Review on Time Delay Estimate Subsample Interpolation in Frequency Domain
Time delay or the time-of-flight is a most frequently used parameter in many ultrasonic applications. Delay estimation is based on the sampled signal, so the resolution is limited by the sampling grid. Higher accuracy is available if the signal-to-noise ratio is high, then the subsample estimate is...
Saved in:
Published in | IEEE transactions on ultrasonics, ferroelectrics, and frequency control Vol. 66; no. 11; pp. 1691 - 1698 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.11.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0885-3010 1525-8955 1525-8955 |
DOI | 10.1109/TUFFC.2019.2930661 |
Cover
Abstract | Time delay or the time-of-flight is a most frequently used parameter in many ultrasonic applications. Delay estimation is based on the sampled signal, so the resolution is limited by the sampling grid. Higher accuracy is available if the signal-to-noise ratio is high, then the subsample estimate is desired. Techniques used for subsample interpolation suffer from bias error. Time-of-flight estimation that is free from bias errors is required. The proposed subsample estimation works in the frequency domain; it is based on the cross-correlation peak temporal position. The phase of the cross-correlation frequency response becomes linear thanks to multiplication by the complex conjugate, and its inclination angle is proportional to the delay. Then, subsample interpolation becomes free from the bias error. Twelve algorithmic implementations of this technique have been proposed in this paper. All algorithmic implementations have been analyzed for bias and random errors using simulation and MATLAB codes are given as supplementary material. Comparison with best-performing interpolation techniques (spline approximation, cosine interpolation, carrier phase) is given for both bias and random errors. It was demonstrated that frequency domain interpolation has no bias errors, and noise performance is better or comparable to other subsample estimation techniques. Weighted regression using L2 norm minimization has the best performance: total errors (bias and random) are within 3% of theoretical lower bound. |
---|---|
AbstractList | Time delay or the time-of-flight is a most frequently used parameter in many ultrasonic applications. Delay estimation is based on the sampled signal, so the resolution is limited by the sampling grid. Higher accuracy is available if the signal-to-noise ratio is high, then the subsample estimate is desired. Techniques used for subsample interpolation suffer from bias error. Time-of-flight estimation that is free from bias errors is required. The proposed subsample estimation works in the frequency domain; it is based on the cross-correlation peak temporal position. The phase of the cross-correlation frequency response becomes linear thanks to multiplication by the complex conjugate, and its inclination angle is proportional to the delay. Then, subsample interpolation becomes free from the bias error. Twelve algorithmic implementations of this technique have been proposed in this paper. All algorithmic implementations have been analyzed for bias and random errors using simulation and MATLAB codes are given as supplementary material. Comparison with best-performing interpolation techniques (spline approximation, cosine interpolation, carrier phase) is given for both bias and random errors. It was demonstrated that frequency domain interpolation has no bias errors, and noise performance is better or comparable to other subsample estimation techniques. Weighted regression using L2 norm minimization has the best performance: total errors (bias and random) are within 3% of theoretical lower bound. Time delay or the time-of-flight is a most frequently used parameter in many ultrasonic applications. Delay estimation is based on the sampled signal, so the resolution is limited by the sampling grid. Higher accuracy is available if the signal-to-noise ratio is high, then the subsample estimate is desired. Techniques used for subsample interpolation suffer from bias error. Time-of-flight estimation that is free from bias errors is required. The proposed subsample estimation works in the frequency domain; it is based on the cross-correlation peak temporal position. The phase of the cross-correlation frequency response becomes linear thanks to multiplication by the complex conjugate, and its inclination angle is proportional to the delay. Then, subsample interpolation becomes free from the bias error. Twelve algorithmic implementations of this technique have been proposed in this paper. All algorithmic implementations have been analyzed for bias and random errors using simulation and MATLAB codes are given as supplementary material. Comparison with best-performing interpolation techniques (spline approximation, cosine interpolation, carrier phase) is given for both bias and random errors. It was demonstrated that frequency domain interpolation has no bias errors, and noise performance is better or comparable to other subsample estimation techniques. Weighted regression using L2 norm minimization has the best performance: total errors (bias and random) are within 3% of theoretical lower bound.Time delay or the time-of-flight is a most frequently used parameter in many ultrasonic applications. Delay estimation is based on the sampled signal, so the resolution is limited by the sampling grid. Higher accuracy is available if the signal-to-noise ratio is high, then the subsample estimate is desired. Techniques used for subsample interpolation suffer from bias error. Time-of-flight estimation that is free from bias errors is required. The proposed subsample estimation works in the frequency domain; it is based on the cross-correlation peak temporal position. The phase of the cross-correlation frequency response becomes linear thanks to multiplication by the complex conjugate, and its inclination angle is proportional to the delay. Then, subsample interpolation becomes free from the bias error. Twelve algorithmic implementations of this technique have been proposed in this paper. All algorithmic implementations have been analyzed for bias and random errors using simulation and MATLAB codes are given as supplementary material. Comparison with best-performing interpolation techniques (spline approximation, cosine interpolation, carrier phase) is given for both bias and random errors. It was demonstrated that frequency domain interpolation has no bias errors, and noise performance is better or comparable to other subsample estimation techniques. Weighted regression using L2 norm minimization has the best performance: total errors (bias and random) are within 3% of theoretical lower bound. |
Author | Svilainis, Linas |
Author_xml | – sequence: 1 givenname: Linas orcidid: 0000-0001-5555-0323 surname: Svilainis fullname: Svilainis, Linas email: linas.svilainis@ktu.lt organization: Electronics Engineering Department, Kaunas University of Technology, Kaunas, Lithuania |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31352341$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1LxDAURYMoOn78AQUpuHHTMS9p2mYpo6MDgqDjOqTpK0TadExaZf690RlduHCVzTmPm3sPya7rHRJyCnQKQOXV8mU-n00ZBTllktM8hx0yAcFEWkohdsmElqVIOQV6QA5DeKUUskyyfXLAgQvGM5iQxRO-W_xIepcsbYfJDbZ6ndyGwXZ6wOR5rILuVi0mCzegX_WtHmxkrUvmHt9GdGad3PSdtu6Y7DW6DXiyfY_Iy_x2ObtPHx7vFrPrh9RwAUNqsGaQsxJ4LeosyxChFLKK2TTljQDTSF1VDRQ1y3iJsqY1RkqbGNdIWfMjcrm5u_J9DBAG1dlgsG21w34MirE855xDwSJ68Qd97UfvYjrFOMTCMlEUkTrfUmPVYa1WPv7dr9VPSREoN4DxfQgeG2Xs8N3D4LVtFVD1tYf63kN97aG2e0SV_VF_rv8rnW0ki4i_QlkUFFjOPwHuUZRn |
CODEN | ITUCER |
CitedBy_id | crossref_primary_10_1364_OE_546754 crossref_primary_10_3390_s21134524 crossref_primary_10_1016_j_ifacol_2023_10_534 crossref_primary_10_1364_OE_558238 crossref_primary_10_3390_electronics11010045 crossref_primary_10_1142_S0218126622200031 crossref_primary_10_1364_OE_479720 crossref_primary_10_3390_s22249912 crossref_primary_10_1063_5_0203520 crossref_primary_10_1016_j_sigpro_2024_109490 crossref_primary_10_1016_j_ndteint_2020_102360 crossref_primary_10_1063_5_0165640 crossref_primary_10_1007_s40192_021_00202_x crossref_primary_10_1109_OJVT_2022_3228053 crossref_primary_10_1109_ACCESS_2021_3139562 crossref_primary_10_1016_j_apacoust_2024_110238 crossref_primary_10_1515_teme_2023_0148 crossref_primary_10_1016_j_vlsi_2024_102241 crossref_primary_10_1109_JSTQE_2022_3150791 crossref_primary_10_1142_S0218126623500135 crossref_primary_10_1364_AO_417572 crossref_primary_10_1140_epjs_s11734_021_00410_8 crossref_primary_10_1049_el_2019_3751 crossref_primary_10_1364_OE_433036 crossref_primary_10_3390_electronics11070985 |
Cites_doi | 10.1109/TUFFC.2005.1397352 10.1109/TIM.2018.2795298 10.1109/58.308493 10.1109/78.193195 10.1109/TUFFC.2003.1235334 10.1177/0161734613476176 10.1177/016173469501700204 10.1364/OE.23.019242 10.1088/0957-0233/9/9/006 10.1016/j.measurement.2013.07.038 10.1016/j.measurement.2018.01.073 10.1109/78.782223 10.1109/58.796111 10.1007/s10543-011-0342-4 10.1049/el:20060338 10.1109/TUFFC.900 10.1016/j.dsp.2006.08.009 10.1109/TASSP.1981.1163558 10.1109/TASSP.1981.1163555 10.1109/TUFFC.2014.006645 10.1109/TUFFC.2006.143 10.1016/j.ultras.2005.08.006 10.1364/AO.54.009654 10.1109/ISCAS.2004.1328747 10.1016/j.amc.2006.11.095 10.1016/j.ndteint.2017.01.011 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SP 7U5 8FD F28 FR3 L7M 7X8 |
DOI | 10.1109/TUFFC.2019.2930661 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Solid State and Superconductivity Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Electronics & Communications Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Solid State and Superconductivity Abstracts PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1525-8955 |
EndPage | 1698 |
ExternalDocumentID | 31352341 10_1109_TUFFC_2019_2930661 8770126 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: UE from the Spanish State Research Agency (AEI) – fundername: Research, Development and Innovation Fund of Kaunas University of Technology grantid: PP-91F/19 – fundername: ECERES grantid: DPI2016-78876-R-AEI/FEDER – fundername: European Regional Development Fund funderid: 10.13039/501100008530 |
GroupedDBID | --- -~X .GJ 0R~ 186 29I 3EH 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ UKR VH1 ZXP ZY4 AAYXX CITATION RIG ABTAH NPM PKN Z5M 7SP 7U5 8FD F28 FR3 L7M 7X8 |
ID | FETCH-LOGICAL-c351t-ced2162813d5d444ee1859b001a03f51cf9abbf17d2438e9d0de44eac341c99d3 |
IEDL.DBID | RIE |
ISSN | 0885-3010 1525-8955 |
IngestDate | Fri Jul 11 07:10:00 EDT 2025 Mon Jun 30 10:20:28 EDT 2025 Wed Feb 19 02:30:36 EST 2025 Tue Jul 01 01:50:16 EDT 2025 Thu Apr 24 23:04:06 EDT 2025 Wed Aug 27 02:40:32 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-ced2162813d5d444ee1859b001a03f51cf9abbf17d2438e9d0de44eac341c99d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5555-0323 |
PMID | 31352341 |
PQID | 2310664577 |
PQPubID | 85455 |
PageCount | 8 |
ParticipantIDs | crossref_citationtrail_10_1109_TUFFC_2019_2930661 ieee_primary_8770126 proquest_journals_2310664577 crossref_primary_10_1109_TUFFC_2019_2930661 pubmed_primary_31352341 proquest_miscellaneous_2266333172 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-01 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
PublicationTitleAbbrev | T-UFFC |
PublicationTitleAlternate | IEEE Trans Ultrason Ferroelectr Freq Control |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 (ref34) 2018 ref36 ref14 yin (ref2) 2013 ref31 ref30 ref11 song (ref32) 2010 ref10 ref1 ref17 qin (ref15) 2008 ref16 ref19 ref18 bjorklund (ref7) 2003 ref24 ref23 ref26 ref25 cramer (ref12) 1946 rao (ref13) 1945; 37 ref20 (ref33) 2018 ref22 ref21 zhao (ref27) 1985; 10 ref29 ref8 ref9 ref4 ref3 ref6 ref5 bai (ref28) 2010; 19 |
References_xml | – ident: ref29 doi: 10.1109/TUFFC.2005.1397352 – ident: ref10 doi: 10.1109/TIM.2018.2795298 – volume: 37 start-page: 81 year: 1945 ident: ref13 article-title: Information and the accuracy attainable in the estimation of statistical parameters publication-title: Bull Calcutta Math Soc – year: 2018 ident: ref34 publication-title: Function GetToFcos – volume: 10 start-page: 201 year: 1985 ident: ref27 article-title: The generalized phase spectrum method for time delay estimation publication-title: Acta Acustica – ident: ref21 doi: 10.1109/58.308493 – ident: ref11 doi: 10.1109/78.193195 – start-page: 993 year: 2013 ident: ref2 article-title: Discriminating samples of drinkable water by their ultrasound time-of-flight (TOF) publication-title: Proc IEEE Int Ultrason Symp (IUS) – ident: ref8 doi: 10.1109/TUFFC.2003.1235334 – ident: ref1 doi: 10.1177/0161734613476176 – ident: ref14 doi: 10.1177/016173469501700204 – ident: ref30 doi: 10.1364/OE.23.019242 – ident: ref16 doi: 10.1088/0957-0233/9/9/006 – ident: ref22 doi: 10.1016/j.measurement.2013.07.038 – ident: ref18 doi: 10.1016/j.measurement.2018.01.073 – ident: ref31 doi: 10.1109/78.782223 – start-page: 2579 year: 2008 ident: ref15 article-title: Subsample time delay estimation via improved GCC PHAT algorithm publication-title: Proc 9th Int Conf Signal Process – ident: ref9 doi: 10.1109/58.796111 – ident: ref35 doi: 10.1007/s10543-011-0342-4 – ident: ref4 doi: 10.1049/el:20060338 – ident: ref23 doi: 10.1109/TUFFC.900 – year: 2018 ident: ref33 publication-title: Floating-Point Numbers – ident: ref19 doi: 10.1016/j.dsp.2006.08.009 – ident: ref25 doi: 10.1109/TASSP.1981.1163558 – ident: ref26 doi: 10.1109/TASSP.1981.1163555 – year: 1946 ident: ref12 publication-title: Mathematical Methods of Statistics – ident: ref20 doi: 10.1109/TUFFC.2014.006645 – ident: ref24 doi: 10.1109/TUFFC.2006.143 – ident: ref17 doi: 10.1016/j.ultras.2005.08.006 – year: 2010 ident: ref32 article-title: Ultrasound transient shear wave elasticity imaging for tendon tissue – ident: ref6 doi: 10.1364/AO.54.009654 – ident: ref5 doi: 10.1109/ISCAS.2004.1328747 – ident: ref36 doi: 10.1016/j.amc.2006.11.095 – volume: 19 start-page: 553 year: 2010 ident: ref28 article-title: Subsample time delay estimation based on weighted straight line fitting to cross-spectrum phase publication-title: Chin J Electron – year: 2003 ident: ref7 article-title: A survey and comparison of time-delay estimation methods in linear systems – ident: ref3 doi: 10.1016/j.ndteint.2017.01.011 |
SSID | ssj0014492 |
Score | 2.4336278 |
Snippet | Time delay or the time-of-flight is a most frequently used parameter in many ultrasonic applications. Delay estimation is based on the sampled signal, so the... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1691 |
SubjectTerms | Algorithms Approximation error Bandwidth Bias Computer simulation Correlation Estimation estimation error Frequency domain analysis Frequency response Inclination angle Interpolation Lower bounds Matlab Multiplication Parameter estimation Random errors Regression analysis Signal to noise ratio Time lag time-of-arrival estimation ultrasonic variables measurement |
Title | Review on Time Delay Estimate Subsample Interpolation in Frequency Domain |
URI | https://ieeexplore.ieee.org/document/8770126 https://www.ncbi.nlm.nih.gov/pubmed/31352341 https://www.proquest.com/docview/2310664577 https://www.proquest.com/docview/2266333172 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61lZDgAH3wCJTKSNwg23htJ_ERtY0KUjl1pd4iPyZSRZugdvfQ_vqO7WwEiCJukTJJnJmx57PnBfBReqGl5ipXRalziXWRW267HI01XHakQjYkCp99L08X8tuFutiAz1MuDCLG4DOchcvoy_eDW4WjssO6qmg9LTdhk9Qs5WpNHgMpYwNkmjQqJ6Ut1gkyhT48XzTNUYji0jMybmRj-W9GKHZVeRxgRkPTvICz9RBTfMmP2WppZ-7-j-qN__sP2_B8RJzsS1KRHdjAfhee_VKHcBeexDhQd7sHX5OvgA09C8kh7BivzB07oXWAkC2ysMyYUE-YpWDFIUXSscueNTcpKPuOHQ_X5rJ_CYvm5PzoNB-7LeROKL7MHfo5L-c1F155KSUimfJQMZGbQnSKu04bazte-bkUNWpfeCQq48gOOq29eAVb_dDjG2Ci1LUytkSlUCppdCicVnihvKf9sNAZ8DX7WzeWIg8dMa7auCUpdBtF1gaRtaPIMvg0PfMzFeL4J_VeYP1EOXI9g_21lNtxrt62AeGWpVRVlcGH6TbNsuA6MT0OK6IhHCMEYa15Bq-TdkzvFpxALDHh7d-_-Q6ehpGl_MV92FrerPA9AZmlPYga_AC88OvV |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIkQ58Gh5BAoYiRtkG6_tJD6ittEWuj3tSr1FdjyRKkpStbuH8usZ29kIECBukTJJnJmx57PnBfBeOqGl5ipVWa5TiWWWWm7bFI01XLakQtYnCs_P8tlSfj5X51vwccyFQcQQfIYTfxl8-a5v1v6o7KAsClpP8ztwl-y-VDFba_QZSBlaINO0USmpbbZJkcn0wWJZVYc-jktPyLyRleW_mKHQV-XvEDOYmuoRzDeDjBEmXyfrlZ0033-r3_i_f_EYHg6Yk32KSvIEtrDbhQc_VSLchXshErS52YOT6C1gfcd8egg7wktzy45pJSBsi8wvNMZXFGYxXLGPsXTsomPVdQzLvmVH_Tdz0T2FZXW8OJylQ7-FtBGKr9IG3ZTn05ILp5yUEpGMua-ZyE0mWsWbVhtrW164qRQlapc5JCrTkCVstHbiGWx3fYcvgIlcl8rYHJVCEpXRvnRa5oRyjnbEQifAN-yvm6EYue-JcVmHTUmm6yCy2ousHkSWwIfxmatYiuOf1Hue9SPlwPUE9jdSrofZelN7jJvnUhVFAu_G2zTPvPPEdNiviYaQjBCEtqYJPI_aMb5bcIKxxISXf_7mW7g_W8xP69OTsy-vYMePMmYz7sP26nqNrwnWrOyboM0_AD487yI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+on+Time+Delay+Estimate+Subsample+Interpolation+in+Frequency+Domain&rft.jtitle=IEEE+transactions+on+ultrasonics%2C+ferroelectrics%2C+and+frequency+control&rft.au=Svilainis%2C+Linas&rft.date=2019-11-01&rft.issn=0885-3010&rft.eissn=1525-8955&rft.volume=66&rft.issue=11&rft.spage=1691&rft.epage=1698&rft_id=info:doi/10.1109%2FTUFFC.2019.2930661&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TUFFC_2019_2930661 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-3010&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-3010&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-3010&client=summon |