Adsorption kinetics, equilibrium, and thermodynamic studies to understand adsorption behavior of Evans blue dye by durian husk
Membrane isolation, ion exchange, precipitation, transformation, and biosorption are all viable methods for pollutant removal. Adsorption is a common commercial method to concentrate precious molecules or eliminate contaminants, and it is a cost-effective method of treating industrial wastewater. A...
Saved in:
Published in | The Korean journal of chemical engineering Vol. 40; no. 6; pp. 1440 - 1456 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2023
Springer Nature B.V 한국화학공학회 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Membrane isolation, ion exchange, precipitation, transformation, and biosorption are all viable methods for pollutant removal. Adsorption is a common commercial method to concentrate precious molecules or eliminate contaminants, and it is a cost-effective method of treating industrial wastewater. A novel method for increasing their removal effectiveness has been developed for this purpose, using a low-cost biosorbent made from durian husk and Evans blue (EB) dye as a subject. The EB dye adsorption percentage was determined to be 95.95% with 72.0 mg/g adsorption amount at optimal conditions of pH 2 and 40 °C. The second-order kinetic model fit the experimental data the best. Additionally, the results indicated that the Sips isotherm model fits the experimental data better and that the experiment involved single-layer adsorption on the adsorbent surface. A non-linear regression of the van’t Hoff plot gave negative values of Gibbs free energy (−39.38 to −41.48 kJ/mol) at all the temperatures studied (from 20 to 60 °C), indicating that the adsorption process is spontaneous and feasible. A negative value for the enthalpy (ΔH
o
=−23.37kJ/mol) indicated that the adsorption was exothermic, and the positive value of (ΔS
o
=54.55kJ/mol·K) concludes the nature of adsorption of Evans blue dye by Durian husk likely to follow a physisorption adsorption mechanism. |
---|---|
AbstractList | Membrane isolation, ion exchange, precipitation, transformation, and biosorption are all viable methods for pollutant removal. Adsorption is a common commercial method to concentrate precious molecules or eliminate contaminants, and it is a cost-effective method of treating industrial wastewater. A novel method for increasing their removal effectiveness has been developed for this purpose, using a low-cost biosorbent made from durian husk and Evans blue (EB) dye as a subject. The EB dye adsorption percentage was determined to be 95.95% with 72.0 mg/g adsorption amount at optimal conditions of pH 2 and 40 °C. The second-order kinetic model fit the experimental data the best. Additionally, the results indicated that the Sips isotherm model fits the experimental data better and that the experiment involved single-layer adsorption on the adsorbent surface. A non-linear regression of the van’t Hoff plot gave negative values of Gibbs free energy (−39.38 to −41.48 kJ/mol) at all the temperatures studied (from 20 to 60 °C), indicating that the adsorption process is spontaneous and feasible. A negative value for the enthalpy (ΔHo=−23.37kJ/mol) indicated that the adsorption was exothermic, and the positive value of (ΔSo=54.55kJ/mol·K) concludes the nature of adsorption of Evans blue dye by Durian husk likely to follow a physisorption adsorption mechanism. Membrane isolation, ion exchange, precipitation, transformation, and biosorption are all viable methods for pollutant removal. Adsorption is a common commercial method to concentrate precious molecules or eliminate contaminants, and it is a cost-effective method of treating industrial wastewater. A novel method for increasing their removal effectiveness has been developed for this purpose, using a low-cost biosorbent made from durian husk and Evans blue (EB) dye as a subject. The EB dye adsorption percentage was determined to be 95.95% with 72.0 mg/g adsorption amount at optimal conditions of pH 2 and 40 °C. The second-order kinetic model fit the experimental data the best. Additionally, the results indicated that the Sips isotherm model fits the experimental data better and that the experiment involved single-layer adsorption on the adsorbent surface. A non-linear regression of the van’t Hoff plot gave negative values of Gibbs free energy (−39.38 to −41.48 kJ/mol) at all the temperatures studied (from 20 to 60 °C), indicating that the adsorption process is spontaneous and feasible. A negative value for the enthalpy (ΔHo=−23.37kJ/mol) indicated that the adsorption was exothermic, and the positive value of (ΔSo=54.55kJ/mol·K) concludes the nature of adsorption of Evans blue dye by Durian husk likely to follow a physisorption adsorption mechanism. KCI Citation Count: 0 Membrane isolation, ion exchange, precipitation, transformation, and biosorption are all viable methods for pollutant removal. Adsorption is a common commercial method to concentrate precious molecules or eliminate contaminants, and it is a cost-effective method of treating industrial wastewater. A novel method for increasing their removal effectiveness has been developed for this purpose, using a low-cost biosorbent made from durian husk and Evans blue (EB) dye as a subject. The EB dye adsorption percentage was determined to be 95.95% with 72.0 mg/g adsorption amount at optimal conditions of pH 2 and 40 °C. The second-order kinetic model fit the experimental data the best. Additionally, the results indicated that the Sips isotherm model fits the experimental data better and that the experiment involved single-layer adsorption on the adsorbent surface. A non-linear regression of the van’t Hoff plot gave negative values of Gibbs free energy (−39.38 to −41.48 kJ/mol) at all the temperatures studied (from 20 to 60 °C), indicating that the adsorption process is spontaneous and feasible. A negative value for the enthalpy (ΔH o =−23.37kJ/mol) indicated that the adsorption was exothermic, and the positive value of (ΔS o =54.55kJ/mol·K) concludes the nature of adsorption of Evans blue dye by Durian husk likely to follow a physisorption adsorption mechanism. |
Author | Shukor, Mohd Yunus Abd Gunasekaran, Baskaran Othman, Ahmad Razi Yasid, Nur Adeela Basirun, Ain Aqilah Halmi, Mohd Izuan Effendi |
Author_xml | – sequence: 1 givenname: Ain Aqilah surname: Basirun fullname: Basirun, Ain Aqilah organization: Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, UPM Serdang – sequence: 2 givenname: Ahmad Razi surname: Othman fullname: Othman, Ahmad Razi organization: Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi – sequence: 3 givenname: Nur Adeela surname: Yasid fullname: Yasid, Nur Adeela organization: Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, UPM Serdang – sequence: 4 givenname: Mohd Izuan Effendi surname: Halmi fullname: Halmi, Mohd Izuan Effendi organization: Department of Soil Management, Faculty of Agriculture, Universiti Putra Malaysia, UPM Serdang – sequence: 5 givenname: Baskaran surname: Gunasekaran fullname: Gunasekaran, Baskaran organization: Faculty of Applied Science, UCSI University – sequence: 6 givenname: Mohd Yunus Abd surname: Shukor fullname: Shukor, Mohd Yunus Abd email: mohdyunus@upm.edu.my organization: Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, UPM Serdang |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002960511$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kUtrFEEUhQuJ4GT0B7grcCfpeG91Vz-WQ4gaCAgS10W9OlOZmapJPQK9yW-3xw4EBF2dzfnOvZxzTs588JaQjwiXCNB9SYg9NhWwusKmbqrpDVnh0PGqYwzOyAoYbytE5O_IeUoPAJy3DFbkeWNSiMfsgqc75212Ol1Q-1jc3qnoyuGCSm9o3tp4CGby8uA0TbkYZxPNgRZvbEz55JGvScpu5ZMLkYaRXj9Jn6jaF0vNZKmaqCnRSU-3Je3ek7ej3Cf74UXX5NfX67ur79Xtj283V5vbStccc6Vb1LrGvmt1I5uBS1RK2R51qxrVguVdA7Y1BkDZAdAorHteD7zDXkMDY70mn5dcH0ex004E6f7ofRC7KDY_724EAptLmttbk0-L-RjDY7Epi4dQop__E6xnvG8AhmF24eLSMaQU7SiO0R1knOYgcdpELJuIeRNx2kRMM9P9xWiX5amyHKXb_5dkC5nmK_7extef_g39BgTypEk |
CitedBy_id | crossref_primary_10_1007_s13399_024_05664_5 crossref_primary_10_1080_03067319_2024_2419947 crossref_primary_10_1080_01496395_2024_2315611 crossref_primary_10_1038_s41598_024_73697_x |
Cites_doi | 10.1016/j.jenvman.2016.06.026 10.1142/p111 10.1016/j.cej.2009.09.013 10.1021/ja02268a002 10.1016/j.biortech.2016.07.098 10.1007/s10311-009-0247-5 10.1016/j.jece.2016.05.009 10.3390/su12218928 10.1096/fasebj.1.5.3315805 10.1016/j.cej.2006.09.011 10.1016/j.jtice.2016.01.010 10.1007/s12034-018-1694-z 10.1016/S0032-9592(98)00112-5 10.2166/wst.2015.247 10.1002/jctb.5882 10.1186/2193-8865-3-48 10.1007/s11270-014-2119-2 10.1007/s11270-015-2318-5 10.1007/BF01970259 10.1016/j.biortech.2014.01.021 10.1016/j.jhazmat.2006.06.008 10.1080/00986445.2013.818541 10.1046/j.1471-4159.2001.00449.x 10.1155/2017/3039817 10.1080/19443994.2012.692037 10.9790/4861-06316273 10.1016/j.cej.2014.03.115 10.1016/j.jhazmat.2007.10.081 10.1007/BF01542530 10.3390/ijerph7072745 10.1016/j.cej.2012.01.079 10.1007/s11270-012-1276-4 10.1016/S0032-9592(03)00152-3 10.1016/j.jtice.2010.01.007 10.1007/s13762-012-0114-y 10.1007/s11270-014-2057-z 10.1016/j.jenvman.2010.12.010 10.1016/0043-1354(84)90124-6 10.1007/s41101-016-0002-2 10.1038/s41598-021-88657-y 10.1248/yakushi.125.225 10.1016/j.biortech.2021.124749 10.1016/j.molliq.2018.10.048 10.1016/0030-4220(62)90162-7 10.1021/ja071174k 10.1002/masy.200851318 10.1080/19443994.2013.834518 10.6026/97320630014265 10.1080/19443994.2013.770588 10.1007/BF02476452 10.1016/j.bej.2007.10.005 10.1016/j.jhazmat.2009.09.093 10.1002/aic.690200204 10.1023/B:SCIE.0000013305.99473.cf 10.1021/j150576a611 |
ContentType | Journal Article |
Copyright | The Korean Institute of Chemical Engineers 2023 The Korean Institute of Chemical Engineers 2023. |
Copyright_xml | – notice: The Korean Institute of Chemical Engineers 2023 – notice: The Korean Institute of Chemical Engineers 2023. |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1007/s11814-023-1434-y |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1975-7220 |
EndPage | 1456 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10225614 10_1007_s11814_023_1434_y |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X 9ZL AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG5 HG6 HMJXF HRMNR HVGLF HZB HZ~ IJ- IKXTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KDC KOV LLZTM M4Y MA- MZR N2Q NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9N PF0 PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 W4F WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z8N Z8Q Z8Z Z92 ZMTXR ZZE ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION ABRTQ 85H AABYN AAFGU AAGCJ AAUCO AAYFA ABFGW ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ACYCR ADMDM ADOXG AEEQQ AEFTE AESTI AEVTX AFNRJ AGGBP AIMYW AJDOV AJGSW AKQUC SQXTU UNUBA |
ID | FETCH-LOGICAL-c351t-c61cc31876c4a495a1bbbe81c6b4b60e5740e6dd00be901db1385395718c040f3 |
IEDL.DBID | U2A |
ISSN | 0256-1115 |
IngestDate | Wed Jan 31 06:58:50 EST 2024 Fri Jul 25 11:13:11 EDT 2025 Tue Jul 01 03:29:45 EDT 2025 Thu Apr 24 22:58:47 EDT 2025 Fri Feb 21 02:43:45 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Thermodynamics Biosorption Durian Husk Non-linear Regression Evans Blue Dye |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-c61cc31876c4a495a1bbbe81c6b4b60e5740e6dd00be901db1385395718c040f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2825840099 |
PQPubID | 2044390 |
PageCount | 17 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10225614 proquest_journals_2825840099 crossref_primary_10_1007_s11814_023_1434_y crossref_citationtrail_10_1007_s11814_023_1434_y springer_journals_10_1007_s11814_023_1434_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | The Korean journal of chemical engineering |
PublicationTitleAbbrev | Korean J. Chem. Eng |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V 한국화학공학회 |
Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: 한국화학공학회 |
References | GigerMBaumgartnerH RZbindenGAgents Actions197441731:CAS:528:DyaE2MXltFOjtQ%3D%3D441667910.1007/BF01970259 PayusC MRefdinM AZahariN ZRimbaA BGeethaMSarojCGasparatosAFukushiKAlvin OliverPMater. Today202142801:CAS:528:DC%2BB3MXhtVKnsb%2FO ChandraT CMirnaM MSudaryantoYIsmadjiSChem. Eng. J.20071271211:CAS:528:DC%2BD2sXhvVyrsbg%3D10.1016/j.cej.2006.09.011 IsraelMTomasiMBostelSMeunierF-MJ. Neurochem.2001786581:CAS:528:DC%2BD3MXlvFWisr8%3D1148366910.1046/j.1471-4159.2001.00449.x Q. Hu, S. Pang and D. Wang, Sep. Purif. Rev., 1 (2021). KefifFEzzianeKBahmaniABettaharNMayoufSBull. Mater. Sci.2019421410.1007/s12034-018-1694-z TranH NYouS-JChaoH-PJ. Environ. Chem. Eng.2016426711:CAS:528:DC%2BC28XovVagsrw%3D10.1016/j.jece.2016.05.009 FreundlichHZeitschrift Fur Physikalische Chemie1906573851:CAS:528:DyaD28XhtVCl YilmazEMemonSYilmazMJ. Hazard. Mater.20101745921:CAS:528:DC%2BD1MXhsFWlsr3K1981534210.1016/j.jhazmat.2009.09.093 F. Tian, Y. Wang, G. Guo, K. Ding, F. Yang, H. Wang, Y. Cao and C. Liu, Bioresour. Technol., 326 (2021). YanevaZ LGeorgievaN VInt. Rev. Chem. Eng.20124127 CopeF WBull. Math. Biophys.1972344191:STN:280:DyaE3s7ks1CgtQ%3D%3D465707810.1007/BF02476452 Zablocka-GodlewskaEPrzystasWGrabinska-SotaEWater Air Soil Pollut.201222352591:CAS:528:DC%2BC38XhtlGhtb7O23002313344347810.1007/s11270-012-1276-4 NjokuV OFooK YAsifMHameedB HChem. Eng. J.20142501981:CAS:528:DC%2BC2cXovVKkt7g%3D10.1016/j.cej.2014.03.115 LangmuirIJ. Am. Chem. Soc.19163822211:CAS:528:DyaC28Xhs1egsQ%3D%3D10.1021/ja02268a002 FooK YHameedB HChem. Eng. J.201015621:CAS:528:DC%2BD1MXhsFGntbfE10.1016/j.cej.2009.09.013 HoY SMcKayGProcess Biochem.1999344511:CAS:528:DyaK1MXlt1Omtbk%3D10.1016/S0032-9592(98)00112-5 GopalakrishnanYAl-GheethiAAbdul MalekMMarisa AzlanMAl-SahariMRadin MohamedR M SAlkhadherSNomanESustainability202012892810.3390/su12218928 Pelaez-CidA-AHerrera-GonzalezA-MSalazar-VillanuevaMBautista-HernandezAJ. Environ. Manage.20161812691:CAS:528:DC%2BC28Xht1Sit7fF2737224910.1016/j.jenvman.2016.06.026 DahriM KLimL B LPriyanthaNChanC MInt. Food Res. J.20162311541:CAS:528:DC%2BC28XitFSisrnI ChanS-LTanY PAbdullahA HOngS-TJ. Taiwan Inst. Chem. Eng.2016613061:CAS:528:DC%2BC28XhslOgtbg%3D10.1016/j.jtice.2016.01.010 SaadiZSaadiRFazaeliRJ. Nanostruct. Chem.201334810.1186/2193-8865-3-48 Yuh-ShanHScientometrics20045917110.1023/B:SCIE.0000013305.99473.cf Perez-MarinA BZapataV MOrtunoJ FAguilarMSaezJLlorensMJ. Hazard. Mater.20071391221:CAS:528:DC%2BD28Xht1emt7rM1684668610.1016/j.jhazmat.2006.06.008 BlanchardGMaunayeMMartinGWater Res.19841815011:CAS:528:DyaL2MXosVWrsw%3D%3D10.1016/0043-1354(84)90124-6 D. Sharmmah, AIJR Abstracts (2021). MalaowallaA MFongCOral Surgery, Oral Medicine, Oral Pathol.19621512591:STN:280:DyaF387isVWjsA%3D%3D10.1016/0030-4220(62)90162-7 HusinN ARahmanSKarunakaranRBhoreS JBioinformation20181426530237671613756510.6026/97320630014265 M. A. Ahmad, N. Ahmad and O. S. Bello, Water Air Soil Pollut., 225 (2014). FloraS J SPachauriVInt. J. Environ. Res. Public Health2010727451:CAS:528:DC%2BC3cXos12lsbk%3D20717537292272410.3390/ijerph7072745 DoDAdsorption Analysis: Equilibria and Kinetics1998LondonImperial College Press10.1142/p111 JungK-WChoiB HHwangM-JJeongT-UAhnK-HBioresour. Technol.20162191851:CAS:528:DC%2BC28Xht1KmtLfM2749409910.1016/j.biortech.2016.07.098 LazimZ MHadibarataTPutehM HYusopZWirasnitaRMohd NorNJurnal Teknologi201574109 HameedB HHakimiHBiochem. Eng. J.2008393381:CAS:528:DC%2BD1cXjtVelu7s%3D10.1016/j.bej.2007.10.005 SivarajasekarNBaskarRDesalination Water Treat.20145277431:CAS:528:DC%2BC3sXhtl2ks7jM10.1080/19443994.2013.834518 RedlichOPetersonD LJ. Phys. Chem.19596310241:CAS:528:DyaF3cXislI%3D10.1021/j150576a611 TorkiaYKhalfaouiMIOSR J. Appl. Phys.201466210.9790/4861-06316273 LimaE CHosseini-BandegharaeiAMoreno-PirajanJ CAnastopoulosIJ. Mol. Liq.20192734251:CAS:528:DC%2BC1cXhvFykt7jI10.1016/j.molliq.2018.10.048 NgaburaMHussainS AGhaniW A WJamiM STanY PJ. Chem. Technol. Biotechnol.20199413841:CAS:528:DC%2BC1MXktFSluw%3D%3D10.1002/jctb.5882 L. A. Adnan, A. R. Mohd Yusoff, T. Hadibarata and A. B. Khudhair, Water Air Soil Pollut., 225 (2014). ProlaL D TAcayankaELimaE CBestettiCSantosW OPavanF ADiasS L PTarleyC R TDesalination WaterTreat.20135145821:CAS:528:DC%2BC3sXjslKntbY%3D10.1080/19443994.2013.770588 AyaweiNEbelegiA NWankasiDJ. Chem.20172017e303981710.1155/2017/3039817 SaiahF B DSuB-LBettaharNMacromol. Symp.20082731251:CAS:528:DC%2BD1MXns1aqsg%3D%3D10.1002/masy.200851318 WeberT WChakravortiR KAIChE J.1974202281:CAS:528:DyaE2cXksVWktL0%3D10.1002/aic.690200204 CardosoN FLimaE CPintoI SAmaviscaC VRoyerBPintoR BAlencarW SPereiraS F PJ. Environ. Manage.20119212371:CAS:528:DC%2BC3MXhsVeqt7k%3D2119553510.1016/j.jenvman.2010.12.010 OngS-TTanS-YKhooE-CLeeS-LHaS-TDesalination Water Treat.2012451611:CAS:528:DC%2BC38XnvVyisr4%3D10.1080/19443994.2012.692037 Witek-KrowiakAChojnackaKPodstawczykDDawiecAPokomedaKBioresour. Technol.20141601501:CAS:528:DC%2BC2cXhvV2qs74%3D2449579810.1016/j.biortech.2014.01.021 MotulskyH JRansnasL AThe FASEB J.198713651:STN:280:DyaL1c%2Fls1SgtQ%3D%3D331580510.1096/fasebj.1.5.3315805 WaltonK SSnurrR QJ. Am. Chem. Soc.200712985521:CAS:528:DC%2BD2sXms12gur0%3D1758094410.1021/ja071174k WongY CSzetoY SCheungAMckayGProcess Biochem.20043969510.1016/S0032-9592(03)00152-3 ChandraI KJuY-HAyucitraAIsmadjiSInt. J. Environ. Sci. Technol.2013103591:CAS:528:DC%2BC3sXit1Ggt7k%3D10.1007/s13762-012-0114-y MiharaYInoueTYokotaKYakugaku Zasshi20051252251:CAS:528:DC%2BD2MXjtlKlt7c%3D1568457810.1248/yakushi.125.225 PodderM SMajumderC BWater Conserv. Sci. Eng.201612110.1007/s41101-016-0002-2 LagergrenSKungliga Svenska Vetenskapsakademiens Handlingar1898241 TothJActa Chimica (Academiae Scientiarum) Hungaricae1971693111:CAS:528:DyaE3MXkvFWntro%3D AnisuzzamanS MJosephC GKrishnaiahDBonoAOoiL CWater Sci. Technol.2015728961:CAS:528:DC%2BC2MXitVekt77O2636074910.2166/wst.2015.247 BelalaZJeguirimMBelhachemiMAddounFTrouveGEnviron. Chem. Lett.20119651:CAS:528:DC%2BC3MXitlKqsb4%3D10.1007/s10311-009-0247-5 Z. M. Lazim, T. Hadibarata, M. H. Puteh and Z. Yusop, Water Air Soil Pollut., 226 (2015). JovanovićD SKolloid-Zeitschrift & Zeitschrift Fur Polymere1969235120310.1007/BF01542530 ZhouXZhouXChem. Eng. Comm.201420114591:CAS:528:DC%2BC2cXhtVWgt7nM10.1080/00986445.2013.818541 FooK YHameedB HChem. Eng. J.2012187531:CAS:528:DC%2BC38Xjt1ejs70%3D10.1016/j.cej.2012.01.079 HameedB HEl-KhaiaryM IJ. Hazard. Mater.20081546391:CAS:528:DC%2BD1cXlsFCjtb8%3D1806330110.1016/j.jhazmat.2007.10.081 GrabiHDerridjFLemlikchiWGueninESci. Rep.20211197051:CAS:528:DC%2BB3MXhtVGltbvF33958626810251410.1038/s41598-021-88657-y NuithitikulKSrikhunSHirunpraditkoonSJ. Taiwan Inst. Chem. Eng.2010415911:CAS:528:DC%2BC3cXhtFylt73K10.1016/j.jtice.2010.01.007 B H Hameed (1434_CR41) 2008; 154 N F Cardoso (1434_CR33) 2011; 92 H Grabi (1434_CR64) 2021; 11 T C Chandra (1434_CR58) 2007; 127 S M Anisuzzaman (1434_CR8) 2015; 72 D Do (1434_CR54) 1998 M Giger (1434_CR15) 1974; 4 Y Torkia (1434_CR57) 2014; 6 A-A Pelaez-Cid (1434_CR61) 2016; 181 Y Mihara (1434_CR40) 2005; 125 A B Perez-Marin (1434_CR56) 2007; 139 K Y Foo (1434_CR36) 2012; 187 M Ngabura (1434_CR20) 2019; 94 F W Cope (1434_CR26) 1972; 34 B H Hameed (1434_CR30) 2008; 39 V O Njoku (1434_CR18) 2014; 250 N A Husin (1434_CR7) 2018; 14 T W Weber (1434_CR44) 1974; 20 Z Belala (1434_CR62) 2011; 9 L D T Prola (1434_CR3) 2013; 51 S-T Ong (1434_CR11) 2012; 45 1434_CR12 D S Jovanović (1434_CR48) 1969; 235 O Redlich (1434_CR49) 1959; 63 Y S Ho (1434_CR24) 1999; 34 S-L Chan (1434_CR19) 2016; 61 N Sivarajasekar (1434_CR47) 2014; 52 M S Podder (1434_CR53) 2016; 1 E C Lima (1434_CR65) 2019; 273 Z Saadi (1434_CR55) 2013; 3 H N Tran (1434_CR27) 2016; 4 F B D Saiah (1434_CR5) 2008; 273 K Y Foo (1434_CR38) 2010; 156 E Yilmaz (1434_CR6) 2010; 174 K Nuithitikul (1434_CR59) 2010; 41 Y Gopalakrishnan (1434_CR29) 2020; 12 1434_CR2 A Witek-Krowiak (1434_CR35) 2014; 160 X Zhou (1434_CR66) 2014; 201 M Israel (1434_CR16) 2001; 78 1434_CR1 S J S Flora (1434_CR32) 2010; 7 K-W Jung (1434_CR63) 2016; 219 1434_CR60 G Blanchard (1434_CR25) 1984; 18 Y Gopalakrishnan (1434_CR9) 2020; 12 M K Dahri (1434_CR10) 2016; 23 H Yuh-Shan (1434_CR23) 2004; 59 N Ayawei (1434_CR50) 2017; 2017 Y C Wong (1434_CR51) 2004; 39 1434_CR34 H J Motulsky (1434_CR28) 1987; 1 1434_CR37 E Zablocka-Godlewska (1434_CR17) 2012; 223 Z M Lazim (1434_CR13) 2015; 74 Y S Ho (1434_CR22) 1999; 34 S Lagergren (1434_CR21) 1898; 24 C M Payus (1434_CR31) 2021; 42 K Y Foo (1434_CR43) 2010; 156 F Kefif (1434_CR67) 2019; 42 A M Malaowalla (1434_CR14) 1962; 15 I K Chandra (1434_CR4) 2013; 10 K S Walton (1434_CR45) 2007; 129 I Langmuir (1434_CR42) 1916; 38 Z L Yaneva (1434_CR39) 2012; 4 H Freundlich (1434_CR46) 1906; 57 J Toth (1434_CR52) 1971; 69 |
References_xml | – reference: KefifFEzzianeKBahmaniABettaharNMayoufSBull. Mater. Sci.2019421410.1007/s12034-018-1694-z – reference: OngS-TTanS-YKhooE-CLeeS-LHaS-TDesalination Water Treat.2012451611:CAS:528:DC%2BC38XnvVyisr4%3D10.1080/19443994.2012.692037 – reference: TranH NYouS-JChaoH-PJ. Environ. Chem. Eng.2016426711:CAS:528:DC%2BC28XovVagsrw%3D10.1016/j.jece.2016.05.009 – reference: HameedB HEl-KhaiaryM IJ. Hazard. Mater.20081546391:CAS:528:DC%2BD1cXlsFCjtb8%3D1806330110.1016/j.jhazmat.2007.10.081 – reference: TorkiaYKhalfaouiMIOSR J. Appl. Phys.201466210.9790/4861-06316273 – reference: PayusC MRefdinM AZahariN ZRimbaA BGeethaMSarojCGasparatosAFukushiKAlvin OliverPMater. Today202142801:CAS:528:DC%2BB3MXhtVKnsb%2FO – reference: L. A. Adnan, A. R. Mohd Yusoff, T. Hadibarata and A. B. Khudhair, Water Air Soil Pollut., 225 (2014). – reference: MalaowallaA MFongCOral Surgery, Oral Medicine, Oral Pathol.19621512591:STN:280:DyaF387isVWjsA%3D%3D10.1016/0030-4220(62)90162-7 – reference: CardosoN FLimaE CPintoI SAmaviscaC VRoyerBPintoR BAlencarW SPereiraS F PJ. Environ. Manage.20119212371:CAS:528:DC%2BC3MXhsVeqt7k%3D2119553510.1016/j.jenvman.2010.12.010 – reference: ChanS-LTanY PAbdullahA HOngS-TJ. Taiwan Inst. Chem. Eng.2016613061:CAS:528:DC%2BC28XhslOgtbg%3D10.1016/j.jtice.2016.01.010 – reference: Pelaez-CidA-AHerrera-GonzalezA-MSalazar-VillanuevaMBautista-HernandezAJ. Environ. Manage.20161812691:CAS:528:DC%2BC28Xht1Sit7fF2737224910.1016/j.jenvman.2016.06.026 – reference: Zablocka-GodlewskaEPrzystasWGrabinska-SotaEWater Air Soil Pollut.201222352591:CAS:528:DC%2BC38XhtlGhtb7O23002313344347810.1007/s11270-012-1276-4 – reference: NgaburaMHussainS AGhaniW A WJamiM STanY PJ. Chem. Technol. Biotechnol.20199413841:CAS:528:DC%2BC1MXktFSluw%3D%3D10.1002/jctb.5882 – reference: FloraS J SPachauriVInt. J. Environ. Res. Public Health2010727451:CAS:528:DC%2BC3cXos12lsbk%3D20717537292272410.3390/ijerph7072745 – reference: PodderM SMajumderC BWater Conserv. Sci. Eng.201612110.1007/s41101-016-0002-2 – reference: F. Tian, Y. Wang, G. Guo, K. Ding, F. Yang, H. Wang, Y. Cao and C. Liu, Bioresour. Technol., 326 (2021). – reference: DahriM KLimL B LPriyanthaNChanC MInt. Food Res. J.20162311541:CAS:528:DC%2BC28XitFSisrnI – reference: LangmuirIJ. Am. Chem. Soc.19163822211:CAS:528:DyaC28Xhs1egsQ%3D%3D10.1021/ja02268a002 – reference: Perez-MarinA BZapataV MOrtunoJ FAguilarMSaezJLlorensMJ. Hazard. Mater.20071391221:CAS:528:DC%2BD28Xht1emt7rM1684668610.1016/j.jhazmat.2006.06.008 – reference: SaadiZSaadiRFazaeliRJ. Nanostruct. Chem.201334810.1186/2193-8865-3-48 – reference: ProlaL D TAcayankaELimaE CBestettiCSantosW OPavanF ADiasS L PTarleyC R TDesalination WaterTreat.20135145821:CAS:528:DC%2BC3sXjslKntbY%3D10.1080/19443994.2013.770588 – reference: Yuh-ShanHScientometrics20045917110.1023/B:SCIE.0000013305.99473.cf – reference: AnisuzzamanS MJosephC GKrishnaiahDBonoAOoiL CWater Sci. Technol.2015728961:CAS:528:DC%2BC2MXitVekt77O2636074910.2166/wst.2015.247 – reference: YanevaZ LGeorgievaN VInt. Rev. Chem. Eng.20124127 – reference: GopalakrishnanYAl-GheethiAAbdul MalekMMarisa AzlanMAl-SahariMRadin MohamedR M SAlkhadherSNomanESustainability202012892810.3390/su12218928 – reference: M. A. Ahmad, N. Ahmad and O. S. Bello, Water Air Soil Pollut., 225 (2014). – reference: ZhouXZhouXChem. Eng. Comm.201420114591:CAS:528:DC%2BC2cXhtVWgt7nM10.1080/00986445.2013.818541 – reference: WaltonK SSnurrR QJ. Am. Chem. Soc.200712985521:CAS:528:DC%2BD2sXms12gur0%3D1758094410.1021/ja071174k – reference: D. Sharmmah, AIJR Abstracts (2021). – reference: FreundlichHZeitschrift Fur Physikalische Chemie1906573851:CAS:528:DyaD28XhtVCl – reference: JungK-WChoiB HHwangM-JJeongT-UAhnK-HBioresour. Technol.20162191851:CAS:528:DC%2BC28Xht1KmtLfM2749409910.1016/j.biortech.2016.07.098 – reference: JovanovićD SKolloid-Zeitschrift & Zeitschrift Fur Polymere1969235120310.1007/BF01542530 – reference: RedlichOPetersonD LJ. Phys. Chem.19596310241:CAS:528:DyaF3cXislI%3D10.1021/j150576a611 – reference: Z. M. Lazim, T. Hadibarata, M. H. Puteh and Z. Yusop, Water Air Soil Pollut., 226 (2015). – reference: FooK YHameedB HChem. Eng. J.201015621:CAS:528:DC%2BD1MXhsFGntbfE10.1016/j.cej.2009.09.013 – reference: HoY SMcKayGProcess Biochem.1999344511:CAS:528:DyaK1MXlt1Omtbk%3D10.1016/S0032-9592(98)00112-5 – reference: SivarajasekarNBaskarRDesalination Water Treat.20145277431:CAS:528:DC%2BC3sXhtl2ks7jM10.1080/19443994.2013.834518 – reference: ChandraT CMirnaM MSudaryantoYIsmadjiSChem. Eng. J.20071271211:CAS:528:DC%2BD2sXhvVyrsbg%3D10.1016/j.cej.2006.09.011 – reference: BlanchardGMaunayeMMartinGWater Res.19841815011:CAS:528:DyaL2MXosVWrsw%3D%3D10.1016/0043-1354(84)90124-6 – reference: GigerMBaumgartnerH RZbindenGAgents Actions197441731:CAS:528:DyaE2MXltFOjtQ%3D%3D441667910.1007/BF01970259 – reference: LimaE CHosseini-BandegharaeiAMoreno-PirajanJ CAnastopoulosIJ. Mol. Liq.20192734251:CAS:528:DC%2BC1cXhvFykt7jI10.1016/j.molliq.2018.10.048 – reference: NjokuV OFooK YAsifMHameedB HChem. Eng. J.20142501981:CAS:528:DC%2BC2cXovVKkt7g%3D10.1016/j.cej.2014.03.115 – reference: SaiahF B DSuB-LBettaharNMacromol. Symp.20082731251:CAS:528:DC%2BD1MXns1aqsg%3D%3D10.1002/masy.200851318 – reference: DoDAdsorption Analysis: Equilibria and Kinetics1998LondonImperial College Press10.1142/p111 – reference: WeberT WChakravortiR KAIChE J.1974202281:CAS:528:DyaE2cXksVWktL0%3D10.1002/aic.690200204 – reference: LagergrenSKungliga Svenska Vetenskapsakademiens Handlingar1898241 – reference: Q. Hu, S. Pang and D. Wang, Sep. Purif. Rev., 1 (2021). – reference: IsraelMTomasiMBostelSMeunierF-MJ. Neurochem.2001786581:CAS:528:DC%2BD3MXlvFWisr8%3D1148366910.1046/j.1471-4159.2001.00449.x – reference: Witek-KrowiakAChojnackaKPodstawczykDDawiecAPokomedaKBioresour. Technol.20141601501:CAS:528:DC%2BC2cXhvV2qs74%3D2449579810.1016/j.biortech.2014.01.021 – reference: YilmazEMemonSYilmazMJ. Hazard. Mater.20101745921:CAS:528:DC%2BD1MXhsFWlsr3K1981534210.1016/j.jhazmat.2009.09.093 – reference: TothJActa Chimica (Academiae Scientiarum) Hungaricae1971693111:CAS:528:DyaE3MXkvFWntro%3D – reference: HusinN ARahmanSKarunakaranRBhoreS JBioinformation20181426530237671613756510.6026/97320630014265 – reference: WongY CSzetoY SCheungAMckayGProcess Biochem.20043969510.1016/S0032-9592(03)00152-3 – reference: MiharaYInoueTYokotaKYakugaku Zasshi20051252251:CAS:528:DC%2BD2MXjtlKlt7c%3D1568457810.1248/yakushi.125.225 – reference: BelalaZJeguirimMBelhachemiMAddounFTrouveGEnviron. Chem. Lett.20119651:CAS:528:DC%2BC3MXitlKqsb4%3D10.1007/s10311-009-0247-5 – reference: ChandraI KJuY-HAyucitraAIsmadjiSInt. J. Environ. Sci. Technol.2013103591:CAS:528:DC%2BC3sXit1Ggt7k%3D10.1007/s13762-012-0114-y – reference: HameedB HHakimiHBiochem. Eng. J.2008393381:CAS:528:DC%2BD1cXjtVelu7s%3D10.1016/j.bej.2007.10.005 – reference: LazimZ MHadibarataTPutehM HYusopZWirasnitaRMohd NorNJurnal Teknologi201574109 – reference: FooK YHameedB HChem. Eng. J.2012187531:CAS:528:DC%2BC38Xjt1ejs70%3D10.1016/j.cej.2012.01.079 – reference: GrabiHDerridjFLemlikchiWGueninESci. Rep.20211197051:CAS:528:DC%2BB3MXhtVGltbvF33958626810251410.1038/s41598-021-88657-y – reference: NuithitikulKSrikhunSHirunpraditkoonSJ. Taiwan Inst. Chem. Eng.2010415911:CAS:528:DC%2BC3cXhtFylt73K10.1016/j.jtice.2010.01.007 – reference: MotulskyH JRansnasL AThe FASEB J.198713651:STN:280:DyaL1c%2Fls1SgtQ%3D%3D331580510.1096/fasebj.1.5.3315805 – reference: CopeF WBull. Math. Biophys.1972344191:STN:280:DyaE3s7ks1CgtQ%3D%3D465707810.1007/BF02476452 – reference: AyaweiNEbelegiA NWankasiDJ. Chem.20172017e303981710.1155/2017/3039817 – volume: 181 start-page: 269 year: 2016 ident: 1434_CR61 publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2016.06.026 – volume-title: Adsorption Analysis: Equilibria and Kinetics year: 1998 ident: 1434_CR54 doi: 10.1142/p111 – volume: 156 start-page: 2 year: 2010 ident: 1434_CR38 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2009.09.013 – volume: 38 start-page: 2221 year: 1916 ident: 1434_CR42 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja02268a002 – volume: 57 start-page: 385 year: 1906 ident: 1434_CR46 publication-title: Zeitschrift Fur Physikalische Chemie – volume: 219 start-page: 185 year: 2016 ident: 1434_CR63 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.07.098 – volume: 9 start-page: 65 year: 2011 ident: 1434_CR62 publication-title: Environ. Chem. Lett. doi: 10.1007/s10311-009-0247-5 – volume: 4 start-page: 2671 year: 2016 ident: 1434_CR27 publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2016.05.009 – volume: 12 start-page: 8928 year: 2020 ident: 1434_CR9 publication-title: Sustainability doi: 10.3390/su12218928 – volume: 1 start-page: 365 year: 1987 ident: 1434_CR28 publication-title: The FASEB J. doi: 10.1096/fasebj.1.5.3315805 – volume: 127 start-page: 121 year: 2007 ident: 1434_CR58 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2006.09.011 – volume: 61 start-page: 306 year: 2016 ident: 1434_CR19 publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2016.01.010 – volume: 23 start-page: 1154 year: 2016 ident: 1434_CR10 publication-title: Int. Food Res. J. – volume: 42 start-page: 14 year: 2019 ident: 1434_CR67 publication-title: Bull. Mater. Sci. doi: 10.1007/s12034-018-1694-z – volume: 34 start-page: 451 year: 1999 ident: 1434_CR22 publication-title: Process Biochem. doi: 10.1016/S0032-9592(98)00112-5 – volume: 12 start-page: 8928 year: 2020 ident: 1434_CR29 publication-title: Sustainability doi: 10.3390/su12218928 – volume: 72 start-page: 896 year: 2015 ident: 1434_CR8 publication-title: Water Sci. Technol. doi: 10.2166/wst.2015.247 – volume: 24 start-page: 1 year: 1898 ident: 1434_CR21 publication-title: Kungliga Svenska Vetenskapsakademiens Handlingar – volume: 94 start-page: 1384 year: 2019 ident: 1434_CR20 publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.5882 – volume: 3 start-page: 48 year: 2013 ident: 1434_CR55 publication-title: J. Nanostruct. Chem. doi: 10.1186/2193-8865-3-48 – ident: 1434_CR37 – volume: 74 start-page: 109 year: 2015 ident: 1434_CR13 publication-title: Jurnal Teknologi – ident: 1434_CR2 doi: 10.1007/s11270-014-2119-2 – ident: 1434_CR12 doi: 10.1007/s11270-015-2318-5 – volume: 4 start-page: 173 year: 1974 ident: 1434_CR15 publication-title: Agents Actions doi: 10.1007/BF01970259 – volume: 160 start-page: 150 year: 2014 ident: 1434_CR35 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.01.021 – volume: 139 start-page: 122 year: 2007 ident: 1434_CR56 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2006.06.008 – volume: 201 start-page: 1459 year: 2014 ident: 1434_CR66 publication-title: Chem. Eng. Comm. doi: 10.1080/00986445.2013.818541 – volume: 78 start-page: 658 year: 2001 ident: 1434_CR16 publication-title: J. Neurochem. doi: 10.1046/j.1471-4159.2001.00449.x – ident: 1434_CR60 – volume: 2017 start-page: e3039817 year: 2017 ident: 1434_CR50 publication-title: J. Chem. doi: 10.1155/2017/3039817 – volume: 45 start-page: 161 year: 2012 ident: 1434_CR11 publication-title: Desalination Water Treat. doi: 10.1080/19443994.2012.692037 – volume: 6 start-page: 62 year: 2014 ident: 1434_CR57 publication-title: IOSR J. Appl. Phys. doi: 10.9790/4861-06316273 – volume: 4 start-page: 127 year: 2012 ident: 1434_CR39 publication-title: Int. Rev. Chem. Eng. – volume: 250 start-page: 198 year: 2014 ident: 1434_CR18 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.03.115 – volume: 154 start-page: 639 year: 2008 ident: 1434_CR41 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2007.10.081 – volume: 235 start-page: 1203 year: 1969 ident: 1434_CR48 publication-title: Kolloid-Zeitschrift & Zeitschrift Fur Polymere doi: 10.1007/BF01542530 – volume: 7 start-page: 2745 year: 2010 ident: 1434_CR32 publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph7072745 – volume: 187 start-page: 53 year: 2012 ident: 1434_CR36 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.01.079 – volume: 223 start-page: 5259 year: 2012 ident: 1434_CR17 publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-012-1276-4 – volume: 39 start-page: 695 year: 2004 ident: 1434_CR51 publication-title: Process Biochem. doi: 10.1016/S0032-9592(03)00152-3 – volume: 69 start-page: 311 year: 1971 ident: 1434_CR52 publication-title: Acta Chimica (Academiae Scientiarum) Hungaricae – volume: 41 start-page: 591 year: 2010 ident: 1434_CR59 publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2010.01.007 – volume: 10 start-page: 359 year: 2013 ident: 1434_CR4 publication-title: Int. J. Environ. Sci. Technol. doi: 10.1007/s13762-012-0114-y – ident: 1434_CR34 doi: 10.1007/s11270-014-2057-z – volume: 92 start-page: 1237 year: 2011 ident: 1434_CR33 publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2010.12.010 – volume: 18 start-page: 1501 year: 1984 ident: 1434_CR25 publication-title: Water Res. doi: 10.1016/0043-1354(84)90124-6 – volume: 34 start-page: 451 year: 1999 ident: 1434_CR24 publication-title: Process Biochem. doi: 10.1016/S0032-9592(98)00112-5 – volume: 1 start-page: 21 year: 2016 ident: 1434_CR53 publication-title: Water Conserv. Sci. Eng. doi: 10.1007/s41101-016-0002-2 – volume: 11 start-page: 9705 year: 2021 ident: 1434_CR64 publication-title: Sci. Rep. doi: 10.1038/s41598-021-88657-y – volume: 125 start-page: 225 year: 2005 ident: 1434_CR40 publication-title: Yakugaku Zasshi doi: 10.1248/yakushi.125.225 – ident: 1434_CR1 doi: 10.1016/j.biortech.2021.124749 – volume: 273 start-page: 425 year: 2019 ident: 1434_CR65 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2018.10.048 – volume: 15 start-page: 1259 year: 1962 ident: 1434_CR14 publication-title: Oral Surgery, Oral Medicine, Oral Pathol. doi: 10.1016/0030-4220(62)90162-7 – volume: 129 start-page: 8552 year: 2007 ident: 1434_CR45 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja071174k – volume: 273 start-page: 125 year: 2008 ident: 1434_CR5 publication-title: Macromol. Symp. doi: 10.1002/masy.200851318 – volume: 52 start-page: 7743 year: 2014 ident: 1434_CR47 publication-title: Desalination Water Treat. doi: 10.1080/19443994.2013.834518 – volume: 14 start-page: 265 year: 2018 ident: 1434_CR7 publication-title: Bioinformation doi: 10.6026/97320630014265 – volume: 42 start-page: 80 year: 2021 ident: 1434_CR31 publication-title: Mater. Today – volume: 51 start-page: 4582 year: 2013 ident: 1434_CR3 publication-title: Desalination WaterTreat. doi: 10.1080/19443994.2013.770588 – volume: 34 start-page: 419 year: 1972 ident: 1434_CR26 publication-title: Bull. Math. Biophys. doi: 10.1007/BF02476452 – volume: 39 start-page: 338 year: 2008 ident: 1434_CR30 publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2007.10.005 – volume: 174 start-page: 592 year: 2010 ident: 1434_CR6 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.09.093 – volume: 156 start-page: 2 year: 2010 ident: 1434_CR43 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2009.09.013 – volume: 20 start-page: 228 year: 1974 ident: 1434_CR44 publication-title: AIChE J. doi: 10.1002/aic.690200204 – volume: 59 start-page: 171 year: 2004 ident: 1434_CR23 publication-title: Scientometrics doi: 10.1023/B:SCIE.0000013305.99473.cf – volume: 63 start-page: 1024 year: 1959 ident: 1434_CR49 publication-title: J. Phys. Chem. doi: 10.1021/j150576a611 |
SSID | ssj0055620 |
Score | 2.3427722 |
Snippet | Membrane isolation, ion exchange, precipitation, transformation, and biosorption are all viable methods for pollutant removal. Adsorption is a common... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1440 |
SubjectTerms | Adsorption Biotechnology Catalysis Chemistry Chemistry and Materials Science Contaminants Dyes Enthalpy Gibbs free energy Industrial Chemistry/Chemical Engineering Industrial wastes Ion exchange Materials Science Separation Technology Thermodynamic equilibrium Thermodynamics Wastewater treatment 화학공학 |
Title | Adsorption kinetics, equilibrium, and thermodynamic studies to understand adsorption behavior of Evans blue dye by durian husk |
URI | https://link.springer.com/article/10.1007/s11814-023-1434-y https://www.proquest.com/docview/2825840099 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002960511 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Korean Journal of Chemical Engineering, 2023, 40(6), 279, pp.1440-1456 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB314wAcEBQQC6UaiZ5KLSWs7W2O26pLKWpPXamcrPgjUG2bwGZz2Au_nZkk7lIElXqK5DiOlLH93sQzbwB2CZKcPHCZkDbXQmofBGuEiJEirjEKUo3aKgpn5_pkKk8v1WWfx13HaPd4JNnu1KtkNwIjKQhjBGG8FMt12FTsutMknn4cx-1XEaB3P1ZYYI_4TjzK_NcQd8BovZwXd3jmX0ejLeJMnsHTniriuLPtc1gL5RY8OooV2rbgyR9igi_g19jX1bzdAXBGzay_vI_hZ3PVhvU3N_uYlx6Z8N1UvitEj3UXRoiLCpvbNBfMVyPFNH6sCmxZN9rrJqBfBrRL5CTHvMTvTT17CdPJ8cXRieirKwg3VOlCOJ06Ryt6pJ3MyU3KU2ttOEidttLqJJCVkqC9TxIbiDR4mw4J2jNFYOZo5RfDV7BRVmV4DUi7bUINmbSFllYVmee8k4Sc3yzJvNIDSOJnNq6XHucKGNdmJZrMljFkGcOWMcsB7N0-8qPT3biv83uynZm5K8Nq2Xz9VpnZ3JBP8NmwT8t6pwPYjrY1_UKtDafuko9LPHkAH6K9V7f_-8o3D-r9Fh5zmfouxGwbNhbzJrwjMrOwO7A5nhwenvP109cvxzvtZP4NVvztrw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB7xOACHFctDlIXdkeAEWEqo4zbHCoHK80Qlblb8CFSFZLdpDr3w2xknMQXEInGK5DiJlInn-yae-QZgnyBJ866OGVeJYFwYy5xGCOtExDU6lkedqovC9Y3oD_jFXXTX1HEXPtvdb0lWnnpW7EZgxBlhDCOM52w6D4vEBbouj2tw3PPuNyJAr3-sOIE94jt-K_OzW7wDo_lsnL7jmR-2RivEOVuFHw1VxF5t258wZ7M1WDrxHdrWYOWNmOA6PPdMkY8rD4AjGnb6y0do_5XDKq2_fDrCJDPoCN9TbupG9FjUaYQ4ybF8LXPBZHYnX8aPeYoV60b1WFo0U4tqiq7IMcnwoSxGGzA4O7096bOmuwLT7SicMC1CrWlFd4TmCYVJSaiUst1QC8WVCCxZKbDCmCBQlkiDUWGboD2OCMw0rfy0vQkLWZ7ZLUDytgENxFylgqsojY2rOwko-I2D2ESiBYF_zVI30uOuA8ajnIkmO8tIsox0lpHTFhy8XvK31t34avIe2U6O9FA6tWx3vM_laCwpJjiXLqZ1eqct2PG2lc1CLaQr3aUYl3hyCw69vWen__vI7W_N_gNL_dvrK3l1fnP5C5Zdy_o63WwHFibj0u4SsZmo39WH_ALNbu2S |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9RAEJ4IJAoPBlHDIeIk-qRsaL3tHn28oBfwB_HBS3jbdH9UyUEL1_bhXvjbnWm7nBgx8anJdrtNOrvzfdPd-QbgDUGSlYc2FdJkSkjlvGCNEDFKiGuMvExGbRWFr6fqeCo_nSVnfZ3TKpx2D1uSXU4DqzQV9cGVyw-WiW8ETFIQ3gjCeykWK7BG3jjmaT19Pw6uOCFw736ysNgecZ-wrfm3Ie4A00oxz-9wzj-2SVv0mWzC45424riz8xN44IsteHQUqrVtwcZvwoJP4WbsqnLeegOcUTNrMe-jv27O2yP-zeU-ZoVDJn-XpeuK0mPVHSnEusTmNuUFs-VIIaUfyxxbBo7movHoFh7NAjnhMSvwZ1PNnsF08vH70bHoKy0IO0ziWlgVW0ure6SszChkymJjjD-MrTLSqMiTxSKvnIsi44lAOBMPCebThIDNkhfIh89htSgLvw1InjeihlSaXEmT5KnjHJSIAuE0Sl2iBhCFz6xtL0PO1TAu9FJAmS2jyTKaLaMXA3h7-8hVp8Hxr86vyXZ6Zs81K2fz9UepZ3NN8cGJ5viWtU8HsBtsq_tFW2lO46V4lzjzAN4Fey9v3_vKnf_q_Qoefvsw0V9OTj-_gHWuXt-dPNuF1Xre-JfEcWqz187jX3lQ8c4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adsorption+kinetics%2C+equilibrium%2C+and+thermodynamic+studies+to+understand+adsorption+behavior+of+Evans+blue+dye+by+durian+husk&rft.jtitle=The+Korean+journal+of+chemical+engineering&rft.au=Basirun%2C+Ain+Aqilah&rft.au=Othman%2C+Ahmad+Razi&rft.au=Yasid%2C+Nur+Adeela&rft.au=Halmi%2C+Mohd+Izuan+Effendi&rft.date=2023-06-01&rft.pub=Springer+US&rft.issn=0256-1115&rft.eissn=1975-7220&rft.volume=40&rft.issue=6&rft.spage=1440&rft.epage=1456&rft_id=info:doi/10.1007%2Fs11814-023-1434-y&rft.externalDocID=10_1007_s11814_023_1434_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0256-1115&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0256-1115&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0256-1115&client=summon |