Wearable Electromagnetic Head Imaging System Using Flexible Wideband Antenna Array Based on Polymer Technology for Brain Stroke Diagnosis
Given the increased interest in a fast, portable, and on-spot medical diagnostic tool that enables early diagnosis for patients with brain stroke, a new approach of a wearable electromagnetic head imaging system based on the polymer material is proposed. A flexible low-profile, wideband, and unidire...
Saved in:
Published in | IEEE transactions on biomedical circuits and systems Vol. 13; no. 1; pp. 124 - 134 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.02.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1932-4545 1940-9990 1940-9990 |
DOI | 10.1109/TBCAS.2018.2878057 |
Cover
Loading…
Abstract | Given the increased interest in a fast, portable, and on-spot medical diagnostic tool that enables early diagnosis for patients with brain stroke, a new approach of a wearable electromagnetic head imaging system based on the polymer material is proposed. A flexible low-profile, wideband, and unidirectional antenna array with electromagnetic band gap (EBG) and metamaterial (MTM) unit cells reflector is utilized. The designed antenna consists of a 4 × 4 radiating patch loaded with symmetrical extended open-ended U-slots and fed by combination of series and corporate transmission lines. A mushroom-like 10-EBG unit cell arrays are arranged around the feeding network to reduce surface waves, whereas 4 × 4 MTM unit cells are placed on the back-side of the antenna to enable unidirectional radiation. The antenna is designed and embedded on a multilayer low cost, low loss, transparent, and robust polymer poly-di-methyl-siloxane (PDMS) substrate and optimized to operate in contact with the human head. The simulated and measured results show that the antenna has a fractional bandwidth of 53.8% (1.16-1.94 GHz), more than 80% of radiation efficiency, and satisfactory field penetration in the head tissues with a safe specific absorption rate. An eight-element array is then configured on 300 × 360 × 4.1 mm 3 PDMS material covering an average human head size and used as a worn part of the imaging system. A realistic-shaped 3-D specific anthropomorphic mannequin (SAM) head phantom is used to verify the performance of the designed array. The imaging results indicate the possibility of using the designed conformal array to detect a bleeding inside the brain using a confocal image algorithm. |
---|---|
AbstractList | Given the increased interest in a fast, portable, and on-spot medical diagnostic tool that enables early diagnosis for patients with brain stroke, a new approach of a wearable electromagnetic head imaging system based on the polymer material is proposed. A flexible low-profile, wideband, and unidirectional antenna array with electromagnetic band gap (EBG) and metamaterial (MTM) unit cells reflector is utilized. The designed antenna consists of a 4 × 4 radiating patch loaded with symmetrical extended open-ended U-slots and fed by combination of series and corporate transmission lines. A mushroom-like 10-EBG unit cell arrays are arranged around the feeding network to reduce surface waves, whereas 4 × 4 MTM unit cells are placed on the back-side of the antenna to enable unidirectional radiation. The antenna is designed and embedded on a multilayer low cost, low loss, transparent, and robust polymer poly-di-methyl-siloxane (PDMS) substrate and optimized to operate in contact with the human head. The simulated and measured results show that the antenna has a fractional bandwidth of 53.8% (1.16-1.94 GHz), more than 80% of radiation efficiency, and satisfactory field penetration in the head tissues with a safe specific absorption rate. An eight-element array is then configured on 300 × 360 × 4.1 mm
PDMS material covering an average human head size and used as a worn part of the imaging system. A realistic-shaped 3-D specific anthropomorphic mannequin (SAM) head phantom is used to verify the performance of the designed array. The imaging results indicate the possibility of using the designed conformal array to detect a bleeding inside the brain using a confocal image algorithm. Given the increased interest in a fast, portable, and on-spot medical diagnostic tool that enables early diagnosis for patients with brain stroke, a new approach of a wearable electromagnetic head imaging system based on the polymer material is proposed. A flexible low-profile, wideband, and unidirectional antenna array with electromagnetic band gap (EBG) and metamaterial (MTM) unit cells reflector is utilized. The designed antenna consists of a 4 × 4 radiating patch loaded with symmetrical extended open-ended U-slots and fed by combination of series and corporate transmission lines. A mushroom-like 10-EBG unit cell arrays are arranged around the feeding network to reduce surface waves, whereas 4 × 4 MTM unit cells are placed on the back-side of the antenna to enable unidirectional radiation. The antenna is designed and embedded on a multilayer low cost, low loss, transparent, and robust polymer poly-di-methyl-siloxane (PDMS) substrate and optimized to operate in contact with the human head. The simulated and measured results show that the antenna has a fractional bandwidth of 53.8% (1.16-1.94 GHz), more than 80% of radiation efficiency, and satisfactory field penetration in the head tissues with a safe specific absorption rate. An eight-element array is then configured on 300 × 360 × 4.1 mm3 PDMS material covering an average human head size and used as a worn part of the imaging system. A realistic-shaped 3-D specific anthropomorphic mannequin (SAM) head phantom is used to verify the performance of the designed array. The imaging results indicate the possibility of using the designed conformal array to detect a bleeding inside the brain using a confocal image algorithm.Given the increased interest in a fast, portable, and on-spot medical diagnostic tool that enables early diagnosis for patients with brain stroke, a new approach of a wearable electromagnetic head imaging system based on the polymer material is proposed. A flexible low-profile, wideband, and unidirectional antenna array with electromagnetic band gap (EBG) and metamaterial (MTM) unit cells reflector is utilized. The designed antenna consists of a 4 × 4 radiating patch loaded with symmetrical extended open-ended U-slots and fed by combination of series and corporate transmission lines. A mushroom-like 10-EBG unit cell arrays are arranged around the feeding network to reduce surface waves, whereas 4 × 4 MTM unit cells are placed on the back-side of the antenna to enable unidirectional radiation. The antenna is designed and embedded on a multilayer low cost, low loss, transparent, and robust polymer poly-di-methyl-siloxane (PDMS) substrate and optimized to operate in contact with the human head. The simulated and measured results show that the antenna has a fractional bandwidth of 53.8% (1.16-1.94 GHz), more than 80% of radiation efficiency, and satisfactory field penetration in the head tissues with a safe specific absorption rate. An eight-element array is then configured on 300 × 360 × 4.1 mm3 PDMS material covering an average human head size and used as a worn part of the imaging system. A realistic-shaped 3-D specific anthropomorphic mannequin (SAM) head phantom is used to verify the performance of the designed array. The imaging results indicate the possibility of using the designed conformal array to detect a bleeding inside the brain using a confocal image algorithm. Given the increased interest in a fast, portable, and on-spot medical diagnostic tool that enables early diagnosis for patients with brain stroke, a new approach of a wearable electromagnetic head imaging system based on the polymer material is proposed. A flexible low-profile, wideband, and unidirectional antenna array with electromagnetic band gap (EBG) and metamaterial (MTM) unit cells reflector is utilized. The designed antenna consists of a 4 × 4 radiating patch loaded with symmetrical extended open-ended U-slots and fed by combination of series and corporate transmission lines. A mushroom-like 10-EBG unit cell arrays are arranged around the feeding network to reduce surface waves, whereas 4 × 4 MTM unit cells are placed on the back-side of the antenna to enable unidirectional radiation. The antenna is designed and embedded on a multilayer low cost, low loss, transparent, and robust polymer poly-di-methyl-siloxane (PDMS) substrate and optimized to operate in contact with the human head. The simulated and measured results show that the antenna has a fractional bandwidth of 53.8% (1.16-1.94 GHz), more than 80% of radiation efficiency, and satisfactory field penetration in the head tissues with a safe specific absorption rate. An eight-element array is then configured on 300 × 360 × 4.1 mm 3 PDMS material covering an average human head size and used as a worn part of the imaging system. A realistic-shaped 3-D specific anthropomorphic mannequin (SAM) head phantom is used to verify the performance of the designed array. The imaging results indicate the possibility of using the designed conformal array to detect a bleeding inside the brain using a confocal image algorithm. Given the increased interest in a fast, portable, and on-spot medical diagnostic tool that enables early diagnosis for patients with brain stroke, a new approach of a wearable electromagnetic head imaging system based on the polymer material is proposed. A flexible low-profile, wideband, and unidirectional antenna array with electromagnetic band gap (EBG) and metamaterial (MTM) unit cells reflector is utilized. The designed antenna consists of a 4 × 4 radiating patch loaded with symmetrical extended open-ended U-slots and fed by combination of series and corporate transmission lines. A mushroom-like 10-EBG unit cell arrays are arranged around the feeding network to reduce surface waves, whereas 4 × 4 MTM unit cells are placed on the back-side of the antenna to enable unidirectional radiation. The antenna is designed and embedded on a multilayer low cost, low loss, transparent, and robust polymer poly-di-methyl-siloxane (PDMS) substrate and optimized to operate in contact with the human head. The simulated and measured results show that the antenna has a fractional bandwidth of 53.8% (1.16–1.94 GHz), more than 80% of radiation efficiency, and satisfactory field penetration in the head tissues with a safe specific absorption rate. An eight-element array is then configured on 300 × 360 × 4.1 mm3 PDMS material covering an average human head size and used as a worn part of the imaging system. A realistic-shaped 3-D specific anthropomorphic mannequin (SAM) head phantom is used to verify the performance of the designed array. The imaging results indicate the possibility of using the designed conformal array to detect a bleeding inside the brain using a confocal image algorithm. |
Author | Bialkowski, Konstanty S. Mobashsher, Ahmed Toaha Alqadami, Abdulrahman S. M. Abbosh, Amin M. |
Author_xml | – sequence: 1 givenname: Abdulrahman S. M. orcidid: 0000-0001-8726-1585 surname: Alqadami fullname: Alqadami, Abdulrahman S. M. email: a.alqadami@uq.edu.au organization: School of IT and Electrical Engineering, The University of Queensland, Brisbane, QLD, Australia – sequence: 2 givenname: Konstanty S. surname: Bialkowski fullname: Bialkowski, Konstanty S. email: ksb@itee.uq.edu.au organization: School of IT and Electrical Engineering, The University of Queensland, Brisbane, QLD, Australia – sequence: 3 givenname: Ahmed Toaha orcidid: 0000-0002-6351-8136 surname: Mobashsher fullname: Mobashsher, Ahmed Toaha email: a.mobashsher@uq.edu.au organization: School of IT and Electrical Engineering, The University of Queensland, Brisbane, QLD, Australia – sequence: 4 givenname: Amin M. orcidid: 0000-0002-8015-5883 surname: Abbosh fullname: Abbosh, Amin M. email: a.abbosh@uq.edu.au organization: School of IT and Electrical Engineering, The University of Queensland, Brisbane, QLD, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30369449$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1vEzEQhi1URD_gD4CELHHhssEf6137mISWVqoEUlL1aDn2bHDZtYu9kchP4F_jJSmHHjjZIz3PzGjec3QSYgCE3lIyo5SoT-vFcr6aMULljMlWEtG-QGdU1aRSSpGT6c9ZVYtanKLznB8IEQ1T7BU65YQ3qq7VGfp9DyaZTQ_4sgc7pjiYbYDRW3wNxuGbUvqwxat9HmHAd3kqrnr45Sfl3jvYmODwPIwQgsHzlMweL0wGh2PA32K_HyDhNdjvIfZxu8ddTHiRjA94VYb9APzZl4Ex-_wavexMn-HN8b1Ad1eX6-V1dfv1y81yfltZLuhYOSmJ5dA6a0VTt4RJ0_G66QSvhTBKSkcE40ZIZ42jSjFOBBSqtY1oOnD8An089H1M8ecO8qgHny30vQkQd1kzyhpFy31kQT88Qx_iLoWyXaFarpSkhBTq_ZHabQZw-jH5waS9fjpyAeQBsCnmnKDT1o9m9DGM5RK9pkRPeeq_eeopT33Ms6jsmfrU_b_Su4PkAeCfIAVRjNT8D9l6qxQ |
CODEN | ITBCCW |
CitedBy_id | crossref_primary_10_1515_freq_2023_0236 crossref_primary_10_1038_s41598_020_78647_x crossref_primary_10_1007_s11277_022_09818_4 crossref_primary_10_1038_s41598_022_12860_8 crossref_primary_10_3390_s20092607 crossref_primary_10_1016_j_wneu_2022_09_039 crossref_primary_10_1038_s41598_021_01326_y crossref_primary_10_1109_LAWP_2023_3257709 crossref_primary_10_3390_bios13030302 crossref_primary_10_23919_URSIRSB_2021_9829344 crossref_primary_10_1109_ACCESS_2021_3086624 crossref_primary_10_1109_ACCESS_2022_3219442 crossref_primary_10_1109_TAP_2022_3184512 crossref_primary_10_3390_bios13020238 crossref_primary_10_1109_JERM_2024_3401582 crossref_primary_10_2528_PIERC19120704 crossref_primary_10_1109_ACCESS_2020_2963997 crossref_primary_10_1109_LAWP_2023_3340261 crossref_primary_10_1109_TAP_2020_2996815 crossref_primary_10_1109_JSEN_2023_3341075 crossref_primary_10_1109_TBCAS_2023_3313732 crossref_primary_10_1002_pat_6575 crossref_primary_10_1038_s41598_021_03043_y crossref_primary_10_61186_jiaeee_21_3_129 crossref_primary_10_1109_JSEN_2020_3023482 crossref_primary_10_1109_LAWP_2020_3022161 crossref_primary_10_1109_ACCESS_2020_3035657 crossref_primary_10_1109_ACCESS_2025_3546558 crossref_primary_10_1109_JERM_2022_3182879 crossref_primary_10_1186_s12938_023_01145_4 crossref_primary_10_1002_mmce_23083 crossref_primary_10_1109_TAP_2019_2938849 crossref_primary_10_1007_s11276_023_03231_w crossref_primary_10_1038_s41598_022_20944_8 crossref_primary_10_1109_JERM_2023_3337660 crossref_primary_10_3390_ma14164526 crossref_primary_10_1109_TBCAS_2021_3085351 crossref_primary_10_1109_JERM_2023_3324478 crossref_primary_10_1109_TMTT_2020_3040483 crossref_primary_10_1109_OJAP_2020_3024276 crossref_primary_10_1080_00207217_2024_2388235 crossref_primary_10_1109_JERM_2020_2995329 crossref_primary_10_1016_j_aej_2022_10_034 crossref_primary_10_3390_electronics10172056 crossref_primary_10_1109_ACCESS_2025_3536525 crossref_primary_10_1109_JERM_2019_2901360 crossref_primary_10_1109_TAP_2023_3242414 crossref_primary_10_1007_s11082_023_05498_x crossref_primary_10_1109_TBCAS_2019_2953989 crossref_primary_10_1016_j_compbiomed_2024_109316 crossref_primary_10_1155_2023_5644220 crossref_primary_10_1017_S1759078720001579 crossref_primary_10_1038_s41598_022_10309_6 crossref_primary_10_1109_TAP_2024_3353331 crossref_primary_10_1109_TAP_2024_3355232 crossref_primary_10_1364_OME_481999 crossref_primary_10_1016_j_cjph_2021_05_005 crossref_primary_10_1038_s41928_021_00589_7 crossref_primary_10_1109_TAP_2020_3037742 crossref_primary_10_3390_s24041305 crossref_primary_10_1109_JMW_2023_3347260 crossref_primary_10_1016_j_jestch_2024_101779 crossref_primary_10_1109_TMTT_2019_2963870 crossref_primary_10_1049_iet_map_2019_0271 crossref_primary_10_3390_polym14101989 crossref_primary_10_1016_j_jmrt_2022_08_103 crossref_primary_10_1002_dac_4958 crossref_primary_10_1109_TBCAS_2022_3151243 crossref_primary_10_1007_s11431_024_2648_9 crossref_primary_10_1016_j_cjph_2022_03_003 crossref_primary_10_1016_j_cjph_2022_03_002 crossref_primary_10_1109_JERM_2022_3227724 crossref_primary_10_3390_a14050157 crossref_primary_10_3390_s21175678 crossref_primary_10_1109_ACCESS_2021_3079217 crossref_primary_10_1109_JSEN_2024_3525441 crossref_primary_10_1109_TAP_2024_3388214 crossref_primary_10_1109_LAWP_2021_3051679 crossref_primary_10_1109_OJAP_2022_3150100 crossref_primary_10_1007_s11082_024_06982_8 crossref_primary_10_1109_TBCAS_2020_3010259 crossref_primary_10_1515_freq_2024_0142 crossref_primary_10_1016_j_measurement_2023_113753 crossref_primary_10_3390_s22197235 crossref_primary_10_1109_ACCESS_2023_3343154 crossref_primary_10_1109_TBCAS_2019_2951500 crossref_primary_10_1109_ACCESS_2021_3069712 crossref_primary_10_3390_s24216897 crossref_primary_10_1016_j_eml_2022_101841 crossref_primary_10_1038_s41598_024_67103_9 crossref_primary_10_1109_JBHI_2023_3327296 crossref_primary_10_1109_TBME_2021_3084313 crossref_primary_10_1109_ACCESS_2020_3029595 crossref_primary_10_1109_TBCAS_2020_3025341 crossref_primary_10_1109_TMTT_2022_3201376 crossref_primary_10_1109_TAP_2020_2970072 crossref_primary_10_1109_TAP_2019_2908066 crossref_primary_10_2528_PIERM23080803 crossref_primary_10_3390_ma14010149 crossref_primary_10_3390_s24092887 crossref_primary_10_1002_mop_34095 |
Cites_doi | 10.1109/LAWP.2016.2640305 10.1109/TMTT.2004.839322 10.1098/rsta.2009.0092 10.1088/0031-9155/52/20/002 10.1109/TBME.2015.2434956 10.1109/MAP.2017.2732225 10.1109/LAWP.2016.2565610 10.1109/LAWP.2015.2513960 10.1109/LAWP.2014.2386852 10.1109/TAP.2016.2635588 10.1109/22.798001 10.1109/LAWP.2011.2170398 10.1002/mop.23274 10.1109/TBCAS.2015.2481940 10.1109/MAP.2017.2731199 10.1109/TAP.2016.2560909 10.1109/MMM.2018.2801646 10.1109/LAPC.2012.6402953 10.1109/TIM.2013.2277562 10.1109/TMTT.2005.857330 10.1109/TBME.2014.2330554 10.1088/0031-9155/41/11/003 10.1109/TMTT.2014.2342669 10.1109/LAWP.2016.2598729 10.1109/LAWP.2017.2732355 10.1109/TAP.2012.2207055 10.1109/74.262629 10.1109/TMTT.2015.2513398 10.1002/9780470602492 10.1109/TAP.2004.841267 10.1109/LAWP.2016.2519527 10.1109/TBCAS.2017.2703588 10.1002/mop.27073 10.1049/iet-map.2012.0395 10.1109/TBCAS.2017.2671841 10.1049/iet-map.2013.0054 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QO 7SP 7TB 8FD FR3 L7M P64 7X8 |
DOI | 10.1109/TBCAS.2018.2878057 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Biotechnology Research Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Biotechnology Research Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Biotechnology Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1940-9990 |
EndPage | 134 |
ExternalDocumentID | 30369449 10_1109_TBCAS_2018_2878057 8509204 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Australian Government Research grantid: ARC- DP150103425 |
GroupedDBID | --- 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION RIG NPM 7QO 7SP 7TB 8FD FR3 L7M P64 7X8 |
ID | FETCH-LOGICAL-c351t-d880c3e7dcc5647028af346f53455a988d0523a58dcad1992305e0287c656fed3 |
IEDL.DBID | RIE |
ISSN | 1932-4545 1940-9990 |
IngestDate | Fri Jul 11 06:57:33 EDT 2025 Mon Jun 30 08:37:53 EDT 2025 Mon Jul 21 05:37:20 EDT 2025 Tue Jul 01 03:26:33 EDT 2025 Thu Apr 24 22:55:42 EDT 2025 Wed Aug 27 03:06:24 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-d880c3e7dcc5647028af346f53455a988d0523a58dcad1992305e0287c656fed3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8726-1585 0000-0002-8015-5883 0000-0002-6351-8136 |
PMID | 30369449 |
PQID | 2173998100 |
PQPubID | 85510 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1109_TBCAS_2018_2878057 ieee_primary_8509204 proquest_journals_2173998100 crossref_primary_10_1109_TBCAS_2018_2878057 proquest_miscellaneous_2126913698 pubmed_primary_30369449 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-01 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical circuits and systems |
PublicationTitleAbbrev | TBCAS |
PublicationTitleAlternate | IEEE Trans Biomed Circuits Syst |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref33 ref11 ref32 ref10 ref2 ref1 ref39 ref17 ref38 ref19 (ref44) 2018 ref18 kidwell (ref42) 2014; 2 (ref40) 2006 (ref41) 2018 mobashsher (ref16) 2012; 6 ref24 ref23 ref26 ref25 ref20 bushberg (ref43) 2011 (ref45) 2018 ref21 ref28 bahl (ref30) 1981 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 bashri (ref22) 0 |
References_xml | – ident: ref33 doi: 10.1109/LAWP.2016.2640305 – ident: ref37 doi: 10.1109/TMTT.2004.839322 – ident: ref6 doi: 10.1098/rsta.2009.0092 – ident: ref7 doi: 10.1088/0031-9155/52/20/002 – ident: ref21 doi: 10.1109/TBME.2015.2434956 – ident: ref13 doi: 10.1109/MAP.2017.2732225 – ident: ref18 doi: 10.1109/LAWP.2016.2565610 – year: 1981 ident: ref30 publication-title: Microstrip Antennas – ident: ref24 doi: 10.1109/LAWP.2015.2513960 – ident: ref19 doi: 10.1109/LAWP.2014.2386852 – start-page: 671 year: 0 ident: ref22 article-title: Wearable device for microwave head imaging publication-title: Proc 46th Eur Microw Conf – volume: 6 start-page: 1681 year: 2012 ident: ref16 article-title: On-site rapid diagnosis of intracranial hematoma using portable multi-slice microwave imaging system publication-title: Sci Rep – ident: ref36 doi: 10.1109/TAP.2016.2635588 – ident: ref34 doi: 10.1109/22.798001 – ident: ref27 doi: 10.1109/LAWP.2011.2170398 – ident: ref31 doi: 10.1002/mop.23274 – ident: ref4 doi: 10.1109/TBCAS.2015.2481940 – ident: ref12 doi: 10.1109/MAP.2017.2731199 – ident: ref14 doi: 10.1109/TAP.2016.2560909 – year: 2018 ident: ref41 – year: 2006 ident: ref40 publication-title: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagetic Fields 3 kHz to 300 GHz – year: 2011 ident: ref43 publication-title: The Essential Physics of Medical Imaging – ident: ref3 doi: 10.1109/MMM.2018.2801646 – year: 2018 ident: ref45 article-title: Diagnostic tool, MRI – year: 2018 ident: ref44 article-title: Diagnostic tool, CT scan – ident: ref26 doi: 10.1109/LAPC.2012.6402953 – ident: ref15 doi: 10.1109/TIM.2013.2277562 – ident: ref8 doi: 10.1109/TMTT.2005.857330 – ident: ref2 doi: 10.1109/TBME.2014.2330554 – volume: 2 start-page: 1823 year: 2014 ident: ref42 article-title: Comparison of MRI and CT for detection of acute intracerebral hemorrhage publication-title: JAMA NETWORK – ident: ref39 doi: 10.1088/0031-9155/41/11/003 – ident: ref10 doi: 10.1109/TMTT.2014.2342669 – ident: ref28 doi: 10.1109/LAWP.2016.2598729 – ident: ref35 doi: 10.1109/LAWP.2017.2732355 – ident: ref25 doi: 10.1109/TAP.2012.2207055 – ident: ref38 doi: 10.1109/74.262629 – ident: ref11 doi: 10.1109/TMTT.2015.2513398 – ident: ref5 doi: 10.1002/9780470602492 – ident: ref32 doi: 10.1109/TAP.2004.841267 – ident: ref20 doi: 10.1109/LAWP.2016.2519527 – ident: ref1 doi: 10.1109/TBCAS.2017.2703588 – ident: ref17 doi: 10.1002/mop.27073 – ident: ref23 doi: 10.1049/iet-map.2012.0395 – ident: ref29 doi: 10.1109/TBCAS.2017.2671841 – ident: ref9 doi: 10.1049/iet-map.2013.0054 |
SSID | ssj0056292 |
Score | 2.5339303 |
Snippet | Given the increased interest in a fast, portable, and on-spot medical diagnostic tool that enables early diagnosis for patients with brain stroke, a new... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 124 |
SubjectTerms | Antenna arrays Antennas Bandwidths Bleeding Brain Broadband Computer simulation Diagnosis Diagnostic software Diagnostic systems EBG flexible antenna Head Image detection Imaging Medical imaging metamaterial Metamaterials Microstrip Multilayers Neuroimaging Polydimethylsiloxane polymer PDMS substrate Polymers Silicone resins Siloxanes Substrates Surface waves Transmission lines Unit cell wearable electromagnetic imaging Wearable technology wideband antenna |
Title | Wearable Electromagnetic Head Imaging System Using Flexible Wideband Antenna Array Based on Polymer Technology for Brain Stroke Diagnosis |
URI | https://ieeexplore.ieee.org/document/8509204 https://www.ncbi.nlm.nih.gov/pubmed/30369449 https://www.proquest.com/docview/2173998100 https://www.proquest.com/docview/2126913698 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VnuBAKeUjpUVG4gbZJmvHcY67pasFqQiprdpbZMcOqtpNqu3uof0H_Gtm7CRUCBC3SHHiRDP2PNtv3gC8T4Q2Y7RzLHIuYyGMwXlQulgqoSQXNk81negef5XzM_HlIrvYgI9DLoxzzpPP3Igu_Vm-bas1bZUdKIxuYxL_fIQLt5Cr1c-6GMZ9AWTCI6TjnfUJMklxcDo9nJwQi0uNcH2gEgpFD4KQr6ryd4DpA81sC477Twz8kqvRemVG1f1v6o3_-w_P4GmHONkkuMg2bLjmOTx5oEO4Az_O0d8ph4odhao4C_29oexGNkcXYJ8XvpQRC-rmzLMM2IyUNOmR80vrjG4smxAbvtHY01LfsSmGR8vahn1rr-8Wbsl-beIzBMpsSrUp2Al2duXYp0D4u7x9AWezo9PDedzVaIgrnqWr2OL4r7jLbVVlUuSIVnTNhawzLrJMF0pZ2nfWmbKVtkR1xfnFYau8QiBZO8tfwmbTNu41sJpIjkKnqTU1vcEYLUgOkWvpnDLjCNLeaGXVCZhTHY3r0i9kkqL0hi7J0GVn6Ag-DM_cBPmOf7beIYMNLTtbRbDX-0bZjfDbEpdyiO1UmiQRvBtu49ikAxfduHZNbcaySLksVASvgk8N7yboUAhR7P65zzfwGL-sCPzwPdhcLdduH-HPyrz1fv8TvuH_bQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1V5QAcKFAoKQWMxA2yTTaO4xx3S1db6FZI3aq9Rf4KqtpN0Hb3UP4B_5oZ54MKAeIWKU6caMaeZ_vNG4B3EVd6iHYOeZaIkHOtcR4ULhSSS5Fwm8WKTnRnJ2J6xj9dpBcb8KHPhXHOefKZG9ClP8u3tVnTVtm-xOg2JPHPeykl4zbZWt28i4Hcl0AmREJK3mmXIhPl-_PxweiUeFxygCsEGVEwuhOGfF2Vv0NMH2omWzDrPrJhmFwN1is9MN9_02_83794DI9azMlGjZM8gQ1XPYWHd5QIt-HHOXo8ZVGxw6YuzkJ9rSi_kU3RCdjRwhczYo2-OfM8AzYhLU165PzSOq0qy0bEh68U9rRUt2yMAdKyumJf6uvbhVuyX9v4DKEyG1N1CnaKnV059rGh_F3ePIOzyeH8YBq2VRpCk6TxKrQ4A5jEZdaYVPAM8YoqEy7KNEEbqVxKSzvPKpXWKEtkV5xhHLbKDELJ0tnkOWxWdeVeACuJ5shVHFtd0hu0VpwEERMlnJN6GEDcGa0wrYQ5VdK4LvxSJsoLb-iCDF20hg7gff_Mt0bA45-tt8lgfcvWVgHsdb5RtGP8psDFHKI7GUdRAG_72zg66chFVa5eU5uhyONE5DKAncan-ncTeMg5z3f_3OcbuD-dz46L46OTzy_hAX5l3rDF92BztVy7VwiGVvq1HwM_AS9IAsQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wearable+Electromagnetic+Head+Imaging+System+Using+Flexible+Wideband+Antenna+Array+Based+on+Polymer+Technology+for+Brain+Stroke+Diagnosis&rft.jtitle=IEEE+transactions+on+biomedical+circuits+and+systems&rft.au=Alqadami%2C+Abdulrahman+S+M&rft.au=Bialkowski%2C+Konstanty+S&rft.au=Mobashsher%2C+Ahmed+Toaha&rft.au=Abbosh%2C+Amin+M&rft.date=2019-02-01&rft.issn=1940-9990&rft.eissn=1940-9990&rft.volume=13&rft.issue=1&rft.spage=124&rft_id=info:doi/10.1109%2FTBCAS.2018.2878057&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4545&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4545&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4545&client=summon |