Adaptive Backstepping-Based Neural Tracking Control for MIMO Nonlinear Switched Systems Subject to Input Delays

This brief proposes a new neural-network (NN)-based adaptive output tracking control scheme for a class of disturbed multiple-input multiple-output uncertain nonlinear switched systems with input delays. By combining the universal approximation ability of radial basis function NNs and adaptive backs...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 29; no. 6; pp. 2638 - 2644
Main Authors Niu, Ben, Li, Lu
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This brief proposes a new neural-network (NN)-based adaptive output tracking control scheme for a class of disturbed multiple-input multiple-output uncertain nonlinear switched systems with input delays. By combining the universal approximation ability of radial basis function NNs and adaptive backstepping recursive design with an improved multiple Lyapunov function (MLF) scheme, a novel adaptive neural output tracking controller design method is presented for the switched system. The feature of the developed design is that different coordinate transformations are adopted to overcome the conservativeness caused by adopting a common coordinate transformation for all subsystems. It is shown that all the variables of the resulting closed-loop system are semiglobally uniformly ultimately bounded under a class of switching signals in the presence of MLF and that the system output can follow the desired reference signal. To demonstrate the practicability of the obtained result, an adaptive neural output tracking controller is designed for a mass-spring-damper system.
AbstractList This brief proposes a new neural-network (NN)-based adaptive output tracking control scheme for a class of disturbed multiple-input multiple-output uncertain nonlinear switched systems with input delays. By combining the universal approximation ability of radial basis function NNs and adaptive backstepping recursive design with an improved multiple Lyapunov function (MLF) scheme, a novel adaptive neural output tracking controller design method is presented for the switched system. The feature of the developed design is that different coordinate transformations are adopted to overcome the conservativeness caused by adopting a common coordinate transformation for all subsystems. It is shown that all the variables of the resulting closed-loop system are semiglobally uniformly ultimately bounded under a class of switching signals in the presence of MLF and that the system output can follow the desired reference signal. To demonstrate the practicability of the obtained result, an adaptive neural output tracking controller is designed for a mass-spring-damper system.This brief proposes a new neural-network (NN)-based adaptive output tracking control scheme for a class of disturbed multiple-input multiple-output uncertain nonlinear switched systems with input delays. By combining the universal approximation ability of radial basis function NNs and adaptive backstepping recursive design with an improved multiple Lyapunov function (MLF) scheme, a novel adaptive neural output tracking controller design method is presented for the switched system. The feature of the developed design is that different coordinate transformations are adopted to overcome the conservativeness caused by adopting a common coordinate transformation for all subsystems. It is shown that all the variables of the resulting closed-loop system are semiglobally uniformly ultimately bounded under a class of switching signals in the presence of MLF and that the system output can follow the desired reference signal. To demonstrate the practicability of the obtained result, an adaptive neural output tracking controller is designed for a mass-spring-damper system.
This brief proposes a new neural-network (NN)-based adaptive output tracking control scheme for a class of disturbed multiple-input multiple-output uncertain nonlinear switched systems with input delays. By combining the universal approximation ability of radial basis function NNs and adaptive backstepping recursive design with an improved multiple Lyapunov function (MLF) scheme, a novel adaptive neural output tracking controller design method is presented for the switched system. The feature of the developed design is that different coordinate transformations are adopted to overcome the conservativeness caused by adopting a common coordinate transformation for all subsystems. It is shown that all the variables of the resulting closed-loop system are semiglobally uniformly ultimately bounded under a class of switching signals in the presence of MLF and that the system output can follow the desired reference signal. To demonstrate the practicability of the obtained result, an adaptive neural output tracking controller is designed for a mass-spring-damper system.
Author Niu, Ben
Li, Lu
Author_xml – sequence: 1
  givenname: Ben
  orcidid: 0000-0002-3680-5594
  surname: Niu
  fullname: Niu, Ben
  email: niubenzg@gmail.com
  organization: College of Mathematics and Physics, Bohai University, Jinzhou, China
– sequence: 2
  givenname: Lu
  surname: Li
  fullname: Li, Lu
  email: lilu00055@163.com
  organization: College of Mathematics and Physics, Bohai University, Jinzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28436899$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtvEzEUhS3UipbSPwASssSGTYLfM1624dFIabpIkNhZnpk74DAZT20PKP8ep0m76KJe2Ff2-Y6sc96gk973gNA7SqaUEv15vVwuVlNGaDFlShOh5Ct0zqhiE8bL8uRpLn6eocsYNyQvRaQS-jU6Y6XgqtT6HPmrxg7J_QV8bes_McEwuP7X5NpGaPASxmA7vA75Kd_ime9T8B1ufcC389s7vPR953qwAa_-uVT_zsxql022Ea_GagN1wsnjeT-MCX-Bzu7iW3Ta2i7C5fG8QD--fV3PbiaLu-_z2dViUnNJU94bwrUqbckKRnWjBOcCbENV3YBSBdUV160ArVhRScUUt7SVmmVCWV0pfoE-HXyH4O9HiMlsXayh62wPfoyGlpoKKaWgWfrxmXTjx9Dn3xlGCyFFznav-nBUjdUWGjMEt7VhZx6jzILyIKiDjzFAa2qXbHL7zKzrDCVmX5x5KM7sizPH4jLKnqGP7i9C7w-QA4AnoNCE5eb5f3ZaojA
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_TCYB_2018_2842920
crossref_primary_10_1109_TSMC_2022_3177731
crossref_primary_10_1016_j_nahs_2021_101012
crossref_primary_10_1016_j_neunet_2021_12_006
crossref_primary_10_1002_acs_3362
crossref_primary_10_1109_ACCESS_2021_3062661
crossref_primary_10_1109_TFUZZ_2019_2930034
crossref_primary_10_1007_s40815_020_00927_5
crossref_primary_10_1007_s40815_018_0532_1
crossref_primary_10_1109_ACCESS_2017_2771455
crossref_primary_10_1109_ACCESS_2020_3023671
crossref_primary_10_1002_rnc_7167
crossref_primary_10_1109_TCYB_2020_2970454
crossref_primary_10_1002_rnc_4451
crossref_primary_10_1002_asjc_3163
crossref_primary_10_1007_s12555_022_1127_z
crossref_primary_10_1109_TSMC_2018_2847283
crossref_primary_10_1109_ACCESS_2018_2873769
crossref_primary_10_1049_iet_cta_2018_5332
crossref_primary_10_3390_math9070763
crossref_primary_10_1002_rnc_4953
crossref_primary_10_1016_j_nahs_2024_101488
crossref_primary_10_1016_j_chaos_2023_114036
crossref_primary_10_1109_TNNLS_2022_3224065
crossref_primary_10_1109_JSYST_2019_2934512
crossref_primary_10_1080_00207721_2024_2331810
crossref_primary_10_1080_00207179_2023_2285900
crossref_primary_10_1016_j_jfranklin_2021_04_022
crossref_primary_10_1007_s11071_022_08146_3
crossref_primary_10_1109_TSMC_2018_2867948
crossref_primary_10_1016_j_nahs_2018_10_003
crossref_primary_10_1016_j_neucom_2019_04_049
crossref_primary_10_1049_cth2_12683
crossref_primary_10_1109_ACCESS_2018_2846049
crossref_primary_10_1155_2019_6234965
crossref_primary_10_1007_s12555_018_0237_0
crossref_primary_10_1016_j_isatra_2019_07_013
crossref_primary_10_1016_j_neucom_2020_04_007
crossref_primary_10_1109_TNNLS_2021_3057068
crossref_primary_10_1002_rnc_4864
crossref_primary_10_1007_s11424_023_1455_y
crossref_primary_10_1109_TSMC_2019_2894745
crossref_primary_10_1016_j_jfranklin_2021_04_012
crossref_primary_10_1016_j_neucom_2024_127869
crossref_primary_10_1109_TIE_2018_2863191
crossref_primary_10_1080_00207721_2024_2343740
crossref_primary_10_1002_rnc_6375
crossref_primary_10_1109_TNNLS_2019_2927507
crossref_primary_10_1109_TNNLS_2021_3082994
crossref_primary_10_1109_TNNLS_2020_2985417
crossref_primary_10_1016_j_isatra_2019_08_030
crossref_primary_10_1080_00207721_2018_1424967
crossref_primary_10_1109_ACCESS_2021_3118063
crossref_primary_10_1016_j_nahs_2019_100853
crossref_primary_10_1109_TCYB_2022_3178385
crossref_primary_10_1109_TFUZZ_2020_3022570
crossref_primary_10_1080_00207721_2018_1501831
crossref_primary_10_1016_j_fraope_2023_100035
crossref_primary_10_1109_TFUZZ_2021_3066297
crossref_primary_10_1007_s00521_021_06801_1
crossref_primary_10_1109_TSMC_2018_2866519
crossref_primary_10_1007_s40295_019_00189_w
crossref_primary_10_1007_s11071_019_05279_w
crossref_primary_10_1080_23311916_2017_1342309
crossref_primary_10_1002_rnc_6707
crossref_primary_10_1016_j_jfranklin_2018_09_039
crossref_primary_10_1016_j_jfranklin_2018_11_010
crossref_primary_10_1109_TASE_2023_3330966
crossref_primary_10_1109_TSMC_2019_2903203
crossref_primary_10_1016_j_engappai_2023_107533
crossref_primary_10_1007_s11071_020_05674_8
crossref_primary_10_1109_TFUZZ_2022_3165634
crossref_primary_10_1109_TNNLS_2021_3106781
crossref_primary_10_1016_j_nahs_2020_100917
crossref_primary_10_1080_00207721_2019_1567869
crossref_primary_10_1177_01423312231169561
crossref_primary_10_1109_ACCESS_2018_2874262
crossref_primary_10_1080_00207179_2024_2373802
crossref_primary_10_1109_TNNLS_2019_2955438
crossref_primary_10_1016_j_jfranklin_2022_11_027
crossref_primary_10_1016_j_nahs_2020_100911
crossref_primary_10_1109_TFUZZ_2024_3364245
crossref_primary_10_1109_TSMC_2018_2834560
crossref_primary_10_1016_j_egyr_2022_02_014
crossref_primary_10_1109_TNNLS_2020_2984773
crossref_primary_10_1002_acs_2921
crossref_primary_10_1109_ACCESS_2019_2926526
crossref_primary_10_1002_rnc_5569
crossref_primary_10_1007_s40435_024_01416_5
crossref_primary_10_1016_j_ins_2019_09_043
crossref_primary_10_1016_j_jfranklin_2018_11_022
crossref_primary_10_1016_j_neucom_2018_01_047
crossref_primary_10_1016_j_neucom_2021_12_091
crossref_primary_10_1007_s12555_018_0118_6
crossref_primary_10_1007_s12555_022_0387_y
crossref_primary_10_1016_j_oceaneng_2024_119248
crossref_primary_10_1109_TSMC_2017_2764685
crossref_primary_10_1007_s11071_022_07203_1
crossref_primary_10_1016_j_amc_2019_124665
crossref_primary_10_1016_j_jfranklin_2018_08_010
crossref_primary_10_1080_00207721_2018_1496300
crossref_primary_10_1109_ACCESS_2021_3088235
crossref_primary_10_1080_00207721_2021_1931728
crossref_primary_10_1016_j_neucom_2019_08_011
crossref_primary_10_1109_TCYB_2021_3127389
crossref_primary_10_1002_rnc_5082
crossref_primary_10_1109_TCSI_2020_3033803
crossref_primary_10_1002_rnc_5489
crossref_primary_10_1007_s00034_021_01843_1
crossref_primary_10_1109_ACCESS_2020_2995755
crossref_primary_10_1016_j_jfranklin_2019_09_019
crossref_primary_10_1177_09596518241286422
crossref_primary_10_1016_j_jfranklin_2018_10_039
crossref_primary_10_1109_TNNLS_2019_2952709
crossref_primary_10_1007_s12555_017_0269_x
crossref_primary_10_1016_j_isatra_2022_07_027
crossref_primary_10_1016_j_ymssp_2020_107406
crossref_primary_10_1080_00207721_2018_1508786
crossref_primary_10_1109_TNNLS_2019_2933409
crossref_primary_10_1109_TNNLS_2019_2940466
crossref_primary_10_1109_TFUZZ_2021_3067063
crossref_primary_10_3934_math_2024668
crossref_primary_10_1155_2019_6920372
crossref_primary_10_1002_rnc_5470
crossref_primary_10_1109_ACCESS_2020_3041071
crossref_primary_10_1109_TCYB_2021_3068631
crossref_primary_10_1109_TNNLS_2021_3131412
crossref_primary_10_3934_math_2021046
crossref_primary_10_1002_rnc_7370
crossref_primary_10_1109_TFUZZ_2017_2787156
crossref_primary_10_1109_TNNLS_2019_2928594
crossref_primary_10_1080_00207721_2021_1909775
crossref_primary_10_1177_0142331219834603
crossref_primary_10_1016_j_jfranklin_2019_09_005
crossref_primary_10_1080_00207179_2022_2067787
crossref_primary_10_1007_s12555_018_0210_y
crossref_primary_10_1109_TSMC_2018_2870494
crossref_primary_10_1002_rnc_7650
crossref_primary_10_1080_00207721_2020_1783591
crossref_primary_10_1007_s40815_020_00893_y
Cites_doi 10.1002/acs.2347
10.1016/j.amc.2016.07.019
10.1016/j.automatica.2015.02.023
10.1109/TFUZZ.2016.2567457
10.1016/j.fss.2007.12.022
10.1007/978-1-4612-0017-8
10.1016/j.ins.2016.04.013
10.1109/TNNLS.2015.2471262
10.1109/TFUZZ.2014.2327987
10.1109/TFUZZ.2016.2574913
10.1016/j.sysconle.2013.12.010
10.1109/TCSI.2011.2106090
10.1109/TCYB.2016.2518300
10.1109/TFUZZ.2012.2230005
10.1109/TCYB.2014.2382563
10.1109/TNNLS.2014.2330336
10.1016/j.automatica.2016.10.025
10.1109/TAC.2012.2191835
10.1109/TAC.2011.2158134
10.1109/TFUZZ.2014.2375917
10.1109/TAC.2015.2465091
10.1016/j.sysconle.2013.07.003
10.1109/TAC.2015.2450891
10.1109/TSMC.2016.2586108
10.1016/j.automatica.2015.11.007
10.1109/TCYB.2014.2332356
10.1109/TFUZZ.2012.2211365
10.1016/j.ins.2013.06.007
10.1016/j.jfranklin.2016.02.010
10.1109/TFUZZ.2014.2315661
10.1016/j.fss.2010.09.002
10.1109/TSMCB.2011.2163796
10.1109/TCYB.2014.2365778
10.1109/TCYB.2016.2536628
10.1109/TFUZZ.2015.2486811
10.1109/TAC.2013.2246094
10.1109/TIE.2012.2229679
10.1016/j.automatica.2015.07.022
10.1109/TSMC.2016.2557222
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2017.2690465
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 2644
ExternalDocumentID 28436899
10_1109_TNNLS_2017_2690465
7902216
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61673073; 61673072
  funderid: 10.13039/501100001809
– fundername: Liaoning Provincial Natural Science Foundation, China
  grantid: 201602009
  funderid: 10.13039/501100005047
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-c3d03968a827219d64334ead16cde66719b39f4e9627b56263a1f59268a6a9b63
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Sun Aug 24 03:56:24 EDT 2025
Mon Jun 30 07:03:51 EDT 2025
Mon Jul 21 05:44:58 EDT 2025
Thu Apr 24 23:00:07 EDT 2025
Tue Jul 01 00:27:24 EDT 2025
Wed Aug 27 02:50:21 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-c3d03968a827219d64334ead16cde66719b39f4e9627b56263a1f59268a6a9b63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3680-5594
PMID 28436899
PQID 2174544651
PQPubID 85436
PageCount 7
ParticipantIDs crossref_primary_10_1109_TNNLS_2017_2690465
proquest_journals_2174544651
pubmed_primary_28436899
proquest_miscellaneous_1891455541
crossref_citationtrail_10_1109_TNNLS_2017_2690465
ieee_primary_7902216
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-06-01
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref32
ref10
ref39
ref17
ref38
ref16
ref19
ref18
krsti? (ref1) 1995
ge (ref11) 2001
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
liberzon (ref13) 2003
ref5
ref40
vidyasagar (ref2) 1993
References_xml – ident: ref8
  doi: 10.1002/acs.2347
– ident: ref21
  doi: 10.1016/j.amc.2016.07.019
– ident: ref27
  doi: 10.1016/j.automatica.2015.02.023
– ident: ref35
  doi: 10.1109/TFUZZ.2016.2567457
– ident: ref42
  doi: 10.1016/j.fss.2007.12.022
– year: 2003
  ident: ref13
  publication-title: Switching in Systems and Control
  doi: 10.1007/978-1-4612-0017-8
– ident: ref17
  doi: 10.1016/j.ins.2016.04.013
– ident: ref36
  doi: 10.1109/TNNLS.2015.2471262
– year: 1993
  ident: ref2
  publication-title: Nonlinear Systems Analysis
– ident: ref9
  doi: 10.1109/TFUZZ.2014.2327987
– year: 1995
  ident: ref1
  publication-title: Nonlinear and Adaptive Control Design
– ident: ref37
  doi: 10.1109/TFUZZ.2016.2574913
– ident: ref19
  doi: 10.1016/j.sysconle.2013.12.010
– ident: ref15
  doi: 10.1109/TCSI.2011.2106090
– ident: ref39
  doi: 10.1109/TCYB.2016.2518300
– ident: ref20
  doi: 10.1109/TFUZZ.2012.2230005
– ident: ref22
  doi: 10.1109/TCYB.2014.2382563
– ident: ref6
  doi: 10.1109/TNNLS.2014.2330336
– ident: ref14
  doi: 10.1016/j.automatica.2016.10.025
– ident: ref28
  doi: 10.1109/TAC.2012.2191835
– ident: ref3
  doi: 10.1109/TAC.2011.2158134
– ident: ref41
  doi: 10.1109/TFUZZ.2014.2375917
– ident: ref26
  doi: 10.1109/TAC.2015.2465091
– year: 2001
  ident: ref11
  publication-title: Stable Adaptive Neural Network Control
– ident: ref25
  doi: 10.1016/j.sysconle.2013.07.003
– ident: ref4
  doi: 10.1109/TAC.2015.2450891
– ident: ref29
  doi: 10.1109/TSMC.2016.2586108
– ident: ref24
  doi: 10.1016/j.automatica.2015.11.007
– ident: ref23
  doi: 10.1109/TCYB.2014.2332356
– ident: ref33
  doi: 10.1109/TFUZZ.2012.2211365
– ident: ref18
  doi: 10.1016/j.ins.2013.06.007
– ident: ref5
  doi: 10.1016/j.jfranklin.2016.02.010
– ident: ref31
  doi: 10.1109/TFUZZ.2014.2315661
– ident: ref12
  doi: 10.1016/j.fss.2010.09.002
– ident: ref32
  doi: 10.1109/TSMCB.2011.2163796
– ident: ref10
  doi: 10.1109/TCYB.2014.2365778
– ident: ref40
  doi: 10.1109/TCYB.2016.2536628
– ident: ref7
  doi: 10.1109/TFUZZ.2015.2486811
– ident: ref16
  doi: 10.1109/TAC.2013.2246094
– ident: ref34
  doi: 10.1109/TIE.2012.2229679
– ident: ref38
  doi: 10.1016/j.automatica.2015.07.022
– ident: ref30
  doi: 10.1109/TSMC.2016.2557222
SSID ssj0000605649
Score 2.5895562
Snippet This brief proposes a new neural-network (NN)-based adaptive output tracking control scheme for a class of disturbed multiple-input multiple-output uncertain...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2638
SubjectTerms Adaptive control
Adaptive systems
Artificial neural networks
Basis functions
Control systems design
Coordinate transformations
Design
Feedback control
Genetic transformation
input delay
Liapunov functions
Mass-spring-damper systems
MIMO
MIMO (control systems)
neural network (NN)
Neural networks
Nonlinear control
Nonlinear systems
Radial basis function
Subsystems
switched multiple-input multiple-output (MIMO) nonlinear systems
Switched systems
Switches
Tracking control
Title Adaptive Backstepping-Based Neural Tracking Control for MIMO Nonlinear Switched Systems Subject to Input Delays
URI https://ieeexplore.ieee.org/document/7902216
https://www.ncbi.nlm.nih.gov/pubmed/28436899
https://www.proquest.com/docview/2174544651
https://www.proquest.com/docview/1891455541
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT90wDLeA0y4wxoC3wZRJ3KCPpmnS5ghsCKa9t8NAercqaVI0DbVor0_T-Oux049J05h2qSo1cdPaie3E_hngiPwc7oWIVG5llFYW10HUC5Gvcs_TSigXcLpnc3V1m35ayMUanIy5MN77EHzmp3QbzvJdU65oq-w006hxuFqHdXTculytcT8lRrtcBWsXWyRRIrLFkCMT69Ob-fzzVwrkyqYJ-oOpooo1uDILlQfU198qKdRYed7cDGrncgtmw4C7aJPv01Vrp-XjH1iO__tFL2Gztz_ZWScw27Dm61ewNdR2YP1U34HmzJkHWgrZOWXht55wHO6ic1R6jhGiBxJBPVfSTju76OLdGRrAbHY9-8LmHQCHQYI_v5FcONZDozNcqWjrh7UNu67xpeyDvze_lq_h9vLjzcVV1BdniEoheYtXFwutcpMn6ERqh5aNSFEsuSqdVyrj2gpdpZ6K-1hJmDeGV1In2EMZbZXYhY26qf0-MCMzVKNWGEPg_BaJpPhTrClj4WTJ4wnwgT9F2SOXUwGN-yJ4MLEuAnsLYm_Rs3cCx2Ofhw6345-td4g3Y8ueLRM4GMSg6Kf2siAfThLMHJ_A-_ExTko6aTG1b1bLgueaAOBlim32OvEZaQ9S9-bv73wLL3BkeReNdgAb7Y-VP0S7p7XvgsA_ATua-lQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLfGeIAXBgzGwYAg8Qa9NU2TNo_bYLqDa3ngJt1blbQpQkztxPWE4K_HTj-QECBeqkpN3LR2YjuxfwZ4SX4Od0IEKrUyiGuL6yDqhcDVqeNxLVTlcbqzXC0u43cbudmD11MujHPOB5-5Od36s_yqLXe0VXaSaNQ4XN2Am6j3Je-ztaYdlRAtc-XtXWwTBZFINmOWTKhP1nm--kihXMk8Qo8wVlSzBtdmoVKP-_pLKfkqK383OL3iuTiAbBxyH2_yZb7r7Lz88Rua4_9-0124M1ig7LQXmXuw55r7cDBWd2DDZD-E9rQy17QYsjPKw-8cITl8Cs5Q7VWMMD2QCGq6kvba2Xkf8c7QBGbZMvvA8h6CwyDBb59JMio2gKMzXKto84d1LVs2-FL2xl2Z79sHcHnxdn2-CIbyDEEpJO_wWoVCq9SkEbqRukLbRsQomFyVlVMq4doKXceOyvtYSag3htdSR9hDGW2VeAj7Tdu4R8CMTFCRWmEMwfNbJBLjT7GmDEUlSx7OgI_8KcoBu5xKaFwV3ocJdeHZWxB7i4G9M3g19bnukTv-2fqQeDO1HNgyg-NRDIphcm8L8uIkAc3xGbyYHuO0pLMW07h2ty14qgkCXsbY5qgXn4n2KHWP__zO53Brsc5WxWqZv38Ct3GUaR-bdgz73dede4pWUGefeeH_CW_s_Z0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Backstepping-Based+Neural+Tracking+Control+for+MIMO+Nonlinear+Switched+Systems+Subject+to+Input+Delays&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Niu%2C+Ben&rft.au=Li%2C+Lu&rft.date=2018-06-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=29&rft.issue=6&rft.spage=2638&rft_id=info:doi/10.1109%2FTNNLS.2017.2690465&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon