Lithium-ion battery state of health estimation with short-term current pulse test and support vector machine

State of Health (SOH) of Lithium-ion (Li-ion) battery plays a pivotal role in the reliability and safety of the Battery Energy Storage System (BESS) in the power system. Utilizing the features from the terminal voltage response of the Li-ion battery under current pulse test, a new method is proposed...

Full description

Saved in:
Bibliographic Details
Published inMicroelectronics and reliability Vol. 88-90; pp. 1216 - 1220
Main Authors Meng, Jinhao, Cai, Lei, Luo, Guangzhao, Stroe, Daniel-Ioan, Teodorescu, Remus
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract State of Health (SOH) of Lithium-ion (Li-ion) battery plays a pivotal role in the reliability and safety of the Battery Energy Storage System (BESS) in the power system. Utilizing the features from the terminal voltage response of the Li-ion battery under current pulse test, a new method is proposed in this paper by using the Support Vector Machine (SVM) technique for accurately estimating the battery SOH. Since the terminal voltage measured at the same condition varies with the battery aging process, the features for SOH estimation are extracted from the voltage response under a specific current pulse test. The benefit of the proposed method is that the features come from the short-term test, which is much convenient to be obtained in real applications. After applying the short term current pulse test (few seconds), the keen points and the slopes in the voltage response curve are selected as the potential candidate features. In order to find the most effective feature for SOH estimation, all the possible combinations of the features are investigated and compared. Afterwards, SVM is able to establish the optimal SOH estimator on the basis of the optimal feature combination and the battery SOH. A LiFePO4 battery is tested in the test station for 37 weeks to verify the validation of the proposed method. •Features for SOH estimation are extracted from the short-term current pulse test.•Optimal feature is selected from all the candidate features.•Support vector machine is used to establish the SOH estimator.•The proposed method is validated on a LiFePO4 battery with 37 weeks' test.
AbstractList State of Health (SOH) of Lithium-ion (Li-ion) battery plays a pivotal role in the reliability and safety of the Battery Energy Storage System (BESS) in the power system. Utilizing the features from the terminal voltage response of the Li-ion battery under current pulse test, a new method is proposed in this paper by using the Support Vector Machine (SVM) technique for accurately estimating the battery SOH. Since the terminal voltage measured at the same condition varies with the battery aging process, the features for SOH estimation are extracted from the voltage response under a specific current pulse test. The benefit of the proposed method is that the features come from the short-term test, which is much convenient to be obtained in real applications. After applying the short term current pulse test (few seconds), the keen points and the slopes in the voltage response curve are selected as the potential candidate features. In order to find the most effective feature for SOH estimation, all the possible combinations of the features are investigated and compared. Afterwards, SVM is able to establish the optimal SOH estimator on the basis of the optimal feature combination and the battery SOH. A LiFePO4 battery is tested in the test station for 37 weeks to verify the validation of the proposed method. •Features for SOH estimation are extracted from the short-term current pulse test.•Optimal feature is selected from all the candidate features.•Support vector machine is used to establish the SOH estimator.•The proposed method is validated on a LiFePO4 battery with 37 weeks' test.
Author Teodorescu, Remus
Meng, Jinhao
Luo, Guangzhao
Cai, Lei
Stroe, Daniel-Ioan
Author_xml – sequence: 1
  givenname: Jinhao
  surname: Meng
  fullname: Meng, Jinhao
  organization: School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
– sequence: 2
  givenname: Lei
  surname: Cai
  fullname: Cai, Lei
  organization: Faculty of Computer Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
– sequence: 3
  givenname: Guangzhao
  orcidid: 0000-0001-8013-6327
  surname: Luo
  fullname: Luo, Guangzhao
  email: guangzhao.luo@nwpu.edu.cn
  organization: School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
– sequence: 4
  givenname: Daniel-Ioan
  surname: Stroe
  fullname: Stroe, Daniel-Ioan
  organization: Department of Energy Technology, Aalborg University, Aalborg 9220, Denmark
– sequence: 5
  givenname: Remus
  surname: Teodorescu
  fullname: Teodorescu, Remus
  organization: Department of Energy Technology, Aalborg University, Aalborg 9220, Denmark
BookMark eNqFkM1KAzEURoNUsK2-guQFZrzJ_GQKLpSiVSi4UXAXMpk7TMr8kWQqfXtTqxs3Xd3N-S6csyCzfuiRkFsGMQOW3-3izmg7WGxjDqyIQcTAswsyZ4Xg0SplnzMyB-B5xAVLr8jCuR0ACGBsTtqt8Y2ZusgMPS2V92gP1HnlkQ41bVC1vqHovOmUPyJfAaeuGayPAtpRPVmLvafj1DqkPpBU9RV10zgGhu5R-8HSTunG9HhNLmsVuJvfuyQfz0_v65do-7Z5XT9uI51kzEfVqua6SDCDepVjWTCVlWUhCtAsS9NMc9BpmVaYJWnOkiQYlqWuhaiBIwrQyZLkp78hi3MWaznaIGAPkoE8NpM7-ddMHptJEDI0C8P7f0Nt_I-4t8q05-cPpzkGub1BK5022GusjA0hZDWYcy--AWTUklk
CitedBy_id crossref_primary_10_1016_j_apenergy_2021_117346
crossref_primary_10_1016_j_jpowsour_2020_228654
crossref_primary_10_1109_TTE_2021_3059738
crossref_primary_10_1016_j_electacta_2021_138294
crossref_primary_10_1109_TPEL_2020_3033297
crossref_primary_10_3390_app9194170
crossref_primary_10_1016_j_est_2022_105183
crossref_primary_10_1039_D2SE01209J
crossref_primary_10_3390_electronics12194105
crossref_primary_10_1016_j_est_2021_103846
crossref_primary_10_1109_TIM_2023_3332936
crossref_primary_10_1016_j_egyai_2024_100468
crossref_primary_10_1016_j_eswa_2024_123563
crossref_primary_10_1016_j_jtte_2023_06_001
crossref_primary_10_1016_j_est_2022_104263
crossref_primary_10_3389_fenrg_2021_693249
crossref_primary_10_1109_JESTPE_2020_3047004
crossref_primary_10_3390_batteries8110229
crossref_primary_10_1007_s12204_024_2727_y
crossref_primary_10_1109_TPEL_2020_2978493
crossref_primary_10_1016_j_est_2021_103158
crossref_primary_10_1016_j_est_2023_107754
crossref_primary_10_1016_j_rser_2023_114264
crossref_primary_10_1149_1945_7111_ac1cfa
crossref_primary_10_1016_j_energy_2023_129167
crossref_primary_10_1016_j_est_2024_110711
crossref_primary_10_1016_j_est_2024_113827
crossref_primary_10_1016_j_segan_2022_100603
crossref_primary_10_1016_j_measurement_2021_109057
crossref_primary_10_3390_ma18010145
crossref_primary_10_1088_1742_6596_1678_1_012067
crossref_primary_10_1016_j_apenergy_2024_124820
crossref_primary_10_1007_s11708_023_0891_7
crossref_primary_10_1002_est2_412
crossref_primary_10_1038_s41598_021_91241_z
crossref_primary_10_1016_j_jpowsour_2021_230710
crossref_primary_10_1016_j_ijplas_2021_103189
crossref_primary_10_1016_j_est_2023_108910
crossref_primary_10_1016_j_asoc_2022_109615
crossref_primary_10_1002_ese3_606
crossref_primary_10_1109_TEC_2023_3282017
crossref_primary_10_20964_2022_11_25
crossref_primary_10_1109_TIE_2021_3065594
crossref_primary_10_3390_en16124639
crossref_primary_10_1007_s10800_024_02217_6
crossref_primary_10_1016_j_est_2022_105384
crossref_primary_10_3390_batteries9090437
crossref_primary_10_1016_j_engappai_2024_109314
crossref_primary_10_23919_CJEE_2024_000085
crossref_primary_10_1002_est2_70080
crossref_primary_10_1016_j_energy_2021_120160
crossref_primary_10_1109_TIE_2020_3001836
crossref_primary_10_1016_j_est_2021_103804
crossref_primary_10_3390_electronics8101118
crossref_primary_10_1016_j_jpowsour_2024_234697
crossref_primary_10_23919_PCMP_2023_000234
crossref_primary_10_1016_j_est_2020_101741
crossref_primary_10_1016_j_jpowsour_2020_228740
crossref_primary_10_1093_ce_zkad054
crossref_primary_10_1016_j_jpowsour_2020_229154
crossref_primary_10_1049_els2_12045
crossref_primary_10_1155_2021_4826409
crossref_primary_10_1016_j_est_2022_104584
crossref_primary_10_1002_qre_3144
crossref_primary_10_1016_j_jechem_2022_06_049
crossref_primary_10_1109_TIA_2020_3020529
crossref_primary_10_1149_1945_7111_adada3
crossref_primary_10_3390_app12125904
crossref_primary_10_1016_j_energy_2022_125501
crossref_primary_10_1016_j_jpowsour_2024_235813
crossref_primary_10_20964_2022_08_34
crossref_primary_10_1016_j_energy_2022_125503
crossref_primary_10_1016_j_energy_2023_128956
crossref_primary_10_1016_j_electacta_2021_139047
crossref_primary_10_20964_2022_08_30
crossref_primary_10_1002_ente_202201510
crossref_primary_10_1016_j_egyr_2023_01_108
crossref_primary_10_1109_ACCESS_2019_2923095
crossref_primary_10_3390_app12094761
crossref_primary_10_3390_en15072448
crossref_primary_10_3390_machines13030175
crossref_primary_10_1016_j_apenergy_2022_119469
crossref_primary_10_1016_j_est_2021_102372
crossref_primary_10_3390_pr12091871
crossref_primary_10_1016_j_est_2022_106051
crossref_primary_10_1016_j_rser_2023_114224
crossref_primary_10_1109_TIE_2023_3247735
crossref_primary_10_1002_ese3_362
crossref_primary_10_1016_j_energy_2021_122881
crossref_primary_10_1016_j_etran_2019_100028
crossref_primary_10_1109_TTE_2023_3283572
crossref_primary_10_1016_j_jclepro_2021_125814
crossref_primary_10_1016_j_rser_2023_114077
crossref_primary_10_1109_TEC_2023_3294540
crossref_primary_10_1016_j_est_2025_116078
crossref_primary_10_1016_j_isatra_2022_10_003
crossref_primary_10_1016_j_jpowsour_2024_235482
crossref_primary_10_1109_ACCESS_2019_2936213
crossref_primary_10_1115_1_4064666
crossref_primary_10_1016_j_apenergy_2024_124974
crossref_primary_10_3390_en14164833
crossref_primary_10_1016_j_procir_2022_02_076
crossref_primary_10_1016_j_measurement_2021_110502
crossref_primary_10_3390_en15134753
crossref_primary_10_3390_batteries10010010
crossref_primary_10_1016_j_apenergy_2023_122417
crossref_primary_10_1109_JESTPE_2021_3106708
crossref_primary_10_1016_j_eswa_2023_122034
crossref_primary_10_1016_j_etran_2023_100296
Cites_doi 10.1109/TIA.2017.2756026
10.1109/TPEL.2016.2535321
10.1016/j.jpowsour.2015.01.154
10.1109/JPROC.2014.2317451
10.1109/TTE.2017.2776558
10.1016/j.jpowsour.2010.09.048
10.1016/j.epsr.2014.06.023
10.1016/j.apenergy.2014.03.086
10.1016/j.jpowsour.2018.03.015
10.1016/j.jpowsour.2013.11.029
10.1016/j.apenergy.2016.04.057
10.1109/TIA.2016.2616319
10.1109/TEC.2015.2424673
10.1109/TIE.2017.2674593
10.1016/j.apenergy.2014.04.103
10.1109/TIE.2013.2259779
10.1016/j.jpowsour.2016.07.065
10.1016/j.jpowsour.2017.05.004
10.1109/TII.2012.2222650
10.1109/TIA.2017.2775179
10.1109/TVT.2017.2715333
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.microrel.2018.07.025
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-941X
EndPage 1220
ExternalDocumentID 10_1016_j_microrel_2018_07_025
S0026271418305687
GroupedDBID --K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
29M
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSM
SST
SSV
SSZ
T5K
T9H
TAE
UHS
UNMZH
WUQ
XOL
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c351t-d9f2c83e50f96eb81a5bb8780c15445c20c4b4de5346133941bbcf77f02ee70c3
IEDL.DBID .~1
ISSN 0026-2714
IngestDate Tue Jul 01 01:27:29 EDT 2025
Thu Apr 24 23:11:17 EDT 2025
Fri Feb 23 02:18:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lithium-ion battery
Feature selection
Current pulse test
Support vector machine
State of health
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-d9f2c83e50f96eb81a5bb8780c15445c20c4b4de5346133941bbcf77f02ee70c3
ORCID 0000-0001-8013-6327
PageCount 5
ParticipantIDs crossref_primary_10_1016_j_microrel_2018_07_025
crossref_citationtrail_10_1016_j_microrel_2018_07_025
elsevier_sciencedirect_doi_10_1016_j_microrel_2018_07_025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-09-01
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Microelectronics and reliability
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Cacciato, Nobile, Scarcella, Scelba (bb0040) 2017; 32
Zhang, Allafi, Dinh, Ascencio, Marco (bb0060) 2017
Chaoui, Ibe-Ekeocha (bb0085) 2017; 66
Wu, Wang, Zhang, Chen (bb0105) 2016; 327
Feng, Yang, Zhao, Zhang, Qiang (bb0055) 2015; 281
Koller, Borsche, Ulbig, Andersson (bb0005) 2015; 120
Stroe, Knap, Swierczynski, Stroe, Teodorescu (bb0025) 2017; 53
Plett (bb0065) 2011; 196
Richardson, Osborne, Howey (bb0090) 2017; 357
Hu, Jain, Tamirisa, Gorka (bb0050) 2014; 126
Yang, Zhang, Pan, Wang, Chen (bb0095) 2018; 384
Gholizadeh, Salmasi (bb0045) 2014; 61
Kim, Wang, Sahinoglu, Wada, Hara, Qiao (bb0070) 2015; 30
Wu, Zhang, Chen (bb0075) 2016; 173
Zhao, Wu, Hu, Xu, Rasmussen (bb0015) 2015; 137
Han, Ouyang, Lu, Li, Zheng, Li (bb0110) 2014; 251
Guha, Patra (bb0035) 2018; 4
You, Park, Oh (bb0080) 2017; 64
Meng, Ricco, Luo, Swierczynski, Stroe, Stroe, Teodorescu (bb0020) 2018; 54
Stroe, Swierczynski, Kær, Teodorescu (bb0030) 2018
Lawder, Suthar, Northrop, De, Hoff, Leitermann, Crow, Santhanagopalan, Subramanian (bb0010) 2014; 102
Lin, Liang, Chen (bb0100) 2013; 9
Chaoui (10.1016/j.microrel.2018.07.025_bb0085) 2017; 66
Richardson (10.1016/j.microrel.2018.07.025_bb0090) 2017; 357
Stroe (10.1016/j.microrel.2018.07.025_bb0025) 2017; 53
Koller (10.1016/j.microrel.2018.07.025_bb0005) 2015; 120
Lawder (10.1016/j.microrel.2018.07.025_bb0010) 2014; 102
Feng (10.1016/j.microrel.2018.07.025_bb0055) 2015; 281
You (10.1016/j.microrel.2018.07.025_bb0080) 2017; 64
Stroe (10.1016/j.microrel.2018.07.025_bb0030) 2018
Hu (10.1016/j.microrel.2018.07.025_bb0050) 2014; 126
Guha (10.1016/j.microrel.2018.07.025_bb0035) 2018; 4
Plett (10.1016/j.microrel.2018.07.025_bb0065) 2011; 196
Yang (10.1016/j.microrel.2018.07.025_bb0095) 2018; 384
Cacciato (10.1016/j.microrel.2018.07.025_bb0040) 2017; 32
Wu (10.1016/j.microrel.2018.07.025_bb0075) 2016; 173
Zhao (10.1016/j.microrel.2018.07.025_bb0015) 2015; 137
Meng (10.1016/j.microrel.2018.07.025_bb0020) 2018; 54
Gholizadeh (10.1016/j.microrel.2018.07.025_bb0045) 2014; 61
Zhang (10.1016/j.microrel.2018.07.025_bb0060) 2017
Lin (10.1016/j.microrel.2018.07.025_bb0100) 2013; 9
Kim (10.1016/j.microrel.2018.07.025_bb0070) 2015; 30
Wu (10.1016/j.microrel.2018.07.025_bb0105) 2016; 327
Han (10.1016/j.microrel.2018.07.025_bb0110) 2014; 251
References_xml – volume: 126
  start-page: 182
  year: 2014
  end-page: 189
  ident: bb0050
  article-title: Method for estimating capacity and predicting remaining useful life of lithium-ion battery
  publication-title: Appl. Energy
– volume: 30
  start-page: 842
  year: 2015
  end-page: 851
  ident: bb0070
  article-title: A Rayleigh quotient-based recursive total-least-squares online maximum capacity estimation for lithium-ion batteries
  publication-title: IEEE Trans. Energy Convers.
– volume: 64
  start-page: 4885
  year: 2017
  end-page: 4893
  ident: bb0080
  article-title: Diagnosis of electric vehicle batteries using recurrent neural networks
  publication-title: IEEE Trans. Ind. Electron.
– volume: 54
  start-page: 1583
  year: 2018
  end-page: 1591
  ident: bb0020
  article-title: An overview and comparison of online implementable SOC estimation methods for Lithium-ion battery
  publication-title: IEEE Trans. Ind. Appl.
– volume: 53
  start-page: 430
  year: 2017
  end-page: 438
  ident: bb0025
  article-title: Operation of a grid-connected lithium-ion battery energy storage system for primary frequency regulation: a battery lifetime perspective
  publication-title: IEEE Trans. Ind. Appl.
– volume: 137
  start-page: 545
  year: 2015
  end-page: 553
  ident: bb0015
  article-title: Review of energy storage system for wind power integration support
  publication-title: Appl. Energy
– volume: 357
  start-page: 209
  year: 2017
  end-page: 219
  ident: bb0090
  article-title: Gaussian process regression for forecasting battery state of health
  publication-title: J. Power Sources
– volume: 120
  start-page: 128
  year: 2015
  end-page: 135
  ident: bb0005
  article-title: Review of grid applications with the Zurich 1 MW battery energy storage system
  publication-title: Electr. Power Syst. Res.
– volume: 61
  start-page: 1335
  year: 2014
  end-page: 1344
  ident: bb0045
  article-title: Estimation of state of charge, unknown nonlinearities, and state of health of a lithium-ion battery based on a comprehensive unobservable model
  publication-title: IEEE Trans. Ind. Electron.
– volume: 32
  start-page: 794
  year: 2017
  end-page: 803
  ident: bb0040
  article-title: Real-time model-based estimation of SOC and SOH for energy storage systems
  publication-title: IEEE Trans. Power Electron.
– volume: 384
  start-page: 387
  year: 2018
  end-page: 395
  ident: bb0095
  article-title: A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve
  publication-title: J. Power Sources
– start-page: 517
  year: 2018
  end-page: 525
  ident: bb0030
  article-title: Degradation behavior of lithium-ion batteries during calendar ageing - the case of the internal resistance increase
  publication-title: IEEE Trans. Ind. Appl.
– volume: 281
  start-page: 192
  year: 2015
  end-page: 203
  ident: bb0055
  article-title: Online identification of lithium-ion battery parameters based on an improved equivalent-circuit model and its implementation on battery state-of-power prediction
  publication-title: J. Power Sources
– volume: 196
  start-page: 2319
  year: 2011
  end-page: 2331
  ident: bb0065
  article-title: Recursive approximate weighted total least squares estimation of battery cell total capacity
  publication-title: J. Power Sources
– volume: 173
  start-page: 134
  year: 2016
  end-page: 140
  ident: bb0075
  article-title: An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks
  publication-title: Appl. Energy
– volume: 251
  start-page: 38
  year: 2014
  end-page: 54
  ident: bb0110
  article-title: A comparative study of commercial lithium ion battery cycle life in electrical vehicle: aging mechanism identification
  publication-title: J. Power Sources
– volume: 102
  start-page: 1014
  year: 2014
  end-page: 1030
  ident: bb0010
  article-title: Battery energy storage system (BESS) and battery management system (BMS) for grid-scale applications
  publication-title: Proc. IEEE
– volume: 66
  start-page: 8773
  year: 2017
  end-page: 8783
  ident: bb0085
  article-title: State of charge and state of health estimation for lithium batteries using recurrent neural networks
  publication-title: IEEE Trans. Veh. Technol.
– volume: 327
  start-page: 457
  year: 2016
  end-page: 464
  ident: bb0105
  article-title: A novel state of health estimation method of Li-ion battery using group method of data handling
  publication-title: J. Power Sources
– volume: 9
  start-page: 679
  year: 2013
  end-page: 685
  ident: bb0100
  article-title: Estimation of battery state of health using probabilistic neural network
  publication-title: IEEE Trans. Ind. Inf.
– year: 2017
  ident: bb0060
  article-title: Online estimation of battery equivalent circuit model parameters and state of charge using decoupled least squares technique
  publication-title: Energy
– volume: 4
  start-page: 135
  year: 2018
  end-page: 146
  ident: bb0035
  article-title: State of health estimation of lithium-ion batteries using capacity fade and internal resistance growth models
  publication-title: IEEE Trans. Transp. Electrif.
– start-page: 517
  year: 2018
  ident: 10.1016/j.microrel.2018.07.025_bb0030
  article-title: Degradation behavior of lithium-ion batteries during calendar ageing - the case of the internal resistance increase
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2017.2756026
– volume: 32
  start-page: 794
  year: 2017
  ident: 10.1016/j.microrel.2018.07.025_bb0040
  article-title: Real-time model-based estimation of SOC and SOH for energy storage systems
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2016.2535321
– volume: 281
  start-page: 192
  year: 2015
  ident: 10.1016/j.microrel.2018.07.025_bb0055
  article-title: Online identification of lithium-ion battery parameters based on an improved equivalent-circuit model and its implementation on battery state-of-power prediction
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.01.154
– volume: 102
  start-page: 1014
  year: 2014
  ident: 10.1016/j.microrel.2018.07.025_bb0010
  article-title: Battery energy storage system (BESS) and battery management system (BMS) for grid-scale applications
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2014.2317451
– volume: 4
  start-page: 135
  year: 2018
  ident: 10.1016/j.microrel.2018.07.025_bb0035
  article-title: State of health estimation of lithium-ion batteries using capacity fade and internal resistance growth models
  publication-title: IEEE Trans. Transp. Electrif.
  doi: 10.1109/TTE.2017.2776558
– year: 2017
  ident: 10.1016/j.microrel.2018.07.025_bb0060
  article-title: Online estimation of battery equivalent circuit model parameters and state of charge using decoupled least squares technique
  publication-title: Energy
– volume: 196
  start-page: 2319
  year: 2011
  ident: 10.1016/j.microrel.2018.07.025_bb0065
  article-title: Recursive approximate weighted total least squares estimation of battery cell total capacity
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.09.048
– volume: 120
  start-page: 128
  year: 2015
  ident: 10.1016/j.microrel.2018.07.025_bb0005
  article-title: Review of grid applications with the Zurich 1 MW battery energy storage system
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2014.06.023
– volume: 126
  start-page: 182
  year: 2014
  ident: 10.1016/j.microrel.2018.07.025_bb0050
  article-title: Method for estimating capacity and predicting remaining useful life of lithium-ion battery
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.03.086
– volume: 384
  start-page: 387
  year: 2018
  ident: 10.1016/j.microrel.2018.07.025_bb0095
  article-title: A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.03.015
– volume: 251
  start-page: 38
  year: 2014
  ident: 10.1016/j.microrel.2018.07.025_bb0110
  article-title: A comparative study of commercial lithium ion battery cycle life in electrical vehicle: aging mechanism identification
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.11.029
– volume: 173
  start-page: 134
  year: 2016
  ident: 10.1016/j.microrel.2018.07.025_bb0075
  article-title: An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.04.057
– volume: 53
  start-page: 430
  year: 2017
  ident: 10.1016/j.microrel.2018.07.025_bb0025
  article-title: Operation of a grid-connected lithium-ion battery energy storage system for primary frequency regulation: a battery lifetime perspective
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2016.2616319
– volume: 30
  start-page: 842
  year: 2015
  ident: 10.1016/j.microrel.2018.07.025_bb0070
  article-title: A Rayleigh quotient-based recursive total-least-squares online maximum capacity estimation for lithium-ion batteries
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2015.2424673
– volume: 64
  start-page: 4885
  year: 2017
  ident: 10.1016/j.microrel.2018.07.025_bb0080
  article-title: Diagnosis of electric vehicle batteries using recurrent neural networks
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2674593
– volume: 137
  start-page: 545
  year: 2015
  ident: 10.1016/j.microrel.2018.07.025_bb0015
  article-title: Review of energy storage system for wind power integration support
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.04.103
– volume: 61
  start-page: 1335
  year: 2014
  ident: 10.1016/j.microrel.2018.07.025_bb0045
  article-title: Estimation of state of charge, unknown nonlinearities, and state of health of a lithium-ion battery based on a comprehensive unobservable model
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2013.2259779
– volume: 327
  start-page: 457
  year: 2016
  ident: 10.1016/j.microrel.2018.07.025_bb0105
  article-title: A novel state of health estimation method of Li-ion battery using group method of data handling
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.07.065
– volume: 357
  start-page: 209
  year: 2017
  ident: 10.1016/j.microrel.2018.07.025_bb0090
  article-title: Gaussian process regression for forecasting battery state of health
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.05.004
– volume: 9
  start-page: 679
  year: 2013
  ident: 10.1016/j.microrel.2018.07.025_bb0100
  article-title: Estimation of battery state of health using probabilistic neural network
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2012.2222650
– volume: 54
  start-page: 1583
  year: 2018
  ident: 10.1016/j.microrel.2018.07.025_bb0020
  article-title: An overview and comparison of online implementable SOC estimation methods for Lithium-ion battery
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2017.2775179
– volume: 66
  start-page: 8773
  year: 2017
  ident: 10.1016/j.microrel.2018.07.025_bb0085
  article-title: State of charge and state of health estimation for lithium batteries using recurrent neural networks
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2017.2715333
SSID ssj0007011
Score 2.5698683
Snippet State of Health (SOH) of Lithium-ion (Li-ion) battery plays a pivotal role in the reliability and safety of the Battery Energy Storage System (BESS) in the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1216
SubjectTerms Current pulse test
Feature selection
Lithium-ion battery
State of health
Support vector machine
Title Lithium-ion battery state of health estimation with short-term current pulse test and support vector machine
URI https://dx.doi.org/10.1016/j.microrel.2018.07.025
Volume 88-90
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07a8MwEBYhXdqh9EnTR9DQVYkfkiWPITSkr0wNZDOWIhOHPExiF7r0t1cn220KhQwdbXwgzue7j_N93yF0T-NABTxmhDtuTKhmgkguGYmTwABowYRKoDXwOgqGY_o0YZMG6tdcGBirrHJ_mdNttq7udCtvdrM0BY6vF3jcpSYoTRUXwCinlEOUdz5_xjzMGcqteV5A4OkdlvC8s4Sht42GXxCusCKesDL7rwK1U3QGJ-i4Qou4Vx7oFDX06gwd7WgInqPFS5rP0mJJjIOxtGqZH9jShPA6wSXNEYOURslRxNB4xduZQd0EsjJWpUATzgpzBmyAZ47j1RRviwyQOX63XX28tDOX-gKNBw9v_SGpVigQ5TM3J9Mw8ZTwNXOSMNBSuDGTUnDhKKvCozxHUUmnmvnU1HU_pK6UKuE8cTytuaP8S9RcrVf6CuEwjs3X65uaJwxmMTDBkyJgilHtQE-EthCr_RapSl8c1lwsonqQbB7V_o7A35HDI-PvFup-22WlwsZei7B-LdGvWIlMGdhje_0P2xt0CFflhNktauabQt8ZSJLLto25NjroPT4PR1-CkuKp
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOBQOFVAQUGjnQI9mE8eOnUMPFQ8tsHACiZsbex2xiF1WbBbEhT_VP9hxHmUrVeJQcU00kfPNaGZsz3wDsCfy1KUql0xFcc6El5pZZSXLi5QSaC21K8LRwPlF2r0Sp9fyeg5-tb0woayy8f21T6-8dfOk06DZGQ8GoceXp1zFgoySorhWTWXlmX9-on3b5PvJISn5G-fHR5cHXdaMFmAukXHJ-lnBnU68jIos9VbHubRWKx25ip3G8cgJK_peJoLiXZKJ2FpXKFVE3HsVuYS-Ow-LgtxFGJuw__JaV0I_XY_p4ykLy5tpS77dH4Yquwcf7jxiXbGGhhnd_4qIM1HueAU-Nukp_qgRWIU5P1qD5RnSwk9w1xuUN4PpkJFG0Vb0nM9Y9SXhfYF1XyUG7o66KRLDSS9ObijNZyEMoKsZoXA8pTUgZbol5qM-TqbjsBXAx-oaAYdVkadfh6t3AXYDFkb3I78JmOU5uYuEgqymJInyEm51Kp0UPgqHMGILZIubcQ2heZircWfayrVb0-JtAt4mUobw3oLOH7lxTenxpkTWqsX8ZZyG4s4bstv_IfsVPnQvz3umd3Jx9hmWwpu6vG0HFsqHqd-lfKi0Xyr7Q_j53gb_GyUTHhI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lithium-ion+battery+state+of+health+estimation+with+short-term+current+pulse+test+and+support+vector+machine&rft.jtitle=Microelectronics+and+reliability&rft.au=Meng%2C+Jinhao&rft.au=Cai%2C+Lei&rft.au=Luo%2C+Guangzhao&rft.au=Stroe%2C+Daniel-Ioan&rft.date=2018-09-01&rft.issn=0026-2714&rft.volume=88-90&rft.spage=1216&rft.epage=1220&rft_id=info:doi/10.1016%2Fj.microrel.2018.07.025&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_microrel_2018_07_025
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-2714&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-2714&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-2714&client=summon