Event-Triggered Distributed Stochastic Mirror Descent for Convex Optimization
This article is concerned with the distributed convex constrained optimization over a time-varying multiagent network in the non-Euclidean sense, where the bandwidth limitation of the network is considered. To save the network resources so as to reduce the communication costs, we apply an event-trig...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 34; no. 9; pp. 6480 - 6491 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.09.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This article is concerned with the distributed convex constrained optimization over a time-varying multiagent network in the non-Euclidean sense, where the bandwidth limitation of the network is considered. To save the network resources so as to reduce the communication costs, we apply an event-triggered strategy (ETS) in the information interaction of all the agents over the network. Then, an event-triggered distributed stochastic mirror descent (ET-DSMD) algorithm, which utilizes the Bregman divergence as the distance-measuring function, is presented to investigate the multiagent optimization problem subject to a convex constraint set. Moreover, we also analyze the convergence of the developed ET-DSMD algorithm. An upper bound for the convergence result of each agent is established, which is dependent on the trigger threshold. It shows that a sublinear upper bound can be guaranteed if the trigger threshold converges to zero as time goes to infinity. Finally, a distributed logistic regression example is provided to prove the feasibility of the developed ET-DSMD algorithm. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2162-237X 2162-2388 2162-2388 |
DOI: | 10.1109/TNNLS.2021.3137010 |