Mutual Information-Driven Subject-Invariant and Class-Relevant Deep Representation Learning in BCI
In recent years, deep learning-based feature representation methods have shown a promising impact on electroencephalography (EEG)-based brain-computer interface (BCI). Nonetheless, owing to high intra- and inter-subject variabilities, many studies on decoding EEG were designed in a subject-specific...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 34; no. 2; pp. 739 - 749 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.02.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, deep learning-based feature representation methods have shown a promising impact on electroencephalography (EEG)-based brain-computer interface (BCI). Nonetheless, owing to high intra- and inter-subject variabilities, many studies on decoding EEG were designed in a subject-specific manner by using calibration samples, with no concern of its practical use, hampered by time-consuming steps and a large data requirement. To this end, recent studies adopted a transfer learning strategy, especially domain adaptation techniques. Among those, we have witnessed the potential of adversarial learning-based transfer learning in BCIs. In the meantime, it is known that adversarial learning-based domain adaptation methods are prone to negative transfer that disrupts learning generalized feature representations, applicable to diverse domains, for example, subjects or sessions in BCIs. In this article, we propose a novel framework that learns class-relevant and subject-invariant feature representations in an information-theoretic manner, without using adversarial learning. To be specific, we devise two operational components in a deep network that explicitly estimate mutual information between feature representations: 1) to decompose features in an intermediate layer into class-relevant and class-irrelevant ones and 2) to enrich class-discriminative feature representation. On two large EEG datasets, we validated the effectiveness of our proposed framework by comparing with several comparative methods in performance. Furthermore, we conducted rigorous analyses by performing an ablation study in regard to the components in our network, explaining our model's decision on input EEG signals via layer-wise relevance propagation, and visualizing the distribution of learned features via t-SNE. |
---|---|
AbstractList | In recent years, deep learning-based feature representation methods have shown a promising impact on electroencephalography (EEG)-based brain-computer interface (BCI). Nonetheless, owing to high intra- and inter-subject variabilities, many studies on decoding EEG were designed in a subject-specific manner by using calibration samples, with no concern of its practical use, hampered by time-consuming steps and a large data requirement. To this end, recent studies adopted a transfer learning strategy, especially domain adaptation techniques. Among those, we have witnessed the potential of adversarial learning-based transfer learning in BCIs. In the meantime, it is known that adversarial learning-based domain adaptation methods are prone to negative transfer that disrupts learning generalized feature representations, applicable to diverse domains, for example, subjects or sessions in BCIs. In this article, we propose a novel framework that learns class-relevant and subject-invariant feature representations in an information-theoretic manner, without using adversarial learning. To be specific, we devise two operational components in a deep network that explicitly estimate mutual information between feature representations: 1) to decompose features in an intermediate layer into class-relevant and class-irrelevant ones and 2) to enrich class-discriminative feature representation. On two large EEG datasets, we validated the effectiveness of our proposed framework by comparing with several comparative methods in performance. Furthermore, we conducted rigorous analyses by performing an ablation study in regard to the components in our network, explaining our model's decision on input EEG signals via layer-wise relevance propagation, and visualizing the distribution of learned features via t-SNE.In recent years, deep learning-based feature representation methods have shown a promising impact on electroencephalography (EEG)-based brain-computer interface (BCI). Nonetheless, owing to high intra- and inter-subject variabilities, many studies on decoding EEG were designed in a subject-specific manner by using calibration samples, with no concern of its practical use, hampered by time-consuming steps and a large data requirement. To this end, recent studies adopted a transfer learning strategy, especially domain adaptation techniques. Among those, we have witnessed the potential of adversarial learning-based transfer learning in BCIs. In the meantime, it is known that adversarial learning-based domain adaptation methods are prone to negative transfer that disrupts learning generalized feature representations, applicable to diverse domains, for example, subjects or sessions in BCIs. In this article, we propose a novel framework that learns class-relevant and subject-invariant feature representations in an information-theoretic manner, without using adversarial learning. To be specific, we devise two operational components in a deep network that explicitly estimate mutual information between feature representations: 1) to decompose features in an intermediate layer into class-relevant and class-irrelevant ones and 2) to enrich class-discriminative feature representation. On two large EEG datasets, we validated the effectiveness of our proposed framework by comparing with several comparative methods in performance. Furthermore, we conducted rigorous analyses by performing an ablation study in regard to the components in our network, explaining our model's decision on input EEG signals via layer-wise relevance propagation, and visualizing the distribution of learned features via t-SNE. In recent years, deep learning-based feature representation methods have shown a promising impact on electroencephalography (EEG)-based brain-computer interface (BCI). Nonetheless, owing to high intra- and inter-subject variabilities, many studies on decoding EEG were designed in a subject-specific manner by using calibration samples, with no concern of its practical use, hampered by time-consuming steps and a large data requirement. To this end, recent studies adopted a transfer learning strategy, especially domain adaptation techniques. Among those, we have witnessed the potential of adversarial learning-based transfer learning in BCIs. In the meantime, it is known that adversarial learning-based domain adaptation methods are prone to negative transfer that disrupts learning generalized feature representations, applicable to diverse domains, for example, subjects or sessions in BCIs. In this article, we propose a novel framework that learns class-relevant and subject-invariant feature representations in an information-theoretic manner, without using adversarial learning. To be specific, we devise two operational components in a deep network that explicitly estimate mutual information between feature representations: 1) to decompose features in an intermediate layer into class-relevant and class-irrelevant ones and 2) to enrich class-discriminative feature representation. On two large EEG datasets, we validated the effectiveness of our proposed framework by comparing with several comparative methods in performance. Furthermore, we conducted rigorous analyses by performing an ablation study in regard to the components in our network, explaining our model's decision on input EEG signals via layer-wise relevance propagation, and visualizing the distribution of learned features via t-SNE. |
Author | Suk, Heung-Il Ko, Wonjun Jeon, Eunjin Yoon, Jee Seok |
Author_xml | – sequence: 1 givenname: Eunjin orcidid: 0000-0002-1800-2704 surname: Jeon fullname: Jeon, Eunjin email: eunjinjeon@korea.ac.kr organization: Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea – sequence: 2 givenname: Wonjun orcidid: 0000-0001-7496-9007 surname: Ko fullname: Ko, Wonjun email: wjko@korea.ac.kr organization: Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea – sequence: 3 givenname: Jee Seok orcidid: 0000-0003-0721-504X surname: Yoon fullname: Yoon, Jee Seok email: wltjr1007@korea.ac.kr organization: Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea – sequence: 4 givenname: Heung-Il orcidid: 0000-0001-7019-8962 surname: Suk fullname: Suk, Heung-Il email: hisuk@korea.ac.kr organization: Department of Artificial Intelligence and the Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34357871$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1PGzEQhq2KqlDKHwAJrcSllw22x197hKSlkVKQgErcLO_uBDnaeIO9G4l_z4aEHDjUl7Gs55mx5v1ODkIbkJBTRkeM0eLy8fZ29jDilLMRMEqlgS_kiDPFcw7GHOzv-umQnKS0oMNRVCpRfCOHIEBqo9kRKf_2Xe-abBrmbVy6zrchn0S_xpA99OUCqy6fhrWL3oUuc6HOxo1LKb_HBtebpwniKrvHVcSEoXv3sxm6GHx4znzIrsfTH-Tr3DUJT3b1mPz7_etx_Cef3d1Mx1ezvALJurzSHDgKBbUThuJcUCFdIY0sqaGSsgKlExxKV6laCdBlBVgXijkoCgG0hGPyc9t3FduXHlNnlz5V2DQuYNsny6UcQKEpDOjFJ3TR9jEMv7NcaxBSglYDdb6j-nKJtV1Fv3Tx1X5sbwD4Fqhim1LE-R5h1G5Ssu8p2U1KdpfSIJlPUuW3i-ui883_1bOt6hFxP6uQ1Ghl4A3ytJ1u |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1109_TCYB_2024_3410844 crossref_primary_10_3390_bioengineering10091101 crossref_primary_10_1109_ACCESS_2023_3322294 crossref_primary_10_1109_TNSRE_2023_3339179 crossref_primary_10_1016_j_neunet_2024_106470 crossref_primary_10_1109_TBME_2024_3432934 crossref_primary_10_1007_s10489_022_04077_z crossref_primary_10_1109_TNNLS_2023_3311195 crossref_primary_10_1109_JIOT_2023_3341468 crossref_primary_10_1109_TNNLS_2024_3357698 crossref_primary_10_1109_TNSRE_2023_3300961 crossref_primary_10_1016_j_engappai_2025_110340 crossref_primary_10_1016_j_eswa_2023_123116 crossref_primary_10_1109_TAFFC_2023_3329526 crossref_primary_10_1109_TCDS_2024_3392745 crossref_primary_10_1080_2326263X_2024_2347790 crossref_primary_10_3390_brainsci13030453 crossref_primary_10_1016_j_neunet_2024_106655 crossref_primary_10_1109_TNNLS_2023_3269512 crossref_primary_10_1016_j_bspc_2024_107132 crossref_primary_10_1109_TII_2024_3441636 crossref_primary_10_1088_1741_2552_ad8962 crossref_primary_10_1109_RBME_2023_3296938 crossref_primary_10_3389_fnhum_2023_1194751 crossref_primary_10_1007_s11517_024_03246_1 crossref_primary_10_1038_s41598_022_08490_9 crossref_primary_10_1016_j_compbiomed_2022_106220 crossref_primary_10_1109_TNNLS_2023_3287181 |
Cites_doi | 10.1016/j.neuroimage.2018.03.032 10.1109/IWW-BCI.2018.8311535 10.1109/CVPR.2017.316 10.1109/TBME.2019.2908099 10.1109/IWW-BCI.2019.8737340 10.1109/TNNLS.2021.3054480 10.1109/IJCNN.2008.4634130 10.1093/gigascience/giz002 10.1002/cpa.3160360204 10.1093/gigascience/gix034 10.1109/CVPR.2017.195 10.1002/hbm.23730 10.1109/TKDE.2009.191 10.1109/TNSRE.2019.2923315 10.1109/TBME.2015.2487738 10.1109/TBME.2010.2093133 10.1109/LSP.2020.3020215 10.1109/TBME.2010.2082539 10.1371/journal.pone.0130140 10.1088/1741-2552/aace8c 10.1109/MCI.2015.2501545 10.1109/TNNLS.2018.2789927 10.3389/fnhum.2017.00334 10.1007/978-3-642-02091-9_1 10.1016/j.compbiomed.2016.10.019 10.1007/s10479-011-0841-3 10.1007/978-1-4612-4380-9_16 10.5555/2946645.2946704 10.1109/TPAMI.2012.69 10.1109/MCI.2021.3061875 10.1109/ACCESS.2020.2971600 10.1109/NER.2019.8716897 10.1109/ICASSP40776.2020.9053168 10.1016/j.patcog.2016.11.008 10.1016/j.neucom.2018.05.083 10.1109/86.895946 10.1609/aaai.v33i01.33015345 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2021.3100583 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 749 |
ExternalDocumentID | 34357871 10_1109_TNNLS_2021_3100583 9508768 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Institute for Information and Communications Technology Promotion (IITP) grant funded by the Korea Government grantid: 2017-0-00451 funderid: 10.13039/501100010418 – fundername: Development of BCI based Brain and Cognitive Computing Technology for Recognizing User’s Intentions using Deep Learning – fundername: Institute of Information and Communications Technology Planning and Evaluation (IITP) grant funded by the Korea Government (MSIT) grantid: 2019-0-00079 – fundername: Department of Artificial Intelligence (Korea University) |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c351t-c7232e463da480ef4045a9585b0805019e5a423bac6d6437bc3ed961a399430b3 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Fri Jul 11 00:40:41 EDT 2025 Sun Jun 29 15:20:44 EDT 2025 Thu Apr 03 07:03:15 EDT 2025 Thu Apr 24 23:09:35 EDT 2025 Tue Jul 01 00:27:40 EDT 2025 Wed Aug 27 02:48:03 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-c7232e463da480ef4045a9585b0805019e5a423bac6d6437bc3ed961a399430b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7496-9007 0000-0003-0721-504X 0000-0002-1800-2704 0000-0001-7019-8962 |
PMID | 34357871 |
PQID | 2773455376 |
PQPubID | 85436 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1109_TNNLS_2021_3100583 ieee_primary_9508768 pubmed_primary_34357871 proquest_miscellaneous_2559434703 crossref_citationtrail_10_1109_TNNLS_2021_3100583 proquest_journals_2773455376 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref14 ref36 Liu (ref24) ref31 ref30 ref11 ref33 ref10 ref32 ref2 Liu (ref40) ref1 ref17 ref16 ref19 ref18 Peng (ref25) ref23 ref45 ref20 Ioffe (ref38) 2015 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref29 Srivastava (ref39) 2014; 15 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Hjelm (ref27) Nowozin (ref37) Belghazi (ref26) |
References_xml | – ident: ref31 doi: 10.1016/j.neuroimage.2018.03.032 – ident: ref11 doi: 10.1109/IWW-BCI.2018.8311535 – ident: ref23 doi: 10.1109/CVPR.2017.316 – ident: ref7 doi: 10.1109/TBME.2019.2908099 – ident: ref17 doi: 10.1109/IWW-BCI.2019.8737340 – start-page: 1 volume-title: Proc. 8th Int. Conf. Learn. Represent. (ICLR) ident: ref40 article-title: On the variance of the adaptive learning rate and beyond – ident: ref33 doi: 10.1109/TNNLS.2021.3054480 – ident: ref3 doi: 10.1109/IJCNN.2008.4634130 – ident: ref29 doi: 10.1093/gigascience/giz002 – ident: ref36 doi: 10.1002/cpa.3160360204 – start-page: 4013 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref24 article-title: Transferable adversarial training: A general approach to adapting deep classifiers – ident: ref28 doi: 10.1093/gigascience/gix034 – ident: ref35 doi: 10.1109/CVPR.2017.195 – ident: ref12 doi: 10.1002/hbm.23730 – ident: ref15 doi: 10.1109/TKDE.2009.191 – ident: ref30 doi: 10.1109/TNSRE.2019.2923315 – start-page: 530 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref26 article-title: Mutual information neural estimation – ident: ref5 doi: 10.1109/TBME.2015.2487738 – ident: ref8 doi: 10.1109/TBME.2010.2093133 – ident: ref34 doi: 10.1109/LSP.2020.3020215 – ident: ref41 doi: 10.1109/TBME.2010.2082539 – ident: ref45 doi: 10.1371/journal.pone.0130140 – ident: ref9 doi: 10.1088/1741-2552/aace8c – ident: ref14 doi: 10.1109/MCI.2015.2501545 – ident: ref10 doi: 10.1109/TNNLS.2018.2789927 – ident: ref18 doi: 10.3389/fnhum.2017.00334 – ident: ref1 doi: 10.1007/978-3-642-02091-9_1 – ident: ref16 doi: 10.1016/j.compbiomed.2016.10.019 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: ref39 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – ident: ref44 doi: 10.1007/s10479-011-0841-3 – ident: ref42 doi: 10.1007/978-1-4612-4380-9_16 – start-page: 5102 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref25 article-title: Domain agnostic learning with disentangled representations – ident: ref21 doi: 10.5555/2946645.2946704 – ident: ref4 doi: 10.1109/TPAMI.2012.69 – ident: ref13 doi: 10.1109/MCI.2021.3061875 – ident: ref19 doi: 10.1109/ACCESS.2020.2971600 – ident: ref20 doi: 10.1109/NER.2019.8716897 – ident: ref6 doi: 10.1109/ICASSP40776.2020.9053168 – ident: ref43 doi: 10.1016/j.patcog.2016.11.008 – year: 2015 ident: ref38 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: arXiv:1502.03167 – ident: ref22 doi: 10.1016/j.neucom.2018.05.083 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref27 article-title: Learning deep representations by mutual information estimation and maximization – start-page: 271 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref37 article-title: F-GAN: Training generative neural samplers using variational divergence minimization – ident: ref2 doi: 10.1109/86.895946 – ident: ref32 doi: 10.1609/aaai.v33i01.33015345 |
SSID | ssj0000605649 |
Score | 2.5899696 |
Snippet | In recent years, deep learning-based feature representation methods have shown a promising impact on electroencephalography (EEG)-based brain-computer... In recent years, deep learning-based feature representation methods have shown a promising impact on electroencephalography (EEG)-based brain–computer... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 739 |
SubjectTerms | Ablation Adaptation Algorithms Brain modeling Brain-Computer Interfaces Brain–computer interface (BCI) Calibration Decoding Deep learning domain adaptation Domains EEG electroencephalogram Electroencephalography Electroencephalography - methods Feature extraction Human-computer interface Humans Information theory Invariants Machine Learning motor imagery Mutual information Neural Networks, Computer Representations subject-independent Training Transfer learning |
Title | Mutual Information-Driven Subject-Invariant and Class-Relevant Deep Representation Learning in BCI |
URI | https://ieeexplore.ieee.org/document/9508768 https://www.ncbi.nlm.nih.gov/pubmed/34357871 https://www.proquest.com/docview/2773455376 https://www.proquest.com/docview/2559434703 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PXGh0PIIlMpI3MDbJLaT9RFaqhaxeyittLfIr1QIlK3KhkN_fWccJxIIELcocV76xuNvxvMAeKPnrratUdzmOnBZ5J7rkDsuWuSnrfDKOPJ3LJbV2ZX8tFKrLXg35cKEEGLwWZjRYdzL92vXk6vsiDqWIj3ehm003IZcrcmfkiMvryLbLYuq5KWoV2OOTK6PLpfLz1_QGiyLGXm01Zz65whJpV7q4pclKfZY-TvdjMvO6S4sxg8eok2-zfqNnbm732o5_u8fPYKHiX-y94PAPIat0O3B7tjbgaWpvg920VNmCUvpSgQfP7kl1chQ15Dzhp93P9HQRmSY6TyL3TX5BaWr06mTEG7YRQyzTdlNHUu1XK_Z1459OD5_AlenHy-Pz3jqx8CdUMWGuxrpV5CV8EbO89BKpINGo71hkXYq5IpBGWRn1rjK036gdSJ4XRUGSZAUuRVPYadbd-E5MFe2NWrW3NdVJWONP6GsUdpb10qnTQbFCEnjUrFy6pnxvYlGS66biGhDiDYJ0QzeTvfcDKU6_jl6n-CYRiYkMjgYkW_SbP7RlHUtpKLCNxm8ni7jPKTNFdOFdY9j0DSTQqICzeDZIDHTs0dBe_Hnd76EB9TEfogFP4CdzW0fXiHV2djDKOP3k0D29A |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Pb9MwFH8a4wAXBgxGYICR4ITcObGdNAcOsDK1rO1hdFJvwXYchEDptCUg-Cx8Fb4bz44TCQTcJnGLGjdN7Z_f-73n9wfgaT42ma6UpJrlloqYlTS3zFBeIT-teCmVcf6OxTKdnoo3a7negu9DLoy11gef2ZG79Gf55ca0zlV24DqWIj0OIZTH9usXNNAuXswmuJrPkuTo9epwSkMPAWq4jBtqMqQMVqS8VGLMbCWQwqgcObJGqiSR31ipkFFoZdLSnWFpw22Zp7FCxS040xyfewWuIs-QSZcdNnhwGFoCqefXSZwmNOHZus_KYfnBarmcv0X7M4lHzocux65jDxeuuEwW_6IEfVeXvxNcr-iOduBHP0VdfMvHUdvokfn2W_XI_3UOb8KNwLDJy25L3IItW9-Gnb57BQnCbBf0onW5MyQkZDmA0sm5E_4EpalzT9FZ_VnhBq0bouqS-P6h9MQl5LuPJtaekRMfSBzyt2oSqtW-Jx9q8upwdgdOL-Wf3oXtelPbe0BMUmWoO1iZpanwVQy51ErmpTaVMLmKIO4hUJhQjt11BflUeLOM5YVHUOEQVAQERfB8-M5ZV4zkn6N33fIPI8PKR7DfI60I8uqiSLKMI8RR20TwZLiNksYdH6nablocg8an4AJVRAR7HUKHZ_fAvv_n33wM16arxbyYz5bHD-A6viXvIt_3Ybs5b-1DJHaNfuT3F4F3lw3Gnw3KUcE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mutual+Information-Driven+Subject-Invariant+and+Class-Relevant+Deep+Representation+Learning+in+BCI&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Jeon%2C+Eunjin&rft.au=Ko%2C+Wonjun&rft.au=Yoon%2C+Jee+Seok&rft.au=Suk%2C+Heung-Il&rft.date=2023-02-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=34&rft.issue=2&rft.spage=739&rft.epage=749&rft_id=info:doi/10.1109%2FTNNLS.2021.3100583&rft_id=info%3Apmid%2F34357871&rft.externalDocID=9508768 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |