Electrocatalytic reduction of furfural for selective preparation of 2-methylfuran over a sandwich-structured Ni-Cu bimetallic catalyst

The electrocatalytic reduction (ECR) of furfural (FF) for synthesis of 2-methylfuran (MF) is investigated, using a sandwich-structured electrode (NiCu/CalZIF/CP), with an inner substrate of carbon paper (CP), a surface layer of Ni-Cu bimetallic catalyst (metal layer), and a middle layer of calcined...

Full description

Saved in:
Bibliographic Details
Published inThe Korean journal of chemical engineering Vol. 40; no. 11; pp. 2646 - 2656
Main Authors Cui, Yiming, Wang, Ze, Li, Songgeng
Format Journal Article
LanguageEnglish
Published New York Springer US 01.11.2023
Springer Nature B.V
한국화학공학회
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The electrocatalytic reduction (ECR) of furfural (FF) for synthesis of 2-methylfuran (MF) is investigated, using a sandwich-structured electrode (NiCu/CalZIF/CP), with an inner substrate of carbon paper (CP), a surface layer of Ni-Cu bimetallic catalyst (metal layer), and a middle layer of calcined Ni-ZIF-8 (CalZIF) particles. It is found that the production rate (PR) and Faradaic efficiency (FE) of MF increase with the increase of metal loading, while the variation becomes stable in higher dosages. The FE of MF illustrates a rising-first-and-declining-later trend with the increase of current density, but in a slight degree compared with the system without CalZIF, indicating a better stability on anti-interference of current. The PR of MF increases with increasing current first and then becomes stable, which differs to the reducing trend in higher currents in the system without CalZIF. Under the optimized conditions with H 2 SO 4 concentration of 0.2 M and current density of 12 mA·cm −2 , the total FE of organics, the FE of MF, and the PR of MF, respectively reach to their maximum values of 82%, 66% and 75 µmol·cm −2 ·h −1 , under the catalytic effects of the composite electrode with optimal Ni/Cu ratio of 0.04, metal layer loading amount of 3 mg·cm −2 , and CalZIF dosage of 1 mg·cm −2 . The electrode can be regenerated after re-elctrodeposition treatment. The deactivation of catalyst is found relative to the loss and agglomeration of the metals, which is resulted from the corrosion and rearrangement of the metal atoms over the electrode surface.
AbstractList The electrocatalytic reduction (ECR) of furfural (FF) for synthesis of 2-methylfuran (MF) is investigated, using a sandwich-structured electrode (NiCu/CalZIF/CP), with an inner substrate of carbon paper (CP), a surface layer of Ni-Cu bimetallic catalyst (metal layer), and a middle layer of calcined Ni-ZIF-8 (CalZIF) particles. It is found that the production rate (PR) and Faradaic efficiency (FE) of MF increase with the increase of metal loading, while the variation becomes stable in higher dosages. The FE of MF illustrates a rising-first-and-declining-later trend with the increase of current density, but in a slight degree compared with the system without CalZIF, indicating a better stability on anti-interference of current. The PR of MF increases with increasing current first and then becomes stable, which differs to the reducing trend in higher currents in the system without CalZIF. Under the optimized conditions with H2SO4 concentration of 0.2 M and current density of 12 mA·cm−2, the total FE of organics, the FE of MF, and the PR of MF, respectively reach to their maximum values of 82%, 66% and 75 µmol·cm−2·h−1, under the catalytic effects of the composite electrode with optimal Ni/Cu ratio of 0.04, metal layer loading amount of 3 mg·cm−2, and CalZIF dosage of 1 mg·cm−2. The electrode can be regenerated after re-elctrodeposition treatment. The deactivation of catalyst is found relative to the loss and agglomeration of the metals, which is resulted from the corrosion and rearrangement of the metal atoms over the electrode surface. KCI Citation Count: 0
The electrocatalytic reduction (ECR) of furfural (FF) for synthesis of 2-methylfuran (MF) is investigated, using a sandwich-structured electrode (NiCu/CalZIF/CP), with an inner substrate of carbon paper (CP), a surface layer of Ni-Cu bimetallic catalyst (metal layer), and a middle layer of calcined Ni-ZIF-8 (CalZIF) particles. It is found that the production rate (PR) and Faradaic efficiency (FE) of MF increase with the increase of metal loading, while the variation becomes stable in higher dosages. The FE of MF illustrates a rising-first-and-declining-later trend with the increase of current density, but in a slight degree compared with the system without CalZIF, indicating a better stability on anti-interference of current. The PR of MF increases with increasing current first and then becomes stable, which differs to the reducing trend in higher currents in the system without CalZIF. Under the optimized conditions with H2SO4 concentration of 0.2 M and current density of 12 mA·cm−2, the total FE of organics, the FE of MF, and the PR of MF, respectively reach to their maximum values of 82%, 66% and 75 µmol·cm−2·h−1, under the catalytic effects of the composite electrode with optimal Ni/Cu ratio of 0.04, metal layer loading amount of 3 mg·cm−2, and CalZIF dosage of 1 mg·cm−2. The electrode can be regenerated after re-elctrodeposition treatment. The deactivation of catalyst is found relative to the loss and agglomeration of the metals, which is resulted from the corrosion and rearrangement of the metal atoms over the electrode surface.
The electrocatalytic reduction (ECR) of furfural (FF) for synthesis of 2-methylfuran (MF) is investigated, using a sandwich-structured electrode (NiCu/CalZIF/CP), with an inner substrate of carbon paper (CP), a surface layer of Ni-Cu bimetallic catalyst (metal layer), and a middle layer of calcined Ni-ZIF-8 (CalZIF) particles. It is found that the production rate (PR) and Faradaic efficiency (FE) of MF increase with the increase of metal loading, while the variation becomes stable in higher dosages. The FE of MF illustrates a rising-first-and-declining-later trend with the increase of current density, but in a slight degree compared with the system without CalZIF, indicating a better stability on anti-interference of current. The PR of MF increases with increasing current first and then becomes stable, which differs to the reducing trend in higher currents in the system without CalZIF. Under the optimized conditions with H 2 SO 4 concentration of 0.2 M and current density of 12 mA·cm −2 , the total FE of organics, the FE of MF, and the PR of MF, respectively reach to their maximum values of 82%, 66% and 75 µmol·cm −2 ·h −1 , under the catalytic effects of the composite electrode with optimal Ni/Cu ratio of 0.04, metal layer loading amount of 3 mg·cm −2 , and CalZIF dosage of 1 mg·cm −2 . The electrode can be regenerated after re-elctrodeposition treatment. The deactivation of catalyst is found relative to the loss and agglomeration of the metals, which is resulted from the corrosion and rearrangement of the metal atoms over the electrode surface.
Author Li, Songgeng
Wang, Ze
Cui, Yiming
Author_xml – sequence: 1
  givenname: Yiming
  surname: Cui
  fullname: Cui, Yiming
  organization: State Key Laboratory of Multi-Phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Sino-Danish College, University of Chinese Academy of Sciences/Sino-Danish Center for Education and Research
– sequence: 2
  givenname: Ze
  surname: Wang
  fullname: Wang, Ze
  email: wangze@ipe.ac.cn
  organization: State Key Laboratory of Multi-Phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Sino-Danish College, University of Chinese Academy of Sciences/Sino-Danish Center for Education and Research
– sequence: 3
  givenname: Songgeng
  surname: Li
  fullname: Li, Songgeng
  organization: State Key Laboratory of Multi-Phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Sino-Danish College, University of Chinese Academy of Sciences/Sino-Danish Center for Education and Research
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003007505$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kd1qFTEUhYNU8LT6AN4FvBPS5neSuSyHqoWiIPU65GSSNu10ctzJtJwX8LnNdBRBUAhsCN9aa7PXMTqa8hQQesvoKaNUnxXGDJOEckGY1JyoF2jDeq2I5pweoQ3lqiOMMfUKHZdyR6lSHacb9ONiDL5C9q668VCTxxCG2deUJ5wjjjO050YcM-ASFjY9BryHsHfgflOcPIR6exgXtH08BsAOFzcNT8nfklKhGc7NF39OZDvjXWq4G8cWtsaW-hq9jG4s4c2veYK-fbi43n4iV18-Xm7Pr4gXilXiVQhR-SgDZZyFwey0EjyoKEQ0NOykk76XRptuiIPree-N6SLlXlHlZC_FCXq_-k4Q7b1PNrv0PG-yvQd7_vX60jIq2i3FAr9b4T3k73Mo1d7lGaa2n-VGy153RnSNYivlIZcCIdo9pAcHh2Zkl27s2o1t3dilG6uaRv-l8ak-n7OCS-N_lXxVlpYy3QT4s9O_RT8BiyqnKg
CitedBy_id crossref_primary_10_1007_s11814_024_00133_1
Cites_doi 10.1007/s11814-021-0810-8
10.1002/anie.202117809
10.1016/j.mattod.2020.09.006
10.1002/ente.201800216
10.1039/D0CS00041H
10.1016/j.cattod.2018.09.011
10.1039/D0GC03999C
10.1021/jacs.7b06331
10.1021/acs.jpcc.7b06778
10.1021/acssuschemeng.6b01314
10.1021/acs.chemrev.8b00134
10.1016/j.mcat.2022.112831
10.1007/s11814-020-0626-y
10.1021/acssuschemeng.2c02360
10.1016/j.egyr.2022.10.127
10.1007/s11814-021-1009-8
10.1016/j.rser.2021.110952
10.1039/c3ee41857j
10.1021/acscatal.9b05531
10.1007/s10800-020-01464-7
10.1016/j.jcat.2015.04.018
10.1021/acssuschemeng.5b00271
10.1016/j.nanoen.2016.11.048
10.1007/s11814-020-0661-8
10.1039/D1RE00216C
10.1016/j.fuel.2022.125845
10.1039/D1GC00579K
10.1016/j.cej.2022.139663
ContentType Journal Article
Copyright The Korean Institute of Chemical Engineers 2023
The Korean Institute of Chemical Engineers 2023.
Copyright_xml – notice: The Korean Institute of Chemical Engineers 2023
– notice: The Korean Institute of Chemical Engineers 2023.
DBID AAYXX
CITATION
ACYCR
DOI 10.1007/s11814-023-1472-5
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1975-7220
EndPage 2656
ExternalDocumentID oai_kci_go_kr_ARTI_10318134
10_1007_s11814_023_1472_5
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
9ZL
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZB
HZ~
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
MZR
N2Q
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
W4F
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z8N
Z8Q
Z8Z
Z92
ZMTXR
ZZE
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
ABRTQ
85H
AABYN
AAFGU
AAGCJ
AAUCO
AAYFA
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ACYCR
ADMDM
ADOXG
AEEQQ
AEFTE
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJDOV
AJGSW
AKQUC
SQXTU
UNUBA
ID FETCH-LOGICAL-c351t-c5eef5cf4e0121ed8b7532e5f33f80eb4a4c948786dfda929c886f02c505a4943
IEDL.DBID U2A
ISSN 0256-1115
IngestDate Wed Jan 31 06:58:31 EST 2024
Fri Jul 25 11:06:27 EDT 2025
Tue Jul 01 03:29:45 EDT 2025
Thu Apr 24 23:08:46 EDT 2025
Fri Feb 21 02:42:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Furfural
Hydrodeoxygenation
2-Methylfuran
Electrocatalytic Reduction
Mechanism
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-c5eef5cf4e0121ed8b7532e5f33f80eb4a4c948786dfda929c886f02c505a4943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2874976836
PQPubID 2044390
PageCount 11
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10318134
proquest_journals_2874976836
crossref_primary_10_1007_s11814_023_1472_5
crossref_citationtrail_10_1007_s11814_023_1472_5
springer_journals_10_1007_s11814_023_1472_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle The Korean journal of chemical engineering
PublicationTitleAbbrev Korean J. Chem. Eng
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
한국화학공학회
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: 한국화학공학회
References BhogeswararaoSSrinivasDJ. Catal.2015327651:CAS:528:DC%2BC2MXnsFyhur8%3D10.1016/j.jcat.2015.04.018
DuYChenXLiangCMol. Catal.20235351128311:CAS:528:DC%2BB38XjtVOjsb3L10.1016/j.mcat.2022.112831
XuCPaoneERodríguez-PadrónDLuqueRMaurielloFChem. Soc. Rev.2020491342731:CAS:528:DC%2BB3cXhtlWktb%2FI10.1039/D0CS00041H32453311
BohreADuttaSSahaBAbu-OmarM MACS Sustain. Chem. Eng.20153712631:CAS:528:DC%2BC2MXovF2ru7o%3D10.1021/acssuschemeng.5b00271
ChadderdonX HChadderdonD JMatthiesenJ EQiuYCarraherJ MTessonnierJ-PLiWJ. Am. Chem. Soc.201713940141201:CAS:528:DC%2BC2sXhsVyrsrjI10.1021/jacs.7b0633128903554
WangW JScudieroLHaSKorean J. Chem. Eng.20223934611:CAS:528:DC%2BB38Xislynt7s%3D10.1007/s11814-021-1009-8
JungSBiddingerE JACS Sustain. Chem. Eng.201641265001:CAS:528:DC%2BC28Xhs1WkurnE10.1021/acssuschemeng.6b01314
MayA SBiddingerE JACS Catal.202010532121:CAS:528:DC%2BB3cXis12nsbw%3D10.1021/acscatal.9b05531
AnXLiSHaoXXieZDuXWangZHaoXAbudulaAGuanGRenew. Sust. Energ. Rev.20211431109521:CAS:528:DC%2BB3MXnt1ersL4%3D10.1016/j.rser.2021.110952
WangLZhuYZengZLinCGirouxMJiangLHanYGreeleyJWangCJinJNano Energy20173145610.1016/j.nanoen.2016.11.048
YangZChouXKanHXiaoZDingYACS Sustain. Chem. Eng.2022102274181:CAS:528:DC%2BB38XhtlCkt7%2FE10.1021/acssuschemeng.2c02360
ZhouPChenYLuanPZhangXYuanZGuoS-XGuQJohannessenBMollahMChaffeeA LTurnerD RZhangJGreen Chem.202123830281:CAS:528:DC%2BB3MXmvVyms7k%3D10.1039/D0GC03999C
LanXHuangNWangJWangTChemComm20185465841:CAS:528:DC%2BC2sXhvV2qtrjF
Shiva KumarSLimHEnergy Rep.202281379310.1016/j.egyr.2022.10.127
DixitR JBhattacharyyaKRamaniV KBasuSGreen Chem.2021231142011:CAS:528:DC%2BB3MXhtVWqtL7E10.1039/D1GC00579K
NilgesPSchröderUEnergy Environ. Sci.201361029251:CAS:528:DC%2BC3sXhsV2it7nL10.1039/c3ee41857j
SanyalUKohKMeyerL CKarkamkarAGutiérrezO YJ. Appl. Electrochem.2021511271:CAS:528:DC%2BB3cXhvVylsbfL10.1007/s10800-020-01464-7
ChenSWojcieszakRDumeignilFMarceauERoyerSChem. Rev.201811822110231:CAS:528:DC%2BC1cXitVSis7nF10.1021/acs.chemrev.8b0013430362725
JeonS HKimKChoHYoonH CHanJ-IKorean J. Chem. Eng.202138612721:CAS:528:DC%2BB3MXht1Wiu7zL10.1007/s11814-021-0810-8
RehmanFDelowar HossainMTyagiALuDYuanBLuoZMater. Today2021441361:CAS:528:DC%2BB3cXhvFSltLjO10.1016/j.mattod.2020.09.006
LeiYWangZBaoATangXHuangXYiHZhaoSSunTWangJGaoFChem. Eng. J.20234531396631:CAS:528:DC%2BB38XislSgs7bF10.1016/j.cej.2022.139663
ShanNHanchettM KLiuBJ. Phys. Chem. C201712146257681:CAS:528:DC%2BC2sXhslSit7%2FK10.1021/acs.jpcc.7b06778
Al RadadiR MIbrahimM A MKorean J. Chem. Eng.202138115210.1007/s11814-020-0661-8
JungSKaraiskakisA NBiddingerE JCatal. Today2019323261:CAS:528:DC%2BC1cXhvVeqsrrI10.1016/j.cattod.2018.09.011
KimHParkHBangHKimS-KKorean J. Chem. Eng.202037812751:CAS:528:DC%2BB3cXhsFOmurnE10.1007/s11814-020-0626-y
MayA SWattS MBiddingerE JReact. Chem. Eng.202161120751:CAS:528:DC%2BB3MXhvVSkt7jN10.1039/D1RE00216C
LuXWangJPengWLiNLiangLChengZYanBYangGChenGFuel20233311258451:CAS:528:DC%2BB38XitlChsLbJ10.1016/j.fuel.2022.125845
ZhouPLiLMosaliV S SChenYLuanPGuQTurnerD RHuangLZhangJAngew. Chem. Int. Ed.20226113e2021178091:CAS:528:DC%2BB38XivV2hs7s%3D10.1002/anie.202117809
JungSBiddingerE JEnergy Technol.20186713701:CAS:528:DC%2BC1cXhtlSmu7rJ10.1002/ente.201800216
Y Du (1472_CR15) 2023; 535
S Jung (1472_CR21) 2019; 323
R J Dixit (1472_CR26) 2021; 23
S Chen (1472_CR2) 2018; 118
A S May (1472_CR28) 2021; 6
L Wang (1472_CR6) 2017; 31
F Rehman (1472_CR12) 2021; 44
S H Jeon (1472_CR13) 2021; 38
N Shan (1472_CR29) 2017; 121
A Bohre (1472_CR4) 2015; 3
U Sanyal (1472_CR16) 2021; 51
P Zhou (1472_CR22) 2021; 23
S Jung (1472_CR18) 2016; 4
C Xu (1472_CR1) 2020; 49
R M Al Radadi (1472_CR8) 2021; 38
A S May (1472_CR24) 2020; 10
X H Chadderdon (1472_CR25) 2017; 139
P Zhou (1472_CR17) 2022; 61
Z Yang (1472_CR19) 2022; 10
H Kim (1472_CR7) 2020; 37
S Jung (1472_CR20) 2018; 6
Y Lei (1472_CR9) 2023; 453
X Lu (1472_CR14) 2023; 331
S Shiva Kumar (1472_CR5) 2022; 8
X An (1472_CR10) 2021; 143
W J Wang (1472_CR11) 2022; 39
P Nilges (1472_CR23) 2013; 6
S Bhogeswararao (1472_CR3) 2015; 327
X Lan (1472_CR27) 2018; 54
References_xml – reference: JungSKaraiskakisA NBiddingerE JCatal. Today2019323261:CAS:528:DC%2BC1cXhvVeqsrrI10.1016/j.cattod.2018.09.011
– reference: DixitR JBhattacharyyaKRamaniV KBasuSGreen Chem.2021231142011:CAS:528:DC%2BB3MXhtVWqtL7E10.1039/D1GC00579K
– reference: RehmanFDelowar HossainMTyagiALuDYuanBLuoZMater. Today2021441361:CAS:528:DC%2BB3cXhvFSltLjO10.1016/j.mattod.2020.09.006
– reference: DuYChenXLiangCMol. Catal.20235351128311:CAS:528:DC%2BB38XjtVOjsb3L10.1016/j.mcat.2022.112831
– reference: ZhouPLiLMosaliV S SChenYLuanPGuQTurnerD RHuangLZhangJAngew. Chem. Int. Ed.20226113e2021178091:CAS:528:DC%2BB38XivV2hs7s%3D10.1002/anie.202117809
– reference: JungSBiddingerE JACS Sustain. Chem. Eng.201641265001:CAS:528:DC%2BC28Xhs1WkurnE10.1021/acssuschemeng.6b01314
– reference: SanyalUKohKMeyerL CKarkamkarAGutiérrezO YJ. Appl. Electrochem.2021511271:CAS:528:DC%2BB3cXhvVylsbfL10.1007/s10800-020-01464-7
– reference: LanXHuangNWangJWangTChemComm20185465841:CAS:528:DC%2BC2sXhvV2qtrjF
– reference: JungSBiddingerE JEnergy Technol.20186713701:CAS:528:DC%2BC1cXhtlSmu7rJ10.1002/ente.201800216
– reference: AnXLiSHaoXXieZDuXWangZHaoXAbudulaAGuanGRenew. Sust. Energ. Rev.20211431109521:CAS:528:DC%2BB3MXnt1ersL4%3D10.1016/j.rser.2021.110952
– reference: BohreADuttaSSahaBAbu-OmarM MACS Sustain. Chem. Eng.20153712631:CAS:528:DC%2BC2MXovF2ru7o%3D10.1021/acssuschemeng.5b00271
– reference: LeiYWangZBaoATangXHuangXYiHZhaoSSunTWangJGaoFChem. Eng. J.20234531396631:CAS:528:DC%2BB38XislSgs7bF10.1016/j.cej.2022.139663
– reference: MayA SWattS MBiddingerE JReact. Chem. Eng.202161120751:CAS:528:DC%2BB3MXhvVSkt7jN10.1039/D1RE00216C
– reference: LuXWangJPengWLiNLiangLChengZYanBYangGChenGFuel20233311258451:CAS:528:DC%2BB38XitlChsLbJ10.1016/j.fuel.2022.125845
– reference: KimHParkHBangHKimS-KKorean J. Chem. Eng.202037812751:CAS:528:DC%2BB3cXhsFOmurnE10.1007/s11814-020-0626-y
– reference: ShanNHanchettM KLiuBJ. Phys. Chem. C201712146257681:CAS:528:DC%2BC2sXhslSit7%2FK10.1021/acs.jpcc.7b06778
– reference: WangW JScudieroLHaSKorean J. Chem. Eng.20223934611:CAS:528:DC%2BB38Xislynt7s%3D10.1007/s11814-021-1009-8
– reference: Al RadadiR MIbrahimM A MKorean J. Chem. Eng.202138115210.1007/s11814-020-0661-8
– reference: ChadderdonX HChadderdonD JMatthiesenJ EQiuYCarraherJ MTessonnierJ-PLiWJ. Am. Chem. Soc.201713940141201:CAS:528:DC%2BC2sXhsVyrsrjI10.1021/jacs.7b0633128903554
– reference: WangLZhuYZengZLinCGirouxMJiangLHanYGreeleyJWangCJinJNano Energy20173145610.1016/j.nanoen.2016.11.048
– reference: ChenSWojcieszakRDumeignilFMarceauERoyerSChem. Rev.201811822110231:CAS:528:DC%2BC1cXitVSis7nF10.1021/acs.chemrev.8b0013430362725
– reference: YangZChouXKanHXiaoZDingYACS Sustain. Chem. Eng.2022102274181:CAS:528:DC%2BB38XhtlCkt7%2FE10.1021/acssuschemeng.2c02360
– reference: NilgesPSchröderUEnergy Environ. Sci.201361029251:CAS:528:DC%2BC3sXhsV2it7nL10.1039/c3ee41857j
– reference: XuCPaoneERodríguez-PadrónDLuqueRMaurielloFChem. Soc. Rev.2020491342731:CAS:528:DC%2BB3cXhtlWktb%2FI10.1039/D0CS00041H32453311
– reference: MayA SBiddingerE JACS Catal.202010532121:CAS:528:DC%2BB3cXis12nsbw%3D10.1021/acscatal.9b05531
– reference: BhogeswararaoSSrinivasDJ. Catal.2015327651:CAS:528:DC%2BC2MXnsFyhur8%3D10.1016/j.jcat.2015.04.018
– reference: ZhouPChenYLuanPZhangXYuanZGuoS-XGuQJohannessenBMollahMChaffeeA LTurnerD RZhangJGreen Chem.202123830281:CAS:528:DC%2BB3MXmvVyms7k%3D10.1039/D0GC03999C
– reference: Shiva KumarSLimHEnergy Rep.202281379310.1016/j.egyr.2022.10.127
– reference: JeonS HKimKChoHYoonH CHanJ-IKorean J. Chem. Eng.202138612721:CAS:528:DC%2BB3MXht1Wiu7zL10.1007/s11814-021-0810-8
– volume: 38
  start-page: 1272
  issue: 6
  year: 2021
  ident: 1472_CR13
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-021-0810-8
– volume: 61
  start-page: e202117809
  issue: 13
  year: 2022
  ident: 1472_CR17
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202117809
– volume: 44
  start-page: 136
  year: 2021
  ident: 1472_CR12
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2020.09.006
– volume: 6
  start-page: 1370
  issue: 7
  year: 2018
  ident: 1472_CR20
  publication-title: Energy Technol.
  doi: 10.1002/ente.201800216
– volume: 49
  start-page: 4273
  issue: 13
  year: 2020
  ident: 1472_CR1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00041H
– volume: 323
  start-page: 26
  year: 2019
  ident: 1472_CR21
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2018.09.011
– volume: 23
  start-page: 3028
  issue: 8
  year: 2021
  ident: 1472_CR22
  publication-title: Green Chem.
  doi: 10.1039/D0GC03999C
– volume: 139
  start-page: 14120
  issue: 40
  year: 2017
  ident: 1472_CR25
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06331
– volume: 121
  start-page: 25768
  issue: 46
  year: 2017
  ident: 1472_CR29
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b06778
– volume: 4
  start-page: 6500
  issue: 12
  year: 2016
  ident: 1472_CR18
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.6b01314
– volume: 118
  start-page: 11023
  issue: 22
  year: 2018
  ident: 1472_CR2
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00134
– volume: 535
  start-page: 112831
  year: 2023
  ident: 1472_CR15
  publication-title: Mol. Catal.
  doi: 10.1016/j.mcat.2022.112831
– volume: 37
  start-page: 1275
  issue: 8
  year: 2020
  ident: 1472_CR7
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-020-0626-y
– volume: 10
  start-page: 7418
  issue: 22
  year: 2022
  ident: 1472_CR19
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.2c02360
– volume: 8
  start-page: 13793
  year: 2022
  ident: 1472_CR5
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.10.127
– volume: 39
  start-page: 461
  issue: 3
  year: 2022
  ident: 1472_CR11
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-021-1009-8
– volume: 143
  start-page: 110952
  year: 2021
  ident: 1472_CR10
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2021.110952
– volume: 6
  start-page: 2925
  issue: 10
  year: 2013
  ident: 1472_CR23
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee41857j
– volume: 10
  start-page: 3212
  issue: 5
  year: 2020
  ident: 1472_CR24
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b05531
– volume: 51
  start-page: 27
  issue: 1
  year: 2021
  ident: 1472_CR16
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/s10800-020-01464-7
– volume: 327
  start-page: 65
  year: 2015
  ident: 1472_CR3
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2015.04.018
– volume: 3
  start-page: 1263
  issue: 7
  year: 2015
  ident: 1472_CR4
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.5b00271
– volume: 31
  start-page: 456
  year: 2017
  ident: 1472_CR6
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.11.048
– volume: 54
  start-page: 584
  issue: 6
  year: 2018
  ident: 1472_CR27
  publication-title: ChemComm
– volume: 38
  start-page: 152
  issue: 1
  year: 2021
  ident: 1472_CR8
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-020-0661-8
– volume: 6
  start-page: 2075
  issue: 11
  year: 2021
  ident: 1472_CR28
  publication-title: React. Chem. Eng.
  doi: 10.1039/D1RE00216C
– volume: 331
  start-page: 125845
  year: 2023
  ident: 1472_CR14
  publication-title: Fuel
  doi: 10.1016/j.fuel.2022.125845
– volume: 23
  start-page: 4201
  issue: 11
  year: 2021
  ident: 1472_CR26
  publication-title: Green Chem.
  doi: 10.1039/D1GC00579K
– volume: 453
  start-page: 139663
  year: 2023
  ident: 1472_CR9
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.139663
SSID ssj0055620
Score 2.3377514
Snippet The electrocatalytic reduction (ECR) of furfural (FF) for synthesis of 2-methylfuran (MF) is investigated, using a sandwich-structured electrode...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2646
SubjectTerms Bimetals
Biotechnology
Catalysis
Catalysts
Chemical reduction
Chemistry
Chemistry and Materials Science
Copper
Current density
Dosage
Electrodes
Energy
Furfural
Industrial Chemistry/Chemical Engineering
Materials Science
Nickel
Substrates
Sulfuric acid
Surface layers
화학공학
Title Electrocatalytic reduction of furfural for selective preparation of 2-methylfuran over a sandwich-structured Ni-Cu bimetallic catalyst
URI https://link.springer.com/article/10.1007/s11814-023-1472-5
https://www.proquest.com/docview/2874976836
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003007505
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Korean Journal of Chemical Engineering, 2023, 40(11), 284, pp.2646-2656
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxsxEB6a5NDmUJq0JW4eCNpTgsC7elh7dIzdNKU-1ZCcxK5Wak3MOuzahPyB_u7M7KNOQlvoaWF3JIE-rWY-Pb4B-CREHqRxAy5zpKsy6IwngyTiQsvEJEF5V18S-zbVFzN5eaWu2nvcVXfavduSrGfqzWU3dEaSo4_hkRwgg9qCHYXUnc5xzeJhN_0qdOjNwgoJ7GG8021l_qmKJ85oqyjDkzjz2dZo7XEmb-B1GyqyYYPtHrzwxT68HHUZ2vZh95GY4Fv4NW4y2tQLMvdYhpUky0odz5aBhXUZSGKDYZTKqjr7DU507Lb0jfp3YxVzSil9vyBTfIHjnKWsSov8bu5-8kZsdo31sumcj9Ysm6N5ulhgY02z1eodzCbj76ML3mZZ4E6oaMWd8j4oF6QneTefmwwZTOxVECKYvs9kKl2CtMboPOQpRlPOGB36scPYKZWJFO9hu1gW_gBYFIwJkcwd9q5EXmn6OkmUyaTWHpmo60G_627rWglyyoSxsBvxZELIIkKWELKqB6e_i9w2-hv_Mv6IGNobN7ekmk3PH0t7U1rkBl8sJbQwkZA9OOowtu0PW1mS_cfIzAjdg7MO983nvzb54b-sD-FVXI8-WsI5gm1EzR9jULPKTmBnODk_n9Lz8_XX8Uk9qB8Az3vwdQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbhMxFL1qyyKwqCAUEVrAErChspQZP-JZsIhCo4S2WTVSdmbGY0OUaFLNJKryA_wIP8r1PAhBgMSiq5Fmru2Rjx_n-nEuwFvGUseV6VGeorvKnUxo1IsCyiSPVOSENeUlseuJHE35p5mYHcD35i5Medq92ZIsR-rdZTecjDjFOYYGvIceVH2S8tJu79BPKz6MPyKo78JweHEzGNE6lAA1TARraoS1ThjHrdcws6lKkKaHVjjGnOrahMfcRMjdlUxdGiNlMEpJ1w0NEoSYR5xhvofwALmH8l1nGvab4V4ggagWcrygH_KrZuv0T7-8N_kdZrnb47W_bcWWM9zwMRzX1JT0q7b0BA5s1obWoIkI14ZHv4gXPoVvF1UEnXIBaItpSO5lYD3QZOWI2-TOS3oQZMWkKKPt4MBKbnNbqY1XViH1Iay3S2-KL7BfkZgUcZbezc1XWonbbjBfMpnTwYYkczSPl0ssrCq2WJ_A9F6geAZH2Sqzz4EETikX8NRg7XL0Y1VXRpFQCZfSoudrOtBtqlubWvLcR95Y6p1Ys0dII0LaI6RFB97_THJb6X38y_gNYqgXZq69Srd_flnpRa7RFxlrH0BDBYx34KzBWNcDRKF9mAFkgorJDpw3uO8-_7XIF_9l_Rpao5vrK301nlyewsOwbIl--egMjhBB-xIJ1Tp5VTZoAp_vuwf9AA9GKsU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD7ahsTlYYLBRGEDS8ALyFoTX-o87GHqVq0MKh6otDeTODZUq9IqaTX1D-zv7C9yHCcrQ4DEw54iJcd2lM-X79g53wF4y1juuDI9ynN0V7mTGU16SUSZ5IlKnLCmDhL7PJKnY_7xXJxvwHUbC1P_7d4eSYaYBq_SVCwO5rk7WAe-4cLEKa43NOI99KaavyrP7OoSfbbqcHiMAL-L48HJ1_4pbdIKUMNEtKBGWOuEcdx6PTObqwwpe2yFY8yprs14yk2CPF7J3OUp0gejlHTd2CBZSHnCGda7Cfe4Dz7GATSOj9qpXyCZCJs6XtwPuVZ7jPqnV761EG4WpbvFcX87lq1Xu8Fj2G5oKjkK_eoJbNhiBx702-xwO_DoFyHDp3B1ErLp1JtBKyxDSi8J60EnM0fcsnRe3oMgQyZVnXkHJ1kyL21QHg9WMfXprFdTb4o3cIyRlFRpkV9OzA8ahG6XWC8ZTWh_SbIJmqfTKTYWmq0Wz2B8J1DswlYxK-xzIJFTykU8N_h1Ofq0qiuTRKiMS2nRCzYd6LafW5tG_txn4ZjqtXCzR0gjQtojpEUH3t8UmQftj38Zv0EM9YWZaK_Y7a_fZ_qi1OiXDLVPpqEixjuw12Ksm8mi0j7lALJCxWQHPrS4rx__tckX_2X9Gu5_OR7oT8PR2Ut4GNcd0e8k7cEWAmj3kVstsld1fybw7a4H0E9Szi74
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrocatalytic+reduction+of+furfural+for+selective+preparation+of+2-methylfuran+over+a+sandwich-structured+Ni-Cu+bimetallic+catalyst&rft.jtitle=The+Korean+journal+of+chemical+engineering&rft.au=Cui+Yiming&rft.au=Wang+Ze&rft.au=Li+Songgeng&rft.date=2023-11-01&rft.pub=%ED%95%9C%EA%B5%AD%ED%99%94%ED%95%99%EA%B3%B5%ED%95%99%ED%9A%8C&rft.issn=0256-1115&rft.eissn=1975-7220&rft.spage=2646&rft.epage=2656&rft_id=info:doi/10.1007%2Fs11814-023-1472-5&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10318134
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0256-1115&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0256-1115&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0256-1115&client=summon