Resting-state functional connectivity in a non-human primate model of cortical ischemic stroke in area F1

The application of functional MRI to non-human primates after stroke has not yet been undertaken. This is the first study to explore the functional connectivity changes in non-human primate models during acute stages after stroke onset. Nineteen healthy male cynomolgus monkeys (4–5 years) were used...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance imaging Vol. 104; pp. 121 - 128
Main Authors Jiang, Shenzhong, Yang, Chengxian, Wang, Renzhi, Bao, Xinjie
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The application of functional MRI to non-human primates after stroke has not yet been undertaken. This is the first study to explore the functional connectivity changes in non-human primate models during acute stages after stroke onset. Nineteen healthy male cynomolgus monkeys (4–5 years) were used in this study. The photothrombosis model was employed to induce focal ischemic stroke in F1 area in the monkey's left hemisphere. T1-weighted structural images and resting-state functional magnetic resonance imaging (rs-fMRI) of all subjects were obtained using a 3.0 Tesla MRI system on the third day following stroke. Based on the D99 atlas, the structural and functional changes of bilateral F1 areas in monkeys were analyzed using region of interest (ROI)-based functional connectivity (FC). The bilateral F1 areas were selected as the seed regions due to their crucial role in motor control and their potential to unveil the comprehensive functional reorganization of the motor system at a whole-brain level following stroke. Ischemic lesions were observed after the stroke, with larger lesion volumes associated with poorer neurological dysfunction. Compared with baseline condition, left area F1 demonstrated decreased FC with the left cerebellum, left ventral pons and left 5_(PEa). When the ROI was located in the right area F1, ischemic monkeys showed decreased FC in left ventral pons, left cerebellum, left primary visual cortex and left 5_(PEa), accompanied by increased FC in the right orbitofrontal cortex. Importantly, the degree of altered FC between left area F1 and left cerebellum was associated with upper limb tone. These results provide valuable insights into the early-stage functional connectivity changes in the F1 areas of monkeys under ischemic conditions, highlighting the potential involvement of specific brain regions in the pathophysiology of ischemic injury.
AbstractList The application of functional MRI to non-human primates after stroke has not yet been undertaken. This is the first study to explore the functional connectivity changes in non-human primate models during acute stages after stroke onset.BACKGROUNDThe application of functional MRI to non-human primates after stroke has not yet been undertaken. This is the first study to explore the functional connectivity changes in non-human primate models during acute stages after stroke onset.Nineteen healthy male cynomolgus monkeys (4-5 years) were used in this study. The photothrombosis model was employed to induce focal ischemic stroke in F1 area in the monkey's left hemisphere. T1-weighted structural images and resting-state functional magnetic resonance imaging (rs-fMRI) of all subjects were obtained using a 3.0 Tesla MRI system on the third day following stroke. Based on the D99 atlas, the structural and functional changes of bilateral F1 areas in monkeys were analyzed using region of interest (ROI)-based functional connectivity (FC). The bilateral F1 areas were selected as the seed regions due to their crucial role in motor control and their potential to unveil the comprehensive functional reorganization of the motor system at a whole-brain level following stroke.METHODSNineteen healthy male cynomolgus monkeys (4-5 years) were used in this study. The photothrombosis model was employed to induce focal ischemic stroke in F1 area in the monkey's left hemisphere. T1-weighted structural images and resting-state functional magnetic resonance imaging (rs-fMRI) of all subjects were obtained using a 3.0 Tesla MRI system on the third day following stroke. Based on the D99 atlas, the structural and functional changes of bilateral F1 areas in monkeys were analyzed using region of interest (ROI)-based functional connectivity (FC). The bilateral F1 areas were selected as the seed regions due to their crucial role in motor control and their potential to unveil the comprehensive functional reorganization of the motor system at a whole-brain level following stroke.Ischemic lesions were observed after the stroke, with larger lesion volumes associated with poorer neurological dysfunction. Compared with baseline condition, left area F1 demonstrated decreased FC with the left cerebellum, left ventral pons and left 5_(PEa). When the ROI was located in the right area F1, ischemic monkeys showed decreased FC in left ventral pons, left cerebellum, left primary visual cortex and left 5_(PEa), accompanied by increased FC in the right orbitofrontal cortex. Importantly, the degree of altered FC between left area F1 and left cerebellum was associated with upper limb tone.RESULTSIschemic lesions were observed after the stroke, with larger lesion volumes associated with poorer neurological dysfunction. Compared with baseline condition, left area F1 demonstrated decreased FC with the left cerebellum, left ventral pons and left 5_(PEa). When the ROI was located in the right area F1, ischemic monkeys showed decreased FC in left ventral pons, left cerebellum, left primary visual cortex and left 5_(PEa), accompanied by increased FC in the right orbitofrontal cortex. Importantly, the degree of altered FC between left area F1 and left cerebellum was associated with upper limb tone.These results provide valuable insights into the early-stage functional connectivity changes in the F1 areas of monkeys under ischemic conditions, highlighting the potential involvement of specific brain regions in the pathophysiology of ischemic injury.CONCLUSIONSThese results provide valuable insights into the early-stage functional connectivity changes in the F1 areas of monkeys under ischemic conditions, highlighting the potential involvement of specific brain regions in the pathophysiology of ischemic injury.
The application of functional MRI to non-human primates after stroke has not yet been undertaken. This is the first study to explore the functional connectivity changes in non-human primate models during acute stages after stroke onset. Nineteen healthy male cynomolgus monkeys (4–5 years) were used in this study. The photothrombosis model was employed to induce focal ischemic stroke in F1 area in the monkey's left hemisphere. T1-weighted structural images and resting-state functional magnetic resonance imaging (rs-fMRI) of all subjects were obtained using a 3.0 Tesla MRI system on the third day following stroke. Based on the D99 atlas, the structural and functional changes of bilateral F1 areas in monkeys were analyzed using region of interest (ROI)-based functional connectivity (FC). The bilateral F1 areas were selected as the seed regions due to their crucial role in motor control and their potential to unveil the comprehensive functional reorganization of the motor system at a whole-brain level following stroke. Ischemic lesions were observed after the stroke, with larger lesion volumes associated with poorer neurological dysfunction. Compared with baseline condition, left area F1 demonstrated decreased FC with the left cerebellum, left ventral pons and left 5_(PEa). When the ROI was located in the right area F1, ischemic monkeys showed decreased FC in left ventral pons, left cerebellum, left primary visual cortex and left 5_(PEa), accompanied by increased FC in the right orbitofrontal cortex. Importantly, the degree of altered FC between left area F1 and left cerebellum was associated with upper limb tone. These results provide valuable insights into the early-stage functional connectivity changes in the F1 areas of monkeys under ischemic conditions, highlighting the potential involvement of specific brain regions in the pathophysiology of ischemic injury.
Author Bao, Xinjie
Wang, Renzhi
Yang, Chengxian
Jiang, Shenzhong
Author_xml – sequence: 1
  givenname: Shenzhong
  surname: Jiang
  fullname: Jiang, Shenzhong
  organization: Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
– sequence: 2
  givenname: Chengxian
  surname: Yang
  fullname: Yang, Chengxian
  organization: Department of Orthopaedics, Peking University First Hospital, Beijing, China
– sequence: 3
  givenname: Renzhi
  surname: Wang
  fullname: Wang, Renzhi
  email: wangrz@126.com
  organization: Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
– sequence: 4
  givenname: Xinjie
  surname: Bao
  fullname: Bao, Xinjie
  email: baoxinjie1@pumch.cn
  organization: Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37844784$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1L5TAUhsOgjFedH-BGsnTTaz6bdjmIzgiCIAruQpqejrm2iZOkwv33pl7duHARQsLznOS85xDt-eABoRNK1pTQ-nyznqJbM8J4Oa8JkT_QijaKV7JpxR5aEcVJpZh8PECHKW1IIRiXP9EBV40QZa2Qu4OUnf9XpWwy4GH2NrvgzYht8B7K4dXlLXYeG1xer57myXj8Et204FPoYcRhKHDMzhbLJfsEk7M45Rie4V2MYPAVPUb7gxkT_PrYj9DD1eX9xd_q5vbP9cXvm8pySXPV16IfgHFOaNv1RLVMCKMYawRv2hpoU7dy6JgixtRKKsEpl3XXd4M0wvZU8iN0tqv7EsP_uXSnp_IpGEfjIcxJs0Y1rKVStgU9_UDnboJev7cVt_ozngKoHWBjSCnCoK0rOZWAcjRu1JToZRB6o8sg9DKI5arEXEz6xfws_p3T7hwo8bw6iNqOzi-xPsNW98F9474B82mfSw
CitedBy_id crossref_primary_10_1590_1806_9061_2023_1895
crossref_primary_10_1016_j_tins_2024_01_003
Cites_doi 10.1007/s12975-012-0241-2
10.4103/1450-1147.172139
10.4103/1673-5374.266048
10.1016/j.neuroimage.2012.02.070
10.1016/j.jneumeth.2022.109611
10.1152/jn.00598.2012
10.1016/S0165-0270(00)00351-4
10.1073/pnas.1912429117
10.1016/S1474-4422(13)70264-3
10.1161/STROKEAHA.114.003689
10.1161/STROKEAHA.110.596155
10.1007/s00429-013-0620-9
10.1016/j.nicl.2021.102742
10.1073/pnas.1521083113
10.1038/nrn2735
10.1177/0271678X17709198
10.1161/STROKEAHA.120.032511
10.1002/mrm.1910340409
10.1073/pnas.112012499
10.1016/S1474-4422(19)30034-1
10.1016/j.neuroimage.2012.10.038
10.1016/S1474-4422(21)00252-0
10.1161/STROKEAHA.113.003425
10.1007/s004290000127
10.1177/1747493020975229
10.3389/fninf.2019.00078
10.1161/STR.0000000000000211
ContentType Journal Article
Copyright 2023
Copyright © 2023. Published by Elsevier Inc.
Copyright_xml – notice: 2023
– notice: Copyright © 2023. Published by Elsevier Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.mri.2023.10.005
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1873-5894
EndPage 128
ExternalDocumentID 37844784
10_1016_j_mri_2023_10_005
S0730725X23001728
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29M
3O-
4.4
457
4CK
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABDPE
ABFNM
ABGSF
ABJNI
ABMAC
ABMZM
ABNEU
ABOCM
ABUDA
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEI
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSQ
SSU
SSZ
T5K
WUQ
XPP
Z5R
ZGI
ZMT
~G-
~S-
AAYXX
AFCTW
AGRNS
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c351t-d64dfe233019bd079244a722843896e18695fb270aa6757431356bdbf5a4cd153
ISSN 0730-725X
1873-5894
IngestDate Fri Jul 11 10:22:50 EDT 2025
Tue Jun 10 08:58:20 EDT 2025
Tue Jul 01 01:55:28 EDT 2025
Thu Apr 24 22:58:28 EDT 2025
Tue Aug 26 16:33:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Functional magnetic resonance imaging
Resting-state functional connectivity
Ischemic stroke
cynomolgus monkeys
Area F1
Language English
License Copyright © 2023. Published by Elsevier Inc.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c351t-d64dfe233019bd079244a722843896e18695fb270aa6757431356bdbf5a4cd153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 37844784
PQID 2878291559
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2878291559
pubmed_primary_37844784
crossref_citationtrail_10_1016_j_mri_2023_10_005
crossref_primary_10_1016_j_mri_2023_10_005
elsevier_clinicalkey_doi_10_1016_j_mri_2023_10_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2023
2023-12-00
2023-Dec
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: December 2023
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Magnetic resonance imaging
PublicationTitleAlternate Magn Reson Imaging
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Siegel, Ramsey, Snyder, Metcalf, Chacko, Weinberger (bb0050) 2016; 113
Carter, Shulman, Corbetta (bb0065) 2012; 62
Bueichekú, Aznárez-Sanado, Diez, d’Oleire Uquillas, Ortiz-Terán, Qureshi (bb0150) 2020; 117
Zhang, Meng, Qin, Liu, Shi, Yu (bb0020) 2014; 45
Grefkes, Fink (bb0040) 2014; 13
Wey, Phillips, McKay, Laird, Kochunov, Davis (bb0120) 2014; 219
Collaborators (bb0005) 2019; 18
Wang, Wang, Xu, Chen, Li, Li (bb0145) 2022; 16
Biswal, Yetkin, Haughton, Hyde (bb0030) 1995; 34
Brodal (bb0130) 2014
Gold, Lauritzen (bb0135) 2002; 99
Bourguignon, De Tiège, de Beeck, Van Bogaert, Goldman, Jousmäki (bb0140) 2013; 66
Jung, Laverick, Nader, Brown, Morris, Wilson (bb0055) 2021; 32
Geyer, Matelli, Luppino, Zilles (bb0095) 2000; 202
Lin, Wang, Chen, Zhao, Wen, Bingwa (bb0115) 2022; 376
Kito, Nishimura, Susumu, Nagata, Kuge, Yokota (bb0105) 2001; 105
Powers, Rabinstein, Ackerson, Adeoye, Bambakidis, Becker (bb0010) 2019; 50
Tsintou, Dalamagkas, Makris (bb0080) 2020; 15
Cavada, Compañy, Tejedor, Cruz-Rizzolo, Reinoso-Suárez (bb0155) 2000; vol. 10
Kameyama, Murakami, Jinzaki (bb0070) 2016; 15
Fluri, Schuhmann, Kleinschnitz (bb0075) 2015; 9
Mandino, Cerri, Garin, Straathof, van Tilborg, Chakravarty (bb0025) 2019; 13
Park, Chang, Ohn, Kim, Bang, Pascual-Leone (bb0100) 2011; 42
Collaborators (bb0085) 2021; 20
Reveley, Gruslys, Ye, Glen, Samaha, Er (bb0110) 2017; vol. 27
Ermine, Bivard, Parsons, Baron (bb0015) 2021; 16
Ovadia-Caro, Margulies, Villringer (bb0045) 2014; 45
Wang, Buckner, Liu (bb0125) 2013; 109
Tajiri, Dailey, Metcalf, Mosley, Lau, Staples (bb0090) 2013; 4
Murphy, Corbett (bb0160) 2009; 10
Siegel, Shulman, Corbetta (bb0035) 2017; 37
Blaschke, Hensel, Minassian, Vlachakis, Tscherpel, Vay (bb0060) 2021; 52
Gold (10.1016/j.mri.2023.10.005_bb0135) 2002; 99
Tsintou (10.1016/j.mri.2023.10.005_bb0080) 2020; 15
Biswal (10.1016/j.mri.2023.10.005_bb0030) 1995; 34
Carter (10.1016/j.mri.2023.10.005_bb0065) 2012; 62
Reveley (10.1016/j.mri.2023.10.005_bb0110) 2017; vol. 27
Wey (10.1016/j.mri.2023.10.005_bb0120) 2014; 219
Siegel (10.1016/j.mri.2023.10.005_bb0050) 2016; 113
Kito (10.1016/j.mri.2023.10.005_bb0105) 2001; 105
Murphy (10.1016/j.mri.2023.10.005_bb0160) 2009; 10
Mandino (10.1016/j.mri.2023.10.005_bb0025) 2019; 13
Cavada (10.1016/j.mri.2023.10.005_bb0155) 2000; vol. 10
Grefkes (10.1016/j.mri.2023.10.005_bb0040) 2014; 13
Powers (10.1016/j.mri.2023.10.005_bb0010) 2019; 50
Lin (10.1016/j.mri.2023.10.005_bb0115) 2022; 376
Tajiri (10.1016/j.mri.2023.10.005_bb0090) 2013; 4
Jung (10.1016/j.mri.2023.10.005_bb0055) 2021; 32
Collaborators (10.1016/j.mri.2023.10.005_bb0005) 2019; 18
Kameyama (10.1016/j.mri.2023.10.005_bb0070) 2016; 15
Bueichekú (10.1016/j.mri.2023.10.005_bb0150) 2020; 117
Wang (10.1016/j.mri.2023.10.005_bb0145) 2022; 16
Zhang (10.1016/j.mri.2023.10.005_bb0020) 2014; 45
Park (10.1016/j.mri.2023.10.005_bb0100) 2011; 42
Bourguignon (10.1016/j.mri.2023.10.005_bb0140) 2013; 66
Ermine (10.1016/j.mri.2023.10.005_bb0015) 2021; 16
Ovadia-Caro (10.1016/j.mri.2023.10.005_bb0045) 2014; 45
Blaschke (10.1016/j.mri.2023.10.005_bb0060) 2021; 52
Brodal (10.1016/j.mri.2023.10.005_bb0130) 2014
Fluri (10.1016/j.mri.2023.10.005_bb0075) 2015; 9
Siegel (10.1016/j.mri.2023.10.005_bb0035) 2017; 37
Collaborators (10.1016/j.mri.2023.10.005_bb0085) 2021; 20
Geyer (10.1016/j.mri.2023.10.005_bb0095) 2000; 202
Wang (10.1016/j.mri.2023.10.005_bb0125) 2013; 109
References_xml – volume: 18
  start-page: 439
  year: 2019
  end-page: 458
  ident: bb0005
  article-title: Global, regional, and national burden of stroke, 1990-2016: a systematic analysis for the global burden of disease study 2016
  publication-title: The Lancet Neurol
– start-page: 938
  year: 2014
  end-page: 940
  ident: bb0130
  article-title: Pontine Nuclei
  publication-title: Encyclopedia of the neurological sciences
– volume: 20
  start-page: 795
  year: 2021
  end-page: 820
  ident: bb0085
  article-title: Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the global burden of disease study 2019
  publication-title: The Lancet Neurol
– volume: 32
  year: 2021
  ident: bb0055
  article-title: Altered hippocampal functional connectivity patterns in patients with cognitive impairments following ischaemic stroke: a resting-state fMRI study
  publication-title: NeuroImage Clin
– volume: 16
  start-page: 497
  year: 2021
  end-page: 509
  ident: bb0015
  article-title: The ischemic penumbra: from concept to reality
  publication-title: Int J Strok : Off J Int Strok Soc
– volume: 62
  start-page: 2271
  year: 2012
  end-page: 2280
  ident: bb0065
  article-title: Why use a connectivity-based approach to study stroke and recovery of function?
  publication-title: Neuroimage
– volume: vol. 10
  start-page: 220
  year: 2000
  end-page: 242
  ident: bb0155
  article-title: The anatomical connections of the macaque monkey orbitofrontal cortex. A review
  publication-title: Cerebral Cortex (New York, NY : 1991)
– volume: 4
  start-page: 308
  year: 2013
  end-page: 321
  ident: bb0090
  article-title: In vivo animal stroke models: a rationale for rodent and non-human primate models
  publication-title: Transl Stroke Res
– volume: 34
  start-page: 537
  year: 1995
  end-page: 541
  ident: bb0030
  article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI
  publication-title: Magn Reson Med
– volume: 37
  start-page: 2665
  year: 2017
  end-page: 2678
  ident: bb0035
  article-title: Measuring functional connectivity in stroke: approaches and considerations
  publication-title: J Cerebral Blood Flow Metabol : Off J Int Soc Cerebral Blood Flow Metabol
– volume: 42
  start-page: 1357
  year: 2011
  end-page: 1362
  ident: bb0100
  article-title: Longitudinal changes of resting-state functional connectivity during motor recovery after stroke
  publication-title: Stroke
– volume: 50
  start-page: e344
  year: 2019
  end-page: e418
  ident: bb0010
  article-title: Guidelines for the early Management of Patients with Acute Ischemic Stroke: 2019 update to the 2018 guidelines for the early Management of Acute Ischemic Stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association
  publication-title: Stroke
– volume: 16
  year: 2022
  ident: bb0145
  article-title: Corresponding anatomical of the macaque superior parietal lobule areas 5 (PE) subdivision reveal similar connectivity patterns with humans
  publication-title: Front Neurosci
– volume: 117
  start-page: 6836
  year: 2020
  end-page: 6843
  ident: bb0150
  article-title: Central neurogenetic signatures of the visuomotor integration system
  publication-title: Proc Natl Acad Sci U S A
– volume: 202
  start-page: 443
  year: 2000
  end-page: 474
  ident: bb0095
  article-title: Functional neuroanatomy of the primate isocortical motor system
  publication-title: Anat Embryol
– volume: 15
  start-page: 425
  year: 2020
  end-page: 437
  ident: bb0080
  article-title: Taking central nervous system regenerative therapies to the clinic: curing rodents versus nonhuman primates versus humans
  publication-title: Neural Regen Res
– volume: 219
  start-page: 2187
  year: 2014
  end-page: 2194
  ident: bb0120
  article-title: Multi-region hemispheric specialization differentiates human from nonhuman primate brain function
  publication-title: Brain Struct Funct
– volume: 376
  year: 2022
  ident: bb0115
  article-title: Nonhuman primate models of ischemic stroke and neurological evaluation after stroke
  publication-title: J Neurosci Methods
– volume: 13
  start-page: 206
  year: 2014
  end-page: 216
  ident: bb0040
  article-title: Connectivity-based approaches in stroke and recovery of function
  publication-title: The Lancet Neurol
– volume: 10
  start-page: 861
  year: 2009
  end-page: 872
  ident: bb0160
  article-title: Plasticity during stroke recovery: from synapse to behaviour
  publication-title: Nat Rev Neurosci
– volume: 9
  start-page: 3445
  year: 2015
  end-page: 3454
  ident: bb0075
  article-title: Animal models of ischemic stroke and their application in clinical research
  publication-title: Drug Des Devel Ther
– volume: 66
  start-page: 500
  year: 2013
  end-page: 507
  ident: bb0140
  article-title: Primary motor cortex and cerebellum are coupled with the kinematics of observed hand movements
  publication-title: Neuroimage
– volume: 13
  start-page: 78
  year: 2019
  ident: bb0025
  article-title: Animal functional magnetic resonance imaging: trends and path toward standardization
  publication-title: Front Neuroinform
– volume: 15
  start-page: 3
  year: 2016
  end-page: 6
  ident: bb0070
  article-title: Comparison of [(15)O] H2O positron emission tomography and functional magnetic resonance imaging in activation studies
  publication-title: World J Nucl Med
– volume: 45
  start-page: 788
  year: 2014
  end-page: 793
  ident: bb0020
  article-title: Structural damage and functional reorganization in ipsilesional m1 in well-recovered patients with subcortical stroke
  publication-title: Stroke
– volume: 109
  start-page: 46
  year: 2013
  end-page: 57
  ident: bb0125
  article-title: Cerebellar asymmetry and its relation to cerebral asymmetry estimated by intrinsic functional connectivity
  publication-title: J Neurophysiol
– volume: 45
  start-page: 2818
  year: 2014
  end-page: 2824
  ident: bb0045
  article-title: The value of resting-state functional magnetic resonance imaging in stroke
  publication-title: Stroke
– volume: vol. 27
  start-page: 4463
  year: 2017
  end-page: 4477
  ident: bb0110
  article-title: Three-dimensional digital template atlas of the macaque brain
  publication-title: Cerebral Cortex (New York, NY : 1991)
– volume: 113
  start-page: E4367
  year: 2016
  end-page: E4376
  ident: bb0050
  article-title: Disruptions of network connectivity predict impairment in multiple behavioral domains after stroke
  publication-title: Proc Natl Acad Sci U S A
– volume: 52
  start-page: 2948
  year: 2021
  end-page: 2960
  ident: bb0060
  article-title: Translating functional connectivity after stroke: functional magnetic resonance imaging detects comparable network changes in mice and humans
  publication-title: Stroke
– volume: 105
  start-page: 45
  year: 2001
  end-page: 53
  ident: bb0105
  article-title: Experimental thromboembolic stroke in cynomolgus monkey
  publication-title: J Neurosci Methods
– volume: 99
  start-page: 7699
  year: 2002
  end-page: 7704
  ident: bb0135
  article-title: Neuronal deactivation explains decreased cerebellar blood flow in response to focal cerebral ischemia or suppressed neocortical function
  publication-title: Proc Natl Acad Sci U S A
– volume: 4
  start-page: 308
  issue: 3
  year: 2013
  ident: 10.1016/j.mri.2023.10.005_bb0090
  article-title: In vivo animal stroke models: a rationale for rodent and non-human primate models
  publication-title: Transl Stroke Res
  doi: 10.1007/s12975-012-0241-2
– volume: 16
  year: 2022
  ident: 10.1016/j.mri.2023.10.005_bb0145
  article-title: Corresponding anatomical of the macaque superior parietal lobule areas 5 (PE) subdivision reveal similar connectivity patterns with humans
  publication-title: Front Neurosci
– volume: 15
  start-page: 3
  issue: 1
  year: 2016
  ident: 10.1016/j.mri.2023.10.005_bb0070
  article-title: Comparison of [(15)O] H2O positron emission tomography and functional magnetic resonance imaging in activation studies
  publication-title: World J Nucl Med
  doi: 10.4103/1450-1147.172139
– volume: 9
  start-page: 3445
  year: 2015
  ident: 10.1016/j.mri.2023.10.005_bb0075
  article-title: Animal models of ischemic stroke and their application in clinical research
  publication-title: Drug Des Devel Ther
– volume: 15
  start-page: 425
  issue: 3
  year: 2020
  ident: 10.1016/j.mri.2023.10.005_bb0080
  article-title: Taking central nervous system regenerative therapies to the clinic: curing rodents versus nonhuman primates versus humans
  publication-title: Neural Regen Res
  doi: 10.4103/1673-5374.266048
– volume: 62
  start-page: 2271
  issue: 4
  year: 2012
  ident: 10.1016/j.mri.2023.10.005_bb0065
  article-title: Why use a connectivity-based approach to study stroke and recovery of function?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.02.070
– volume: 376
  year: 2022
  ident: 10.1016/j.mri.2023.10.005_bb0115
  article-title: Nonhuman primate models of ischemic stroke and neurological evaluation after stroke
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2022.109611
– volume: 109
  start-page: 46
  issue: 1
  year: 2013
  ident: 10.1016/j.mri.2023.10.005_bb0125
  article-title: Cerebellar asymmetry and its relation to cerebral asymmetry estimated by intrinsic functional connectivity
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00598.2012
– volume: 105
  start-page: 45
  issue: 1
  year: 2001
  ident: 10.1016/j.mri.2023.10.005_bb0105
  article-title: Experimental thromboembolic stroke in cynomolgus monkey
  publication-title: J Neurosci Methods
  doi: 10.1016/S0165-0270(00)00351-4
– volume: 117
  start-page: 6836
  issue: 12
  year: 2020
  ident: 10.1016/j.mri.2023.10.005_bb0150
  article-title: Central neurogenetic signatures of the visuomotor integration system
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1912429117
– volume: vol. 10
  start-page: 220
  issue: 3
  year: 2000
  ident: 10.1016/j.mri.2023.10.005_bb0155
  article-title: The anatomical connections of the macaque monkey orbitofrontal cortex. A review
  publication-title: Cerebral Cortex (New York, NY : 1991)
– volume: 13
  start-page: 206
  issue: 2
  year: 2014
  ident: 10.1016/j.mri.2023.10.005_bb0040
  article-title: Connectivity-based approaches in stroke and recovery of function
  publication-title: The Lancet Neurol
  doi: 10.1016/S1474-4422(13)70264-3
– volume: 45
  start-page: 2818
  issue: 9
  year: 2014
  ident: 10.1016/j.mri.2023.10.005_bb0045
  article-title: The value of resting-state functional magnetic resonance imaging in stroke
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.114.003689
– volume: 42
  start-page: 1357
  issue: 5
  year: 2011
  ident: 10.1016/j.mri.2023.10.005_bb0100
  article-title: Longitudinal changes of resting-state functional connectivity during motor recovery after stroke
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.110.596155
– volume: 219
  start-page: 2187
  issue: 6
  year: 2014
  ident: 10.1016/j.mri.2023.10.005_bb0120
  article-title: Multi-region hemispheric specialization differentiates human from nonhuman primate brain function
  publication-title: Brain Struct Funct
  doi: 10.1007/s00429-013-0620-9
– volume: 32
  year: 2021
  ident: 10.1016/j.mri.2023.10.005_bb0055
  article-title: Altered hippocampal functional connectivity patterns in patients with cognitive impairments following ischaemic stroke: a resting-state fMRI study
  publication-title: NeuroImage Clin
  doi: 10.1016/j.nicl.2021.102742
– volume: 113
  start-page: E4367
  issue: 30
  year: 2016
  ident: 10.1016/j.mri.2023.10.005_bb0050
  article-title: Disruptions of network connectivity predict impairment in multiple behavioral domains after stroke
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1521083113
– volume: 10
  start-page: 861
  issue: 12
  year: 2009
  ident: 10.1016/j.mri.2023.10.005_bb0160
  article-title: Plasticity during stroke recovery: from synapse to behaviour
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn2735
– volume: 37
  start-page: 2665
  issue: 8
  year: 2017
  ident: 10.1016/j.mri.2023.10.005_bb0035
  article-title: Measuring functional connectivity in stroke: approaches and considerations
  publication-title: J Cerebral Blood Flow Metabol : Off J Int Soc Cerebral Blood Flow Metabol
  doi: 10.1177/0271678X17709198
– volume: 52
  start-page: 2948
  issue: 9
  year: 2021
  ident: 10.1016/j.mri.2023.10.005_bb0060
  article-title: Translating functional connectivity after stroke: functional magnetic resonance imaging detects comparable network changes in mice and humans
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.120.032511
– volume: vol. 27
  start-page: 4463
  issue: 9
  year: 2017
  ident: 10.1016/j.mri.2023.10.005_bb0110
  article-title: Three-dimensional digital template atlas of the macaque brain
  publication-title: Cerebral Cortex (New York, NY : 1991)
– volume: 34
  start-page: 537
  issue: 4
  year: 1995
  ident: 10.1016/j.mri.2023.10.005_bb0030
  article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910340409
– volume: 99
  start-page: 7699
  issue: 11
  year: 2002
  ident: 10.1016/j.mri.2023.10.005_bb0135
  article-title: Neuronal deactivation explains decreased cerebellar blood flow in response to focal cerebral ischemia or suppressed neocortical function
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.112012499
– volume: 18
  start-page: 439
  issue: 5
  year: 2019
  ident: 10.1016/j.mri.2023.10.005_bb0005
  article-title: Global, regional, and national burden of stroke, 1990-2016: a systematic analysis for the global burden of disease study 2016
  publication-title: The Lancet Neurol
  doi: 10.1016/S1474-4422(19)30034-1
– volume: 66
  start-page: 500
  year: 2013
  ident: 10.1016/j.mri.2023.10.005_bb0140
  article-title: Primary motor cortex and cerebellum are coupled with the kinematics of observed hand movements
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.10.038
– volume: 20
  start-page: 795
  issue: 10
  year: 2021
  ident: 10.1016/j.mri.2023.10.005_bb0085
  article-title: Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the global burden of disease study 2019
  publication-title: The Lancet Neurol
  doi: 10.1016/S1474-4422(21)00252-0
– volume: 45
  start-page: 788
  issue: 3
  year: 2014
  ident: 10.1016/j.mri.2023.10.005_bb0020
  article-title: Structural damage and functional reorganization in ipsilesional m1 in well-recovered patients with subcortical stroke
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.113.003425
– volume: 202
  start-page: 443
  issue: 6
  year: 2000
  ident: 10.1016/j.mri.2023.10.005_bb0095
  article-title: Functional neuroanatomy of the primate isocortical motor system
  publication-title: Anat Embryol
  doi: 10.1007/s004290000127
– volume: 16
  start-page: 497
  issue: 5
  year: 2021
  ident: 10.1016/j.mri.2023.10.005_bb0015
  article-title: The ischemic penumbra: from concept to reality
  publication-title: Int J Strok : Off J Int Strok Soc
  doi: 10.1177/1747493020975229
– start-page: 938
  year: 2014
  ident: 10.1016/j.mri.2023.10.005_bb0130
  article-title: Pontine Nuclei
– volume: 13
  start-page: 78
  year: 2019
  ident: 10.1016/j.mri.2023.10.005_bb0025
  article-title: Animal functional magnetic resonance imaging: trends and path toward standardization
  publication-title: Front Neuroinform
  doi: 10.3389/fninf.2019.00078
– volume: 50
  start-page: e344
  issue: 12
  year: 2019
  ident: 10.1016/j.mri.2023.10.005_bb0010
  publication-title: Stroke
  doi: 10.1161/STR.0000000000000211
SSID ssj0005235
Score 2.4091012
Snippet The application of functional MRI to non-human primates after stroke has not yet been undertaken. This is the first study to explore the functional...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 121
SubjectTerms Animals
Area F1
Brain - diagnostic imaging
Brain - physiopathology
Brain Ischemia - diagnostic imaging
Brain Ischemia - physiopathology
Brain Mapping - methods
cynomolgus monkeys
Disease Models, Animal
Functional magnetic resonance imaging
Ischemic stroke
Ischemic Stroke - diagnostic imaging
Ischemic Stroke - physiopathology
Macaca fascicularis
Magnetic Resonance Imaging
Male
Rest
Resting-state functional connectivity
Stroke - diagnostic imaging
Stroke - physiopathology
Title Resting-state functional connectivity in a non-human primate model of cortical ischemic stroke in area F1
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0730725X23001728
https://www.ncbi.nlm.nih.gov/pubmed/37844784
https://www.proquest.com/docview/2878291559
Volume 104
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZB2MvY_dlNzTY04KNLcmXPI7SUEbTQUlY9jIhyXLqbHNKmsDow377jiTL9ra2dHuICZJlC53P56ajcxB6mzBNJKUsKDKZBkyJGD4pkgVJpDOZJ2MpS-OHnB6nh3P2YZEsBoMvvail3VaG6uLScyX_Q1VoA7qaU7L_QNn2odAA_4G-cAUKw_VGND4xKTLqZWBPBY2MiGo8e8qEr6imMERVj8QIrPzA1eM7M_kl4HZbA8dFlW-cQ7sCS9fGyp9vN-uvNpuIAJ1yNIn7KuxULGvtMj8bNd4wBnjg0otAE41TeSf0qa4vTtddz-emYx86lj96yPzUdJyYAVXnXrWO3EVVryrd908Q2ov1cCw1z2iQ5K6UcagvafN8OGI9Thq7g9N_cXjnbFiF3zdVaF4X2ti8pBNnfgv_-COfzI-O-OxgMbuFbhMwI0yFi_BnPwTIFmBtZ-N3vW383x8vuEpvucousfrJ7D661xgW-L1DyQM00PVDdGfahE48QtVvYMEdWHAfLLiqscAtWHADFmzBgtcl9mDBHizYgcUOBLDgSfwYzScHs_3DoKmzESiaxNugSFlRakKB149lEWVgkjMBq5Uz0GZTbYqWJaUkWSQEmJdG5aRJKgtZJoKpAkTmE7QHE9PPEB5nimiWk5KmJSMql1ILrWJVpBEtWBEPUeRXkasmCb2phfKN-2jDFYeF52bhTRMs_BC9a4ecuQws191MPGm4P1oMwpADeq4b9MYTkQNzNTtmotbr3TknOSjQtoLCED111G3nQLOcMfg9v8HoF-hu92m8RHvbzU6_AmV2K19bRP4CqPSgeA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resting-state+functional+connectivity+in+a+non-human+primate+model+of+cortical+ischemic+stroke+in+area+F1&rft.jtitle=Magnetic+resonance+imaging&rft.au=Jiang%2C+Shenzhong&rft.au=Yang%2C+Chengxian&rft.au=Wang%2C+Renzhi&rft.au=Bao%2C+Xinjie&rft.date=2023-12-01&rft.issn=1873-5894&rft.eissn=1873-5894&rft.volume=104&rft.spage=121&rft_id=info:doi/10.1016%2Fj.mri.2023.10.005&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-725X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-725X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-725X&client=summon