Electrocatalytic reduction of furfural for selective preparation of 2-methylfuran over a sandwich-structured Ni-Cu bimetallic catalyst
The electrocatalytic reduction (ECR) of furfural (FF) for synthesis of 2-methylfuran (MF) is investigated, using a sandwich-structured electrode (NiCu/CalZIF/CP), with an inner substrate of carbon paper (CP), a surface layer of Ni-Cu bimetallic catalyst (metal layer), and a middle layer of calcined...
Saved in:
Published in | The Korean journal of chemical engineering Vol. 40; no. 11; pp. 2646 - 2656 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.11.2023
Springer Nature B.V 한국화학공학회 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The electrocatalytic reduction (ECR) of furfural (FF) for synthesis of 2-methylfuran (MF) is investigated, using a sandwich-structured electrode (NiCu/CalZIF/CP), with an inner substrate of carbon paper (CP), a surface layer of Ni-Cu bimetallic catalyst (metal layer), and a middle layer of calcined Ni-ZIF-8 (CalZIF) particles. It is found that the production rate (PR) and Faradaic efficiency (FE) of MF increase with the increase of metal loading, while the variation becomes stable in higher dosages. The FE of MF illustrates a rising-first-and-declining-later trend with the increase of current density, but in a slight degree compared with the system without CalZIF, indicating a better stability on anti-interference of current. The PR of MF increases with increasing current first and then becomes stable, which differs to the reducing trend in higher currents in the system without CalZIF. Under the optimized conditions with H
2
SO
4
concentration of 0.2 M and current density of 12 mA·cm
−2
, the total FE of organics, the FE of MF, and the PR of MF, respectively reach to their maximum values of 82%, 66% and 75 µmol·cm
−2
·h
−1
, under the catalytic effects of the composite electrode with optimal Ni/Cu ratio of 0.04, metal layer loading amount of 3 mg·cm
−2
, and CalZIF dosage of 1 mg·cm
−2
. The electrode can be regenerated after re-elctrodeposition treatment. The deactivation of catalyst is found relative to the loss and agglomeration of the metals, which is resulted from the corrosion and rearrangement of the metal atoms over the electrode surface. |
---|---|
AbstractList | The electrocatalytic reduction (ECR) of furfural (FF) for synthesis of 2-methylfuran (MF) is investigated, using a sandwich-structured electrode (NiCu/CalZIF/CP), with an inner substrate of carbon paper (CP), a surface layer of Ni-Cu bimetallic catalyst (metal layer), and a middle layer of calcined Ni-ZIF-8 (CalZIF) particles. It is found that the production rate (PR) and Faradaic efficiency (FE) of MF increase with the increase of metal loading, while the variation becomes stable in higher dosages. The FE of MF illustrates a rising-first-and-declining-later trend with the increase of current density, but in a slight degree compared with the system without CalZIF, indicating a better stability on anti-interference of current. The PR of MF increases with increasing current first and then becomes stable, which differs to the reducing trend in higher currents in the system without CalZIF. Under the optimized conditions with H2SO4 concentration of 0.2 M and current density of 12 mA·cm−2, the total FE of organics, the FE of MF, and the PR of MF, respectively reach to their maximum values of 82%, 66% and 75 µmol·cm−2·h−1, under the catalytic effects of the composite electrode with optimal Ni/Cu ratio of 0.04, metal layer loading amount of 3 mg·cm−2, and CalZIF dosage of 1 mg·cm−2. The electrode can be regenerated after re-elctrodeposition treatment. The deactivation of catalyst is found relative to the loss and agglomeration of the metals, which is resulted from the corrosion and rearrangement of the metal atoms over the electrode surface. KCI Citation Count: 0 The electrocatalytic reduction (ECR) of furfural (FF) for synthesis of 2-methylfuran (MF) is investigated, using a sandwich-structured electrode (NiCu/CalZIF/CP), with an inner substrate of carbon paper (CP), a surface layer of Ni-Cu bimetallic catalyst (metal layer), and a middle layer of calcined Ni-ZIF-8 (CalZIF) particles. It is found that the production rate (PR) and Faradaic efficiency (FE) of MF increase with the increase of metal loading, while the variation becomes stable in higher dosages. The FE of MF illustrates a rising-first-and-declining-later trend with the increase of current density, but in a slight degree compared with the system without CalZIF, indicating a better stability on anti-interference of current. The PR of MF increases with increasing current first and then becomes stable, which differs to the reducing trend in higher currents in the system without CalZIF. Under the optimized conditions with H2SO4 concentration of 0.2 M and current density of 12 mA·cm−2, the total FE of organics, the FE of MF, and the PR of MF, respectively reach to their maximum values of 82%, 66% and 75 µmol·cm−2·h−1, under the catalytic effects of the composite electrode with optimal Ni/Cu ratio of 0.04, metal layer loading amount of 3 mg·cm−2, and CalZIF dosage of 1 mg·cm−2. The electrode can be regenerated after re-elctrodeposition treatment. The deactivation of catalyst is found relative to the loss and agglomeration of the metals, which is resulted from the corrosion and rearrangement of the metal atoms over the electrode surface. The electrocatalytic reduction (ECR) of furfural (FF) for synthesis of 2-methylfuran (MF) is investigated, using a sandwich-structured electrode (NiCu/CalZIF/CP), with an inner substrate of carbon paper (CP), a surface layer of Ni-Cu bimetallic catalyst (metal layer), and a middle layer of calcined Ni-ZIF-8 (CalZIF) particles. It is found that the production rate (PR) and Faradaic efficiency (FE) of MF increase with the increase of metal loading, while the variation becomes stable in higher dosages. The FE of MF illustrates a rising-first-and-declining-later trend with the increase of current density, but in a slight degree compared with the system without CalZIF, indicating a better stability on anti-interference of current. The PR of MF increases with increasing current first and then becomes stable, which differs to the reducing trend in higher currents in the system without CalZIF. Under the optimized conditions with H 2 SO 4 concentration of 0.2 M and current density of 12 mA·cm −2 , the total FE of organics, the FE of MF, and the PR of MF, respectively reach to their maximum values of 82%, 66% and 75 µmol·cm −2 ·h −1 , under the catalytic effects of the composite electrode with optimal Ni/Cu ratio of 0.04, metal layer loading amount of 3 mg·cm −2 , and CalZIF dosage of 1 mg·cm −2 . The electrode can be regenerated after re-elctrodeposition treatment. The deactivation of catalyst is found relative to the loss and agglomeration of the metals, which is resulted from the corrosion and rearrangement of the metal atoms over the electrode surface. |
Author | Li, Songgeng Wang, Ze Cui, Yiming |
Author_xml | – sequence: 1 givenname: Yiming surname: Cui fullname: Cui, Yiming organization: State Key Laboratory of Multi-Phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Sino-Danish College, University of Chinese Academy of Sciences/Sino-Danish Center for Education and Research – sequence: 2 givenname: Ze surname: Wang fullname: Wang, Ze email: wangze@ipe.ac.cn organization: State Key Laboratory of Multi-Phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Sino-Danish College, University of Chinese Academy of Sciences/Sino-Danish Center for Education and Research – sequence: 3 givenname: Songgeng surname: Li fullname: Li, Songgeng organization: State Key Laboratory of Multi-Phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Sino-Danish College, University of Chinese Academy of Sciences/Sino-Danish Center for Education and Research |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003007505$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kd1qFTEUhYNU8LT6AN4FvBPS5neSuSyHqoWiIPU65GSSNu10ctzJtJwX8LnNdBRBUAhsCN9aa7PXMTqa8hQQesvoKaNUnxXGDJOEckGY1JyoF2jDeq2I5pweoQ3lqiOMMfUKHZdyR6lSHacb9ONiDL5C9q668VCTxxCG2deUJ5wjjjO050YcM-ASFjY9BryHsHfgflOcPIR6exgXtH08BsAOFzcNT8nfklKhGc7NF39OZDvjXWq4G8cWtsaW-hq9jG4s4c2veYK-fbi43n4iV18-Xm7Pr4gXilXiVQhR-SgDZZyFwey0EjyoKEQ0NOykk76XRptuiIPree-N6SLlXlHlZC_FCXq_-k4Q7b1PNrv0PG-yvQd7_vX60jIq2i3FAr9b4T3k73Mo1d7lGaa2n-VGy153RnSNYivlIZcCIdo9pAcHh2Zkl27s2o1t3dilG6uaRv-l8ak-n7OCS-N_lXxVlpYy3QT4s9O_RT8BiyqnKg |
CitedBy_id | crossref_primary_10_1007_s11814_024_00133_1 |
Cites_doi | 10.1007/s11814-021-0810-8 10.1002/anie.202117809 10.1016/j.mattod.2020.09.006 10.1002/ente.201800216 10.1039/D0CS00041H 10.1016/j.cattod.2018.09.011 10.1039/D0GC03999C 10.1021/jacs.7b06331 10.1021/acs.jpcc.7b06778 10.1021/acssuschemeng.6b01314 10.1021/acs.chemrev.8b00134 10.1016/j.mcat.2022.112831 10.1007/s11814-020-0626-y 10.1021/acssuschemeng.2c02360 10.1016/j.egyr.2022.10.127 10.1007/s11814-021-1009-8 10.1016/j.rser.2021.110952 10.1039/c3ee41857j 10.1021/acscatal.9b05531 10.1007/s10800-020-01464-7 10.1016/j.jcat.2015.04.018 10.1021/acssuschemeng.5b00271 10.1016/j.nanoen.2016.11.048 10.1007/s11814-020-0661-8 10.1039/D1RE00216C 10.1016/j.fuel.2022.125845 10.1039/D1GC00579K 10.1016/j.cej.2022.139663 |
ContentType | Journal Article |
Copyright | The Korean Institute of Chemical Engineers 2023 The Korean Institute of Chemical Engineers 2023. |
Copyright_xml | – notice: The Korean Institute of Chemical Engineers 2023 – notice: The Korean Institute of Chemical Engineers 2023. |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1007/s11814-023-1472-5 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1975-7220 |
EndPage | 2656 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10318134 10_1007_s11814_023_1472_5 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X 9ZL AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG5 HG6 HMJXF HRMNR HVGLF HZB HZ~ IJ- IKXTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KDC KOV LLZTM M4Y MA- MZR N2Q NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9N PF0 PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 W4F WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z8N Z8Q Z8Z Z92 ZMTXR ZZE ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION ABRTQ 85H AABYN AAFGU AAGCJ AAUCO AAYFA ABFGW ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ACYCR ADMDM ADOXG AEEQQ AEFTE AESTI AEVTX AFNRJ AGGBP AIMYW AJDOV AJGSW AKQUC SQXTU UNUBA |
ID | FETCH-LOGICAL-c351t-c5eef5cf4e0121ed8b7532e5f33f80eb4a4c948786dfda929c886f02c505a4943 |
IEDL.DBID | U2A |
ISSN | 0256-1115 |
IngestDate | Wed Jan 31 06:58:31 EST 2024 Fri Jul 25 11:06:27 EDT 2025 Tue Jul 01 03:29:45 EDT 2025 Thu Apr 24 23:08:46 EDT 2025 Fri Feb 21 02:42:21 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Furfural Hydrodeoxygenation 2-Methylfuran Electrocatalytic Reduction Mechanism |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-c5eef5cf4e0121ed8b7532e5f33f80eb4a4c948786dfda929c886f02c505a4943 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2874976836 |
PQPubID | 2044390 |
PageCount | 11 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10318134 proquest_journals_2874976836 crossref_primary_10_1007_s11814_023_1472_5 crossref_citationtrail_10_1007_s11814_023_1472_5 springer_journals_10_1007_s11814_023_1472_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | The Korean journal of chemical engineering |
PublicationTitleAbbrev | Korean J. Chem. Eng |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V 한국화학공학회 |
Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: 한국화학공학회 |
References | BhogeswararaoSSrinivasDJ. Catal.2015327651:CAS:528:DC%2BC2MXnsFyhur8%3D10.1016/j.jcat.2015.04.018 DuYChenXLiangCMol. Catal.20235351128311:CAS:528:DC%2BB38XjtVOjsb3L10.1016/j.mcat.2022.112831 XuCPaoneERodríguez-PadrónDLuqueRMaurielloFChem. Soc. Rev.2020491342731:CAS:528:DC%2BB3cXhtlWktb%2FI10.1039/D0CS00041H32453311 BohreADuttaSSahaBAbu-OmarM MACS Sustain. Chem. Eng.20153712631:CAS:528:DC%2BC2MXovF2ru7o%3D10.1021/acssuschemeng.5b00271 ChadderdonX HChadderdonD JMatthiesenJ EQiuYCarraherJ MTessonnierJ-PLiWJ. Am. Chem. Soc.201713940141201:CAS:528:DC%2BC2sXhsVyrsrjI10.1021/jacs.7b0633128903554 WangW JScudieroLHaSKorean J. Chem. Eng.20223934611:CAS:528:DC%2BB38Xislynt7s%3D10.1007/s11814-021-1009-8 JungSBiddingerE JACS Sustain. Chem. Eng.201641265001:CAS:528:DC%2BC28Xhs1WkurnE10.1021/acssuschemeng.6b01314 MayA SBiddingerE JACS Catal.202010532121:CAS:528:DC%2BB3cXis12nsbw%3D10.1021/acscatal.9b05531 AnXLiSHaoXXieZDuXWangZHaoXAbudulaAGuanGRenew. Sust. Energ. Rev.20211431109521:CAS:528:DC%2BB3MXnt1ersL4%3D10.1016/j.rser.2021.110952 WangLZhuYZengZLinCGirouxMJiangLHanYGreeleyJWangCJinJNano Energy20173145610.1016/j.nanoen.2016.11.048 YangZChouXKanHXiaoZDingYACS Sustain. Chem. Eng.2022102274181:CAS:528:DC%2BB38XhtlCkt7%2FE10.1021/acssuschemeng.2c02360 ZhouPChenYLuanPZhangXYuanZGuoS-XGuQJohannessenBMollahMChaffeeA LTurnerD RZhangJGreen Chem.202123830281:CAS:528:DC%2BB3MXmvVyms7k%3D10.1039/D0GC03999C LanXHuangNWangJWangTChemComm20185465841:CAS:528:DC%2BC2sXhvV2qtrjF Shiva KumarSLimHEnergy Rep.202281379310.1016/j.egyr.2022.10.127 DixitR JBhattacharyyaKRamaniV KBasuSGreen Chem.2021231142011:CAS:528:DC%2BB3MXhtVWqtL7E10.1039/D1GC00579K NilgesPSchröderUEnergy Environ. Sci.201361029251:CAS:528:DC%2BC3sXhsV2it7nL10.1039/c3ee41857j SanyalUKohKMeyerL CKarkamkarAGutiérrezO YJ. Appl. Electrochem.2021511271:CAS:528:DC%2BB3cXhvVylsbfL10.1007/s10800-020-01464-7 ChenSWojcieszakRDumeignilFMarceauERoyerSChem. Rev.201811822110231:CAS:528:DC%2BC1cXitVSis7nF10.1021/acs.chemrev.8b0013430362725 JeonS HKimKChoHYoonH CHanJ-IKorean J. Chem. Eng.202138612721:CAS:528:DC%2BB3MXht1Wiu7zL10.1007/s11814-021-0810-8 RehmanFDelowar HossainMTyagiALuDYuanBLuoZMater. Today2021441361:CAS:528:DC%2BB3cXhvFSltLjO10.1016/j.mattod.2020.09.006 LeiYWangZBaoATangXHuangXYiHZhaoSSunTWangJGaoFChem. Eng. J.20234531396631:CAS:528:DC%2BB38XislSgs7bF10.1016/j.cej.2022.139663 ShanNHanchettM KLiuBJ. Phys. Chem. C201712146257681:CAS:528:DC%2BC2sXhslSit7%2FK10.1021/acs.jpcc.7b06778 Al RadadiR MIbrahimM A MKorean J. Chem. Eng.202138115210.1007/s11814-020-0661-8 JungSKaraiskakisA NBiddingerE JCatal. Today2019323261:CAS:528:DC%2BC1cXhvVeqsrrI10.1016/j.cattod.2018.09.011 KimHParkHBangHKimS-KKorean J. Chem. Eng.202037812751:CAS:528:DC%2BB3cXhsFOmurnE10.1007/s11814-020-0626-y MayA SWattS MBiddingerE JReact. Chem. Eng.202161120751:CAS:528:DC%2BB3MXhvVSkt7jN10.1039/D1RE00216C LuXWangJPengWLiNLiangLChengZYanBYangGChenGFuel20233311258451:CAS:528:DC%2BB38XitlChsLbJ10.1016/j.fuel.2022.125845 ZhouPLiLMosaliV S SChenYLuanPGuQTurnerD RHuangLZhangJAngew. Chem. Int. Ed.20226113e2021178091:CAS:528:DC%2BB38XivV2hs7s%3D10.1002/anie.202117809 JungSBiddingerE JEnergy Technol.20186713701:CAS:528:DC%2BC1cXhtlSmu7rJ10.1002/ente.201800216 Y Du (1472_CR15) 2023; 535 S Jung (1472_CR21) 2019; 323 R J Dixit (1472_CR26) 2021; 23 S Chen (1472_CR2) 2018; 118 A S May (1472_CR28) 2021; 6 L Wang (1472_CR6) 2017; 31 F Rehman (1472_CR12) 2021; 44 S H Jeon (1472_CR13) 2021; 38 N Shan (1472_CR29) 2017; 121 A Bohre (1472_CR4) 2015; 3 U Sanyal (1472_CR16) 2021; 51 P Zhou (1472_CR22) 2021; 23 S Jung (1472_CR18) 2016; 4 C Xu (1472_CR1) 2020; 49 R M Al Radadi (1472_CR8) 2021; 38 A S May (1472_CR24) 2020; 10 X H Chadderdon (1472_CR25) 2017; 139 P Zhou (1472_CR17) 2022; 61 Z Yang (1472_CR19) 2022; 10 H Kim (1472_CR7) 2020; 37 S Jung (1472_CR20) 2018; 6 Y Lei (1472_CR9) 2023; 453 X Lu (1472_CR14) 2023; 331 S Shiva Kumar (1472_CR5) 2022; 8 X An (1472_CR10) 2021; 143 W J Wang (1472_CR11) 2022; 39 P Nilges (1472_CR23) 2013; 6 S Bhogeswararao (1472_CR3) 2015; 327 X Lan (1472_CR27) 2018; 54 |
References_xml | – reference: JungSKaraiskakisA NBiddingerE JCatal. Today2019323261:CAS:528:DC%2BC1cXhvVeqsrrI10.1016/j.cattod.2018.09.011 – reference: DixitR JBhattacharyyaKRamaniV KBasuSGreen Chem.2021231142011:CAS:528:DC%2BB3MXhtVWqtL7E10.1039/D1GC00579K – reference: RehmanFDelowar HossainMTyagiALuDYuanBLuoZMater. Today2021441361:CAS:528:DC%2BB3cXhvFSltLjO10.1016/j.mattod.2020.09.006 – reference: DuYChenXLiangCMol. Catal.20235351128311:CAS:528:DC%2BB38XjtVOjsb3L10.1016/j.mcat.2022.112831 – reference: ZhouPLiLMosaliV S SChenYLuanPGuQTurnerD RHuangLZhangJAngew. Chem. Int. Ed.20226113e2021178091:CAS:528:DC%2BB38XivV2hs7s%3D10.1002/anie.202117809 – reference: JungSBiddingerE JACS Sustain. Chem. Eng.201641265001:CAS:528:DC%2BC28Xhs1WkurnE10.1021/acssuschemeng.6b01314 – reference: SanyalUKohKMeyerL CKarkamkarAGutiérrezO YJ. Appl. Electrochem.2021511271:CAS:528:DC%2BB3cXhvVylsbfL10.1007/s10800-020-01464-7 – reference: LanXHuangNWangJWangTChemComm20185465841:CAS:528:DC%2BC2sXhvV2qtrjF – reference: JungSBiddingerE JEnergy Technol.20186713701:CAS:528:DC%2BC1cXhtlSmu7rJ10.1002/ente.201800216 – reference: AnXLiSHaoXXieZDuXWangZHaoXAbudulaAGuanGRenew. Sust. Energ. Rev.20211431109521:CAS:528:DC%2BB3MXnt1ersL4%3D10.1016/j.rser.2021.110952 – reference: BohreADuttaSSahaBAbu-OmarM MACS Sustain. Chem. Eng.20153712631:CAS:528:DC%2BC2MXovF2ru7o%3D10.1021/acssuschemeng.5b00271 – reference: LeiYWangZBaoATangXHuangXYiHZhaoSSunTWangJGaoFChem. Eng. J.20234531396631:CAS:528:DC%2BB38XislSgs7bF10.1016/j.cej.2022.139663 – reference: MayA SWattS MBiddingerE JReact. Chem. Eng.202161120751:CAS:528:DC%2BB3MXhvVSkt7jN10.1039/D1RE00216C – reference: LuXWangJPengWLiNLiangLChengZYanBYangGChenGFuel20233311258451:CAS:528:DC%2BB38XitlChsLbJ10.1016/j.fuel.2022.125845 – reference: KimHParkHBangHKimS-KKorean J. Chem. Eng.202037812751:CAS:528:DC%2BB3cXhsFOmurnE10.1007/s11814-020-0626-y – reference: ShanNHanchettM KLiuBJ. Phys. Chem. C201712146257681:CAS:528:DC%2BC2sXhslSit7%2FK10.1021/acs.jpcc.7b06778 – reference: WangW JScudieroLHaSKorean J. Chem. Eng.20223934611:CAS:528:DC%2BB38Xislynt7s%3D10.1007/s11814-021-1009-8 – reference: Al RadadiR MIbrahimM A MKorean J. Chem. Eng.202138115210.1007/s11814-020-0661-8 – reference: ChadderdonX HChadderdonD JMatthiesenJ EQiuYCarraherJ MTessonnierJ-PLiWJ. Am. Chem. Soc.201713940141201:CAS:528:DC%2BC2sXhsVyrsrjI10.1021/jacs.7b0633128903554 – reference: WangLZhuYZengZLinCGirouxMJiangLHanYGreeleyJWangCJinJNano Energy20173145610.1016/j.nanoen.2016.11.048 – reference: ChenSWojcieszakRDumeignilFMarceauERoyerSChem. Rev.201811822110231:CAS:528:DC%2BC1cXitVSis7nF10.1021/acs.chemrev.8b0013430362725 – reference: YangZChouXKanHXiaoZDingYACS Sustain. Chem. Eng.2022102274181:CAS:528:DC%2BB38XhtlCkt7%2FE10.1021/acssuschemeng.2c02360 – reference: NilgesPSchröderUEnergy Environ. Sci.201361029251:CAS:528:DC%2BC3sXhsV2it7nL10.1039/c3ee41857j – reference: XuCPaoneERodríguez-PadrónDLuqueRMaurielloFChem. Soc. Rev.2020491342731:CAS:528:DC%2BB3cXhtlWktb%2FI10.1039/D0CS00041H32453311 – reference: MayA SBiddingerE JACS Catal.202010532121:CAS:528:DC%2BB3cXis12nsbw%3D10.1021/acscatal.9b05531 – reference: BhogeswararaoSSrinivasDJ. Catal.2015327651:CAS:528:DC%2BC2MXnsFyhur8%3D10.1016/j.jcat.2015.04.018 – reference: ZhouPChenYLuanPZhangXYuanZGuoS-XGuQJohannessenBMollahMChaffeeA LTurnerD RZhangJGreen Chem.202123830281:CAS:528:DC%2BB3MXmvVyms7k%3D10.1039/D0GC03999C – reference: Shiva KumarSLimHEnergy Rep.202281379310.1016/j.egyr.2022.10.127 – reference: JeonS HKimKChoHYoonH CHanJ-IKorean J. Chem. Eng.202138612721:CAS:528:DC%2BB3MXht1Wiu7zL10.1007/s11814-021-0810-8 – volume: 38 start-page: 1272 issue: 6 year: 2021 ident: 1472_CR13 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-021-0810-8 – volume: 61 start-page: e202117809 issue: 13 year: 2022 ident: 1472_CR17 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202117809 – volume: 44 start-page: 136 year: 2021 ident: 1472_CR12 publication-title: Mater. Today doi: 10.1016/j.mattod.2020.09.006 – volume: 6 start-page: 1370 issue: 7 year: 2018 ident: 1472_CR20 publication-title: Energy Technol. doi: 10.1002/ente.201800216 – volume: 49 start-page: 4273 issue: 13 year: 2020 ident: 1472_CR1 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00041H – volume: 323 start-page: 26 year: 2019 ident: 1472_CR21 publication-title: Catal. Today doi: 10.1016/j.cattod.2018.09.011 – volume: 23 start-page: 3028 issue: 8 year: 2021 ident: 1472_CR22 publication-title: Green Chem. doi: 10.1039/D0GC03999C – volume: 139 start-page: 14120 issue: 40 year: 2017 ident: 1472_CR25 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06331 – volume: 121 start-page: 25768 issue: 46 year: 2017 ident: 1472_CR29 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b06778 – volume: 4 start-page: 6500 issue: 12 year: 2016 ident: 1472_CR18 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.6b01314 – volume: 118 start-page: 11023 issue: 22 year: 2018 ident: 1472_CR2 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00134 – volume: 535 start-page: 112831 year: 2023 ident: 1472_CR15 publication-title: Mol. Catal. doi: 10.1016/j.mcat.2022.112831 – volume: 37 start-page: 1275 issue: 8 year: 2020 ident: 1472_CR7 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-020-0626-y – volume: 10 start-page: 7418 issue: 22 year: 2022 ident: 1472_CR19 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.2c02360 – volume: 8 start-page: 13793 year: 2022 ident: 1472_CR5 publication-title: Energy Rep. doi: 10.1016/j.egyr.2022.10.127 – volume: 39 start-page: 461 issue: 3 year: 2022 ident: 1472_CR11 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-021-1009-8 – volume: 143 start-page: 110952 year: 2021 ident: 1472_CR10 publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2021.110952 – volume: 6 start-page: 2925 issue: 10 year: 2013 ident: 1472_CR23 publication-title: Energy Environ. Sci. doi: 10.1039/c3ee41857j – volume: 10 start-page: 3212 issue: 5 year: 2020 ident: 1472_CR24 publication-title: ACS Catal. doi: 10.1021/acscatal.9b05531 – volume: 51 start-page: 27 issue: 1 year: 2021 ident: 1472_CR16 publication-title: J. Appl. Electrochem. doi: 10.1007/s10800-020-01464-7 – volume: 327 start-page: 65 year: 2015 ident: 1472_CR3 publication-title: J. Catal. doi: 10.1016/j.jcat.2015.04.018 – volume: 3 start-page: 1263 issue: 7 year: 2015 ident: 1472_CR4 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.5b00271 – volume: 31 start-page: 456 year: 2017 ident: 1472_CR6 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.11.048 – volume: 54 start-page: 584 issue: 6 year: 2018 ident: 1472_CR27 publication-title: ChemComm – volume: 38 start-page: 152 issue: 1 year: 2021 ident: 1472_CR8 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-020-0661-8 – volume: 6 start-page: 2075 issue: 11 year: 2021 ident: 1472_CR28 publication-title: React. Chem. Eng. doi: 10.1039/D1RE00216C – volume: 331 start-page: 125845 year: 2023 ident: 1472_CR14 publication-title: Fuel doi: 10.1016/j.fuel.2022.125845 – volume: 23 start-page: 4201 issue: 11 year: 2021 ident: 1472_CR26 publication-title: Green Chem. doi: 10.1039/D1GC00579K – volume: 453 start-page: 139663 year: 2023 ident: 1472_CR9 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.139663 |
SSID | ssj0055620 |
Score | 2.3377514 |
Snippet | The electrocatalytic reduction (ECR) of furfural (FF) for synthesis of 2-methylfuran (MF) is investigated, using a sandwich-structured electrode... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2646 |
SubjectTerms | Bimetals Biotechnology Catalysis Catalysts Chemical reduction Chemistry Chemistry and Materials Science Copper Current density Dosage Electrodes Energy Furfural Industrial Chemistry/Chemical Engineering Materials Science Nickel Substrates Sulfuric acid Surface layers 화학공학 |
Title | Electrocatalytic reduction of furfural for selective preparation of 2-methylfuran over a sandwich-structured Ni-Cu bimetallic catalyst |
URI | https://link.springer.com/article/10.1007/s11814-023-1472-5 https://www.proquest.com/docview/2874976836 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003007505 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Korean Journal of Chemical Engineering, 2023, 40(11), 284, pp.2646-2656 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxsxEB6a5NDmUJq0JW4eCNpTgsC7elh7dIzdNKU-1ZCcxK5Wak3MOuzahPyB_u7M7KNOQlvoaWF3JIE-rWY-Pb4B-CREHqRxAy5zpKsy6IwngyTiQsvEJEF5V18S-zbVFzN5eaWu2nvcVXfavduSrGfqzWU3dEaSo4_hkRwgg9qCHYXUnc5xzeJhN_0qdOjNwgoJ7GG8021l_qmKJ85oqyjDkzjz2dZo7XEmb-B1GyqyYYPtHrzwxT68HHUZ2vZh95GY4Fv4NW4y2tQLMvdYhpUky0odz5aBhXUZSGKDYZTKqjr7DU507Lb0jfp3YxVzSil9vyBTfIHjnKWsSov8bu5-8kZsdo31sumcj9Ysm6N5ulhgY02z1eodzCbj76ML3mZZ4E6oaMWd8j4oF6QneTefmwwZTOxVECKYvs9kKl2CtMboPOQpRlPOGB36scPYKZWJFO9hu1gW_gBYFIwJkcwd9q5EXmn6OkmUyaTWHpmo60G_627rWglyyoSxsBvxZELIIkKWELKqB6e_i9w2-hv_Mv6IGNobN7ekmk3PH0t7U1rkBl8sJbQwkZA9OOowtu0PW1mS_cfIzAjdg7MO983nvzb54b-sD-FVXI8-WsI5gm1EzR9jULPKTmBnODk_n9Lz8_XX8Uk9qB8Az3vwdQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbhMxFL1qyyKwqCAUEVrAErChspQZP-JZsIhCo4S2WTVSdmbGY0OUaFLNJKryA_wIP8r1PAhBgMSiq5Fmru2Rjx_n-nEuwFvGUseV6VGeorvKnUxo1IsCyiSPVOSENeUlseuJHE35p5mYHcD35i5Medq92ZIsR-rdZTecjDjFOYYGvIceVH2S8tJu79BPKz6MPyKo78JweHEzGNE6lAA1TARraoS1ThjHrdcws6lKkKaHVjjGnOrahMfcRMjdlUxdGiNlMEpJ1w0NEoSYR5xhvofwALmH8l1nGvab4V4ggagWcrygH_KrZuv0T7-8N_kdZrnb47W_bcWWM9zwMRzX1JT0q7b0BA5s1obWoIkI14ZHv4gXPoVvF1UEnXIBaItpSO5lYD3QZOWI2-TOS3oQZMWkKKPt4MBKbnNbqY1XViH1Iay3S2-KL7BfkZgUcZbezc1XWonbbjBfMpnTwYYkczSPl0ssrCq2WJ_A9F6geAZH2Sqzz4EETikX8NRg7XL0Y1VXRpFQCZfSoudrOtBtqlubWvLcR95Y6p1Ys0dII0LaI6RFB97_THJb6X38y_gNYqgXZq69Srd_flnpRa7RFxlrH0BDBYx34KzBWNcDRKF9mAFkgorJDpw3uO8-_7XIF_9l_Rpao5vrK301nlyewsOwbIl--egMjhBB-xIJ1Tp5VTZoAp_vuwf9AA9GKsU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD7ahsTlYYLBRGEDS8ALyFoTX-o87GHqVq0MKh6otDeTODZUq9IqaTX1D-zv7C9yHCcrQ4DEw54iJcd2lM-X79g53wF4y1juuDI9ynN0V7mTGU16SUSZ5IlKnLCmDhL7PJKnY_7xXJxvwHUbC1P_7d4eSYaYBq_SVCwO5rk7WAe-4cLEKa43NOI99KaavyrP7OoSfbbqcHiMAL-L48HJ1_4pbdIKUMNEtKBGWOuEcdx6PTObqwwpe2yFY8yprs14yk2CPF7J3OUp0gejlHTd2CBZSHnCGda7Cfe4Dz7GATSOj9qpXyCZCJs6XtwPuVZ7jPqnV761EG4WpbvFcX87lq1Xu8Fj2G5oKjkK_eoJbNhiBx702-xwO_DoFyHDp3B1ErLp1JtBKyxDSi8J60EnM0fcsnRe3oMgQyZVnXkHJ1kyL21QHg9WMfXprFdTb4o3cIyRlFRpkV9OzA8ahG6XWC8ZTWh_SbIJmqfTKTYWmq0Wz2B8J1DswlYxK-xzIJFTykU8N_h1Ofq0qiuTRKiMS2nRCzYd6LafW5tG_txn4ZjqtXCzR0gjQtojpEUH3t8UmQftj38Zv0EM9YWZaK_Y7a_fZ_qi1OiXDLVPpqEixjuw12Ksm8mi0j7lALJCxWQHPrS4rx__tckX_2X9Gu5_OR7oT8PR2Ut4GNcd0e8k7cEWAmj3kVstsld1fybw7a4H0E9Szi74 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrocatalytic+reduction+of+furfural+for+selective+preparation+of+2-methylfuran+over+a+sandwich-structured+Ni-Cu+bimetallic+catalyst&rft.jtitle=The+Korean+journal+of+chemical+engineering&rft.au=Cui+Yiming&rft.au=Wang+Ze&rft.au=Li+Songgeng&rft.date=2023-11-01&rft.pub=%ED%95%9C%EA%B5%AD%ED%99%94%ED%95%99%EA%B3%B5%ED%95%99%ED%9A%8C&rft.issn=0256-1115&rft.eissn=1975-7220&rft.spage=2646&rft.epage=2656&rft_id=info:doi/10.1007%2Fs11814-023-1472-5&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10318134 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0256-1115&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0256-1115&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0256-1115&client=summon |