ThiNet: Pruning CNN Filters for a Thinner Net

This paper aims at accelerating and compressing deep neural networks to deploy CNN models into small devices like mobile phones or embedded gadgets. We focus on filter level pruning, i.e., the whole filter will be discarded if it is less important. An effective and unified framework, ThiNet (stands...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 41; no. 10; pp. 2525 - 2538
Main Authors Luo, Jian-Hao, Zhang, Hao, Zhou, Hong-Yu, Xie, Chen-Wei, Wu, Jianxin, Lin, Weiyao
Format Journal Article
LanguageEnglish
Published United States IEEE 01.10.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper aims at accelerating and compressing deep neural networks to deploy CNN models into small devices like mobile phones or embedded gadgets. We focus on filter level pruning, i.e., the whole filter will be discarded if it is less important. An effective and unified framework, ThiNet (stands for “Thin Net”), is proposed in this paper. We formally establish filter pruning as an optimization problem, and reveal that we need to prune filters based on statistics computed from its next layer, not the current layer, which differentiates ThiNet from existing methods. We also propose “gcos” (Group COnvolution with Shuffling), a more accurate group convolution scheme, to further reduce the pruned model size. Experimental results demonstrate the effectiveness of our method, which has advanced the state-of-the-art. Moreover, we show that the original VGG-16 model can be compressed into a very small model (ThiNet-Tiny) with only 2.66 MB model size, but still preserve AlexNet level accuracy. This small model is evaluated on several benchmarks with different vision tasks (e.g., classification, detection, segmentation), and shows excellent generalization ability.
AbstractList This paper aims at accelerating and compressing deep neural networks to deploy CNN models into small devices like mobile phones or embedded gadgets. We focus on filter level pruning, i.e., the whole filter will be discarded if it is less important. An effective and unified framework, ThiNet (stands for "Thin Net"), is proposed in this paper. We formally establish filter pruning as an optimization problem, and reveal that we need to prune filters based on statistics computed from its next layer, not the current layer, which differentiates ThiNet from existing methods. We also propose "gcos" (Group COnvolution with Shuffling), a more accurate group convolution scheme, to further reduce the pruned model size. Experimental results demonstrate the effectiveness of our method, which has advanced the state-of-the-art. Moreover, we show that the original VGG-16 model can be compressed into a very small model (ThiNet-Tiny) with only 2.66 MB model size, but still preserve AlexNet level accuracy. This small model is evaluated on several benchmarks with different vision tasks (e.g., classification, detection, segmentation), and shows excellent generalization ability.This paper aims at accelerating and compressing deep neural networks to deploy CNN models into small devices like mobile phones or embedded gadgets. We focus on filter level pruning, i.e., the whole filter will be discarded if it is less important. An effective and unified framework, ThiNet (stands for "Thin Net"), is proposed in this paper. We formally establish filter pruning as an optimization problem, and reveal that we need to prune filters based on statistics computed from its next layer, not the current layer, which differentiates ThiNet from existing methods. We also propose "gcos" (Group COnvolution with Shuffling), a more accurate group convolution scheme, to further reduce the pruned model size. Experimental results demonstrate the effectiveness of our method, which has advanced the state-of-the-art. Moreover, we show that the original VGG-16 model can be compressed into a very small model (ThiNet-Tiny) with only 2.66 MB model size, but still preserve AlexNet level accuracy. This small model is evaluated on several benchmarks with different vision tasks (e.g., classification, detection, segmentation), and shows excellent generalization ability.
This paper aims at accelerating and compressing deep neural networks to deploy CNN models into small devices like mobile phones or embedded gadgets. We focus on filter level pruning, i.e., the whole filter will be discarded if it is less important. An effective and unified framework, ThiNet (stands for “Thin Net”), is proposed in this paper. We formally establish filter pruning as an optimization problem, and reveal that we need to prune filters based on statistics computed from its next layer, not the current layer, which differentiates ThiNet from existing methods. We also propose “gcos” (Group COnvolution with Shuffling), a more accurate group convolution scheme, to further reduce the pruned model size. Experimental results demonstrate the effectiveness of our method, which has advanced the state-of-the-art. Moreover, we show that the original VGG-16 model can be compressed into a very small model (ThiNet-Tiny) with only 2.66 MB model size, but still preserve AlexNet level accuracy. This small model is evaluated on several benchmarks with different vision tasks (e.g., classification, detection, segmentation), and shows excellent generalization ability.
Author Wu, Jianxin
Luo, Jian-Hao
Zhang, Hao
Lin, Weiyao
Zhou, Hong-Yu
Xie, Chen-Wei
Author_xml – sequence: 1
  givenname: Jian-Hao
  orcidid: 0000-0001-8105-805X
  surname: Luo
  fullname: Luo, Jian-Hao
  email: luojh@lamda.nju.edu.cn
  organization: National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
– sequence: 2
  givenname: Hao
  orcidid: 0000-0001-5447-180X
  surname: Zhang
  fullname: Zhang, Hao
  email: zhangh@lamda.nju.edu.cn
  organization: National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
– sequence: 3
  givenname: Hong-Yu
  surname: Zhou
  fullname: Zhou, Hong-Yu
  email: zhouhy@lamda.nju.edu.cn
  organization: National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
– sequence: 4
  givenname: Chen-Wei
  surname: Xie
  fullname: Xie, Chen-Wei
  email: xiecw@lamda.nju.edu.cn
  organization: National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
– sequence: 5
  givenname: Jianxin
  orcidid: 0000-0002-2085-7568
  surname: Wu
  fullname: Wu, Jianxin
  email: wujx@lamda.nju.edu.cn
  organization: National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
– sequence: 6
  givenname: Weiyao
  orcidid: 0000-0001-8307-7107
  surname: Lin
  fullname: Lin, Weiyao
  email: wylin@sjtu.edu.cn
  organization: Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30040622$$D View this record in MEDLINE/PubMed
BookMark eNp9kD1PwzAQQC1UBOXjD4CEIrGwpJzPceKwoYovCQpDmS3HccBV6hQ7Gfj3GFo6MDB5ee_u_A7IyHXOEHJCYUIplJfzl-unhwkCFRMUXCDDHTJGmkNaYokjMgaaYyoEin1yEMICgGYc2B7ZZwAZ5Ihjks7f7cz0V8mLH5x1b8l0NktubdsbH5Km84lKIuGc8UnEjshuo9pgjjfvIXm9vZlP79PH57uH6fVjqhmnfVoXRcUqKsAgBVaVqGvMoC6ysm60anhGM6ayooICdN2wnGulCq4FLRQXSgh2SC7Wc1e--xhM6OXSBm3aVjnTDUEiFHn8bikgoud_0EU3eBevkxirMEZLmkfqbEMN1dLUcuXtUvlP-RsiArgGtO9C8KbZIhTkd235U1t-15ab2lESfyRte9XbzvVe2fZ_9XStWmPMdpfIaM55yb4A3kmIfg
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1142_S021800142455019X
crossref_primary_10_1002_cpe_6891
crossref_primary_10_3390_app122111184
crossref_primary_10_1007_s13042_023_02076_1
crossref_primary_10_1016_j_patcog_2022_109025
crossref_primary_10_3390_math12193032
crossref_primary_10_1016_j_sysarc_2019_02_008
crossref_primary_10_1109_ACCESS_2022_3171856
crossref_primary_10_3233_JHS_210662
crossref_primary_10_1155_2022_9312847
crossref_primary_10_1109_TPAMI_2023_3323496
crossref_primary_10_3390_en13164190
crossref_primary_10_3390_computers12080151
crossref_primary_10_1109_TNNLS_2022_3167466
crossref_primary_10_1109_TPAMI_2022_3212615
crossref_primary_10_1016_j_knosys_2025_113002
crossref_primary_10_1016_j_neunet_2023_09_002
crossref_primary_10_3390_informatics8040077
crossref_primary_10_1007_s10489_022_03893_7
crossref_primary_10_1016_j_jvcir_2020_102798
crossref_primary_10_3390_rs13030492
crossref_primary_10_1016_j_patcog_2021_108448
crossref_primary_10_1109_ACCESS_2022_3140807
crossref_primary_10_3390_rs14246245
crossref_primary_10_1109_TIP_2021_3093795
crossref_primary_10_1109_TCYB_2020_3034605
crossref_primary_10_1007_s12559_020_09815_4
crossref_primary_10_1063_5_0255692
crossref_primary_10_1016_j_patcog_2020_107461
crossref_primary_10_1109_TNNLS_2021_3059529
crossref_primary_10_3233_JIFS_202290
crossref_primary_10_1016_j_jisa_2023_103548
crossref_primary_10_1109_TPAMI_2022_3185317
crossref_primary_10_7717_peerj_cs_1529
crossref_primary_10_1088_2631_8695_ada72c
crossref_primary_10_14778_3461535_3461547
crossref_primary_10_1109_TCSVT_2022_3175762
crossref_primary_10_1007_s11042_023_17656_0
crossref_primary_10_1007_s11760_021_01888_4
crossref_primary_10_1016_j_patcog_2020_107468
crossref_primary_10_1109_TNNLS_2022_3156047
crossref_primary_10_1007_s11633_022_1353_0
crossref_primary_10_1016_j_knosys_2025_113155
crossref_primary_10_1007_s10489_022_03260_6
crossref_primary_10_3390_s22218427
crossref_primary_10_1371_journal_pone_0292517
crossref_primary_10_1109_ACCESS_2024_3425166
crossref_primary_10_1109_TVLSI_2023_3307607
crossref_primary_10_1016_j_dsp_2024_104851
crossref_primary_10_1093_bioinformatics_btad138
crossref_primary_10_1109_JPROC_2022_3226481
crossref_primary_10_1109_JSTSP_2020_2992390
crossref_primary_10_1016_j_patcog_2021_107899
crossref_primary_10_1109_TPAMI_2020_3020300
crossref_primary_10_1109_TVT_2020_2983143
crossref_primary_10_1109_ACCESS_2023_3320642
crossref_primary_10_3389_fnbot_2023_1132679
crossref_primary_10_1016_j_asoc_2023_110229
crossref_primary_10_1109_TPAMI_2021_3086914
crossref_primary_10_1371_journal_pone_0271225
crossref_primary_10_1016_j_cviu_2022_103498
crossref_primary_10_1155_2022_4157511
crossref_primary_10_1109_JPHOTOV_2022_3195099
crossref_primary_10_1007_s11554_024_01511_y
crossref_primary_10_1016_j_patrec_2023_10_020
crossref_primary_10_1109_JIOT_2020_3008931
crossref_primary_10_1016_j_asoc_2023_111166
crossref_primary_10_1145_3711846
crossref_primary_10_1007_s10489_022_03198_9
crossref_primary_10_1210_clinem_dgab870
crossref_primary_10_1109_ACCESS_2020_3016780
crossref_primary_10_1109_ACCESS_2021_3108545
crossref_primary_10_1109_ACCESS_2022_3153025
crossref_primary_10_1007_s10489_022_03383_w
crossref_primary_10_1016_j_patcog_2023_109508
crossref_primary_10_1109_JSTSP_2020_2971418
crossref_primary_10_1109_TGRS_2020_2976694
crossref_primary_10_1016_j_neucom_2022_11_072
crossref_primary_10_1109_TNNLS_2022_3201846
crossref_primary_10_1038_s41598_023_43986_y
crossref_primary_10_1016_j_neucom_2024_127817
crossref_primary_10_1109_LSP_2022_3164328
crossref_primary_10_3389_fmed_2022_894430
crossref_primary_10_1007_s11227_023_05150_1
crossref_primary_10_1109_TNNLS_2022_3165123
crossref_primary_10_1109_TPAMI_2023_3260903
crossref_primary_10_1360_SST_2021_0088
crossref_primary_10_1109_TNNLS_2020_2979517
crossref_primary_10_1109_TVLSI_2023_3297125
crossref_primary_10_1109_TPAMI_2023_3275159
crossref_primary_10_3390_bdcc7020111
crossref_primary_10_1016_j_patcog_2020_107610
crossref_primary_10_3390_s22052022
crossref_primary_10_1007_s10766_024_00760_5
crossref_primary_10_1364_OE_495425
crossref_primary_10_3390_computers12030060
crossref_primary_10_1109_ACCESS_2020_2990477
crossref_primary_10_3390_a13050125
crossref_primary_10_1016_j_compbiomed_2024_109296
crossref_primary_10_1109_TPAMI_2024_3406556
crossref_primary_10_1016_j_cviu_2022_103511
crossref_primary_10_1021_acsbiomaterials_3c01938
crossref_primary_10_1109_TCSVT_2020_3040367
crossref_primary_10_1109_TMM_2019_2950523
crossref_primary_10_3390_electronics9081209
crossref_primary_10_1016_j_jvcir_2020_102867
crossref_primary_10_1109_TCCN_2020_3024610
crossref_primary_10_1007_s10462_020_09816_7
crossref_primary_10_1002_aisy_202300644
crossref_primary_10_1109_TPAMI_2021_3066410
crossref_primary_10_1109_TEVC_2023_3261135
crossref_primary_10_1007_s00521_019_04532_y
crossref_primary_10_1016_j_ins_2021_12_020
crossref_primary_10_1007_s11227_023_05487_7
crossref_primary_10_1016_j_cviu_2023_103828
crossref_primary_10_1016_j_future_2022_04_031
crossref_primary_10_1109_ACCESS_2023_3317293
crossref_primary_10_1109_ACCESS_2023_3305984
crossref_primary_10_1109_TCAD_2020_3012865
crossref_primary_10_23939_mmc2023_03_854
crossref_primary_10_1109_JIOT_2021_3116316
crossref_primary_10_1007_s00521_022_07594_7
crossref_primary_10_1016_j_cviu_2021_103220
crossref_primary_10_1016_j_ijcce_2023_07_001
crossref_primary_10_1134_S0965542521050109
crossref_primary_10_1007_s10489_022_03508_1
crossref_primary_10_1016_j_patcog_2022_108729
Cites_doi 10.1109/TPAMI.2016.2572683
10.1109/ICCV.2017.541
10.1109/ICCV.2017.155
10.1109/TPAMI.2017.2699184
10.1109/ICCV.2015.169
10.1109/CVPR.2012.6248092
10.1109/CVPR.2017.690
10.1109/ACCESS.2015.2494536
10.1162/089976698300017124
10.1109/ICCV.2017.74
10.1109/CVPR.2016.90
10.1145/2647868.2654889
10.1109/TPAMI.2013.50
10.1109/CVPR.2018.00716
10.1016/j.cviu.2005.09.012
10.1007/s11263-015-0816-y
10.1109/CVPRW.2017.241
10.1109/CVPR.2016.280
10.1109/TIP.2017.2688133
10.1109/5.726791
10.1109/CVPR.2009.5206537
10.1007/s11263-014-0733-5
10.1109/CVPR.2016.319
10.1109/CVPR.2016.91
10.1109/ICCV.2017.167
10.1109/CVPR.2016.521
10.1109/ICCV.2011.6126386
10.1109/ICCV.2015.178
10.1109/ICCV.2017.298
10.1109/CVPR.2015.7298594
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2018.2858232
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Technology Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 2538
ExternalDocumentID 30040622
10_1109_TPAMI_2018_2858232
8416559
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Young Scholar Exchange
  grantid: 17510740100
– fundername: National Natural Science Foundation of China
  grantid: 61772256; 61422203
  funderid: 10.13039/501100001809
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
RIG
5VS
9M8
AAYOK
ABFSI
ADRHT
AETIX
AGSQL
AI.
AIBXA
ALLEH
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
PKN
RIC
RNI
RZB
VH1
XJT
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c351t-d77b3b180e2103b92cd240d749dfcaf54143a47b070cdf365caa75c817a58a883
IEDL.DBID RIE
ISSN 0162-8828
1939-3539
IngestDate Fri Jul 11 10:29:03 EDT 2025
Mon Jun 30 02:33:38 EDT 2025
Wed Feb 19 02:34:19 EST 2025
Tue Jul 01 03:18:24 EDT 2025
Thu Apr 24 23:09:36 EDT 2025
Wed Aug 27 02:46:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-d77b3b180e2103b92cd240d749dfcaf54143a47b070cdf365caa75c817a58a883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8307-7107
0000-0001-8105-805X
0000-0001-5447-180X
0000-0002-2085-7568
PMID 30040622
PQID 2285331916
PQPubID 85458
PageCount 14
ParticipantIDs crossref_primary_10_1109_TPAMI_2018_2858232
ieee_primary_8416559
proquest_miscellaneous_2076232980
pubmed_primary_30040622
proquest_journals_2285331916
crossref_citationtrail_10_1109_TPAMI_2018_2858232
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref15
ref53
ref52
ref11
han (ref43) 2017
ref54
hinton (ref14) 2012
molchanov (ref21) 2017
ref17
ref16
ref18
ref51
ref50
denton (ref13) 2014
chen (ref24) 2015
ref45
ref48
ref47
lin (ref31) 2013
ref41
denil (ref12) 2013
ref8
ref4
ref3
ref6
krizhevsky (ref1) 2012
ref5
ref40
iandola (ref42) 2016
sindhwani (ref26) 2015
li (ref19) 2017
ref34
ref37
ref36
ref30
ref33
krizhevsky (ref38) 2009
ref32
simonyan (ref2) 2015
lecun (ref7) 1990
liu (ref49) 2016
wah (ref35) 2011
ref22
ref27
ref29
hinton (ref39) 1986
howard (ref28) 0
han (ref25) 2016
han (ref9) 2015
li (ref44) 2007; 106
hu (ref20) 2016
li (ref46) 2011
wen (ref10) 2016
gong (ref23) 2014
References_xml – ident: ref53
  doi: 10.1109/TPAMI.2016.2572683
– ident: ref27
  doi: 10.1109/ICCV.2017.541
– ident: ref41
  doi: 10.1109/ICCV.2017.155
– ident: ref54
  doi: 10.1109/TPAMI.2017.2699184
– start-page: 21
  year: 2016
  ident: ref49
  article-title: SSD: Single shot multibox detector
  publication-title: Proc Eur Conf Comput Vis
– ident: ref4
  doi: 10.1109/ICCV.2015.169
– start-page: 2148
  year: 2013
  ident: ref12
  article-title: Predicting parameters in deep learning
  publication-title: Proc Advances Neural Inf Process Syst
– ident: ref48
  doi: 10.1109/CVPR.2012.6248092
– ident: ref52
  doi: 10.1109/CVPR.2017.690
– start-page: 1
  year: 2016
  ident: ref25
  article-title: Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding
  publication-title: Proc Int Conf Learn Representations
– ident: ref34
  doi: 10.1109/ACCESS.2015.2494536
– ident: ref8
  doi: 10.1162/089976698300017124
– start-page: 1
  year: 2017
  ident: ref19
  article-title: Pruning filters for efficient ConvNets
  publication-title: Proc Int Conf Learn Representations
– start-page: 1097
  year: 2012
  ident: ref1
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Advances Neural Inf Process Syst
– ident: ref18
  doi: 10.1109/ICCV.2017.74
– ident: ref3
  doi: 10.1109/CVPR.2016.90
– start-page: 1
  year: 2015
  ident: ref2
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Proc Int Conf Learn Representations
– start-page: 1
  year: 2013
  ident: ref31
  article-title: Network in network
  publication-title: Proc Int Conf Learn Representations
– ident: ref33
  doi: 10.1145/2647868.2654889
– start-page: 1
  year: 2016
  ident: ref42
  article-title: SqueezeNet: AlexNet-level accuracy with 50× fewer parameters and $<$<0.5 MB model size
  publication-title: arXiv 1602 07360
– ident: ref40
  doi: 10.1109/TPAMI.2013.50
– ident: ref29
  doi: 10.1109/CVPR.2018.00716
– start-page: 1
  year: 2016
  ident: ref20
  article-title: Network trimming: A data-driven neuron pruning approach towards efficient deep architectures
– start-page: 1
  year: 2014
  ident: ref23
  article-title: Compressing deep convolutional networks using vector quantization
  publication-title: arXiv 1412 6115
– start-page: 3088
  year: 2015
  ident: ref26
  article-title: Structured transforms for small-footprint deep learning
  publication-title: Proc Advances Neural Inf Process Syst
– volume: 106
  start-page: 59
  year: 2007
  ident: ref44
  article-title: Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories
  publication-title: Comput Vis Image Understanding
  doi: 10.1016/j.cviu.2005.09.012
– ident: ref32
  doi: 10.1007/s11263-015-0816-y
– ident: ref16
  doi: 10.1109/CVPRW.2017.241
– ident: ref15
  doi: 10.1109/CVPR.2016.280
– ident: ref47
  doi: 10.1109/TIP.2017.2688133
– start-page: 1269
  year: 2014
  ident: ref13
  article-title: Exploiting linear structure within convolutional networks for efficient evaluation
  publication-title: Proc Advances Neural Inf Process Syst
– ident: ref37
  doi: 10.1109/5.726791
– ident: ref36
  doi: 10.1109/CVPR.2009.5206537
– start-page: 2074
  year: 2016
  ident: ref10
  article-title: Learning structured sparsity in deep neural networks
  publication-title: Proc Advances Neural Inf Process Syst
– ident: ref50
  doi: 10.1007/s11263-014-0733-5
– ident: ref17
  doi: 10.1109/CVPR.2016.319
– year: 2009
  ident: ref38
  article-title: Learning multiple layers of features from tiny images
– ident: ref51
  doi: 10.1109/CVPR.2016.91
– start-page: 1
  year: 2012
  ident: ref14
  article-title: Improving neural networks by preventing co-adaptation of feature detectors
  publication-title: arXiv 1207 0580
– start-page: 2285
  year: 2015
  ident: ref24
  article-title: Compressing neural networks with the hashing trick
  publication-title: Proc Int Conf Mach Learn
– start-page: 1
  year: 2011
  ident: ref46
  article-title: What, where and who? Classifying events by scene and object recognition
  publication-title: Proc IEEE Int Conf Comput Vis
– ident: ref6
  doi: 10.1109/ICCV.2017.167
– start-page: 1
  year: 1986
  ident: ref39
  article-title: Learning distributed representations of concepts
  publication-title: Proc 24th Annu Meeting Cognitive Science Soc
– start-page: 598
  year: 1990
  ident: ref7
  article-title: Optimal brain damage
  publication-title: Proc Advances Neural Inf Process Syst
– year: 2011
  ident: ref35
  article-title: The Caltech-UCSD birds-200-2011 dataset
  publication-title: California Institute of Technology Pasadena CA Tech Rep CNS-TR-2011-001
– ident: ref11
  doi: 10.1109/CVPR.2016.521
– ident: ref45
  doi: 10.1109/ICCV.2011.6126386
– start-page: 1
  year: 2017
  ident: ref21
  article-title: Pruning convolutional neural networks for resource efficient transfer learning
  publication-title: Proc Int Conf Learn Representations
– ident: ref5
  doi: 10.1109/ICCV.2015.178
– start-page: 1135
  year: 2015
  ident: ref9
  article-title: Learning both weights and connections for efficient neural network
  publication-title: Proc Advances Neural Inf Process Syst
– start-page: 1
  year: 0
  ident: ref28
  article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications
  publication-title: arXiv 1704 04861
– ident: ref22
  doi: 10.1109/ICCV.2017.298
– start-page: 1
  year: 2017
  ident: ref43
  article-title: DSD: Dense-sparse-dense training for deep neural networks
  publication-title: Proc Int Conf Learn Representations
– ident: ref30
  doi: 10.1109/CVPR.2015.7298594
SSID ssj0014503
Score 2.6654737
Snippet This paper aims at accelerating and compressing deep neural networks to deploy CNN models into small devices like mobile phones or embedded gadgets. We focus...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2525
SubjectTerms Acceleration
Artificial neural networks
Computational modeling
Convolution
Convolutional neural networks
deep learning
Electronic devices
filter pruning
Image coding
Model accuracy
model compression
Neural networks
Optimization
Pruning
Segmentation
Task analysis
Training
Title ThiNet: Pruning CNN Filters for a Thinner Net
URI https://ieeexplore.ieee.org/document/8416559
https://www.ncbi.nlm.nih.gov/pubmed/30040622
https://www.proquest.com/docview/2285331916
https://www.proquest.com/docview/2076232980
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BB0QPQKEtoVC5Um9tFseP2O4NIVZQaVccFolbZDteFbXKVpBc-PWM8xKtoOIWKWPH8cx4vvHYMwBfEMMrZpc8VcL5VDBqU82dSRGZBmFUSfMQ7w7P5vnFtfhxI2_W4Nt4FyaE0B4-C5P42Mbyy5Vv4lbZSQyRIQJeh3V03Lq7WmPEQMi2CjIiGNRwdCOGCzLUnCyuTmeX8RSXnjAtNWKILdiMmaZozthf9qgtsPIy1mxtznQHZsNou6MmvyZN7Sb-4Z9Ejq_9nV3Y7sEnOe2k5S2shWoPdobCDqTX8z148yRL4T6ki5-381B_J1d3TdxFIWfzOZnexjD7PUHMSyyJ1T8r7AHJ3sH19HxxdpH2VRZSz2VWp6VSjrtM04DeH7KJ-RKtfKmEKZfeLmOZcG6Fcrg2-HLJc-mtVdLrTFmprdb8PWxUqyocAHFCu9ILiyRKoN13VppMm1xahqaYhgSyYa4L36cgj5UwfhetK0JN0bKqiKwqelYl8HVs86dLwPFf6v04zyNlP8UJHA0sLXodvS8YtuG4AmV5Ap_H16hdMWRiq7BqkIaiseDMaJrAh04Uxr4HCTp8_psfYQtHZrqDf0ewUd814RgBTO0-tZL7COdj5cI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIkE5UGgpBAoYiRtk6_gR29yqitUWulEPW6m3yHa8ogJlqza58OsZ5yVAgLhFythxPGPPZ88L4C1ieMXsmqdKOJ8KRm2quTMpItMgjKpoHmLs8LLIFxfi06W83IL3UyxMCKFzPguz-NjZ8quNb-NV2VE0kSECvgN3Ue9L1kdrTTYDIbs6yIhhcI3jQWIMkaHmaHV-vDyNflx6xrTUiCJ24F7MNUVzxn7RSF2Jlb-jzU7rzHdhOY63dzb5OmsbN_Pff0vl-L8_9AgeDvCTHPfy8hi2Qr0Hu2NpBzKs9D148FOewn1IV1-uitB8IOc3bbxHISdFQeZX0dB-SxD1Ekti_c8ae0CyJ3Ax_7g6WaRDnYXUc5k1aaWU4y7TNOD5DxnFfIV6vlLCVGtv17FQOLdCOdwdfLXmufTWKul1pqzUVmt-ANv1pg7PgDihXeWFRRIlUPM7K02mTS4tQ2VMQwLZONelH5KQx1oY38ruMEJN2bGqjKwqB1Yl8G5qc92n4Pgn9X6c54lymOIEDkeWlsMqvS0ZtuG4B2V5Am-m17i-otHE1mHTIg1FdcGZ0TSBp70oTH2PEvT8z998DfcXq-VZeXZafH4BOzhK07sBHsJ2c9OGlwhnGveqk-IfE9HpDA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ThiNet%3A+Pruning+CNN+Filters+for+a+Thinner+Net&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Luo%2C+Jian-Hao&rft.au=Zhang%2C+Hao&rft.au=Zhou%2C+Hong-Yu&rft.au=Xie%2C+Chen-Wei&rft.date=2019-10-01&rft.pub=IEEE&rft.issn=0162-8828&rft.volume=41&rft.issue=10&rft.spage=2525&rft.epage=2538&rft_id=info:doi/10.1109%2FTPAMI.2018.2858232&rft_id=info%3Apmid%2F30040622&rft.externalDocID=8416559
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon