Mutual Information-Driven Subject-Invariant and Class-Relevant Deep Representation Learning in BCI

In recent years, deep learning-based feature representation methods have shown a promising impact on electroencephalography (EEG)-based brain-computer interface (BCI). Nonetheless, owing to high intra- and inter-subject variabilities, many studies on decoding EEG were designed in a subject-specific...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 34; no. 2; pp. 739 - 749
Main Authors Jeon, Eunjin, Ko, Wonjun, Yoon, Jee Seok, Suk, Heung-Il
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, deep learning-based feature representation methods have shown a promising impact on electroencephalography (EEG)-based brain-computer interface (BCI). Nonetheless, owing to high intra- and inter-subject variabilities, many studies on decoding EEG were designed in a subject-specific manner by using calibration samples, with no concern of its practical use, hampered by time-consuming steps and a large data requirement. To this end, recent studies adopted a transfer learning strategy, especially domain adaptation techniques. Among those, we have witnessed the potential of adversarial learning-based transfer learning in BCIs. In the meantime, it is known that adversarial learning-based domain adaptation methods are prone to negative transfer that disrupts learning generalized feature representations, applicable to diverse domains, for example, subjects or sessions in BCIs. In this article, we propose a novel framework that learns class-relevant and subject-invariant feature representations in an information-theoretic manner, without using adversarial learning. To be specific, we devise two operational components in a deep network that explicitly estimate mutual information between feature representations: 1) to decompose features in an intermediate layer into class-relevant and class-irrelevant ones and 2) to enrich class-discriminative feature representation. On two large EEG datasets, we validated the effectiveness of our proposed framework by comparing with several comparative methods in performance. Furthermore, we conducted rigorous analyses by performing an ablation study in regard to the components in our network, explaining our model's decision on input EEG signals via layer-wise relevance propagation, and visualizing the distribution of learned features via t-SNE.
AbstractList In recent years, deep learning-based feature representation methods have shown a promising impact on electroencephalography (EEG)-based brain-computer interface (BCI). Nonetheless, owing to high intra- and inter-subject variabilities, many studies on decoding EEG were designed in a subject-specific manner by using calibration samples, with no concern of its practical use, hampered by time-consuming steps and a large data requirement. To this end, recent studies adopted a transfer learning strategy, especially domain adaptation techniques. Among those, we have witnessed the potential of adversarial learning-based transfer learning in BCIs. In the meantime, it is known that adversarial learning-based domain adaptation methods are prone to negative transfer that disrupts learning generalized feature representations, applicable to diverse domains, for example, subjects or sessions in BCIs. In this article, we propose a novel framework that learns class-relevant and subject-invariant feature representations in an information-theoretic manner, without using adversarial learning. To be specific, we devise two operational components in a deep network that explicitly estimate mutual information between feature representations: 1) to decompose features in an intermediate layer into class-relevant and class-irrelevant ones and 2) to enrich class-discriminative feature representation. On two large EEG datasets, we validated the effectiveness of our proposed framework by comparing with several comparative methods in performance. Furthermore, we conducted rigorous analyses by performing an ablation study in regard to the components in our network, explaining our model's decision on input EEG signals via layer-wise relevance propagation, and visualizing the distribution of learned features via t-SNE.In recent years, deep learning-based feature representation methods have shown a promising impact on electroencephalography (EEG)-based brain-computer interface (BCI). Nonetheless, owing to high intra- and inter-subject variabilities, many studies on decoding EEG were designed in a subject-specific manner by using calibration samples, with no concern of its practical use, hampered by time-consuming steps and a large data requirement. To this end, recent studies adopted a transfer learning strategy, especially domain adaptation techniques. Among those, we have witnessed the potential of adversarial learning-based transfer learning in BCIs. In the meantime, it is known that adversarial learning-based domain adaptation methods are prone to negative transfer that disrupts learning generalized feature representations, applicable to diverse domains, for example, subjects or sessions in BCIs. In this article, we propose a novel framework that learns class-relevant and subject-invariant feature representations in an information-theoretic manner, without using adversarial learning. To be specific, we devise two operational components in a deep network that explicitly estimate mutual information between feature representations: 1) to decompose features in an intermediate layer into class-relevant and class-irrelevant ones and 2) to enrich class-discriminative feature representation. On two large EEG datasets, we validated the effectiveness of our proposed framework by comparing with several comparative methods in performance. Furthermore, we conducted rigorous analyses by performing an ablation study in regard to the components in our network, explaining our model's decision on input EEG signals via layer-wise relevance propagation, and visualizing the distribution of learned features via t-SNE.
In recent years, deep learning-based feature representation methods have shown a promising impact on electroencephalography (EEG)-based brain-computer interface (BCI). Nonetheless, owing to high intra- and inter-subject variabilities, many studies on decoding EEG were designed in a subject-specific manner by using calibration samples, with no concern of its practical use, hampered by time-consuming steps and a large data requirement. To this end, recent studies adopted a transfer learning strategy, especially domain adaptation techniques. Among those, we have witnessed the potential of adversarial learning-based transfer learning in BCIs. In the meantime, it is known that adversarial learning-based domain adaptation methods are prone to negative transfer that disrupts learning generalized feature representations, applicable to diverse domains, for example, subjects or sessions in BCIs. In this article, we propose a novel framework that learns class-relevant and subject-invariant feature representations in an information-theoretic manner, without using adversarial learning. To be specific, we devise two operational components in a deep network that explicitly estimate mutual information between feature representations: 1) to decompose features in an intermediate layer into class-relevant and class-irrelevant ones and 2) to enrich class-discriminative feature representation. On two large EEG datasets, we validated the effectiveness of our proposed framework by comparing with several comparative methods in performance. Furthermore, we conducted rigorous analyses by performing an ablation study in regard to the components in our network, explaining our model's decision on input EEG signals via layer-wise relevance propagation, and visualizing the distribution of learned features via t-SNE.
Author Suk, Heung-Il
Ko, Wonjun
Jeon, Eunjin
Yoon, Jee Seok
Author_xml – sequence: 1
  givenname: Eunjin
  orcidid: 0000-0002-1800-2704
  surname: Jeon
  fullname: Jeon, Eunjin
  email: eunjinjeon@korea.ac.kr
  organization: Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
– sequence: 2
  givenname: Wonjun
  orcidid: 0000-0001-7496-9007
  surname: Ko
  fullname: Ko, Wonjun
  email: wjko@korea.ac.kr
  organization: Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
– sequence: 3
  givenname: Jee Seok
  orcidid: 0000-0003-0721-504X
  surname: Yoon
  fullname: Yoon, Jee Seok
  email: wltjr1007@korea.ac.kr
  organization: Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
– sequence: 4
  givenname: Heung-Il
  orcidid: 0000-0001-7019-8962
  surname: Suk
  fullname: Suk, Heung-Il
  email: hisuk@korea.ac.kr
  organization: Department of Artificial Intelligence and the Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34357871$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1PGzEQhq2KqlDKHwAJrcSllw22x197hKSlkVKQgErcLO_uBDnaeIO9G4l_z4aEHDjUl7Gs55mx5v1ODkIbkJBTRkeM0eLy8fZ29jDilLMRMEqlgS_kiDPFcw7GHOzv-umQnKS0oMNRVCpRfCOHIEBqo9kRKf_2Xe-abBrmbVy6zrchn0S_xpA99OUCqy6fhrWL3oUuc6HOxo1LKb_HBtebpwniKrvHVcSEoXv3sxm6GHx4znzIrsfTH-Tr3DUJT3b1mPz7_etx_Cef3d1Mx1ezvALJurzSHDgKBbUThuJcUCFdIY0sqaGSsgKlExxKV6laCdBlBVgXijkoCgG0hGPyc9t3FduXHlNnlz5V2DQuYNsny6UcQKEpDOjFJ3TR9jEMv7NcaxBSglYDdb6j-nKJtV1Fv3Tx1X5sbwD4Fqhim1LE-R5h1G5Ssu8p2U1KdpfSIJlPUuW3i-ui883_1bOt6hFxP6uQ1Ghl4A3ytJ1u
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_TCYB_2024_3410844
crossref_primary_10_3390_bioengineering10091101
crossref_primary_10_1109_ACCESS_2023_3322294
crossref_primary_10_1109_TNSRE_2023_3339179
crossref_primary_10_1016_j_neunet_2024_106470
crossref_primary_10_1109_TBME_2024_3432934
crossref_primary_10_1007_s10489_022_04077_z
crossref_primary_10_1109_TNNLS_2023_3311195
crossref_primary_10_1109_JIOT_2023_3341468
crossref_primary_10_1109_TNNLS_2024_3357698
crossref_primary_10_1109_TNSRE_2023_3300961
crossref_primary_10_1016_j_engappai_2025_110340
crossref_primary_10_1016_j_eswa_2023_123116
crossref_primary_10_1109_TAFFC_2023_3329526
crossref_primary_10_1109_TCDS_2024_3392745
crossref_primary_10_1080_2326263X_2024_2347790
crossref_primary_10_3390_brainsci13030453
crossref_primary_10_1016_j_neunet_2024_106655
crossref_primary_10_1109_TNNLS_2023_3269512
crossref_primary_10_1016_j_bspc_2024_107132
crossref_primary_10_1109_TII_2024_3441636
crossref_primary_10_1088_1741_2552_ad8962
crossref_primary_10_1109_RBME_2023_3296938
crossref_primary_10_3389_fnhum_2023_1194751
crossref_primary_10_1007_s11517_024_03246_1
crossref_primary_10_1038_s41598_022_08490_9
crossref_primary_10_1016_j_compbiomed_2022_106220
crossref_primary_10_1109_TNNLS_2023_3287181
Cites_doi 10.1016/j.neuroimage.2018.03.032
10.1109/IWW-BCI.2018.8311535
10.1109/CVPR.2017.316
10.1109/TBME.2019.2908099
10.1109/IWW-BCI.2019.8737340
10.1109/TNNLS.2021.3054480
10.1109/IJCNN.2008.4634130
10.1093/gigascience/giz002
10.1002/cpa.3160360204
10.1093/gigascience/gix034
10.1109/CVPR.2017.195
10.1002/hbm.23730
10.1109/TKDE.2009.191
10.1109/TNSRE.2019.2923315
10.1109/TBME.2015.2487738
10.1109/TBME.2010.2093133
10.1109/LSP.2020.3020215
10.1109/TBME.2010.2082539
10.1371/journal.pone.0130140
10.1088/1741-2552/aace8c
10.1109/MCI.2015.2501545
10.1109/TNNLS.2018.2789927
10.3389/fnhum.2017.00334
10.1007/978-3-642-02091-9_1
10.1016/j.compbiomed.2016.10.019
10.1007/s10479-011-0841-3
10.1007/978-1-4612-4380-9_16
10.5555/2946645.2946704
10.1109/TPAMI.2012.69
10.1109/MCI.2021.3061875
10.1109/ACCESS.2020.2971600
10.1109/NER.2019.8716897
10.1109/ICASSP40776.2020.9053168
10.1016/j.patcog.2016.11.008
10.1016/j.neucom.2018.05.083
10.1109/86.895946
10.1609/aaai.v33i01.33015345
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2021.3100583
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 749
ExternalDocumentID 34357871
10_1109_TNNLS_2021_3100583
9508768
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Institute for Information and Communications Technology Promotion (IITP) grant funded by the Korea Government
  grantid: 2017-0-00451
  funderid: 10.13039/501100010418
– fundername: Development of BCI based Brain and Cognitive Computing Technology for Recognizing User’s Intentions using Deep Learning
– fundername: Institute of Information and Communications Technology Planning and Evaluation (IITP) grant funded by the Korea Government (MSIT)
  grantid: 2019-0-00079
– fundername: Department of Artificial Intelligence (Korea University)
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-c7232e463da480ef4045a9585b0805019e5a423bac6d6437bc3ed961a399430b3
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Fri Jul 11 00:40:41 EDT 2025
Sun Jun 29 15:20:44 EDT 2025
Thu Apr 03 07:03:15 EDT 2025
Thu Apr 24 23:09:35 EDT 2025
Tue Jul 01 00:27:40 EDT 2025
Wed Aug 27 02:48:03 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-c7232e463da480ef4045a9585b0805019e5a423bac6d6437bc3ed961a399430b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7496-9007
0000-0003-0721-504X
0000-0002-1800-2704
0000-0001-7019-8962
PMID 34357871
PQID 2773455376
PQPubID 85436
PageCount 11
ParticipantIDs crossref_primary_10_1109_TNNLS_2021_3100583
ieee_primary_9508768
pubmed_primary_34357871
proquest_miscellaneous_2559434703
crossref_citationtrail_10_1109_TNNLS_2021_3100583
proquest_journals_2773455376
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref14
ref36
Liu (ref24)
ref31
ref30
ref11
ref33
ref10
ref32
ref2
Liu (ref40)
ref1
ref17
ref16
ref19
ref18
Peng (ref25)
ref23
ref45
ref20
Ioffe (ref38) 2015
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref29
Srivastava (ref39) 2014; 15
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Hjelm (ref27)
Nowozin (ref37)
Belghazi (ref26)
References_xml – ident: ref31
  doi: 10.1016/j.neuroimage.2018.03.032
– ident: ref11
  doi: 10.1109/IWW-BCI.2018.8311535
– ident: ref23
  doi: 10.1109/CVPR.2017.316
– ident: ref7
  doi: 10.1109/TBME.2019.2908099
– ident: ref17
  doi: 10.1109/IWW-BCI.2019.8737340
– start-page: 1
  volume-title: Proc. 8th Int. Conf. Learn. Represent. (ICLR)
  ident: ref40
  article-title: On the variance of the adaptive learning rate and beyond
– ident: ref33
  doi: 10.1109/TNNLS.2021.3054480
– ident: ref3
  doi: 10.1109/IJCNN.2008.4634130
– ident: ref29
  doi: 10.1093/gigascience/giz002
– ident: ref36
  doi: 10.1002/cpa.3160360204
– start-page: 4013
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref24
  article-title: Transferable adversarial training: A general approach to adapting deep classifiers
– ident: ref28
  doi: 10.1093/gigascience/gix034
– ident: ref35
  doi: 10.1109/CVPR.2017.195
– ident: ref12
  doi: 10.1002/hbm.23730
– ident: ref15
  doi: 10.1109/TKDE.2009.191
– ident: ref30
  doi: 10.1109/TNSRE.2019.2923315
– start-page: 530
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref26
  article-title: Mutual information neural estimation
– ident: ref5
  doi: 10.1109/TBME.2015.2487738
– ident: ref8
  doi: 10.1109/TBME.2010.2093133
– ident: ref34
  doi: 10.1109/LSP.2020.3020215
– ident: ref41
  doi: 10.1109/TBME.2010.2082539
– ident: ref45
  doi: 10.1371/journal.pone.0130140
– ident: ref9
  doi: 10.1088/1741-2552/aace8c
– ident: ref14
  doi: 10.1109/MCI.2015.2501545
– ident: ref10
  doi: 10.1109/TNNLS.2018.2789927
– ident: ref18
  doi: 10.3389/fnhum.2017.00334
– ident: ref1
  doi: 10.1007/978-3-642-02091-9_1
– ident: ref16
  doi: 10.1016/j.compbiomed.2016.10.019
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: ref39
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– ident: ref44
  doi: 10.1007/s10479-011-0841-3
– ident: ref42
  doi: 10.1007/978-1-4612-4380-9_16
– start-page: 5102
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref25
  article-title: Domain agnostic learning with disentangled representations
– ident: ref21
  doi: 10.5555/2946645.2946704
– ident: ref4
  doi: 10.1109/TPAMI.2012.69
– ident: ref13
  doi: 10.1109/MCI.2021.3061875
– ident: ref19
  doi: 10.1109/ACCESS.2020.2971600
– ident: ref20
  doi: 10.1109/NER.2019.8716897
– ident: ref6
  doi: 10.1109/ICASSP40776.2020.9053168
– ident: ref43
  doi: 10.1016/j.patcog.2016.11.008
– year: 2015
  ident: ref38
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: arXiv:1502.03167
– ident: ref22
  doi: 10.1016/j.neucom.2018.05.083
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref27
  article-title: Learning deep representations by mutual information estimation and maximization
– start-page: 271
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref37
  article-title: F-GAN: Training generative neural samplers using variational divergence minimization
– ident: ref2
  doi: 10.1109/86.895946
– ident: ref32
  doi: 10.1609/aaai.v33i01.33015345
SSID ssj0000605649
Score 2.5899696
Snippet In recent years, deep learning-based feature representation methods have shown a promising impact on electroencephalography (EEG)-based brain-computer...
In recent years, deep learning-based feature representation methods have shown a promising impact on electroencephalography (EEG)-based brain–computer...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 739
SubjectTerms Ablation
Adaptation
Algorithms
Brain modeling
Brain-Computer Interfaces
Brain–computer interface (BCI)
Calibration
Decoding
Deep learning
domain adaptation
Domains
EEG
electroencephalogram
Electroencephalography
Electroencephalography - methods
Feature extraction
Human-computer interface
Humans
Information theory
Invariants
Machine Learning
motor imagery
Mutual information
Neural Networks, Computer
Representations
subject-independent
Training
Transfer learning
Title Mutual Information-Driven Subject-Invariant and Class-Relevant Deep Representation Learning in BCI
URI https://ieeexplore.ieee.org/document/9508768
https://www.ncbi.nlm.nih.gov/pubmed/34357871
https://www.proquest.com/docview/2773455376
https://www.proquest.com/docview/2559434703
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PXGh0PIIlMpI3MDbJLaT9RFaqhaxeyittLfIr1QIlK3KhkN_fWccJxIIELcocV76xuNvxvMAeKPnrratUdzmOnBZ5J7rkDsuWuSnrfDKOPJ3LJbV2ZX8tFKrLXg35cKEEGLwWZjRYdzL92vXk6vsiDqWIj3ehm003IZcrcmfkiMvryLbLYuq5KWoV2OOTK6PLpfLz1_QGiyLGXm01Zz65whJpV7q4pclKfZY-TvdjMvO6S4sxg8eok2-zfqNnbm732o5_u8fPYKHiX-y94PAPIat0O3B7tjbgaWpvg920VNmCUvpSgQfP7kl1chQ15Dzhp93P9HQRmSY6TyL3TX5BaWr06mTEG7YRQyzTdlNHUu1XK_Z1459OD5_AlenHy-Pz3jqx8CdUMWGuxrpV5CV8EbO89BKpINGo71hkXYq5IpBGWRn1rjK036gdSJ4XRUGSZAUuRVPYadbd-E5MFe2NWrW3NdVJWONP6GsUdpb10qnTQbFCEnjUrFy6pnxvYlGS66biGhDiDYJ0QzeTvfcDKU6_jl6n-CYRiYkMjgYkW_SbP7RlHUtpKLCNxm8ni7jPKTNFdOFdY9j0DSTQqICzeDZIDHTs0dBe_Hnd76EB9TEfogFP4CdzW0fXiHV2djDKOP3k0D29A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Pb9MwFH8a4wAXBgxGYICR4ITcObGdNAcOsDK1rO1hdFJvwXYchEDptCUg-Cx8Fb4bz44TCQTcJnGLGjdN7Z_f-73n9wfgaT42ma6UpJrlloqYlTS3zFBeIT-teCmVcf6OxTKdnoo3a7negu9DLoy11gef2ZG79Gf55ca0zlV24DqWIj0OIZTH9usXNNAuXswmuJrPkuTo9epwSkMPAWq4jBtqMqQMVqS8VGLMbCWQwqgcObJGqiSR31ipkFFoZdLSnWFpw22Zp7FCxS040xyfewWuIs-QSZcdNnhwGFoCqefXSZwmNOHZus_KYfnBarmcv0X7M4lHzocux65jDxeuuEwW_6IEfVeXvxNcr-iOduBHP0VdfMvHUdvokfn2W_XI_3UOb8KNwLDJy25L3IItW9-Gnb57BQnCbBf0onW5MyQkZDmA0sm5E_4EpalzT9FZ_VnhBq0bouqS-P6h9MQl5LuPJtaekRMfSBzyt2oSqtW-Jx9q8upwdgdOL-Wf3oXtelPbe0BMUmWoO1iZpanwVQy51ErmpTaVMLmKIO4hUJhQjt11BflUeLOM5YVHUOEQVAQERfB8-M5ZV4zkn6N33fIPI8PKR7DfI60I8uqiSLKMI8RR20TwZLiNksYdH6nablocg8an4AJVRAR7HUKHZ_fAvv_n33wM16arxbyYz5bHD-A6viXvIt_3Ybs5b-1DJHaNfuT3F4F3lw3Gnw3KUcE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mutual+Information-Driven+Subject-Invariant+and+Class-Relevant+Deep+Representation+Learning+in+BCI&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Jeon%2C+Eunjin&rft.au=Ko%2C+Wonjun&rft.au=Yoon%2C+Jee+Seok&rft.au=Suk%2C+Heung-Il&rft.date=2023-02-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=34&rft.issue=2&rft.spage=739&rft.epage=749&rft_id=info:doi/10.1109%2FTNNLS.2021.3100583&rft_id=info%3Apmid%2F34357871&rft.externalDocID=9508768
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon