Wearable Electromagnetic Head Imaging System Using Flexible Wideband Antenna Array Based on Polymer Technology for Brain Stroke Diagnosis

Given the increased interest in a fast, portable, and on-spot medical diagnostic tool that enables early diagnosis for patients with brain stroke, a new approach of a wearable electromagnetic head imaging system based on the polymer material is proposed. A flexible low-profile, wideband, and unidire...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical circuits and systems Vol. 13; no. 1; pp. 124 - 134
Main Authors Alqadami, Abdulrahman S. M., Bialkowski, Konstanty S., Mobashsher, Ahmed Toaha, Abbosh, Amin M.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1932-4545
1940-9990
1940-9990
DOI10.1109/TBCAS.2018.2878057

Cover

Loading…
Abstract Given the increased interest in a fast, portable, and on-spot medical diagnostic tool that enables early diagnosis for patients with brain stroke, a new approach of a wearable electromagnetic head imaging system based on the polymer material is proposed. A flexible low-profile, wideband, and unidirectional antenna array with electromagnetic band gap (EBG) and metamaterial (MTM) unit cells reflector is utilized. The designed antenna consists of a 4 × 4 radiating patch loaded with symmetrical extended open-ended U-slots and fed by combination of series and corporate transmission lines. A mushroom-like 10-EBG unit cell arrays are arranged around the feeding network to reduce surface waves, whereas 4 × 4 MTM unit cells are placed on the back-side of the antenna to enable unidirectional radiation. The antenna is designed and embedded on a multilayer low cost, low loss, transparent, and robust polymer poly-di-methyl-siloxane (PDMS) substrate and optimized to operate in contact with the human head. The simulated and measured results show that the antenna has a fractional bandwidth of 53.8% (1.16-1.94 GHz), more than 80% of radiation efficiency, and satisfactory field penetration in the head tissues with a safe specific absorption rate. An eight-element array is then configured on 300 × 360 × 4.1 mm 3 PDMS material covering an average human head size and used as a worn part of the imaging system. A realistic-shaped 3-D specific anthropomorphic mannequin (SAM) head phantom is used to verify the performance of the designed array. The imaging results indicate the possibility of using the designed conformal array to detect a bleeding inside the brain using a confocal image algorithm.
AbstractList Given the increased interest in a fast, portable, and on-spot medical diagnostic tool that enables early diagnosis for patients with brain stroke, a new approach of a wearable electromagnetic head imaging system based on the polymer material is proposed. A flexible low-profile, wideband, and unidirectional antenna array with electromagnetic band gap (EBG) and metamaterial (MTM) unit cells reflector is utilized. The designed antenna consists of a 4 × 4 radiating patch loaded with symmetrical extended open-ended U-slots and fed by combination of series and corporate transmission lines. A mushroom-like 10-EBG unit cell arrays are arranged around the feeding network to reduce surface waves, whereas 4 × 4 MTM unit cells are placed on the back-side of the antenna to enable unidirectional radiation. The antenna is designed and embedded on a multilayer low cost, low loss, transparent, and robust polymer poly-di-methyl-siloxane (PDMS) substrate and optimized to operate in contact with the human head. The simulated and measured results show that the antenna has a fractional bandwidth of 53.8% (1.16-1.94 GHz), more than 80% of radiation efficiency, and satisfactory field penetration in the head tissues with a safe specific absorption rate. An eight-element array is then configured on 300 × 360 × 4.1 mm PDMS material covering an average human head size and used as a worn part of the imaging system. A realistic-shaped 3-D specific anthropomorphic mannequin (SAM) head phantom is used to verify the performance of the designed array. The imaging results indicate the possibility of using the designed conformal array to detect a bleeding inside the brain using a confocal image algorithm.
Given the increased interest in a fast, portable, and on-spot medical diagnostic tool that enables early diagnosis for patients with brain stroke, a new approach of a wearable electromagnetic head imaging system based on the polymer material is proposed. A flexible low-profile, wideband, and unidirectional antenna array with electromagnetic band gap (EBG) and metamaterial (MTM) unit cells reflector is utilized. The designed antenna consists of a 4 × 4 radiating patch loaded with symmetrical extended open-ended U-slots and fed by combination of series and corporate transmission lines. A mushroom-like 10-EBG unit cell arrays are arranged around the feeding network to reduce surface waves, whereas 4 × 4 MTM unit cells are placed on the back-side of the antenna to enable unidirectional radiation. The antenna is designed and embedded on a multilayer low cost, low loss, transparent, and robust polymer poly-di-methyl-siloxane (PDMS) substrate and optimized to operate in contact with the human head. The simulated and measured results show that the antenna has a fractional bandwidth of 53.8% (1.16-1.94 GHz), more than 80% of radiation efficiency, and satisfactory field penetration in the head tissues with a safe specific absorption rate. An eight-element array is then configured on 300 × 360 × 4.1 mm3 PDMS material covering an average human head size and used as a worn part of the imaging system. A realistic-shaped 3-D specific anthropomorphic mannequin (SAM) head phantom is used to verify the performance of the designed array. The imaging results indicate the possibility of using the designed conformal array to detect a bleeding inside the brain using a confocal image algorithm.Given the increased interest in a fast, portable, and on-spot medical diagnostic tool that enables early diagnosis for patients with brain stroke, a new approach of a wearable electromagnetic head imaging system based on the polymer material is proposed. A flexible low-profile, wideband, and unidirectional antenna array with electromagnetic band gap (EBG) and metamaterial (MTM) unit cells reflector is utilized. The designed antenna consists of a 4 × 4 radiating patch loaded with symmetrical extended open-ended U-slots and fed by combination of series and corporate transmission lines. A mushroom-like 10-EBG unit cell arrays are arranged around the feeding network to reduce surface waves, whereas 4 × 4 MTM unit cells are placed on the back-side of the antenna to enable unidirectional radiation. The antenna is designed and embedded on a multilayer low cost, low loss, transparent, and robust polymer poly-di-methyl-siloxane (PDMS) substrate and optimized to operate in contact with the human head. The simulated and measured results show that the antenna has a fractional bandwidth of 53.8% (1.16-1.94 GHz), more than 80% of radiation efficiency, and satisfactory field penetration in the head tissues with a safe specific absorption rate. An eight-element array is then configured on 300 × 360 × 4.1 mm3 PDMS material covering an average human head size and used as a worn part of the imaging system. A realistic-shaped 3-D specific anthropomorphic mannequin (SAM) head phantom is used to verify the performance of the designed array. The imaging results indicate the possibility of using the designed conformal array to detect a bleeding inside the brain using a confocal image algorithm.
Given the increased interest in a fast, portable, and on-spot medical diagnostic tool that enables early diagnosis for patients with brain stroke, a new approach of a wearable electromagnetic head imaging system based on the polymer material is proposed. A flexible low-profile, wideband, and unidirectional antenna array with electromagnetic band gap (EBG) and metamaterial (MTM) unit cells reflector is utilized. The designed antenna consists of a 4 × 4 radiating patch loaded with symmetrical extended open-ended U-slots and fed by combination of series and corporate transmission lines. A mushroom-like 10-EBG unit cell arrays are arranged around the feeding network to reduce surface waves, whereas 4 × 4 MTM unit cells are placed on the back-side of the antenna to enable unidirectional radiation. The antenna is designed and embedded on a multilayer low cost, low loss, transparent, and robust polymer poly-di-methyl-siloxane (PDMS) substrate and optimized to operate in contact with the human head. The simulated and measured results show that the antenna has a fractional bandwidth of 53.8% (1.16-1.94 GHz), more than 80% of radiation efficiency, and satisfactory field penetration in the head tissues with a safe specific absorption rate. An eight-element array is then configured on 300 × 360 × 4.1 mm 3 PDMS material covering an average human head size and used as a worn part of the imaging system. A realistic-shaped 3-D specific anthropomorphic mannequin (SAM) head phantom is used to verify the performance of the designed array. The imaging results indicate the possibility of using the designed conformal array to detect a bleeding inside the brain using a confocal image algorithm.
Given the increased interest in a fast, portable, and on-spot medical diagnostic tool that enables early diagnosis for patients with brain stroke, a new approach of a wearable electromagnetic head imaging system based on the polymer material is proposed. A flexible low-profile, wideband, and unidirectional antenna array with electromagnetic band gap (EBG) and metamaterial (MTM) unit cells reflector is utilized. The designed antenna consists of a 4 × 4 radiating patch loaded with symmetrical extended open-ended U-slots and fed by combination of series and corporate transmission lines. A mushroom-like 10-EBG unit cell arrays are arranged around the feeding network to reduce surface waves, whereas 4 × 4 MTM unit cells are placed on the back-side of the antenna to enable unidirectional radiation. The antenna is designed and embedded on a multilayer low cost, low loss, transparent, and robust polymer poly-di-methyl-siloxane (PDMS) substrate and optimized to operate in contact with the human head. The simulated and measured results show that the antenna has a fractional bandwidth of 53.8% (1.16–1.94 GHz), more than 80% of radiation efficiency, and satisfactory field penetration in the head tissues with a safe specific absorption rate. An eight-element array is then configured on 300 × 360 × 4.1 mm3 PDMS material covering an average human head size and used as a worn part of the imaging system. A realistic-shaped 3-D specific anthropomorphic mannequin (SAM) head phantom is used to verify the performance of the designed array. The imaging results indicate the possibility of using the designed conformal array to detect a bleeding inside the brain using a confocal image algorithm.
Author Bialkowski, Konstanty S.
Mobashsher, Ahmed Toaha
Alqadami, Abdulrahman S. M.
Abbosh, Amin M.
Author_xml – sequence: 1
  givenname: Abdulrahman S. M.
  orcidid: 0000-0001-8726-1585
  surname: Alqadami
  fullname: Alqadami, Abdulrahman S. M.
  email: a.alqadami@uq.edu.au
  organization: School of IT and Electrical Engineering, The University of Queensland, Brisbane, QLD, Australia
– sequence: 2
  givenname: Konstanty S.
  surname: Bialkowski
  fullname: Bialkowski, Konstanty S.
  email: ksb@itee.uq.edu.au
  organization: School of IT and Electrical Engineering, The University of Queensland, Brisbane, QLD, Australia
– sequence: 3
  givenname: Ahmed Toaha
  orcidid: 0000-0002-6351-8136
  surname: Mobashsher
  fullname: Mobashsher, Ahmed Toaha
  email: a.mobashsher@uq.edu.au
  organization: School of IT and Electrical Engineering, The University of Queensland, Brisbane, QLD, Australia
– sequence: 4
  givenname: Amin M.
  orcidid: 0000-0002-8015-5883
  surname: Abbosh
  fullname: Abbosh, Amin M.
  email: a.abbosh@uq.edu.au
  organization: School of IT and Electrical Engineering, The University of Queensland, Brisbane, QLD, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30369449$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1vEzEQhi1URD_gD4CELHHhssEf6137mISWVqoEUlL1aDn2bHDZtYu9kchP4F_jJSmHHjjZIz3PzGjec3QSYgCE3lIyo5SoT-vFcr6aMULljMlWEtG-QGdU1aRSSpGT6c9ZVYtanKLznB8IEQ1T7BU65YQ3qq7VGfp9DyaZTQ_4sgc7pjiYbYDRW3wNxuGbUvqwxat9HmHAd3kqrnr45Sfl3jvYmODwPIwQgsHzlMweL0wGh2PA32K_HyDhNdjvIfZxu8ddTHiRjA94VYb9APzZl4Ex-_wavexMn-HN8b1Ad1eX6-V1dfv1y81yfltZLuhYOSmJ5dA6a0VTt4RJ0_G66QSvhTBKSkcE40ZIZ42jSjFOBBSqtY1oOnD8An089H1M8ecO8qgHny30vQkQd1kzyhpFy31kQT88Qx_iLoWyXaFarpSkhBTq_ZHabQZw-jH5waS9fjpyAeQBsCnmnKDT1o9m9DGM5RK9pkRPeeq_eeopT33Ms6jsmfrU_b_Su4PkAeCfIAVRjNT8D9l6qxQ
CODEN ITBCCW
CitedBy_id crossref_primary_10_1515_freq_2023_0236
crossref_primary_10_1038_s41598_020_78647_x
crossref_primary_10_1007_s11277_022_09818_4
crossref_primary_10_1038_s41598_022_12860_8
crossref_primary_10_3390_s20092607
crossref_primary_10_1016_j_wneu_2022_09_039
crossref_primary_10_1038_s41598_021_01326_y
crossref_primary_10_1109_LAWP_2023_3257709
crossref_primary_10_3390_bios13030302
crossref_primary_10_23919_URSIRSB_2021_9829344
crossref_primary_10_1109_ACCESS_2021_3086624
crossref_primary_10_1109_ACCESS_2022_3219442
crossref_primary_10_1109_TAP_2022_3184512
crossref_primary_10_3390_bios13020238
crossref_primary_10_1109_JERM_2024_3401582
crossref_primary_10_2528_PIERC19120704
crossref_primary_10_1109_ACCESS_2020_2963997
crossref_primary_10_1109_LAWP_2023_3340261
crossref_primary_10_1109_TAP_2020_2996815
crossref_primary_10_1109_JSEN_2023_3341075
crossref_primary_10_1109_TBCAS_2023_3313732
crossref_primary_10_1002_pat_6575
crossref_primary_10_1038_s41598_021_03043_y
crossref_primary_10_61186_jiaeee_21_3_129
crossref_primary_10_1109_JSEN_2020_3023482
crossref_primary_10_1109_LAWP_2020_3022161
crossref_primary_10_1109_ACCESS_2020_3035657
crossref_primary_10_1109_ACCESS_2025_3546558
crossref_primary_10_1109_JERM_2022_3182879
crossref_primary_10_1186_s12938_023_01145_4
crossref_primary_10_1002_mmce_23083
crossref_primary_10_1109_TAP_2019_2938849
crossref_primary_10_1007_s11276_023_03231_w
crossref_primary_10_1038_s41598_022_20944_8
crossref_primary_10_1109_JERM_2023_3337660
crossref_primary_10_3390_ma14164526
crossref_primary_10_1109_TBCAS_2021_3085351
crossref_primary_10_1109_JERM_2023_3324478
crossref_primary_10_1109_TMTT_2020_3040483
crossref_primary_10_1109_OJAP_2020_3024276
crossref_primary_10_1080_00207217_2024_2388235
crossref_primary_10_1109_JERM_2020_2995329
crossref_primary_10_1016_j_aej_2022_10_034
crossref_primary_10_3390_electronics10172056
crossref_primary_10_1109_ACCESS_2025_3536525
crossref_primary_10_1109_JERM_2019_2901360
crossref_primary_10_1109_TAP_2023_3242414
crossref_primary_10_1007_s11082_023_05498_x
crossref_primary_10_1109_TBCAS_2019_2953989
crossref_primary_10_1016_j_compbiomed_2024_109316
crossref_primary_10_1155_2023_5644220
crossref_primary_10_1017_S1759078720001579
crossref_primary_10_1038_s41598_022_10309_6
crossref_primary_10_1109_TAP_2024_3353331
crossref_primary_10_1109_TAP_2024_3355232
crossref_primary_10_1364_OME_481999
crossref_primary_10_1016_j_cjph_2021_05_005
crossref_primary_10_1038_s41928_021_00589_7
crossref_primary_10_1109_TAP_2020_3037742
crossref_primary_10_3390_s24041305
crossref_primary_10_1109_JMW_2023_3347260
crossref_primary_10_1016_j_jestch_2024_101779
crossref_primary_10_1109_TMTT_2019_2963870
crossref_primary_10_1049_iet_map_2019_0271
crossref_primary_10_3390_polym14101989
crossref_primary_10_1016_j_jmrt_2022_08_103
crossref_primary_10_1002_dac_4958
crossref_primary_10_1109_TBCAS_2022_3151243
crossref_primary_10_1007_s11431_024_2648_9
crossref_primary_10_1016_j_cjph_2022_03_003
crossref_primary_10_1016_j_cjph_2022_03_002
crossref_primary_10_1109_JERM_2022_3227724
crossref_primary_10_3390_a14050157
crossref_primary_10_3390_s21175678
crossref_primary_10_1109_ACCESS_2021_3079217
crossref_primary_10_1109_JSEN_2024_3525441
crossref_primary_10_1109_TAP_2024_3388214
crossref_primary_10_1109_LAWP_2021_3051679
crossref_primary_10_1109_OJAP_2022_3150100
crossref_primary_10_1007_s11082_024_06982_8
crossref_primary_10_1109_TBCAS_2020_3010259
crossref_primary_10_1515_freq_2024_0142
crossref_primary_10_1016_j_measurement_2023_113753
crossref_primary_10_3390_s22197235
crossref_primary_10_1109_ACCESS_2023_3343154
crossref_primary_10_1109_TBCAS_2019_2951500
crossref_primary_10_1109_ACCESS_2021_3069712
crossref_primary_10_3390_s24216897
crossref_primary_10_1016_j_eml_2022_101841
crossref_primary_10_1038_s41598_024_67103_9
crossref_primary_10_1109_JBHI_2023_3327296
crossref_primary_10_1109_TBME_2021_3084313
crossref_primary_10_1109_ACCESS_2020_3029595
crossref_primary_10_1109_TBCAS_2020_3025341
crossref_primary_10_1109_TMTT_2022_3201376
crossref_primary_10_1109_TAP_2020_2970072
crossref_primary_10_1109_TAP_2019_2908066
crossref_primary_10_2528_PIERM23080803
crossref_primary_10_3390_ma14010149
crossref_primary_10_3390_s24092887
crossref_primary_10_1002_mop_34095
Cites_doi 10.1109/LAWP.2016.2640305
10.1109/TMTT.2004.839322
10.1098/rsta.2009.0092
10.1088/0031-9155/52/20/002
10.1109/TBME.2015.2434956
10.1109/MAP.2017.2732225
10.1109/LAWP.2016.2565610
10.1109/LAWP.2015.2513960
10.1109/LAWP.2014.2386852
10.1109/TAP.2016.2635588
10.1109/22.798001
10.1109/LAWP.2011.2170398
10.1002/mop.23274
10.1109/TBCAS.2015.2481940
10.1109/MAP.2017.2731199
10.1109/TAP.2016.2560909
10.1109/MMM.2018.2801646
10.1109/LAPC.2012.6402953
10.1109/TIM.2013.2277562
10.1109/TMTT.2005.857330
10.1109/TBME.2014.2330554
10.1088/0031-9155/41/11/003
10.1109/TMTT.2014.2342669
10.1109/LAWP.2016.2598729
10.1109/LAWP.2017.2732355
10.1109/TAP.2012.2207055
10.1109/74.262629
10.1109/TMTT.2015.2513398
10.1002/9780470602492
10.1109/TAP.2004.841267
10.1109/LAWP.2016.2519527
10.1109/TBCAS.2017.2703588
10.1002/mop.27073
10.1049/iet-map.2012.0395
10.1109/TBCAS.2017.2671841
10.1049/iet-map.2013.0054
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QO
7SP
7TB
8FD
FR3
L7M
P64
7X8
DOI 10.1109/TBCAS.2018.2878057
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Biotechnology Research Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Biotechnology Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1940-9990
EndPage 134
ExternalDocumentID 30369449
10_1109_TBCAS_2018_2878057
8509204
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Australian Government Research
  grantid: ARC- DP150103425
GroupedDBID ---
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QO
7SP
7TB
8FD
FR3
L7M
P64
7X8
ID FETCH-LOGICAL-c351t-d880c3e7dcc5647028af346f53455a988d0523a58dcad1992305e0287c656fed3
IEDL.DBID RIE
ISSN 1932-4545
1940-9990
IngestDate Fri Jul 11 06:57:33 EDT 2025
Mon Jun 30 08:37:53 EDT 2025
Mon Jul 21 05:37:20 EDT 2025
Tue Jul 01 03:26:33 EDT 2025
Thu Apr 24 22:55:42 EDT 2025
Wed Aug 27 03:06:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-d880c3e7dcc5647028af346f53455a988d0523a58dcad1992305e0287c656fed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8726-1585
0000-0002-8015-5883
0000-0002-6351-8136
PMID 30369449
PQID 2173998100
PQPubID 85510
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TBCAS_2018_2878057
ieee_primary_8509204
proquest_journals_2173998100
crossref_primary_10_1109_TBCAS_2018_2878057
proquest_miscellaneous_2126913698
pubmed_primary_30369449
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-01
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical circuits and systems
PublicationTitleAbbrev TBCAS
PublicationTitleAlternate IEEE Trans Biomed Circuits Syst
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref19
(ref44) 2018
ref18
kidwell (ref42) 2014; 2
(ref40) 2006
(ref41) 2018
mobashsher (ref16) 2012; 6
ref24
ref23
ref26
ref25
ref20
bushberg (ref43) 2011
(ref45) 2018
ref21
ref28
bahl (ref30) 1981
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
bashri (ref22) 0
References_xml – ident: ref33
  doi: 10.1109/LAWP.2016.2640305
– ident: ref37
  doi: 10.1109/TMTT.2004.839322
– ident: ref6
  doi: 10.1098/rsta.2009.0092
– ident: ref7
  doi: 10.1088/0031-9155/52/20/002
– ident: ref21
  doi: 10.1109/TBME.2015.2434956
– ident: ref13
  doi: 10.1109/MAP.2017.2732225
– ident: ref18
  doi: 10.1109/LAWP.2016.2565610
– year: 1981
  ident: ref30
  publication-title: Microstrip Antennas
– ident: ref24
  doi: 10.1109/LAWP.2015.2513960
– ident: ref19
  doi: 10.1109/LAWP.2014.2386852
– start-page: 671
  year: 0
  ident: ref22
  article-title: Wearable device for microwave head imaging
  publication-title: Proc 46th Eur Microw Conf
– volume: 6
  start-page: 1681
  year: 2012
  ident: ref16
  article-title: On-site rapid diagnosis of intracranial hematoma using portable multi-slice microwave imaging system
  publication-title: Sci Rep
– ident: ref36
  doi: 10.1109/TAP.2016.2635588
– ident: ref34
  doi: 10.1109/22.798001
– ident: ref27
  doi: 10.1109/LAWP.2011.2170398
– ident: ref31
  doi: 10.1002/mop.23274
– ident: ref4
  doi: 10.1109/TBCAS.2015.2481940
– ident: ref12
  doi: 10.1109/MAP.2017.2731199
– ident: ref14
  doi: 10.1109/TAP.2016.2560909
– year: 2018
  ident: ref41
– year: 2006
  ident: ref40
  publication-title: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagetic Fields 3 kHz to 300 GHz
– year: 2011
  ident: ref43
  publication-title: The Essential Physics of Medical Imaging
– ident: ref3
  doi: 10.1109/MMM.2018.2801646
– year: 2018
  ident: ref45
  article-title: Diagnostic tool, MRI
– year: 2018
  ident: ref44
  article-title: Diagnostic tool, CT scan
– ident: ref26
  doi: 10.1109/LAPC.2012.6402953
– ident: ref15
  doi: 10.1109/TIM.2013.2277562
– ident: ref8
  doi: 10.1109/TMTT.2005.857330
– ident: ref2
  doi: 10.1109/TBME.2014.2330554
– volume: 2
  start-page: 1823
  year: 2014
  ident: ref42
  article-title: Comparison of MRI and CT for detection of acute intracerebral hemorrhage
  publication-title: JAMA NETWORK
– ident: ref39
  doi: 10.1088/0031-9155/41/11/003
– ident: ref10
  doi: 10.1109/TMTT.2014.2342669
– ident: ref28
  doi: 10.1109/LAWP.2016.2598729
– ident: ref35
  doi: 10.1109/LAWP.2017.2732355
– ident: ref25
  doi: 10.1109/TAP.2012.2207055
– ident: ref38
  doi: 10.1109/74.262629
– ident: ref11
  doi: 10.1109/TMTT.2015.2513398
– ident: ref5
  doi: 10.1002/9780470602492
– ident: ref32
  doi: 10.1109/TAP.2004.841267
– ident: ref20
  doi: 10.1109/LAWP.2016.2519527
– ident: ref1
  doi: 10.1109/TBCAS.2017.2703588
– ident: ref17
  doi: 10.1002/mop.27073
– ident: ref23
  doi: 10.1049/iet-map.2012.0395
– ident: ref29
  doi: 10.1109/TBCAS.2017.2671841
– ident: ref9
  doi: 10.1049/iet-map.2013.0054
SSID ssj0056292
Score 2.5339303
Snippet Given the increased interest in a fast, portable, and on-spot medical diagnostic tool that enables early diagnosis for patients with brain stroke, a new...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 124
SubjectTerms Antenna arrays
Antennas
Bandwidths
Bleeding
Brain
Broadband
Computer simulation
Diagnosis
Diagnostic software
Diagnostic systems
EBG
flexible antenna
Head
Image detection
Imaging
Medical imaging
metamaterial
Metamaterials
Microstrip
Multilayers
Neuroimaging
Polydimethylsiloxane
polymer PDMS substrate
Polymers
Silicone resins
Siloxanes
Substrates
Surface waves
Transmission lines
Unit cell
wearable electromagnetic imaging
Wearable technology
wideband antenna
Title Wearable Electromagnetic Head Imaging System Using Flexible Wideband Antenna Array Based on Polymer Technology for Brain Stroke Diagnosis
URI https://ieeexplore.ieee.org/document/8509204
https://www.ncbi.nlm.nih.gov/pubmed/30369449
https://www.proquest.com/docview/2173998100
https://www.proquest.com/docview/2126913698
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VnuBAKeUjpUVG4gbZJmvHcY67pasFqQiprdpbZMcOqtpNqu3uof0H_Gtm7CRUCBC3SHHiRDP2PNtv3gC8T4Q2Y7RzLHIuYyGMwXlQulgqoSQXNk81negef5XzM_HlIrvYgI9DLoxzzpPP3Igu_Vm-bas1bZUdKIxuYxL_fIQLt5Cr1c-6GMZ9AWTCI6TjnfUJMklxcDo9nJwQi0uNcH2gEgpFD4KQr6ryd4DpA81sC477Twz8kqvRemVG1f1v6o3_-w_P4GmHONkkuMg2bLjmOTx5oEO4Az_O0d8ph4odhao4C_29oexGNkcXYJ8XvpQRC-rmzLMM2IyUNOmR80vrjG4smxAbvtHY01LfsSmGR8vahn1rr-8Wbsl-beIzBMpsSrUp2Al2duXYp0D4u7x9AWezo9PDedzVaIgrnqWr2OL4r7jLbVVlUuSIVnTNhawzLrJMF0pZ2nfWmbKVtkR1xfnFYau8QiBZO8tfwmbTNu41sJpIjkKnqTU1vcEYLUgOkWvpnDLjCNLeaGXVCZhTHY3r0i9kkqL0hi7J0GVn6Ag-DM_cBPmOf7beIYMNLTtbRbDX-0bZjfDbEpdyiO1UmiQRvBtu49ikAxfduHZNbcaySLksVASvgk8N7yboUAhR7P65zzfwGL-sCPzwPdhcLdduH-HPyrz1fv8TvuH_bQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1V5QAcKFAoKQWMxA2yTTaO4xx3S1db6FZI3aq9Rf4KqtpN0Hb3UP4B_5oZ54MKAeIWKU6caMaeZ_vNG4B3EVd6iHYOeZaIkHOtcR4ULhSSS5Fwm8WKTnRnJ2J6xj9dpBcb8KHPhXHOefKZG9ClP8u3tVnTVtm-xOg2JPHPeykl4zbZWt28i4Hcl0AmREJK3mmXIhPl-_PxweiUeFxygCsEGVEwuhOGfF2Vv0NMH2omWzDrPrJhmFwN1is9MN9_02_83794DI9azMlGjZM8gQ1XPYWHd5QIt-HHOXo8ZVGxw6YuzkJ9rSi_kU3RCdjRwhczYo2-OfM8AzYhLU165PzSOq0qy0bEh68U9rRUt2yMAdKyumJf6uvbhVuyX9v4DKEyG1N1CnaKnV059rGh_F3ePIOzyeH8YBq2VRpCk6TxKrQ4A5jEZdaYVPAM8YoqEy7KNEEbqVxKSzvPKpXWKEtkV5xhHLbKDELJ0tnkOWxWdeVeACuJ5shVHFtd0hu0VpwEERMlnJN6GEDcGa0wrYQ5VdK4LvxSJsoLb-iCDF20hg7gff_Mt0bA45-tt8lgfcvWVgHsdb5RtGP8psDFHKI7GUdRAG_72zg66chFVa5eU5uhyONE5DKAncan-ncTeMg5z3f_3OcbuD-dz46L46OTzy_hAX5l3rDF92BztVy7VwiGVvq1HwM_AS9IAsQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wearable+Electromagnetic+Head+Imaging+System+Using+Flexible+Wideband+Antenna+Array+Based+on+Polymer+Technology+for+Brain+Stroke+Diagnosis&rft.jtitle=IEEE+transactions+on+biomedical+circuits+and+systems&rft.au=Alqadami%2C+Abdulrahman+S+M&rft.au=Bialkowski%2C+Konstanty+S&rft.au=Mobashsher%2C+Ahmed+Toaha&rft.au=Abbosh%2C+Amin+M&rft.date=2019-02-01&rft.issn=1940-9990&rft.eissn=1940-9990&rft.volume=13&rft.issue=1&rft.spage=124&rft_id=info:doi/10.1109%2FTBCAS.2018.2878057&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4545&client=summon