Event-Triggered Distributed Stochastic Mirror Descent for Convex Optimization
This article is concerned with the distributed convex constrained optimization over a time-varying multiagent network in the non-Euclidean sense, where the bandwidth limitation of the network is considered. To save the network resources so as to reduce the communication costs, we apply an event-trig...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 34; no. 9; pp. 6480 - 6491 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.09.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article is concerned with the distributed convex constrained optimization over a time-varying multiagent network in the non-Euclidean sense, where the bandwidth limitation of the network is considered. To save the network resources so as to reduce the communication costs, we apply an event-triggered strategy (ETS) in the information interaction of all the agents over the network. Then, an event-triggered distributed stochastic mirror descent (ET-DSMD) algorithm, which utilizes the Bregman divergence as the distance-measuring function, is presented to investigate the multiagent optimization problem subject to a convex constraint set. Moreover, we also analyze the convergence of the developed ET-DSMD algorithm. An upper bound for the convergence result of each agent is established, which is dependent on the trigger threshold. It shows that a sublinear upper bound can be guaranteed if the trigger threshold converges to zero as time goes to infinity. Finally, a distributed logistic regression example is provided to prove the feasibility of the developed ET-DSMD algorithm. |
---|---|
AbstractList | This article is concerned with the distributed convex constrained optimization over a time-varying multiagent network in the non-Euclidean sense, where the bandwidth limitation of the network is considered. To save the network resources so as to reduce the communication costs, we apply an event-triggered strategy (ETS) in the information interaction of all the agents over the network. Then, an event-triggered distributed stochastic mirror descent (ET-DSMD) algorithm, which utilizes the Bregman divergence as the distance-measuring function, is presented to investigate the multiagent optimization problem subject to a convex constraint set. Moreover, we also analyze the convergence of the developed ET-DSMD algorithm. An upper bound for the convergence result of each agent is established, which is dependent on the trigger threshold. It shows that a sublinear upper bound can be guaranteed if the trigger threshold converges to zero as time goes to infinity. Finally, a distributed logistic regression example is provided to prove the feasibility of the developed ET-DSMD algorithm. This article is concerned with the distributed convex constrained optimization over a time-varying multiagent network in the non-Euclidean sense, where the bandwidth limitation of the network is considered. To save the network resources so as to reduce the communication costs, we apply an event-triggered strategy (ETS) in the information interaction of all the agents over the network. Then, an event-triggered distributed stochastic mirror descent (ET-DSMD) algorithm, which utilizes the Bregman divergence as the distance-measuring function, is presented to investigate the multiagent optimization problem subject to a convex constraint set. Moreover, we also analyze the convergence of the developed ET-DSMD algorithm. An upper bound for the convergence result of each agent is established, which is dependent on the trigger threshold. It shows that a sublinear upper bound can be guaranteed if the trigger threshold converges to zero as time goes to infinity. Finally, a distributed logistic regression example is provided to prove the feasibility of the developed ET-DSMD algorithm.This article is concerned with the distributed convex constrained optimization over a time-varying multiagent network in the non-Euclidean sense, where the bandwidth limitation of the network is considered. To save the network resources so as to reduce the communication costs, we apply an event-triggered strategy (ETS) in the information interaction of all the agents over the network. Then, an event-triggered distributed stochastic mirror descent (ET-DSMD) algorithm, which utilizes the Bregman divergence as the distance-measuring function, is presented to investigate the multiagent optimization problem subject to a convex constraint set. Moreover, we also analyze the convergence of the developed ET-DSMD algorithm. An upper bound for the convergence result of each agent is established, which is dependent on the trigger threshold. It shows that a sublinear upper bound can be guaranteed if the trigger threshold converges to zero as time goes to infinity. Finally, a distributed logistic regression example is provided to prove the feasibility of the developed ET-DSMD algorithm. |
Author | Xu, Shengyuan Yuan, Deming Xiong, Menghui Zhang, Baoyong Ho, Daniel W. C. |
Author_xml | – sequence: 1 givenname: Menghui orcidid: 0000-0002-0238-6512 surname: Xiong fullname: Xiong, Menghui email: xmhui217@163.com organization: School of Automation, Nanjing University of Science and Technology, Nanjing, China – sequence: 2 givenname: Baoyong orcidid: 0000-0001-5271-2462 surname: Zhang fullname: Zhang, Baoyong email: baoyongzhang@njust.edu.cn organization: School of Automation, Nanjing University of Science and Technology, Nanjing, China – sequence: 3 givenname: Daniel W. C. orcidid: 0000-0001-9799-3712 surname: Ho fullname: Ho, Daniel W. C. email: madaniel@cityu.edu.hk organization: Department of Mathematics, City University of Hong Kong, Hong Kong – sequence: 4 givenname: Deming orcidid: 0000-0003-4371-5105 surname: Yuan fullname: Yuan, Deming email: dmyuan1012@njust.edu.cn organization: School of Automation, Nanjing University of Science and Technology, Nanjing, China – sequence: 5 givenname: Shengyuan orcidid: 0000-0002-3015-0662 surname: Xu fullname: Xu, Shengyuan email: syxu@njust.edu.cn organization: School of Automation, Nanjing University of Science and Technology, Nanjing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34982702$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kbtOAzEQRS0UxPsHQEIr0dBsGD_Wuy5RwktKoCBIdNau7YBRsg62FwFfjyEhBQXTzC3OnRnN3UW91rUGoUMMfYxBnE1ub0f3fQIE9ymmJWDYQDsEc5ITWlW9tS4ft9FBCC-QikPBmdhC25SJipRAdtD44s20MZ94-_RkvNHZ0IbobdPFpO-jU891iFZlY-u989nQBJX4bJr0wLVv5j27W0Q7t591tK7dR5vTehbMwarvoYfLi8ngOh_dXd0Mzke5ogWOuSJCNUwpVSldFlRDA6zkGgjTuihB11jQgnOFNWUaWCUoI1VtOG5ATCkzdA-dLucuvHvtTIhybtNhs1ndGtcFSTjmouCE0ISe_EFfXOfbdJ0kVSFKTKCARB2vqK6ZGy0X3s5r_yF_H5UAsgSUdyF4M10jGOR3IPInEPkdiFwFkkzVH5Oy8edR0dd29r_1aGm1xpj1LsG5gJLTL8cllvc |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1049_cth2_12417 crossref_primary_10_1109_TNSE_2023_3329523 crossref_primary_10_1016_j_jfranklin_2023_09_001 crossref_primary_10_1016_j_neunet_2024_106291 crossref_primary_10_1002_asjc_3467 crossref_primary_10_1016_j_neucom_2024_128952 crossref_primary_10_1109_TSMC_2024_3524646 crossref_primary_10_1007_s11768_023_00186_3 crossref_primary_10_1016_j_jfranklin_2025_107530 crossref_primary_10_1007_s43684_024_00063_z crossref_primary_10_1109_TCNS_2024_3371550 |
Cites_doi | 10.1109/TNNLS.2014.2336806 10.1109/TAC.2018.2800760 10.1016/j.ins.2018.04.055 10.1016/j.automatica.2020.109256 10.1109/TAC.2019.2916985 10.1109/CDC.2008.4738860 10.1109/TNNLS.2016.2549566 10.1016/S0167-6377(02)00231-6 10.1109/LCSYS.2018.2854889 10.1007/s11590-016-1071-z 10.1016/j.sysconle.2016.07.009 10.1109/TCNS.2016.2585305 10.1109/TAC.2017.2743462 10.1109/TAC.2020.2987379 10.1109/TSP.2020.3044843 10.1109/TAC.2010.2049518 10.1109/TCST.2020.3033010 10.1109/MSP.2020.2975210 10.1016/j.acha.2018.05.005 10.1109/TAC.2021.3075669 10.1109/TNNLS.2020.3004723 10.1109/TSP.2010.2045416 10.1016/j.automatica.2015.03.001 10.1109/TAC.2008.2009515 10.1109/TAC.2010.2041686 10.1007/s10994-014-5474-8 10.1016/j.automatica.2017.12.053 10.1016/j.automatica.2017.06.011 10.1017/CBO9781139020411 10.1137/120894464 10.1109/TAC.2011.2161027 10.1137/0803026 10.1109/TSG.2017.2720471 10.1016/j.neucom.2015.12.017 10.1109/TCYB.2017.2771560 10.1016/j.arcontrol.2019.05.006 10.1109/TCYB.2019.2950779 10.1109/JPROC.2020.3007634 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2021.3137010 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 6491 |
ExternalDocumentID | 34982702 10_1109_TNNLS_2021_3137010 9669076 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61922044; 62022042; 62073166 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities grantid: 30919011105 funderid: 10.13039/501100012226 – fundername: Open Project of the Key Laboratory of Advanced Perception and Intelligent Control of High-End Equipment grantid: GDSC202017 – fundername: CityU Strategic Research grantid: 7005511 – fundername: Postgraduate Research and Practice Innovation Program of Jiangsu Province grantid: KYCX20_0292 – fundername: Research Grants Council of the Hong Kong Special Administrative Region, China grantid: CityU 11202819; CityU 11203521 funderid: 10.13039/501100002920 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c351t-c29cb4ccc8cd753d0b0476d024dd570da193566c1d34d04893428ae61b09f34e3 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Fri Jul 11 06:20:30 EDT 2025 Mon Jun 30 03:59:43 EDT 2025 Thu Jan 02 22:54:06 EST 2025 Tue Jul 01 00:27:43 EDT 2025 Thu Apr 24 23:09:53 EDT 2025 Wed Aug 27 02:51:09 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-c29cb4ccc8cd753d0b0476d024dd570da193566c1d34d04893428ae61b09f34e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0238-6512 0000-0001-9799-3712 0000-0001-5271-2462 0000-0002-3015-0662 0000-0003-4371-5105 |
PMID | 34982702 |
PQID | 2859712050 |
PQPubID | 85436 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1109_TNNLS_2021_3137010 pubmed_primary_34982702 proquest_journals_2859712050 crossref_citationtrail_10_1109_TNNLS_2021_3137010 proquest_miscellaneous_2616956223 ieee_primary_9669076 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 Polyak (ref34) 1987 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref9 doi: 10.1109/TNNLS.2014.2336806 – ident: ref30 doi: 10.1109/TAC.2018.2800760 – volume-title: Introduction to Optimization year: 1987 ident: ref34 – ident: ref26 doi: 10.1016/j.ins.2018.04.055 – ident: ref32 doi: 10.1016/j.automatica.2020.109256 – ident: ref31 doi: 10.1109/TAC.2019.2916985 – ident: ref36 doi: 10.1109/CDC.2008.4738860 – ident: ref11 doi: 10.1109/TNNLS.2016.2549566 – ident: ref15 doi: 10.1016/S0167-6377(02)00231-6 – ident: ref16 doi: 10.1109/LCSYS.2018.2854889 – ident: ref24 doi: 10.1007/s11590-016-1071-z – ident: ref10 doi: 10.1016/j.sysconle.2016.07.009 – ident: ref29 doi: 10.1109/TCNS.2016.2585305 – ident: ref19 doi: 10.1109/TAC.2017.2743462 – ident: ref20 doi: 10.1109/TAC.2020.2987379 – ident: ref33 doi: 10.1109/TSP.2020.3044843 – ident: ref27 doi: 10.1109/TAC.2010.2049518 – ident: ref5 doi: 10.1109/TCST.2020.3033010 – ident: ref2 doi: 10.1109/MSP.2020.2975210 – ident: ref21 doi: 10.1016/j.acha.2018.05.005 – ident: ref35 doi: 10.1109/TAC.2021.3075669 – ident: ref39 doi: 10.1109/TNNLS.2020.3004723 – ident: ref3 doi: 10.1109/TSP.2010.2045416 – ident: ref28 doi: 10.1016/j.automatica.2015.03.001 – ident: ref6 doi: 10.1109/TAC.2008.2009515 – ident: ref7 doi: 10.1109/TAC.2010.2041686 – ident: ref18 doi: 10.1007/s10994-014-5474-8 – ident: ref23 doi: 10.1016/j.automatica.2017.12.053 – ident: ref12 doi: 10.1016/j.automatica.2017.06.011 – ident: ref38 doi: 10.1017/CBO9781139020411 – ident: ref22 doi: 10.1137/120894464 – ident: ref8 doi: 10.1109/TAC.2011.2161027 – ident: ref37 doi: 10.1137/0803026 – ident: ref4 doi: 10.1109/TSG.2017.2720471 – ident: ref17 doi: 10.1016/j.neucom.2015.12.017 – ident: ref25 doi: 10.1109/TCYB.2017.2771560 – ident: ref13 doi: 10.1016/j.arcontrol.2019.05.006 – ident: ref1 doi: 10.1109/TCYB.2019.2950779 – ident: ref14 doi: 10.1109/JPROC.2020.3007634 |
SSID | ssj0000605649 |
Score | 2.5225737 |
Snippet | This article is concerned with the distributed convex constrained optimization over a time-varying multiagent network in the non-Euclidean sense, where the... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6480 |
SubjectTerms | Algorithms Bandwidth Bregman divergence Constraints Convergence Convex functions Convexity Distance measurement distributed convex optimization Divergence event-triggered communication strategy Machine learning algorithms Mirrors Multiagent systems Optimization stochastic mirror descent algorithm Stochasticity Upper bound Upper bounds |
Title | Event-Triggered Distributed Stochastic Mirror Descent for Convex Optimization |
URI | https://ieeexplore.ieee.org/document/9669076 https://www.ncbi.nlm.nih.gov/pubmed/34982702 https://www.proquest.com/docview/2859712050 https://www.proquest.com/docview/2616956223 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BB8SFLdDSpVC5EjeaxY4Te31EC2hVdbcHFmlvUWI7tIJu0JKVEL-embykooK4WYqdh2cm_j57HgDH0pnM5aFGQzJ5ENkIW7nOAxUbGSuf-3RIwcmTqRpfRz_m8XwNvnexMN77yvnMD6hZneW7wq5oq-wUoTlyObUO60jc6litbj-FIy5XFdoNhQqDUOp5GyPDzelsOv15hWwwFEhSpUYSsgWbMjJDCsf6Z0mqaqy8DjerZeeyB5P2hWtvk9vBqswG9ulFLsf3ftEH2G7wJzurFWYH1vxiF3ptbQfWmPoeTC7IETKYIXm_oXKe7Jwy7FJxLGxflYX9nVKGZzb5s1wWS3ZeZ4ViCIHZiBzZH9kv_Bn9baI8P8L15cVsNA6a0guBlbEoAxsam0XW2qF1SGgcz3iklcMF3blYc5cKEqWywsnIcUpggzQm9Upk3OQy8vITbCyKhf8MTKTCaY8LJBIXJHOpwT9qqgjXSSe1yPog2tlPbJOXnMpj3CUVP-EmqYSXkPCSRnh9OOnG3NdZOd7svUcz3_VsJr0Ph62Qk8ZwHxLK56dFyGMc9a27jCZH5yjpwhcr7KOEQlqJwKoP-7VydPduderg_8_8AltUr77ewzmEjXK58keIasrsa6XOz88E75E |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbtQwFL0qRYJuKFAeAwWMBCuUqR-JPV6wQJ1WUzozLDqVZhcS2ykVMEFpRjy-hV_h37hOnEggYFeJnaXYTuJ7bZ9j3wfAM2F1bguucCLpIopNjKVCFZFMtEikK1w28s7Js7mcnMavl8lyA773vjDOucb4zA19sbnLt6VZ-6OyPYTmyOVkMKE8dl8_I0G7eHk0Rmk-5_zwYLE_iUIOgciIhNWR4drksTFmZCwic0tzGitpcWeyNlHUZsx_kzTMithSH4kF8XjmJMupLkTsBPZ7Ba4izkh46x3Wn-BQZAKywdecSR5xoZadVw7Ve4v5fHqC_JMzpMVCIe3Zgmsi1iPvAPbLJthkdfk7wG02usNt-NENUWvf8n64rvOh-fZb9Mj_dQxvwo2AsMmrdkrcgg23ug3bXfYKEhazHZgdeFPPaFGdn535hKVk7GMI-_RfWD6pS_Mu8zGsyey8qsqKjNu4VwRBPtn3pvpfyBtcbj8GP9Y7cHopP3UXNlflyt0HwjJmlUMIgNQM6Wqmcc_IpEeuwgrF8gGwTtqpCZHXfQKQD2nDwKhOG2VJvbKkQVkG8KJv86mNO_LP2jte0n3NIOQB7HZKlYal6SL1EQsV4zTBVk_7x7io-JuibOXKNdaRTCJxRug4gHutMvZ9dzr84M_vfALXJ4vZNJ0ezY8fwhZ-pWhN8nZhs67W7hFiuDp_3EwlAm8vW-9-At_MTBY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Event-Triggered+Distributed+Stochastic+Mirror+Descent+for+Convex+Optimization&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Xiong%2C+Menghui&rft.au=Zhang%2C+Baoyong&rft.au=Ho%2C+Daniel+W+C&rft.au=Deming+Yuan&rft.date=2023-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=34&rft.issue=9&rft.spage=6480&rft_id=info:doi/10.1109%2FTNNLS.2021.3137010&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |