Adaptive Backstepping-Based Neural Tracking Control for MIMO Nonlinear Switched Systems Subject to Input Delays
This brief proposes a new neural-network (NN)-based adaptive output tracking control scheme for a class of disturbed multiple-input multiple-output uncertain nonlinear switched systems with input delays. By combining the universal approximation ability of radial basis function NNs and adaptive backs...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 29; no. 6; pp. 2638 - 2644 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.06.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This brief proposes a new neural-network (NN)-based adaptive output tracking control scheme for a class of disturbed multiple-input multiple-output uncertain nonlinear switched systems with input delays. By combining the universal approximation ability of radial basis function NNs and adaptive backstepping recursive design with an improved multiple Lyapunov function (MLF) scheme, a novel adaptive neural output tracking controller design method is presented for the switched system. The feature of the developed design is that different coordinate transformations are adopted to overcome the conservativeness caused by adopting a common coordinate transformation for all subsystems. It is shown that all the variables of the resulting closed-loop system are semiglobally uniformly ultimately bounded under a class of switching signals in the presence of MLF and that the system output can follow the desired reference signal. To demonstrate the practicability of the obtained result, an adaptive neural output tracking controller is designed for a mass-spring-damper system. |
---|---|
AbstractList | This brief proposes a new neural-network (NN)-based adaptive output tracking control scheme for a class of disturbed multiple-input multiple-output uncertain nonlinear switched systems with input delays. By combining the universal approximation ability of radial basis function NNs and adaptive backstepping recursive design with an improved multiple Lyapunov function (MLF) scheme, a novel adaptive neural output tracking controller design method is presented for the switched system. The feature of the developed design is that different coordinate transformations are adopted to overcome the conservativeness caused by adopting a common coordinate transformation for all subsystems. It is shown that all the variables of the resulting closed-loop system are semiglobally uniformly ultimately bounded under a class of switching signals in the presence of MLF and that the system output can follow the desired reference signal. To demonstrate the practicability of the obtained result, an adaptive neural output tracking controller is designed for a mass-spring-damper system.This brief proposes a new neural-network (NN)-based adaptive output tracking control scheme for a class of disturbed multiple-input multiple-output uncertain nonlinear switched systems with input delays. By combining the universal approximation ability of radial basis function NNs and adaptive backstepping recursive design with an improved multiple Lyapunov function (MLF) scheme, a novel adaptive neural output tracking controller design method is presented for the switched system. The feature of the developed design is that different coordinate transformations are adopted to overcome the conservativeness caused by adopting a common coordinate transformation for all subsystems. It is shown that all the variables of the resulting closed-loop system are semiglobally uniformly ultimately bounded under a class of switching signals in the presence of MLF and that the system output can follow the desired reference signal. To demonstrate the practicability of the obtained result, an adaptive neural output tracking controller is designed for a mass-spring-damper system. This brief proposes a new neural-network (NN)-based adaptive output tracking control scheme for a class of disturbed multiple-input multiple-output uncertain nonlinear switched systems with input delays. By combining the universal approximation ability of radial basis function NNs and adaptive backstepping recursive design with an improved multiple Lyapunov function (MLF) scheme, a novel adaptive neural output tracking controller design method is presented for the switched system. The feature of the developed design is that different coordinate transformations are adopted to overcome the conservativeness caused by adopting a common coordinate transformation for all subsystems. It is shown that all the variables of the resulting closed-loop system are semiglobally uniformly ultimately bounded under a class of switching signals in the presence of MLF and that the system output can follow the desired reference signal. To demonstrate the practicability of the obtained result, an adaptive neural output tracking controller is designed for a mass-spring-damper system. |
Author | Niu, Ben Li, Lu |
Author_xml | – sequence: 1 givenname: Ben orcidid: 0000-0002-3680-5594 surname: Niu fullname: Niu, Ben email: niubenzg@gmail.com organization: College of Mathematics and Physics, Bohai University, Jinzhou, China – sequence: 2 givenname: Lu surname: Li fullname: Li, Lu email: lilu00055@163.com organization: College of Mathematics and Physics, Bohai University, Jinzhou, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28436899$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtvEzEUhS3UipbSPwASssSGTYLfM1624dFIabpIkNhZnpk74DAZT20PKP8ep0m76KJe2Ff2-Y6sc96gk973gNA7SqaUEv15vVwuVlNGaDFlShOh5Ct0zqhiE8bL8uRpLn6eocsYNyQvRaQS-jU6Y6XgqtT6HPmrxg7J_QV8bes_McEwuP7X5NpGaPASxmA7vA75Kd_ime9T8B1ufcC389s7vPR953qwAa_-uVT_zsxql022Ea_GagN1wsnjeT-MCX-Bzu7iW3Ta2i7C5fG8QD--fV3PbiaLu-_z2dViUnNJU94bwrUqbckKRnWjBOcCbENV3YBSBdUV160ArVhRScUUt7SVmmVCWV0pfoE-HXyH4O9HiMlsXayh62wPfoyGlpoKKaWgWfrxmXTjx9Dn3xlGCyFFznav-nBUjdUWGjMEt7VhZx6jzILyIKiDjzFAa2qXbHL7zKzrDCVmX5x5KM7sizPH4jLKnqGP7i9C7w-QA4AnoNCE5eb5f3ZaojA |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1109_TCYB_2018_2842920 crossref_primary_10_1109_TSMC_2022_3177731 crossref_primary_10_1016_j_nahs_2021_101012 crossref_primary_10_1016_j_neunet_2021_12_006 crossref_primary_10_1002_acs_3362 crossref_primary_10_1109_ACCESS_2021_3062661 crossref_primary_10_1109_TFUZZ_2019_2930034 crossref_primary_10_1007_s40815_020_00927_5 crossref_primary_10_1007_s40815_018_0532_1 crossref_primary_10_1109_ACCESS_2017_2771455 crossref_primary_10_1109_ACCESS_2020_3023671 crossref_primary_10_1002_rnc_7167 crossref_primary_10_1109_TCYB_2020_2970454 crossref_primary_10_1002_rnc_4451 crossref_primary_10_1002_asjc_3163 crossref_primary_10_1007_s12555_022_1127_z crossref_primary_10_1109_TSMC_2018_2847283 crossref_primary_10_1109_ACCESS_2018_2873769 crossref_primary_10_1049_iet_cta_2018_5332 crossref_primary_10_3390_math9070763 crossref_primary_10_1002_rnc_4953 crossref_primary_10_1016_j_nahs_2024_101488 crossref_primary_10_1016_j_chaos_2023_114036 crossref_primary_10_1109_TNNLS_2022_3224065 crossref_primary_10_1109_JSYST_2019_2934512 crossref_primary_10_1080_00207721_2024_2331810 crossref_primary_10_1080_00207179_2023_2285900 crossref_primary_10_1016_j_jfranklin_2021_04_022 crossref_primary_10_1007_s11071_022_08146_3 crossref_primary_10_1109_TSMC_2018_2867948 crossref_primary_10_1016_j_nahs_2018_10_003 crossref_primary_10_1016_j_neucom_2019_04_049 crossref_primary_10_1049_cth2_12683 crossref_primary_10_1109_ACCESS_2018_2846049 crossref_primary_10_1155_2019_6234965 crossref_primary_10_1007_s12555_018_0237_0 crossref_primary_10_1016_j_isatra_2019_07_013 crossref_primary_10_1016_j_neucom_2020_04_007 crossref_primary_10_1109_TNNLS_2021_3057068 crossref_primary_10_1002_rnc_4864 crossref_primary_10_1007_s11424_023_1455_y crossref_primary_10_1109_TSMC_2019_2894745 crossref_primary_10_1016_j_jfranklin_2021_04_012 crossref_primary_10_1016_j_neucom_2024_127869 crossref_primary_10_1109_TIE_2018_2863191 crossref_primary_10_1080_00207721_2024_2343740 crossref_primary_10_1002_rnc_6375 crossref_primary_10_1109_TNNLS_2019_2927507 crossref_primary_10_1109_TNNLS_2021_3082994 crossref_primary_10_1109_TNNLS_2020_2985417 crossref_primary_10_1016_j_isatra_2019_08_030 crossref_primary_10_1080_00207721_2018_1424967 crossref_primary_10_1109_ACCESS_2021_3118063 crossref_primary_10_1016_j_nahs_2019_100853 crossref_primary_10_1109_TCYB_2022_3178385 crossref_primary_10_1109_TFUZZ_2020_3022570 crossref_primary_10_1080_00207721_2018_1501831 crossref_primary_10_1016_j_fraope_2023_100035 crossref_primary_10_1109_TFUZZ_2021_3066297 crossref_primary_10_1007_s00521_021_06801_1 crossref_primary_10_1109_TSMC_2018_2866519 crossref_primary_10_1007_s40295_019_00189_w crossref_primary_10_1007_s11071_019_05279_w crossref_primary_10_1080_23311916_2017_1342309 crossref_primary_10_1002_rnc_6707 crossref_primary_10_1016_j_jfranklin_2018_09_039 crossref_primary_10_1016_j_jfranklin_2018_11_010 crossref_primary_10_1109_TASE_2023_3330966 crossref_primary_10_1109_TSMC_2019_2903203 crossref_primary_10_1016_j_engappai_2023_107533 crossref_primary_10_1007_s11071_020_05674_8 crossref_primary_10_1109_TFUZZ_2022_3165634 crossref_primary_10_1109_TNNLS_2021_3106781 crossref_primary_10_1016_j_nahs_2020_100917 crossref_primary_10_1080_00207721_2019_1567869 crossref_primary_10_1177_01423312231169561 crossref_primary_10_1109_ACCESS_2018_2874262 crossref_primary_10_1080_00207179_2024_2373802 crossref_primary_10_1109_TNNLS_2019_2955438 crossref_primary_10_1016_j_jfranklin_2022_11_027 crossref_primary_10_1016_j_nahs_2020_100911 crossref_primary_10_1109_TFUZZ_2024_3364245 crossref_primary_10_1109_TSMC_2018_2834560 crossref_primary_10_1016_j_egyr_2022_02_014 crossref_primary_10_1109_TNNLS_2020_2984773 crossref_primary_10_1002_acs_2921 crossref_primary_10_1109_ACCESS_2019_2926526 crossref_primary_10_1002_rnc_5569 crossref_primary_10_1007_s40435_024_01416_5 crossref_primary_10_1016_j_ins_2019_09_043 crossref_primary_10_1016_j_jfranklin_2018_11_022 crossref_primary_10_1016_j_neucom_2018_01_047 crossref_primary_10_1016_j_neucom_2021_12_091 crossref_primary_10_1007_s12555_018_0118_6 crossref_primary_10_1007_s12555_022_0387_y crossref_primary_10_1016_j_oceaneng_2024_119248 crossref_primary_10_1109_TSMC_2017_2764685 crossref_primary_10_1007_s11071_022_07203_1 crossref_primary_10_1016_j_amc_2019_124665 crossref_primary_10_1016_j_jfranklin_2018_08_010 crossref_primary_10_1080_00207721_2018_1496300 crossref_primary_10_1109_ACCESS_2021_3088235 crossref_primary_10_1080_00207721_2021_1931728 crossref_primary_10_1016_j_neucom_2019_08_011 crossref_primary_10_1109_TCYB_2021_3127389 crossref_primary_10_1002_rnc_5082 crossref_primary_10_1109_TCSI_2020_3033803 crossref_primary_10_1002_rnc_5489 crossref_primary_10_1007_s00034_021_01843_1 crossref_primary_10_1109_ACCESS_2020_2995755 crossref_primary_10_1016_j_jfranklin_2019_09_019 crossref_primary_10_1177_09596518241286422 crossref_primary_10_1016_j_jfranklin_2018_10_039 crossref_primary_10_1109_TNNLS_2019_2952709 crossref_primary_10_1007_s12555_017_0269_x crossref_primary_10_1016_j_isatra_2022_07_027 crossref_primary_10_1016_j_ymssp_2020_107406 crossref_primary_10_1080_00207721_2018_1508786 crossref_primary_10_1109_TNNLS_2019_2933409 crossref_primary_10_1109_TNNLS_2019_2940466 crossref_primary_10_1109_TFUZZ_2021_3067063 crossref_primary_10_3934_math_2024668 crossref_primary_10_1155_2019_6920372 crossref_primary_10_1002_rnc_5470 crossref_primary_10_1109_ACCESS_2020_3041071 crossref_primary_10_1109_TCYB_2021_3068631 crossref_primary_10_1109_TNNLS_2021_3131412 crossref_primary_10_3934_math_2021046 crossref_primary_10_1002_rnc_7370 crossref_primary_10_1109_TFUZZ_2017_2787156 crossref_primary_10_1109_TNNLS_2019_2928594 crossref_primary_10_1080_00207721_2021_1909775 crossref_primary_10_1177_0142331219834603 crossref_primary_10_1016_j_jfranklin_2019_09_005 crossref_primary_10_1080_00207179_2022_2067787 crossref_primary_10_1007_s12555_018_0210_y crossref_primary_10_1109_TSMC_2018_2870494 crossref_primary_10_1002_rnc_7650 crossref_primary_10_1080_00207721_2020_1783591 crossref_primary_10_1007_s40815_020_00893_y |
Cites_doi | 10.1002/acs.2347 10.1016/j.amc.2016.07.019 10.1016/j.automatica.2015.02.023 10.1109/TFUZZ.2016.2567457 10.1016/j.fss.2007.12.022 10.1007/978-1-4612-0017-8 10.1016/j.ins.2016.04.013 10.1109/TNNLS.2015.2471262 10.1109/TFUZZ.2014.2327987 10.1109/TFUZZ.2016.2574913 10.1016/j.sysconle.2013.12.010 10.1109/TCSI.2011.2106090 10.1109/TCYB.2016.2518300 10.1109/TFUZZ.2012.2230005 10.1109/TCYB.2014.2382563 10.1109/TNNLS.2014.2330336 10.1016/j.automatica.2016.10.025 10.1109/TAC.2012.2191835 10.1109/TAC.2011.2158134 10.1109/TFUZZ.2014.2375917 10.1109/TAC.2015.2465091 10.1016/j.sysconle.2013.07.003 10.1109/TAC.2015.2450891 10.1109/TSMC.2016.2586108 10.1016/j.automatica.2015.11.007 10.1109/TCYB.2014.2332356 10.1109/TFUZZ.2012.2211365 10.1016/j.ins.2013.06.007 10.1016/j.jfranklin.2016.02.010 10.1109/TFUZZ.2014.2315661 10.1016/j.fss.2010.09.002 10.1109/TSMCB.2011.2163796 10.1109/TCYB.2014.2365778 10.1109/TCYB.2016.2536628 10.1109/TFUZZ.2015.2486811 10.1109/TAC.2013.2246094 10.1109/TIE.2012.2229679 10.1016/j.automatica.2015.07.022 10.1109/TSMC.2016.2557222 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2017.2690465 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 2644 |
ExternalDocumentID | 28436899 10_1109_TNNLS_2017_2690465 7902216 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61673073; 61673072 funderid: 10.13039/501100001809 – fundername: Liaoning Provincial Natural Science Foundation, China grantid: 201602009 funderid: 10.13039/501100005047 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c351t-c3d03968a827219d64334ead16cde66719b39f4e9627b56263a1f59268a6a9b63 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Sun Aug 24 03:56:24 EDT 2025 Mon Jun 30 07:03:51 EDT 2025 Mon Jul 21 05:44:58 EDT 2025 Thu Apr 24 23:00:07 EDT 2025 Tue Jul 01 00:27:24 EDT 2025 Wed Aug 27 02:50:21 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-c3d03968a827219d64334ead16cde66719b39f4e9627b56263a1f59268a6a9b63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3680-5594 |
PMID | 28436899 |
PQID | 2174544651 |
PQPubID | 85436 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1109_TNNLS_2017_2690465 proquest_journals_2174544651 pubmed_primary_28436899 proquest_miscellaneous_1891455541 crossref_citationtrail_10_1109_TNNLS_2017_2690465 ieee_primary_7902216 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-06-01 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref32 ref10 ref39 ref17 ref38 ref16 ref19 ref18 krsti? (ref1) 1995 ge (ref11) 2001 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 liberzon (ref13) 2003 ref5 ref40 vidyasagar (ref2) 1993 |
References_xml | – ident: ref8 doi: 10.1002/acs.2347 – ident: ref21 doi: 10.1016/j.amc.2016.07.019 – ident: ref27 doi: 10.1016/j.automatica.2015.02.023 – ident: ref35 doi: 10.1109/TFUZZ.2016.2567457 – ident: ref42 doi: 10.1016/j.fss.2007.12.022 – year: 2003 ident: ref13 publication-title: Switching in Systems and Control doi: 10.1007/978-1-4612-0017-8 – ident: ref17 doi: 10.1016/j.ins.2016.04.013 – ident: ref36 doi: 10.1109/TNNLS.2015.2471262 – year: 1993 ident: ref2 publication-title: Nonlinear Systems Analysis – ident: ref9 doi: 10.1109/TFUZZ.2014.2327987 – year: 1995 ident: ref1 publication-title: Nonlinear and Adaptive Control Design – ident: ref37 doi: 10.1109/TFUZZ.2016.2574913 – ident: ref19 doi: 10.1016/j.sysconle.2013.12.010 – ident: ref15 doi: 10.1109/TCSI.2011.2106090 – ident: ref39 doi: 10.1109/TCYB.2016.2518300 – ident: ref20 doi: 10.1109/TFUZZ.2012.2230005 – ident: ref22 doi: 10.1109/TCYB.2014.2382563 – ident: ref6 doi: 10.1109/TNNLS.2014.2330336 – ident: ref14 doi: 10.1016/j.automatica.2016.10.025 – ident: ref28 doi: 10.1109/TAC.2012.2191835 – ident: ref3 doi: 10.1109/TAC.2011.2158134 – ident: ref41 doi: 10.1109/TFUZZ.2014.2375917 – ident: ref26 doi: 10.1109/TAC.2015.2465091 – year: 2001 ident: ref11 publication-title: Stable Adaptive Neural Network Control – ident: ref25 doi: 10.1016/j.sysconle.2013.07.003 – ident: ref4 doi: 10.1109/TAC.2015.2450891 – ident: ref29 doi: 10.1109/TSMC.2016.2586108 – ident: ref24 doi: 10.1016/j.automatica.2015.11.007 – ident: ref23 doi: 10.1109/TCYB.2014.2332356 – ident: ref33 doi: 10.1109/TFUZZ.2012.2211365 – ident: ref18 doi: 10.1016/j.ins.2013.06.007 – ident: ref5 doi: 10.1016/j.jfranklin.2016.02.010 – ident: ref31 doi: 10.1109/TFUZZ.2014.2315661 – ident: ref12 doi: 10.1016/j.fss.2010.09.002 – ident: ref32 doi: 10.1109/TSMCB.2011.2163796 – ident: ref10 doi: 10.1109/TCYB.2014.2365778 – ident: ref40 doi: 10.1109/TCYB.2016.2536628 – ident: ref7 doi: 10.1109/TFUZZ.2015.2486811 – ident: ref16 doi: 10.1109/TAC.2013.2246094 – ident: ref34 doi: 10.1109/TIE.2012.2229679 – ident: ref38 doi: 10.1016/j.automatica.2015.07.022 – ident: ref30 doi: 10.1109/TSMC.2016.2557222 |
SSID | ssj0000605649 |
Score | 2.5895562 |
Snippet | This brief proposes a new neural-network (NN)-based adaptive output tracking control scheme for a class of disturbed multiple-input multiple-output uncertain... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2638 |
SubjectTerms | Adaptive control Adaptive systems Artificial neural networks Basis functions Control systems design Coordinate transformations Design Feedback control Genetic transformation input delay Liapunov functions Mass-spring-damper systems MIMO MIMO (control systems) neural network (NN) Neural networks Nonlinear control Nonlinear systems Radial basis function Subsystems switched multiple-input multiple-output (MIMO) nonlinear systems Switched systems Switches Tracking control |
Title | Adaptive Backstepping-Based Neural Tracking Control for MIMO Nonlinear Switched Systems Subject to Input Delays |
URI | https://ieeexplore.ieee.org/document/7902216 https://www.ncbi.nlm.nih.gov/pubmed/28436899 https://www.proquest.com/docview/2174544651 https://www.proquest.com/docview/1891455541 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT90wDLeA0y4wxoC3wZRJ3KCPpmnS5ghsCKa9t8NAercqaVI0DbVor0_T-Oux049J05h2qSo1cdPaie3E_hngiPwc7oWIVG5llFYW10HUC5Gvcs_TSigXcLpnc3V1m35ayMUanIy5MN77EHzmp3QbzvJdU65oq-w006hxuFqHdXTculytcT8lRrtcBWsXWyRRIrLFkCMT69Ob-fzzVwrkyqYJ-oOpooo1uDILlQfU198qKdRYed7cDGrncgtmw4C7aJPv01Vrp-XjH1iO__tFL2Gztz_ZWScw27Dm61ewNdR2YP1U34HmzJkHWgrZOWXht55wHO6ic1R6jhGiBxJBPVfSTju76OLdGRrAbHY9-8LmHQCHQYI_v5FcONZDozNcqWjrh7UNu67xpeyDvze_lq_h9vLjzcVV1BdniEoheYtXFwutcpMn6ERqh5aNSFEsuSqdVyrj2gpdpZ6K-1hJmDeGV1In2EMZbZXYhY26qf0-MCMzVKNWGEPg_BaJpPhTrClj4WTJ4wnwgT9F2SOXUwGN-yJ4MLEuAnsLYm_Rs3cCx2Ofhw6345-td4g3Y8ueLRM4GMSg6Kf2siAfThLMHJ_A-_ExTko6aTG1b1bLgueaAOBlim32OvEZaQ9S9-bv73wLL3BkeReNdgAb7Y-VP0S7p7XvgsA_ATua-lQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLfGeIAXBgzGwYAg8Qa9NU2TNo_bYLqDa3ngJt1blbQpQkztxPWE4K_HTj-QECBeqkpN3LR2YjuxfwZ4SX4Od0IEKrUyiGuL6yDqhcDVqeNxLVTlcbqzXC0u43cbudmD11MujHPOB5-5Od36s_yqLXe0VXaSaNQ4XN2Am6j3Je-ztaYdlRAtc-XtXWwTBZFINmOWTKhP1nm--kihXMk8Qo8wVlSzBtdmoVKP-_pLKfkqK383OL3iuTiAbBxyH2_yZb7r7Lz88Rua4_9-0124M1ig7LQXmXuw55r7cDBWd2DDZD-E9rQy17QYsjPKw-8cITl8Cs5Q7VWMMD2QCGq6kvba2Xkf8c7QBGbZMvvA8h6CwyDBb59JMio2gKMzXKto84d1LVs2-FL2xl2Z79sHcHnxdn2-CIbyDEEpJO_wWoVCq9SkEbqRukLbRsQomFyVlVMq4doKXceOyvtYSag3htdSR9hDGW2VeAj7Tdu4R8CMTFCRWmEMwfNbJBLjT7GmDEUlSx7OgI_8KcoBu5xKaFwV3ocJdeHZWxB7i4G9M3g19bnukTv-2fqQeDO1HNgyg-NRDIphcm8L8uIkAc3xGbyYHuO0pLMW07h2ty14qgkCXsbY5qgXn4n2KHWP__zO53Brsc5WxWqZv38Ct3GUaR-bdgz73dede4pWUGefeeH_CW_s_Z0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Backstepping-Based+Neural+Tracking+Control+for+MIMO+Nonlinear+Switched+Systems+Subject+to+Input+Delays&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Niu%2C+Ben&rft.au=Li%2C+Lu&rft.date=2018-06-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=29&rft.issue=6&rft.spage=2638&rft_id=info:doi/10.1109%2FTNNLS.2017.2690465&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |