Review on Time Delay Estimate Subsample Interpolation in Frequency Domain

Time delay or the time-of-flight is a most frequently used parameter in many ultrasonic applications. Delay estimation is based on the sampled signal, so the resolution is limited by the sampling grid. Higher accuracy is available if the signal-to-noise ratio is high, then the subsample estimate is...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on ultrasonics, ferroelectrics, and frequency control Vol. 66; no. 11; pp. 1691 - 1698
Main Author Svilainis, Linas
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0885-3010
1525-8955
1525-8955
DOI10.1109/TUFFC.2019.2930661

Cover

Abstract Time delay or the time-of-flight is a most frequently used parameter in many ultrasonic applications. Delay estimation is based on the sampled signal, so the resolution is limited by the sampling grid. Higher accuracy is available if the signal-to-noise ratio is high, then the subsample estimate is desired. Techniques used for subsample interpolation suffer from bias error. Time-of-flight estimation that is free from bias errors is required. The proposed subsample estimation works in the frequency domain; it is based on the cross-correlation peak temporal position. The phase of the cross-correlation frequency response becomes linear thanks to multiplication by the complex conjugate, and its inclination angle is proportional to the delay. Then, subsample interpolation becomes free from the bias error. Twelve algorithmic implementations of this technique have been proposed in this paper. All algorithmic implementations have been analyzed for bias and random errors using simulation and MATLAB codes are given as supplementary material. Comparison with best-performing interpolation techniques (spline approximation, cosine interpolation, carrier phase) is given for both bias and random errors. It was demonstrated that frequency domain interpolation has no bias errors, and noise performance is better or comparable to other subsample estimation techniques. Weighted regression using L2 norm minimization has the best performance: total errors (bias and random) are within 3% of theoretical lower bound.
AbstractList Time delay or the time-of-flight is a most frequently used parameter in many ultrasonic applications. Delay estimation is based on the sampled signal, so the resolution is limited by the sampling grid. Higher accuracy is available if the signal-to-noise ratio is high, then the subsample estimate is desired. Techniques used for subsample interpolation suffer from bias error. Time-of-flight estimation that is free from bias errors is required. The proposed subsample estimation works in the frequency domain; it is based on the cross-correlation peak temporal position. The phase of the cross-correlation frequency response becomes linear thanks to multiplication by the complex conjugate, and its inclination angle is proportional to the delay. Then, subsample interpolation becomes free from the bias error. Twelve algorithmic implementations of this technique have been proposed in this paper. All algorithmic implementations have been analyzed for bias and random errors using simulation and MATLAB codes are given as supplementary material. Comparison with best-performing interpolation techniques (spline approximation, cosine interpolation, carrier phase) is given for both bias and random errors. It was demonstrated that frequency domain interpolation has no bias errors, and noise performance is better or comparable to other subsample estimation techniques. Weighted regression using L2 norm minimization has the best performance: total errors (bias and random) are within 3% of theoretical lower bound.
Time delay or the time-of-flight is a most frequently used parameter in many ultrasonic applications. Delay estimation is based on the sampled signal, so the resolution is limited by the sampling grid. Higher accuracy is available if the signal-to-noise ratio is high, then the subsample estimate is desired. Techniques used for subsample interpolation suffer from bias error. Time-of-flight estimation that is free from bias errors is required. The proposed subsample estimation works in the frequency domain; it is based on the cross-correlation peak temporal position. The phase of the cross-correlation frequency response becomes linear thanks to multiplication by the complex conjugate, and its inclination angle is proportional to the delay. Then, subsample interpolation becomes free from the bias error. Twelve algorithmic implementations of this technique have been proposed in this paper. All algorithmic implementations have been analyzed for bias and random errors using simulation and MATLAB codes are given as supplementary material. Comparison with best-performing interpolation techniques (spline approximation, cosine interpolation, carrier phase) is given for both bias and random errors. It was demonstrated that frequency domain interpolation has no bias errors, and noise performance is better or comparable to other subsample estimation techniques. Weighted regression using L2 norm minimization has the best performance: total errors (bias and random) are within 3% of theoretical lower bound.Time delay or the time-of-flight is a most frequently used parameter in many ultrasonic applications. Delay estimation is based on the sampled signal, so the resolution is limited by the sampling grid. Higher accuracy is available if the signal-to-noise ratio is high, then the subsample estimate is desired. Techniques used for subsample interpolation suffer from bias error. Time-of-flight estimation that is free from bias errors is required. The proposed subsample estimation works in the frequency domain; it is based on the cross-correlation peak temporal position. The phase of the cross-correlation frequency response becomes linear thanks to multiplication by the complex conjugate, and its inclination angle is proportional to the delay. Then, subsample interpolation becomes free from the bias error. Twelve algorithmic implementations of this technique have been proposed in this paper. All algorithmic implementations have been analyzed for bias and random errors using simulation and MATLAB codes are given as supplementary material. Comparison with best-performing interpolation techniques (spline approximation, cosine interpolation, carrier phase) is given for both bias and random errors. It was demonstrated that frequency domain interpolation has no bias errors, and noise performance is better or comparable to other subsample estimation techniques. Weighted regression using L2 norm minimization has the best performance: total errors (bias and random) are within 3% of theoretical lower bound.
Author Svilainis, Linas
Author_xml – sequence: 1
  givenname: Linas
  orcidid: 0000-0001-5555-0323
  surname: Svilainis
  fullname: Svilainis, Linas
  email: linas.svilainis@ktu.lt
  organization: Electronics Engineering Department, Kaunas University of Technology, Kaunas, Lithuania
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31352341$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1LxDAURYMoOn78AQUpuHHTMS9p2mYpo6MDgqDjOqTpK0TadExaZf690RlduHCVzTmPm3sPya7rHRJyCnQKQOXV8mU-n00ZBTllktM8hx0yAcFEWkohdsmElqVIOQV6QA5DeKUUskyyfXLAgQvGM5iQxRO-W_xIepcsbYfJDbZ6ndyGwXZ6wOR5rILuVi0mCzegX_WtHmxkrUvmHt9GdGad3PSdtu6Y7DW6DXiyfY_Iy_x2ObtPHx7vFrPrh9RwAUNqsGaQsxJ4LeosyxChFLKK2TTljQDTSF1VDRQ1y3iJsqY1RkqbGNdIWfMjcrm5u_J9DBAG1dlgsG21w34MirE855xDwSJ68Qd97UfvYjrFOMTCMlEUkTrfUmPVYa1WPv7dr9VPSREoN4DxfQgeG2Xs8N3D4LVtFVD1tYf63kN97aG2e0SV_VF_rv8rnW0ki4i_QlkUFFjOPwHuUZRn
CODEN ITUCER
CitedBy_id crossref_primary_10_1364_OE_546754
crossref_primary_10_3390_s21134524
crossref_primary_10_1016_j_ifacol_2023_10_534
crossref_primary_10_1364_OE_558238
crossref_primary_10_3390_electronics11010045
crossref_primary_10_1142_S0218126622200031
crossref_primary_10_1364_OE_479720
crossref_primary_10_3390_s22249912
crossref_primary_10_1063_5_0203520
crossref_primary_10_1016_j_sigpro_2024_109490
crossref_primary_10_1016_j_ndteint_2020_102360
crossref_primary_10_1063_5_0165640
crossref_primary_10_1007_s40192_021_00202_x
crossref_primary_10_1109_OJVT_2022_3228053
crossref_primary_10_1109_ACCESS_2021_3139562
crossref_primary_10_1016_j_apacoust_2024_110238
crossref_primary_10_1515_teme_2023_0148
crossref_primary_10_1016_j_vlsi_2024_102241
crossref_primary_10_1109_JSTQE_2022_3150791
crossref_primary_10_1142_S0218126623500135
crossref_primary_10_1364_AO_417572
crossref_primary_10_1140_epjs_s11734_021_00410_8
crossref_primary_10_1049_el_2019_3751
crossref_primary_10_1364_OE_433036
crossref_primary_10_3390_electronics11070985
Cites_doi 10.1109/TUFFC.2005.1397352
10.1109/TIM.2018.2795298
10.1109/58.308493
10.1109/78.193195
10.1109/TUFFC.2003.1235334
10.1177/0161734613476176
10.1177/016173469501700204
10.1364/OE.23.019242
10.1088/0957-0233/9/9/006
10.1016/j.measurement.2013.07.038
10.1016/j.measurement.2018.01.073
10.1109/78.782223
10.1109/58.796111
10.1007/s10543-011-0342-4
10.1049/el:20060338
10.1109/TUFFC.900
10.1016/j.dsp.2006.08.009
10.1109/TASSP.1981.1163558
10.1109/TASSP.1981.1163555
10.1109/TUFFC.2014.006645
10.1109/TUFFC.2006.143
10.1016/j.ultras.2005.08.006
10.1364/AO.54.009654
10.1109/ISCAS.2004.1328747
10.1016/j.amc.2006.11.095
10.1016/j.ndteint.2017.01.011
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SP
7U5
8FD
F28
FR3
L7M
7X8
DOI 10.1109/TUFFC.2019.2930661
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Electronics & Communications Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Solid State and Superconductivity Abstracts
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1525-8955
EndPage 1698
ExternalDocumentID 31352341
10_1109_TUFFC_2019_2930661
8770126
Genre orig-research
Journal Article
GrantInformation_xml – fundername: UE from the Spanish State Research Agency (AEI)
– fundername: Research, Development and Innovation Fund of Kaunas University of Technology
  grantid: PP-91F/19
– fundername: ECERES
  grantid: DPI2016-78876-R-AEI/FEDER
– fundername: European Regional Development Fund
  funderid: 10.13039/501100008530
GroupedDBID ---
-~X
.GJ
0R~
186
29I
3EH
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
UKR
VH1
ZXP
ZY4
AAYXX
CITATION
RIG
ABTAH
NPM
PKN
Z5M
7SP
7U5
8FD
F28
FR3
L7M
7X8
ID FETCH-LOGICAL-c351t-ced2162813d5d444ee1859b001a03f51cf9abbf17d2438e9d0de44eac341c99d3
IEDL.DBID RIE
ISSN 0885-3010
1525-8955
IngestDate Fri Jul 11 07:10:00 EDT 2025
Mon Jun 30 10:20:28 EDT 2025
Wed Feb 19 02:30:36 EST 2025
Tue Jul 01 01:50:16 EDT 2025
Thu Apr 24 23:04:06 EDT 2025
Wed Aug 27 02:40:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-ced2162813d5d444ee1859b001a03f51cf9abbf17d2438e9d0de44eac341c99d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5555-0323
PMID 31352341
PQID 2310664577
PQPubID 85455
PageCount 8
ParticipantIDs crossref_citationtrail_10_1109_TUFFC_2019_2930661
ieee_primary_8770126
proquest_journals_2310664577
crossref_primary_10_1109_TUFFC_2019_2930661
pubmed_primary_31352341
proquest_miscellaneous_2266333172
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on ultrasonics, ferroelectrics, and frequency control
PublicationTitleAbbrev T-UFFC
PublicationTitleAlternate IEEE Trans Ultrason Ferroelectr Freq Control
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
(ref34) 2018
ref36
ref14
yin (ref2) 2013
ref31
ref30
ref11
song (ref32) 2010
ref10
ref1
ref17
qin (ref15) 2008
ref16
ref19
ref18
bjorklund (ref7) 2003
ref24
ref23
ref26
ref25
cramer (ref12) 1946
rao (ref13) 1945; 37
ref20
(ref33) 2018
ref22
ref21
zhao (ref27) 1985; 10
ref29
ref8
ref9
ref4
ref3
ref6
ref5
bai (ref28) 2010; 19
References_xml – ident: ref29
  doi: 10.1109/TUFFC.2005.1397352
– ident: ref10
  doi: 10.1109/TIM.2018.2795298
– volume: 37
  start-page: 81
  year: 1945
  ident: ref13
  article-title: Information and the accuracy attainable in the estimation of statistical parameters
  publication-title: Bull Calcutta Math Soc
– year: 2018
  ident: ref34
  publication-title: Function GetToFcos
– volume: 10
  start-page: 201
  year: 1985
  ident: ref27
  article-title: The generalized phase spectrum method for time delay estimation
  publication-title: Acta Acustica
– ident: ref21
  doi: 10.1109/58.308493
– ident: ref11
  doi: 10.1109/78.193195
– start-page: 993
  year: 2013
  ident: ref2
  article-title: Discriminating samples of drinkable water by their ultrasound time-of-flight (TOF)
  publication-title: Proc IEEE Int Ultrason Symp (IUS)
– ident: ref8
  doi: 10.1109/TUFFC.2003.1235334
– ident: ref1
  doi: 10.1177/0161734613476176
– ident: ref14
  doi: 10.1177/016173469501700204
– ident: ref30
  doi: 10.1364/OE.23.019242
– ident: ref16
  doi: 10.1088/0957-0233/9/9/006
– ident: ref22
  doi: 10.1016/j.measurement.2013.07.038
– ident: ref18
  doi: 10.1016/j.measurement.2018.01.073
– ident: ref31
  doi: 10.1109/78.782223
– start-page: 2579
  year: 2008
  ident: ref15
  article-title: Subsample time delay estimation via improved GCC PHAT algorithm
  publication-title: Proc 9th Int Conf Signal Process
– ident: ref9
  doi: 10.1109/58.796111
– ident: ref35
  doi: 10.1007/s10543-011-0342-4
– ident: ref4
  doi: 10.1049/el:20060338
– ident: ref23
  doi: 10.1109/TUFFC.900
– year: 2018
  ident: ref33
  publication-title: Floating-Point Numbers
– ident: ref19
  doi: 10.1016/j.dsp.2006.08.009
– ident: ref25
  doi: 10.1109/TASSP.1981.1163558
– ident: ref26
  doi: 10.1109/TASSP.1981.1163555
– year: 1946
  ident: ref12
  publication-title: Mathematical Methods of Statistics
– ident: ref20
  doi: 10.1109/TUFFC.2014.006645
– ident: ref24
  doi: 10.1109/TUFFC.2006.143
– ident: ref17
  doi: 10.1016/j.ultras.2005.08.006
– year: 2010
  ident: ref32
  article-title: Ultrasound transient shear wave elasticity imaging for tendon tissue
– ident: ref6
  doi: 10.1364/AO.54.009654
– ident: ref5
  doi: 10.1109/ISCAS.2004.1328747
– ident: ref36
  doi: 10.1016/j.amc.2006.11.095
– volume: 19
  start-page: 553
  year: 2010
  ident: ref28
  article-title: Subsample time delay estimation based on weighted straight line fitting to cross-spectrum phase
  publication-title: Chin J Electron
– year: 2003
  ident: ref7
  article-title: A survey and comparison of time-delay estimation methods in linear systems
– ident: ref3
  doi: 10.1016/j.ndteint.2017.01.011
SSID ssj0014492
Score 2.4336278
Snippet Time delay or the time-of-flight is a most frequently used parameter in many ultrasonic applications. Delay estimation is based on the sampled signal, so the...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1691
SubjectTerms Algorithms
Approximation error
Bandwidth
Bias
Computer simulation
Correlation
Estimation
estimation error
Frequency domain analysis
Frequency response
Inclination angle
Interpolation
Lower bounds
Matlab
Multiplication
Parameter estimation
Random errors
Regression analysis
Signal to noise ratio
Time lag
time-of-arrival estimation
ultrasonic variables measurement
Title Review on Time Delay Estimate Subsample Interpolation in Frequency Domain
URI https://ieeexplore.ieee.org/document/8770126
https://www.ncbi.nlm.nih.gov/pubmed/31352341
https://www.proquest.com/docview/2310664577
https://www.proquest.com/docview/2266333172
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61lZDgAH3wCJTKSNwg23htJ_ERtY0KUjl1pd4iPyZSRZugdvfQ_vqO7WwEiCJukTJJnJmx57PnBfBReqGl5ipXRalziXWRW267HI01XHakQjYkCp99L08X8tuFutiAz1MuDCLG4DOchcvoy_eDW4WjssO6qmg9LTdhk9Qs5WpNHgMpYwNkmjQqJ6Ut1gkyhT48XzTNUYji0jMybmRj-W9GKHZVeRxgRkPTvICz9RBTfMmP2WppZ-7-j-qN__sP2_B8RJzsS1KRHdjAfhee_VKHcBeexDhQd7sHX5OvgA09C8kh7BivzB07oXWAkC2ysMyYUE-YpWDFIUXSscueNTcpKPuOHQ_X5rJ_CYvm5PzoNB-7LeROKL7MHfo5L-c1F155KSUimfJQMZGbQnSKu04bazte-bkUNWpfeCQq48gOOq29eAVb_dDjG2Ci1LUytkSlUCppdCicVnihvKf9sNAZ8DX7WzeWIg8dMa7auCUpdBtF1gaRtaPIMvg0PfMzFeL4J_VeYP1EOXI9g_21lNtxrt62AeGWpVRVlcGH6TbNsuA6MT0OK6IhHCMEYa15Bq-TdkzvFpxALDHh7d-_-Q6ehpGl_MV92FrerPA9AZmlPYga_AC88OvV
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIkQ58Gh5BAoYiRtkG6_tJD6ittEWuj3tSr1FdjyRKkpStbuH8usZ29kIECBukTJJnJmx57PnBfBeOqGl5ipVWa5TiWWWWm7bFI01XLakQtYnCs_P8tlSfj5X51vwccyFQcQQfIYTfxl8-a5v1v6o7KAsClpP8ztwl-y-VDFba_QZSBlaINO0USmpbbZJkcn0wWJZVYc-jktPyLyRleW_mKHQV-XvEDOYmuoRzDeDjBEmXyfrlZ0033-r3_i_f_EYHg6Yk32KSvIEtrDbhQc_VSLchXshErS52YOT6C1gfcd8egg7wktzy45pJSBsi8wvNMZXFGYxXLGPsXTsomPVdQzLvmVH_Tdz0T2FZXW8OJylQ7-FtBGKr9IG3ZTn05ILp5yUEpGMua-ZyE0mWsWbVhtrW164qRQlapc5JCrTkCVstHbiGWx3fYcvgIlcl8rYHJVCEpXRvnRa5oRyjnbEQifAN-yvm6EYue-JcVmHTUmm6yCy2ousHkSWwIfxmatYiuOf1Hue9SPlwPUE9jdSrofZelN7jJvnUhVFAu_G2zTPvPPEdNiviYaQjBCEtqYJPI_aMb5bcIKxxISXf_7mW7g_W8xP69OTsy-vYMePMmYz7sP26nqNrwnWrOyboM0_AD487yI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+on+Time+Delay+Estimate+Subsample+Interpolation+in+Frequency+Domain&rft.jtitle=IEEE+transactions+on+ultrasonics%2C+ferroelectrics%2C+and+frequency+control&rft.au=Svilainis%2C+Linas&rft.date=2019-11-01&rft.issn=0885-3010&rft.eissn=1525-8955&rft.volume=66&rft.issue=11&rft.spage=1691&rft.epage=1698&rft_id=info:doi/10.1109%2FTUFFC.2019.2930661&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TUFFC_2019_2930661
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-3010&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-3010&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-3010&client=summon