Event-Triggered Distributed Stochastic Mirror Descent for Convex Optimization

This article is concerned with the distributed convex constrained optimization over a time-varying multiagent network in the non-Euclidean sense, where the bandwidth limitation of the network is considered. To save the network resources so as to reduce the communication costs, we apply an event-trig...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 34; no. 9; pp. 6480 - 6491
Main Authors Xiong, Menghui, Zhang, Baoyong, Ho, Daniel W. C., Yuan, Deming, Xu, Shengyuan
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article is concerned with the distributed convex constrained optimization over a time-varying multiagent network in the non-Euclidean sense, where the bandwidth limitation of the network is considered. To save the network resources so as to reduce the communication costs, we apply an event-triggered strategy (ETS) in the information interaction of all the agents over the network. Then, an event-triggered distributed stochastic mirror descent (ET-DSMD) algorithm, which utilizes the Bregman divergence as the distance-measuring function, is presented to investigate the multiagent optimization problem subject to a convex constraint set. Moreover, we also analyze the convergence of the developed ET-DSMD algorithm. An upper bound for the convergence result of each agent is established, which is dependent on the trigger threshold. It shows that a sublinear upper bound can be guaranteed if the trigger threshold converges to zero as time goes to infinity. Finally, a distributed logistic regression example is provided to prove the feasibility of the developed ET-DSMD algorithm.
AbstractList This article is concerned with the distributed convex constrained optimization over a time-varying multiagent network in the non-Euclidean sense, where the bandwidth limitation of the network is considered. To save the network resources so as to reduce the communication costs, we apply an event-triggered strategy (ETS) in the information interaction of all the agents over the network. Then, an event-triggered distributed stochastic mirror descent (ET-DSMD) algorithm, which utilizes the Bregman divergence as the distance-measuring function, is presented to investigate the multiagent optimization problem subject to a convex constraint set. Moreover, we also analyze the convergence of the developed ET-DSMD algorithm. An upper bound for the convergence result of each agent is established, which is dependent on the trigger threshold. It shows that a sublinear upper bound can be guaranteed if the trigger threshold converges to zero as time goes to infinity. Finally, a distributed logistic regression example is provided to prove the feasibility of the developed ET-DSMD algorithm.
This article is concerned with the distributed convex constrained optimization over a time-varying multiagent network in the non-Euclidean sense, where the bandwidth limitation of the network is considered. To save the network resources so as to reduce the communication costs, we apply an event-triggered strategy (ETS) in the information interaction of all the agents over the network. Then, an event-triggered distributed stochastic mirror descent (ET-DSMD) algorithm, which utilizes the Bregman divergence as the distance-measuring function, is presented to investigate the multiagent optimization problem subject to a convex constraint set. Moreover, we also analyze the convergence of the developed ET-DSMD algorithm. An upper bound for the convergence result of each agent is established, which is dependent on the trigger threshold. It shows that a sublinear upper bound can be guaranteed if the trigger threshold converges to zero as time goes to infinity. Finally, a distributed logistic regression example is provided to prove the feasibility of the developed ET-DSMD algorithm.This article is concerned with the distributed convex constrained optimization over a time-varying multiagent network in the non-Euclidean sense, where the bandwidth limitation of the network is considered. To save the network resources so as to reduce the communication costs, we apply an event-triggered strategy (ETS) in the information interaction of all the agents over the network. Then, an event-triggered distributed stochastic mirror descent (ET-DSMD) algorithm, which utilizes the Bregman divergence as the distance-measuring function, is presented to investigate the multiagent optimization problem subject to a convex constraint set. Moreover, we also analyze the convergence of the developed ET-DSMD algorithm. An upper bound for the convergence result of each agent is established, which is dependent on the trigger threshold. It shows that a sublinear upper bound can be guaranteed if the trigger threshold converges to zero as time goes to infinity. Finally, a distributed logistic regression example is provided to prove the feasibility of the developed ET-DSMD algorithm.
Author Xu, Shengyuan
Yuan, Deming
Xiong, Menghui
Zhang, Baoyong
Ho, Daniel W. C.
Author_xml – sequence: 1
  givenname: Menghui
  orcidid: 0000-0002-0238-6512
  surname: Xiong
  fullname: Xiong, Menghui
  email: xmhui217@163.com
  organization: School of Automation, Nanjing University of Science and Technology, Nanjing, China
– sequence: 2
  givenname: Baoyong
  orcidid: 0000-0001-5271-2462
  surname: Zhang
  fullname: Zhang, Baoyong
  email: baoyongzhang@njust.edu.cn
  organization: School of Automation, Nanjing University of Science and Technology, Nanjing, China
– sequence: 3
  givenname: Daniel W. C.
  orcidid: 0000-0001-9799-3712
  surname: Ho
  fullname: Ho, Daniel W. C.
  email: madaniel@cityu.edu.hk
  organization: Department of Mathematics, City University of Hong Kong, Hong Kong
– sequence: 4
  givenname: Deming
  orcidid: 0000-0003-4371-5105
  surname: Yuan
  fullname: Yuan, Deming
  email: dmyuan1012@njust.edu.cn
  organization: School of Automation, Nanjing University of Science and Technology, Nanjing, China
– sequence: 5
  givenname: Shengyuan
  orcidid: 0000-0002-3015-0662
  surname: Xu
  fullname: Xu, Shengyuan
  email: syxu@njust.edu.cn
  organization: School of Automation, Nanjing University of Science and Technology, Nanjing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34982702$$D View this record in MEDLINE/PubMed
BookMark eNp9kbtOAzEQRS0UxPsHQEIr0dBsGD_Wuy5RwktKoCBIdNau7YBRsg62FwFfjyEhBQXTzC3OnRnN3UW91rUGoUMMfYxBnE1ub0f3fQIE9ymmJWDYQDsEc5ITWlW9tS4ft9FBCC-QikPBmdhC25SJipRAdtD44s20MZ94-_RkvNHZ0IbobdPFpO-jU891iFZlY-u989nQBJX4bJr0wLVv5j27W0Q7t591tK7dR5vTehbMwarvoYfLi8ngOh_dXd0Mzke5ogWOuSJCNUwpVSldFlRDA6zkGgjTuihB11jQgnOFNWUaWCUoI1VtOG5ATCkzdA-dLucuvHvtTIhybtNhs1ndGtcFSTjmouCE0ISe_EFfXOfbdJ0kVSFKTKCARB2vqK6ZGy0X3s5r_yF_H5UAsgSUdyF4M10jGOR3IPInEPkdiFwFkkzVH5Oy8edR0dd29r_1aGm1xpj1LsG5gJLTL8cllvc
CODEN ITNNAL
CitedBy_id crossref_primary_10_1049_cth2_12417
crossref_primary_10_1109_TNSE_2023_3329523
crossref_primary_10_1016_j_jfranklin_2023_09_001
crossref_primary_10_1016_j_neunet_2024_106291
crossref_primary_10_1002_asjc_3467
crossref_primary_10_1016_j_neucom_2024_128952
crossref_primary_10_1109_TSMC_2024_3524646
crossref_primary_10_1007_s11768_023_00186_3
crossref_primary_10_1016_j_jfranklin_2025_107530
crossref_primary_10_1007_s43684_024_00063_z
crossref_primary_10_1109_TCNS_2024_3371550
Cites_doi 10.1109/TNNLS.2014.2336806
10.1109/TAC.2018.2800760
10.1016/j.ins.2018.04.055
10.1016/j.automatica.2020.109256
10.1109/TAC.2019.2916985
10.1109/CDC.2008.4738860
10.1109/TNNLS.2016.2549566
10.1016/S0167-6377(02)00231-6
10.1109/LCSYS.2018.2854889
10.1007/s11590-016-1071-z
10.1016/j.sysconle.2016.07.009
10.1109/TCNS.2016.2585305
10.1109/TAC.2017.2743462
10.1109/TAC.2020.2987379
10.1109/TSP.2020.3044843
10.1109/TAC.2010.2049518
10.1109/TCST.2020.3033010
10.1109/MSP.2020.2975210
10.1016/j.acha.2018.05.005
10.1109/TAC.2021.3075669
10.1109/TNNLS.2020.3004723
10.1109/TSP.2010.2045416
10.1016/j.automatica.2015.03.001
10.1109/TAC.2008.2009515
10.1109/TAC.2010.2041686
10.1007/s10994-014-5474-8
10.1016/j.automatica.2017.12.053
10.1016/j.automatica.2017.06.011
10.1017/CBO9781139020411
10.1137/120894464
10.1109/TAC.2011.2161027
10.1137/0803026
10.1109/TSG.2017.2720471
10.1016/j.neucom.2015.12.017
10.1109/TCYB.2017.2771560
10.1016/j.arcontrol.2019.05.006
10.1109/TCYB.2019.2950779
10.1109/JPROC.2020.3007634
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2021.3137010
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 6491
ExternalDocumentID 34982702
10_1109_TNNLS_2021_3137010
9669076
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61922044; 62022042; 62073166
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 30919011105
  funderid: 10.13039/501100012226
– fundername: Open Project of the Key Laboratory of Advanced Perception and Intelligent Control of High-End Equipment
  grantid: GDSC202017
– fundername: CityU Strategic Research
  grantid: 7005511
– fundername: Postgraduate Research and Practice Innovation Program of Jiangsu Province
  grantid: KYCX20_0292
– fundername: Research Grants Council of the Hong Kong Special Administrative Region, China
  grantid: CityU 11202819; CityU 11203521
  funderid: 10.13039/501100002920
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-c29cb4ccc8cd753d0b0476d024dd570da193566c1d34d04893428ae61b09f34e3
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Fri Jul 11 06:20:30 EDT 2025
Mon Jun 30 03:59:43 EDT 2025
Thu Jan 02 22:54:06 EST 2025
Tue Jul 01 00:27:43 EDT 2025
Thu Apr 24 23:09:53 EDT 2025
Wed Aug 27 02:51:09 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-c29cb4ccc8cd753d0b0476d024dd570da193566c1d34d04893428ae61b09f34e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0238-6512
0000-0001-9799-3712
0000-0001-5271-2462
0000-0002-3015-0662
0000-0003-4371-5105
PMID 34982702
PQID 2859712050
PQPubID 85436
PageCount 12
ParticipantIDs crossref_primary_10_1109_TNNLS_2021_3137010
pubmed_primary_34982702
proquest_journals_2859712050
crossref_citationtrail_10_1109_TNNLS_2021_3137010
proquest_miscellaneous_2616956223
ieee_primary_9669076
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
Polyak (ref34) 1987
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref9
  doi: 10.1109/TNNLS.2014.2336806
– ident: ref30
  doi: 10.1109/TAC.2018.2800760
– volume-title: Introduction to Optimization
  year: 1987
  ident: ref34
– ident: ref26
  doi: 10.1016/j.ins.2018.04.055
– ident: ref32
  doi: 10.1016/j.automatica.2020.109256
– ident: ref31
  doi: 10.1109/TAC.2019.2916985
– ident: ref36
  doi: 10.1109/CDC.2008.4738860
– ident: ref11
  doi: 10.1109/TNNLS.2016.2549566
– ident: ref15
  doi: 10.1016/S0167-6377(02)00231-6
– ident: ref16
  doi: 10.1109/LCSYS.2018.2854889
– ident: ref24
  doi: 10.1007/s11590-016-1071-z
– ident: ref10
  doi: 10.1016/j.sysconle.2016.07.009
– ident: ref29
  doi: 10.1109/TCNS.2016.2585305
– ident: ref19
  doi: 10.1109/TAC.2017.2743462
– ident: ref20
  doi: 10.1109/TAC.2020.2987379
– ident: ref33
  doi: 10.1109/TSP.2020.3044843
– ident: ref27
  doi: 10.1109/TAC.2010.2049518
– ident: ref5
  doi: 10.1109/TCST.2020.3033010
– ident: ref2
  doi: 10.1109/MSP.2020.2975210
– ident: ref21
  doi: 10.1016/j.acha.2018.05.005
– ident: ref35
  doi: 10.1109/TAC.2021.3075669
– ident: ref39
  doi: 10.1109/TNNLS.2020.3004723
– ident: ref3
  doi: 10.1109/TSP.2010.2045416
– ident: ref28
  doi: 10.1016/j.automatica.2015.03.001
– ident: ref6
  doi: 10.1109/TAC.2008.2009515
– ident: ref7
  doi: 10.1109/TAC.2010.2041686
– ident: ref18
  doi: 10.1007/s10994-014-5474-8
– ident: ref23
  doi: 10.1016/j.automatica.2017.12.053
– ident: ref12
  doi: 10.1016/j.automatica.2017.06.011
– ident: ref38
  doi: 10.1017/CBO9781139020411
– ident: ref22
  doi: 10.1137/120894464
– ident: ref8
  doi: 10.1109/TAC.2011.2161027
– ident: ref37
  doi: 10.1137/0803026
– ident: ref4
  doi: 10.1109/TSG.2017.2720471
– ident: ref17
  doi: 10.1016/j.neucom.2015.12.017
– ident: ref25
  doi: 10.1109/TCYB.2017.2771560
– ident: ref13
  doi: 10.1016/j.arcontrol.2019.05.006
– ident: ref1
  doi: 10.1109/TCYB.2019.2950779
– ident: ref14
  doi: 10.1109/JPROC.2020.3007634
SSID ssj0000605649
Score 2.5225737
Snippet This article is concerned with the distributed convex constrained optimization over a time-varying multiagent network in the non-Euclidean sense, where the...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6480
SubjectTerms Algorithms
Bandwidth
Bregman divergence
Constraints
Convergence
Convex functions
Convexity
Distance measurement
distributed convex optimization
Divergence
event-triggered communication strategy
Machine learning algorithms
Mirrors
Multiagent systems
Optimization
stochastic mirror descent algorithm
Stochasticity
Upper bound
Upper bounds
Title Event-Triggered Distributed Stochastic Mirror Descent for Convex Optimization
URI https://ieeexplore.ieee.org/document/9669076
https://www.ncbi.nlm.nih.gov/pubmed/34982702
https://www.proquest.com/docview/2859712050
https://www.proquest.com/docview/2616956223
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BB8SFLdDSpVC5EjeaxY4Te31EC2hVdbcHFmlvUWI7tIJu0JKVEL-embykooK4WYqdh2cm_j57HgDH0pnM5aFGQzJ5ENkIW7nOAxUbGSuf-3RIwcmTqRpfRz_m8XwNvnexMN77yvnMD6hZneW7wq5oq-wUoTlyObUO60jc6litbj-FIy5XFdoNhQqDUOp5GyPDzelsOv15hWwwFEhSpUYSsgWbMjJDCsf6Z0mqaqy8DjerZeeyB5P2hWtvk9vBqswG9ulFLsf3ftEH2G7wJzurFWYH1vxiF3ptbQfWmPoeTC7IETKYIXm_oXKe7Jwy7FJxLGxflYX9nVKGZzb5s1wWS3ZeZ4ViCIHZiBzZH9kv_Bn9baI8P8L15cVsNA6a0guBlbEoAxsam0XW2qF1SGgcz3iklcMF3blYc5cKEqWywsnIcUpggzQm9Upk3OQy8vITbCyKhf8MTKTCaY8LJBIXJHOpwT9qqgjXSSe1yPog2tlPbJOXnMpj3CUVP-EmqYSXkPCSRnh9OOnG3NdZOd7svUcz3_VsJr0Ph62Qk8ZwHxLK56dFyGMc9a27jCZH5yjpwhcr7KOEQlqJwKoP-7VydPduderg_8_8AltUr77ewzmEjXK58keIasrsa6XOz88E75E
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbtQwFL0qRYJuKFAeAwWMBCuUqR-JPV6wQJ1WUzozLDqVZhcS2ykVMEFpRjy-hV_h37hOnEggYFeJnaXYTuJ7bZ9j3wfAM2F1bguucCLpIopNjKVCFZFMtEikK1w28s7Js7mcnMavl8lyA773vjDOucb4zA19sbnLt6VZ-6OyPYTmyOVkMKE8dl8_I0G7eHk0Rmk-5_zwYLE_iUIOgciIhNWR4drksTFmZCwic0tzGitpcWeyNlHUZsx_kzTMithSH4kF8XjmJMupLkTsBPZ7Ba4izkh46x3Wn-BQZAKywdecSR5xoZadVw7Ve4v5fHqC_JMzpMVCIe3Zgmsi1iPvAPbLJthkdfk7wG02usNt-NENUWvf8n64rvOh-fZb9Mj_dQxvwo2AsMmrdkrcgg23ug3bXfYKEhazHZgdeFPPaFGdn535hKVk7GMI-_RfWD6pS_Mu8zGsyey8qsqKjNu4VwRBPtn3pvpfyBtcbj8GP9Y7cHopP3UXNlflyt0HwjJmlUMIgNQM6Wqmcc_IpEeuwgrF8gGwTtqpCZHXfQKQD2nDwKhOG2VJvbKkQVkG8KJv86mNO_LP2jte0n3NIOQB7HZKlYal6SL1EQsV4zTBVk_7x7io-JuibOXKNdaRTCJxRug4gHutMvZ9dzr84M_vfALXJ4vZNJ0ezY8fwhZ-pWhN8nZhs67W7hFiuDp_3EwlAm8vW-9-At_MTBY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Event-Triggered+Distributed+Stochastic+Mirror+Descent+for+Convex+Optimization&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Xiong%2C+Menghui&rft.au=Zhang%2C+Baoyong&rft.au=Ho%2C+Daniel+W+C&rft.au=Deming+Yuan&rft.date=2023-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=34&rft.issue=9&rft.spage=6480&rft_id=info:doi/10.1109%2FTNNLS.2021.3137010&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon