to establish the SOH estimator.•The proposed method is validated on a LiFePO4 battery with 37 weeks' test. |
---|---|
AbstractList | State of Health (SOH) of Lithium-ion (Li-ion) battery plays a pivotal role in the reliability and safety of the Battery Energy Storage System (BESS) in the power system. Utilizing the features from the terminal voltage response of the Li-ion battery under current pulse test, a new method is proposed in this paper by using the Support Vector Machine (SVM) technique for accurately estimating the battery SOH. Since the terminal voltage measured at the same condition varies with the battery aging process, the features for SOH estimation are extracted from the voltage response under a specific current pulse test. The benefit of the proposed method is that the features come from the short-term test, which is much convenient to be obtained in real applications. After applying the short term current pulse test (few seconds), the keen points and the slopes in the voltage response curve are selected as the potential candidate features. In order to find the most effective feature for SOH estimation, all the possible combinations of the features are investigated and compared. Afterwards, SVM is able to establish the optimal SOH estimator on the basis of the optimal feature combination and the battery SOH. A LiFePO4 battery is tested in the test station for 37 weeks to verify the validation of the proposed method.
•Features for SOH estimation are extracted from the short-term current pulse test.•Optimal feature is selected from all the candidate features.•Support vector machine is used to establish the SOH estimator.•The proposed method is validated on a LiFePO4 battery with 37 weeks' test. |
Author | Teodorescu, Remus Meng, Jinhao Luo, Guangzhao Cai, Lei Stroe, Daniel-Ioan |
Author_xml | – sequence: 1 givenname: Jinhao surname: Meng fullname: Meng, Jinhao organization: School of Automation, Northwestern Polytechnical University, Xi'an 710072, China – sequence: 2 givenname: Lei surname: Cai fullname: Cai, Lei organization: Faculty of Computer Science and Engineering, Xi'an University of Technology, Xi'an 710048, China – sequence: 3 givenname: Guangzhao orcidid: 0000-0001-8013-6327 surname: Luo fullname: Luo, Guangzhao email: guangzhao.luo@nwpu.edu.cn organization: School of Automation, Northwestern Polytechnical University, Xi'an 710072, China – sequence: 4 givenname: Daniel-Ioan surname: Stroe fullname: Stroe, Daniel-Ioan organization: Department of Energy Technology, Aalborg University, Aalborg 9220, Denmark – sequence: 5 givenname: Remus surname: Teodorescu fullname: Teodorescu, Remus organization: Department of Energy Technology, Aalborg University, Aalborg 9220, Denmark |
BookMark | eNqFkM1KAzEURoNUsK2-guQFZrzJ_GQKLpSiVSi4UXAXMpk7TMr8kWQqfXtTqxs3Xd3N-S6csyCzfuiRkFsGMQOW3-3izmg7WGxjDqyIQcTAswsyZ4Xg0SplnzMyB-B5xAVLr8jCuR0ACGBsTtqt8Y2ZusgMPS2V92gP1HnlkQ41bVC1vqHovOmUPyJfAaeuGayPAtpRPVmLvafj1DqkPpBU9RV10zgGhu5R-8HSTunG9HhNLmsVuJvfuyQfz0_v65do-7Z5XT9uI51kzEfVqua6SDCDepVjWTCVlWUhCtAsS9NMc9BpmVaYJWnOkiQYlqWuhaiBIwrQyZLkp78hi3MWaznaIGAPkoE8NpM7-ddMHptJEDI0C8P7f0Nt_I-4t8q05-cPpzkGub1BK5022GusjA0hZDWYcy--AWTUklk |
CitedBy_id | crossref_primary_10_1016_j_apenergy_2021_117346 crossref_primary_10_1016_j_jpowsour_2020_228654 crossref_primary_10_1109_TTE_2021_3059738 crossref_primary_10_1016_j_electacta_2021_138294 crossref_primary_10_1109_TPEL_2020_3033297 crossref_primary_10_3390_app9194170 crossref_primary_10_1016_j_est_2022_105183 crossref_primary_10_1039_D2SE01209J crossref_primary_10_3390_electronics12194105 crossref_primary_10_1016_j_est_2021_103846 crossref_primary_10_1109_TIM_2023_3332936 crossref_primary_10_1016_j_egyai_2024_100468 crossref_primary_10_1016_j_eswa_2024_123563 crossref_primary_10_1016_j_jtte_2023_06_001 crossref_primary_10_1016_j_est_2022_104263 crossref_primary_10_3389_fenrg_2021_693249 crossref_primary_10_1109_JESTPE_2020_3047004 crossref_primary_10_3390_batteries8110229 crossref_primary_10_1007_s12204_024_2727_y crossref_primary_10_1109_TPEL_2020_2978493 crossref_primary_10_1016_j_est_2021_103158 crossref_primary_10_1016_j_est_2023_107754 crossref_primary_10_1016_j_rser_2023_114264 crossref_primary_10_1149_1945_7111_ac1cfa crossref_primary_10_1016_j_energy_2023_129167 crossref_primary_10_1016_j_est_2024_110711 crossref_primary_10_1016_j_est_2024_113827 crossref_primary_10_1016_j_segan_2022_100603 crossref_primary_10_1016_j_measurement_2021_109057 crossref_primary_10_3390_ma18010145 crossref_primary_10_1088_1742_6596_1678_1_012067 crossref_primary_10_1016_j_apenergy_2024_124820 crossref_primary_10_1007_s11708_023_0891_7 crossref_primary_10_1002_est2_412 crossref_primary_10_1038_s41598_021_91241_z crossref_primary_10_1016_j_jpowsour_2021_230710 crossref_primary_10_1016_j_ijplas_2021_103189 crossref_primary_10_1016_j_est_2023_108910 crossref_primary_10_1016_j_asoc_2022_109615 crossref_primary_10_1002_ese3_606 crossref_primary_10_1109_TEC_2023_3282017 crossref_primary_10_20964_2022_11_25 crossref_primary_10_1109_TIE_2021_3065594 crossref_primary_10_3390_en16124639 crossref_primary_10_1007_s10800_024_02217_6 crossref_primary_10_1016_j_est_2022_105384 crossref_primary_10_3390_batteries9090437 crossref_primary_10_1016_j_engappai_2024_109314 crossref_primary_10_23919_CJEE_2024_000085 crossref_primary_10_1002_est2_70080 crossref_primary_10_1016_j_energy_2021_120160 crossref_primary_10_1109_TIE_2020_3001836 crossref_primary_10_1016_j_est_2021_103804 crossref_primary_10_3390_electronics8101118 crossref_primary_10_1016_j_jpowsour_2024_234697 crossref_primary_10_23919_PCMP_2023_000234 crossref_primary_10_1016_j_est_2020_101741 crossref_primary_10_1016_j_jpowsour_2020_228740 crossref_primary_10_1093_ce_zkad054 crossref_primary_10_1016_j_jpowsour_2020_229154 crossref_primary_10_1049_els2_12045 crossref_primary_10_1155_2021_4826409 crossref_primary_10_1016_j_est_2022_104584 crossref_primary_10_1002_qre_3144 crossref_primary_10_1016_j_jechem_2022_06_049 crossref_primary_10_1109_TIA_2020_3020529 crossref_primary_10_1149_1945_7111_adada3 crossref_primary_10_3390_app12125904 crossref_primary_10_1016_j_energy_2022_125501 crossref_primary_10_1016_j_jpowsour_2024_235813 crossref_primary_10_20964_2022_08_34 crossref_primary_10_1016_j_energy_2022_125503 crossref_primary_10_1016_j_energy_2023_128956 crossref_primary_10_1016_j_electacta_2021_139047 crossref_primary_10_20964_2022_08_30 crossref_primary_10_1002_ente_202201510 crossref_primary_10_1016_j_egyr_2023_01_108 crossref_primary_10_1109_ACCESS_2019_2923095 crossref_primary_10_3390_app12094761 crossref_primary_10_3390_en15072448 crossref_primary_10_3390_machines13030175 crossref_primary_10_1016_j_apenergy_2022_119469 crossref_primary_10_1016_j_est_2021_102372 crossref_primary_10_3390_pr12091871 crossref_primary_10_1016_j_est_2022_106051 crossref_primary_10_1016_j_rser_2023_114224 crossref_primary_10_1109_TIE_2023_3247735 crossref_primary_10_1002_ese3_362 crossref_primary_10_1016_j_energy_2021_122881 crossref_primary_10_1016_j_etran_2019_100028 crossref_primary_10_1109_TTE_2023_3283572 crossref_primary_10_1016_j_jclepro_2021_125814 crossref_primary_10_1016_j_rser_2023_114077 crossref_primary_10_1109_TEC_2023_3294540 crossref_primary_10_1016_j_est_2025_116078 crossref_primary_10_1016_j_isatra_2022_10_003 crossref_primary_10_1016_j_jpowsour_2024_235482 crossref_primary_10_1109_ACCESS_2019_2936213 crossref_primary_10_1115_1_4064666 crossref_primary_10_1016_j_apenergy_2024_124974 crossref_primary_10_3390_en14164833 crossref_primary_10_1016_j_procir_2022_02_076 crossref_primary_10_1016_j_measurement_2021_110502 crossref_primary_10_3390_en15134753 crossref_primary_10_3390_batteries10010010 crossref_primary_10_1016_j_apenergy_2023_122417 crossref_primary_10_1109_JESTPE_2021_3106708 crossref_primary_10_1016_j_eswa_2023_122034 crossref_primary_10_1016_j_etran_2023_100296 |
Cites_doi | 10.1109/TIA.2017.2756026 10.1109/TPEL.2016.2535321 10.1016/j.jpowsour.2015.01.154 10.1109/JPROC.2014.2317451 10.1109/TTE.2017.2776558 10.1016/j.jpowsour.2010.09.048 10.1016/j.epsr.2014.06.023 10.1016/j.apenergy.2014.03.086 10.1016/j.jpowsour.2018.03.015 10.1016/j.jpowsour.2013.11.029 10.1016/j.apenergy.2016.04.057 10.1109/TIA.2016.2616319 10.1109/TEC.2015.2424673 10.1109/TIE.2017.2674593 10.1016/j.apenergy.2014.04.103 10.1109/TIE.2013.2259779 10.1016/j.jpowsour.2016.07.065 10.1016/j.jpowsour.2017.05.004 10.1109/TII.2012.2222650 10.1109/TIA.2017.2775179 10.1109/TVT.2017.2715333 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd |
Copyright_xml | – notice: 2018 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.microrel.2018.07.025 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-941X |
EndPage | 1220 |
ExternalDocumentID | 10_1016_j_microrel_2018_07_025 S0026271418305687 |
GroupedDBID | --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 29M 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ RXW SDF SDG SES SET SEW SPC SPCBC SPD SSM SST SSV SSZ T5K T9H TAE UHS UNMZH WUQ XOL ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c351t-d9f2c83e50f96eb81a5bb8780c15445c20c4b4de5346133941bbcf77f02ee70c3 |
IEDL.DBID | .~1 |
ISSN | 0026-2714 |
IngestDate | Tue Jul 01 01:27:29 EDT 2025 Thu Apr 24 23:11:17 EDT 2025 Fri Feb 23 02:18:36 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lithium-ion battery Feature selection Current pulse test Support vector machine State of health |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-d9f2c83e50f96eb81a5bb8780c15445c20c4b4de5346133941bbcf77f02ee70c3 |
ORCID | 0000-0001-8013-6327 |
PageCount | 5 |
ParticipantIDs | crossref_primary_10_1016_j_microrel_2018_07_025 crossref_citationtrail_10_1016_j_microrel_2018_07_025 elsevier_sciencedirect_doi_10_1016_j_microrel_2018_07_025 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-09-01 |
PublicationDateYYYYMMDD | 2018-09-01 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Microelectronics and reliability |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Cacciato, Nobile, Scarcella, Scelba (bb0040) 2017; 32 Zhang, Allafi, Dinh, Ascencio, Marco (bb0060) 2017 Chaoui, Ibe-Ekeocha (bb0085) 2017; 66 Wu, Wang, Zhang, Chen (bb0105) 2016; 327 Feng, Yang, Zhao, Zhang, Qiang (bb0055) 2015; 281 Koller, Borsche, Ulbig, Andersson (bb0005) 2015; 120 Stroe, Knap, Swierczynski, Stroe, Teodorescu (bb0025) 2017; 53 Plett (bb0065) 2011; 196 Richardson, Osborne, Howey (bb0090) 2017; 357 Hu, Jain, Tamirisa, Gorka (bb0050) 2014; 126 Yang, Zhang, Pan, Wang, Chen (bb0095) 2018; 384 Gholizadeh, Salmasi (bb0045) 2014; 61 Kim, Wang, Sahinoglu, Wada, Hara, Qiao (bb0070) 2015; 30 Wu, Zhang, Chen (bb0075) 2016; 173 Zhao, Wu, Hu, Xu, Rasmussen (bb0015) 2015; 137 Han, Ouyang, Lu, Li, Zheng, Li (bb0110) 2014; 251 Guha, Patra (bb0035) 2018; 4 You, Park, Oh (bb0080) 2017; 64 Meng, Ricco, Luo, Swierczynski, Stroe, Stroe, Teodorescu (bb0020) 2018; 54 Stroe, Swierczynski, Kær, Teodorescu (bb0030) 2018 Lawder, Suthar, Northrop, De, Hoff, Leitermann, Crow, Santhanagopalan, Subramanian (bb0010) 2014; 102 Lin, Liang, Chen (bb0100) 2013; 9 Chaoui (10.1016/j.microrel.2018.07.025_bb0085) 2017; 66 Richardson (10.1016/j.microrel.2018.07.025_bb0090) 2017; 357 Stroe (10.1016/j.microrel.2018.07.025_bb0025) 2017; 53 Koller (10.1016/j.microrel.2018.07.025_bb0005) 2015; 120 Lawder (10.1016/j.microrel.2018.07.025_bb0010) 2014; 102 Feng (10.1016/j.microrel.2018.07.025_bb0055) 2015; 281 You (10.1016/j.microrel.2018.07.025_bb0080) 2017; 64 Stroe (10.1016/j.microrel.2018.07.025_bb0030) 2018 Hu (10.1016/j.microrel.2018.07.025_bb0050) 2014; 126 Guha (10.1016/j.microrel.2018.07.025_bb0035) 2018; 4 Plett (10.1016/j.microrel.2018.07.025_bb0065) 2011; 196 Yang (10.1016/j.microrel.2018.07.025_bb0095) 2018; 384 Cacciato (10.1016/j.microrel.2018.07.025_bb0040) 2017; 32 Wu (10.1016/j.microrel.2018.07.025_bb0075) 2016; 173 Zhao (10.1016/j.microrel.2018.07.025_bb0015) 2015; 137 Meng (10.1016/j.microrel.2018.07.025_bb0020) 2018; 54 Gholizadeh (10.1016/j.microrel.2018.07.025_bb0045) 2014; 61 Zhang (10.1016/j.microrel.2018.07.025_bb0060) 2017 Lin (10.1016/j.microrel.2018.07.025_bb0100) 2013; 9 Kim (10.1016/j.microrel.2018.07.025_bb0070) 2015; 30 Wu (10.1016/j.microrel.2018.07.025_bb0105) 2016; 327 Han (10.1016/j.microrel.2018.07.025_bb0110) 2014; 251 |
References_xml | – volume: 126 start-page: 182 year: 2014 end-page: 189 ident: bb0050 article-title: Method for estimating capacity and predicting remaining useful life of lithium-ion battery publication-title: Appl. Energy – volume: 30 start-page: 842 year: 2015 end-page: 851 ident: bb0070 article-title: A Rayleigh quotient-based recursive total-least-squares online maximum capacity estimation for lithium-ion batteries publication-title: IEEE Trans. Energy Convers. – volume: 64 start-page: 4885 year: 2017 end-page: 4893 ident: bb0080 article-title: Diagnosis of electric vehicle batteries using recurrent neural networks publication-title: IEEE Trans. Ind. Electron. – volume: 54 start-page: 1583 year: 2018 end-page: 1591 ident: bb0020 article-title: An overview and comparison of online implementable SOC estimation methods for Lithium-ion battery publication-title: IEEE Trans. Ind. Appl. – volume: 53 start-page: 430 year: 2017 end-page: 438 ident: bb0025 article-title: Operation of a grid-connected lithium-ion battery energy storage system for primary frequency regulation: a battery lifetime perspective publication-title: IEEE Trans. Ind. Appl. – volume: 137 start-page: 545 year: 2015 end-page: 553 ident: bb0015 article-title: Review of energy storage system for wind power integration support publication-title: Appl. Energy – volume: 357 start-page: 209 year: 2017 end-page: 219 ident: bb0090 article-title: Gaussian process regression for forecasting battery state of health publication-title: J. Power Sources – volume: 120 start-page: 128 year: 2015 end-page: 135 ident: bb0005 article-title: Review of grid applications with the Zurich 1 MW battery energy storage system publication-title: Electr. Power Syst. Res. – volume: 61 start-page: 1335 year: 2014 end-page: 1344 ident: bb0045 article-title: Estimation of state of charge, unknown nonlinearities, and state of health of a lithium-ion battery based on a comprehensive unobservable model publication-title: IEEE Trans. Ind. Electron. – volume: 32 start-page: 794 year: 2017 end-page: 803 ident: bb0040 article-title: Real-time model-based estimation of SOC and SOH for energy storage systems publication-title: IEEE Trans. Power Electron. – volume: 384 start-page: 387 year: 2018 end-page: 395 ident: bb0095 article-title: A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve publication-title: J. Power Sources – start-page: 517 year: 2018 end-page: 525 ident: bb0030 article-title: Degradation behavior of lithium-ion batteries during calendar ageing - the case of the internal resistance increase publication-title: IEEE Trans. Ind. Appl. – volume: 281 start-page: 192 year: 2015 end-page: 203 ident: bb0055 article-title: Online identification of lithium-ion battery parameters based on an improved equivalent-circuit model and its implementation on battery state-of-power prediction publication-title: J. Power Sources – volume: 196 start-page: 2319 year: 2011 end-page: 2331 ident: bb0065 article-title: Recursive approximate weighted total least squares estimation of battery cell total capacity publication-title: J. Power Sources – volume: 173 start-page: 134 year: 2016 end-page: 140 ident: bb0075 article-title: An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks publication-title: Appl. Energy – volume: 251 start-page: 38 year: 2014 end-page: 54 ident: bb0110 article-title: A comparative study of commercial lithium ion battery cycle life in electrical vehicle: aging mechanism identification publication-title: J. Power Sources – volume: 102 start-page: 1014 year: 2014 end-page: 1030 ident: bb0010 article-title: Battery energy storage system (BESS) and battery management system (BMS) for grid-scale applications publication-title: Proc. IEEE – volume: 66 start-page: 8773 year: 2017 end-page: 8783 ident: bb0085 article-title: State of charge and state of health estimation for lithium batteries using recurrent neural networks publication-title: IEEE Trans. Veh. Technol. – volume: 327 start-page: 457 year: 2016 end-page: 464 ident: bb0105 article-title: A novel state of health estimation method of Li-ion battery using group method of data handling publication-title: J. Power Sources – volume: 9 start-page: 679 year: 2013 end-page: 685 ident: bb0100 article-title: Estimation of battery state of health using probabilistic neural network publication-title: IEEE Trans. Ind. Inf. – year: 2017 ident: bb0060 article-title: Online estimation of battery equivalent circuit model parameters and state of charge using decoupled least squares technique publication-title: Energy – volume: 4 start-page: 135 year: 2018 end-page: 146 ident: bb0035 article-title: State of health estimation of lithium-ion batteries using capacity fade and internal resistance growth models publication-title: IEEE Trans. Transp. Electrif. – start-page: 517 year: 2018 ident: 10.1016/j.microrel.2018.07.025_bb0030 article-title: Degradation behavior of lithium-ion batteries during calendar ageing - the case of the internal resistance increase publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2017.2756026 – volume: 32 start-page: 794 year: 2017 ident: 10.1016/j.microrel.2018.07.025_bb0040 article-title: Real-time model-based estimation of SOC and SOH for energy storage systems publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2016.2535321 – volume: 281 start-page: 192 year: 2015 ident: 10.1016/j.microrel.2018.07.025_bb0055 article-title: Online identification of lithium-ion battery parameters based on an improved equivalent-circuit model and its implementation on battery state-of-power prediction publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.01.154 – volume: 102 start-page: 1014 year: 2014 ident: 10.1016/j.microrel.2018.07.025_bb0010 article-title: Battery energy storage system (BESS) and battery management system (BMS) for grid-scale applications publication-title: Proc. IEEE doi: 10.1109/JPROC.2014.2317451 – volume: 4 start-page: 135 year: 2018 ident: 10.1016/j.microrel.2018.07.025_bb0035 article-title: State of health estimation of lithium-ion batteries using capacity fade and internal resistance growth models publication-title: IEEE Trans. Transp. Electrif. doi: 10.1109/TTE.2017.2776558 – year: 2017 ident: 10.1016/j.microrel.2018.07.025_bb0060 article-title: Online estimation of battery equivalent circuit model parameters and state of charge using decoupled least squares technique publication-title: Energy – volume: 196 start-page: 2319 year: 2011 ident: 10.1016/j.microrel.2018.07.025_bb0065 article-title: Recursive approximate weighted total least squares estimation of battery cell total capacity publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.09.048 – volume: 120 start-page: 128 year: 2015 ident: 10.1016/j.microrel.2018.07.025_bb0005 article-title: Review of grid applications with the Zurich 1 MW battery energy storage system publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2014.06.023 – volume: 126 start-page: 182 year: 2014 ident: 10.1016/j.microrel.2018.07.025_bb0050 article-title: Method for estimating capacity and predicting remaining useful life of lithium-ion battery publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.03.086 – volume: 384 start-page: 387 year: 2018 ident: 10.1016/j.microrel.2018.07.025_bb0095 article-title: A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.03.015 – volume: 251 start-page: 38 year: 2014 ident: 10.1016/j.microrel.2018.07.025_bb0110 article-title: A comparative study of commercial lithium ion battery cycle life in electrical vehicle: aging mechanism identification publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.11.029 – volume: 173 start-page: 134 year: 2016 ident: 10.1016/j.microrel.2018.07.025_bb0075 article-title: An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.04.057 – volume: 53 start-page: 430 year: 2017 ident: 10.1016/j.microrel.2018.07.025_bb0025 article-title: Operation of a grid-connected lithium-ion battery energy storage system for primary frequency regulation: a battery lifetime perspective publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2016.2616319 – volume: 30 start-page: 842 year: 2015 ident: 10.1016/j.microrel.2018.07.025_bb0070 article-title: A Rayleigh quotient-based recursive total-least-squares online maximum capacity estimation for lithium-ion batteries publication-title: IEEE Trans. Energy Convers. doi: 10.1109/TEC.2015.2424673 – volume: 64 start-page: 4885 year: 2017 ident: 10.1016/j.microrel.2018.07.025_bb0080 article-title: Diagnosis of electric vehicle batteries using recurrent neural networks publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2017.2674593 – volume: 137 start-page: 545 year: 2015 ident: 10.1016/j.microrel.2018.07.025_bb0015 article-title: Review of energy storage system for wind power integration support publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.04.103 – volume: 61 start-page: 1335 year: 2014 ident: 10.1016/j.microrel.2018.07.025_bb0045 article-title: Estimation of state of charge, unknown nonlinearities, and state of health of a lithium-ion battery based on a comprehensive unobservable model publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2013.2259779 – volume: 327 start-page: 457 year: 2016 ident: 10.1016/j.microrel.2018.07.025_bb0105 article-title: A novel state of health estimation method of Li-ion battery using group method of data handling publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.07.065 – volume: 357 start-page: 209 year: 2017 ident: 10.1016/j.microrel.2018.07.025_bb0090 article-title: Gaussian process regression for forecasting battery state of health publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.05.004 – volume: 9 start-page: 679 year: 2013 ident: 10.1016/j.microrel.2018.07.025_bb0100 article-title: Estimation of battery state of health using probabilistic neural network publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2012.2222650 – volume: 54 start-page: 1583 year: 2018 ident: 10.1016/j.microrel.2018.07.025_bb0020 article-title: An overview and comparison of online implementable SOC estimation methods for Lithium-ion battery publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2017.2775179 – volume: 66 start-page: 8773 year: 2017 ident: 10.1016/j.microrel.2018.07.025_bb0085 article-title: State of charge and state of health estimation for lithium batteries using recurrent neural networks publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2017.2715333 |
SSID | ssj0007011 |
Score | 2.5698683 |
Snippet | State of Health (SOH) of Lithium-ion (Li-ion) battery plays a pivotal role in the reliability and safety of the Battery Energy Storage System (BESS) in the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1216 |
SubjectTerms | Current pulse test Feature selection Lithium-ion battery State of health Support vector machine |
Title | Lithium-ion battery state of health estimation with short-term current pulse test and support vector machine |
URI | https://dx.doi.org/10.1016/j.microrel.2018.07.025 |
Volume | 88-90 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07a8MwEBYhXdqh9EnTR9DQVYkfkiWPITSkr0wNZDOWIhOHPExiF7r0t1cn220KhQwdbXwgzue7j_N93yF0T-NABTxmhDtuTKhmgkguGYmTwABowYRKoDXwOgqGY_o0YZMG6tdcGBirrHJ_mdNttq7udCtvdrM0BY6vF3jcpSYoTRUXwCinlEOUdz5_xjzMGcqteV5A4OkdlvC8s4Sht42GXxCusCKesDL7rwK1U3QGJ-i4Qou4Vx7oFDX06gwd7WgInqPFS5rP0mJJjIOxtGqZH9jShPA6wSXNEYOURslRxNB4xduZQd0EsjJWpUATzgpzBmyAZ47j1RRviwyQOX63XX28tDOX-gKNBw9v_SGpVigQ5TM3J9Mw8ZTwNXOSMNBSuDGTUnDhKKvCozxHUUmnmvnU1HU_pK6UKuE8cTytuaP8S9RcrVf6CuEwjs3X65uaJwxmMTDBkyJgilHtQE-EthCr_RapSl8c1lwsonqQbB7V_o7A35HDI-PvFup-22WlwsZei7B-LdGvWIlMGdhje_0P2xt0CFflhNktauabQt8ZSJLLto25NjroPT4PR1-CkuKp |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOBQOFVAQUGjnQI9mE8eOnUMPFQ8tsHACiZsbex2xiF1WbBbEhT_VP9hxHmUrVeJQcU00kfPNaGZsz3wDsCfy1KUql0xFcc6El5pZZSXLi5QSaC21K8LRwPlF2r0Sp9fyeg5-tb0woayy8f21T6-8dfOk06DZGQ8GoceXp1zFgoySorhWTWXlmX9-on3b5PvJISn5G-fHR5cHXdaMFmAukXHJ-lnBnU68jIos9VbHubRWKx25ip3G8cgJK_peJoLiXZKJ2FpXKFVE3HsVuYS-Ow-LgtxFGJuw__JaV0I_XY_p4ykLy5tpS77dH4Yquwcf7jxiXbGGhhnd_4qIM1HueAU-Nukp_qgRWIU5P1qD5RnSwk9w1xuUN4PpkJFG0Vb0nM9Y9SXhfYF1XyUG7o66KRLDSS9ObijNZyEMoKsZoXA8pTUgZbol5qM-TqbjsBXAx-oaAYdVkadfh6t3AXYDFkb3I78JmOU5uYuEgqymJInyEm51Kp0UPgqHMGILZIubcQ2heZircWfayrVb0-JtAt4mUobw3oLOH7lxTenxpkTWqsX8ZZyG4s4bstv_IfsVPnQvz3umd3Jx9hmWwpu6vG0HFsqHqd-lfKi0Xyr7Q_j53gb_GyUTHhI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lithium-ion+battery+state+of+health+estimation+with+short-term+current+pulse+test+and+support+vector+machine&rft.jtitle=Microelectronics+and+reliability&rft.au=Meng%2C+Jinhao&rft.au=Cai%2C+Lei&rft.au=Luo%2C+Guangzhao&rft.au=Stroe%2C+Daniel-Ioan&rft.date=2018-09-01&rft.issn=0026-2714&rft.volume=88-90&rft.spage=1216&rft.epage=1220&rft_id=info:doi/10.1016%2Fj.microrel.2018.07.025&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_microrel_2018_07_025 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-2714&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-2714&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-2714&client=summon |