Distributed Optimal Attitude Synchronization Control of Multiple QUAVs via Adaptive Dynamic Programming

This article proposes a distributed optimal attitude synchronization control strategy for multiple quadrotor unmanned aerial vehicles (QUAVs) through the adaptive dynamic programming (ADP) algorithm. The attitude systems of QUAVs are modeled as affine nominal systems subject to parameter uncertainti...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 35; no. 6; pp. 8053 - 8063
Main Authors Guo, Zijie, Li, Hongyi, Ma, Hui, Meng, Wei
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article proposes a distributed optimal attitude synchronization control strategy for multiple quadrotor unmanned aerial vehicles (QUAVs) through the adaptive dynamic programming (ADP) algorithm. The attitude systems of QUAVs are modeled as affine nominal systems subject to parameter uncertainties and external disturbances. Considering attitude constraints in complex flying environments, a one-to-one mapping technique is utilized to transform the constrained systems into equivalent unconstrained systems. An improved nonquadratic cost function is constructed for each QUAV, which reflects the requirements of robustness and the constraints of control input simultaneously. To overcome the issue that the persistence of excitation (PE) condition is difficult to meet, a novel tuning rule of critic neural network (NN) weights is developed via the concurrent learning (CL) technique. In terms of the Lyapunov stability theorem, the stability of the closed-loop system and the convergence of critic NN weights are proved. Finally, simulation results on multiple QUAVs show the effectiveness of the proposed control strategy.
AbstractList This article proposes a distributed optimal attitude synchronization control strategy for multiple quadrotor unmanned aerial vehicles (QUAVs) through the adaptive dynamic programming (ADP) algorithm. The attitude systems of QUAVs are modeled as affine nominal systems subject to parameter uncertainties and external disturbances. Considering attitude constraints in complex flying environments, a one-to-one mapping technique is utilized to transform the constrained systems into equivalent unconstrained systems. An improved nonquadratic cost function is constructed for each QUAV, which reflects the requirements of robustness and the constraints of control input simultaneously. To overcome the issue that the persistence of excitation (PE) condition is difficult to meet, a novel tuning rule of critic neural network (NN) weights is developed via the concurrent learning (CL) technique. In terms of the Lyapunov stability theorem, the stability of the closed-loop system and the convergence of critic NN weights are proved. Finally, simulation results on multiple QUAVs show the effectiveness of the proposed control strategy.
This article proposes a distributed optimal attitude synchronization control strategy for multiple quadrotor unmanned aerial vehicles (QUAVs) through the adaptive dynamic programming (ADP) algorithm. The attitude systems of QUAVs are modeled as affine nominal systems subject to parameter uncertainties and external disturbances. Considering attitude constraints in complex flying environments, a one-to-one mapping technique is utilized to transform the constrained systems into equivalent unconstrained systems. An improved nonquadratic cost function is constructed for each QUAV, which reflects the requirements of robustness and the constraints of control input simultaneously. To overcome the issue that the persistence of excitation (PE) condition is difficult to meet, a novel tuning rule of critic neural network (NN) weights is developed via the concurrent learning (CL) technique. In terms of the Lyapunov stability theorem, the stability of the closed-loop system and the convergence of critic NN weights are proved. Finally, simulation results on multiple QUAVs show the effectiveness of the proposed control strategy.This article proposes a distributed optimal attitude synchronization control strategy for multiple quadrotor unmanned aerial vehicles (QUAVs) through the adaptive dynamic programming (ADP) algorithm. The attitude systems of QUAVs are modeled as affine nominal systems subject to parameter uncertainties and external disturbances. Considering attitude constraints in complex flying environments, a one-to-one mapping technique is utilized to transform the constrained systems into equivalent unconstrained systems. An improved nonquadratic cost function is constructed for each QUAV, which reflects the requirements of robustness and the constraints of control input simultaneously. To overcome the issue that the persistence of excitation (PE) condition is difficult to meet, a novel tuning rule of critic neural network (NN) weights is developed via the concurrent learning (CL) technique. In terms of the Lyapunov stability theorem, the stability of the closed-loop system and the convergence of critic NN weights are proved. Finally, simulation results on multiple QUAVs show the effectiveness of the proposed control strategy.
Author Guo, Zijie
Ma, Hui
Meng, Wei
Li, Hongyi
Author_xml – sequence: 1
  givenname: Zijie
  surname: Guo
  fullname: Guo, Zijie
  email: guozijie1995@163.com
  organization: School of Automation and the Guangdong Province Key Laboratory of Intelligent Decision and Cooperative Control, Guangdong University of Technology, Guangzhou, China
– sequence: 2
  givenname: Hongyi
  orcidid: 0000-0002-7590-7411
  surname: Li
  fullname: Li, Hongyi
  email: lihongyi2009@gmail.com
  organization: School of Automation and the Guangdong Province Key Laboratory of Intelligent Decision and Cooperative Control, Guangdong University of Technology, Guangzhou, China
– sequence: 3
  givenname: Hui
  orcidid: 0000-0003-1188-9303
  surname: Ma
  fullname: Ma, Hui
  email: huima2016@163.com
  organization: School of Mathematics and Statistics, Guangdong University of Technology, Guangzhou, China
– sequence: 4
  givenname: Wei
  orcidid: 0000-0002-8513-5013
  surname: Meng
  fullname: Meng, Wei
  email: meng0025@ntu.edu.sg
  organization: School of Automation and the Guangdong Province Key Laboratory of Intelligent Decision and Cooperative Control, Guangdong University of Technology, Guangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36446013$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9vEzEQxS1UREvpFwAJWeLCJan_rb0-RinQSqEFtUXcLK93Elzt2qntrRQ-Pdsm5NBD5zJz-L2Z0Xtv0UGIARB6T8mUUqJPby4vF9dTRhibcsYEYfoVOmJUsgnjdX2wn9XvQ3SS8x0ZS5JKCv0GHXIphCSUH6HVmc8l-WYo0OKrdfG97fCsFF-GFvD1Jrg_KQb_1xYfA57HUFLscFzi70NX_LoD_PN29ivjB2_xrLXjggfAZ5tge-_wjxRXyfa9D6t36PXSdhlOdv0Y3X79cjM_nyyuvl3MZ4uJ4xUtk6YVErhSiqjWOaob2WpaOaWAUQDREmEt0bJlsrFWEV1ZwRtlOVCnLeOcH6PP273rFO8HyMX0PjvoOhsgDtkwJXhFaknUiH56ht7FIYXxO8OJFIpWnOiR-rijhqaH1qzTaFHamP8WjgDbAi7FnBMs9wgl5jEq8xSVeYzK7KIaRfUzkfPlyeOSrO9eln7YSj0A7G9pLaWoJf8Hz4Cg7Q
CODEN ITNNAL
CitedBy_id crossref_primary_10_1007_s10489_024_05631_7
crossref_primary_10_1177_01423312241265531
crossref_primary_10_1051_sands_2023024
crossref_primary_10_1080_00207721_2024_2392836
crossref_primary_10_1016_j_ins_2023_119116
crossref_primary_10_1007_s11431_024_2694_x
crossref_primary_10_1080_00207721_2023_2272220
crossref_primary_10_1080_00207179_2024_2435029
crossref_primary_10_1177_09596518241272850
crossref_primary_10_1007_s11431_024_2780_3
crossref_primary_10_1080_00207721_2024_2329739
crossref_primary_10_3389_fnbot_2025_1549414
crossref_primary_10_1016_j_neucom_2024_128135
crossref_primary_10_1016_j_neunet_2024_106737
crossref_primary_10_1109_TASE_2024_3467382
crossref_primary_10_1109_TCYB_2025_3530456
crossref_primary_10_1002_rnc_7601
crossref_primary_10_1002_rnc_7138
crossref_primary_10_1002_rnc_7545
crossref_primary_10_1080_00207721_2024_2393699
crossref_primary_10_1002_rnc_7631
crossref_primary_10_1177_09596518241286422
crossref_primary_10_1007_s11071_024_09785_4
crossref_primary_10_1109_TII_2024_3435512
Cites_doi 10.1109/taes.2022.3205566
10.1109/TNNLS.2020.2984944
10.1109/tsmc.2022.3179444
10.1109/TII.2019.2900121
10.1109/TCYB.2019.2926298
10.1016/j.nahs.2019.03.003
10.1109/TCYB.2018.2875559
10.1109/TCYB.2018.2856747
10.1109/TMECH.2020.3044289
10.1016/j.automatica.2017.03.033
10.1109/TCYB.2020.2972748
10.1109/TCYB.2020.3037321
10.1109/TFUZZ.2020.2999746
10.1109/TITS.2021.3093025
10.1109/TIE.2021.3137619
10.1109/TIE.2019.2914573
10.1109/tcyb.2022.3172127
10.1109/TNNLS.2020.3003950
10.1007/s11424-021-0160-y
10.1016/j.ast.2019.04.003
10.1109/TNNLS.2018.2832025
10.1002/rnc.4044
10.1109/TIE.2021.3057015
10.1016/j.automatica.2021.110030
10.1109/TNNLS.2020.2976787
10.1109/TCSII.2021.3106694
10.1016/j.neucom.2018.08.092
10.1007/s11432-020-3128-2
10.1002/rnc.4465
10.1002/rnc.5403
10.1109/tnnls.2022.3203074
10.1016/j.automatica.2008.11.017
10.1109/TCSI.2021.3116670
10.1109/TCYB.2020.2982168
10.1109/JAS.2022.105413
10.1109/TAC.2020.3029342
10.1080/00207179.2013.848292
10.1109/TCNS.2020.2976271
10.1109/TFUZZ.2014.2310238
10.1109/JAS.2017.7510679
10.1002/rnc.4831
10.1007/s11431-022-2126-7
10.1109/TCYB.2021.3063481
10.1109/TNNLS.2020.3023711
10.1109/TIE.2019.2937065
10.1109/TNNLS.2019.2900510
10.1109/TNNLS.2020.2967871
10.1016/j.fss.2022.03.005
10.1016/j.isatra.2020.10.043
10.1109/TCYB.2015.2417170
10.1109/TNNLS.2019.2954983
10.1109/tnnls.2022.3166531
10.1109/TII.2019.2939263
10.1109/TCYB.2019.2944761
10.1109/TFUZZ.2021.3130201
10.1109/TSMC.2020.2997559
10.1016/j.automatica.2014.05.011
10.1109/TNNLS.2018.2876130
10.1109/TII.2020.3026336
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2022.3224029
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 8063
ExternalDocumentID 36446013
10_1109_TNNLS_2022_3224029
9966486
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Special Project for Research and Development in Key areas of Guangdong Province; Key Area Research and Development Program of Guangdong Province
  grantid: 2021B0101410005
  funderid: 10.13039/501100015956
– fundername: Local Innovative and Research Teams Project of Guangdong Special Support Program
  grantid: 2019BT02X353
– fundername: National Natural Science Foundation of China
  grantid: 62121004; 62033003; 62203119; U1911401; U21A20476
  funderid: 10.13039/501100001809
– fundername: China National Postdoctoral Program
  grantid: BX20220095; 2022M710826
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-bd46e377707dcc19b6d915c77e21ee4d04aa096d26baa7095a43b7a3e1c9a2333
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Thu Jul 10 18:22:49 EDT 2025
Mon Jun 30 04:18:45 EDT 2025
Thu Jul 24 03:25:35 EDT 2025
Tue Jul 01 00:27:48 EDT 2025
Thu Apr 24 23:06:46 EDT 2025
Wed Aug 27 02:07:28 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-bd46e377707dcc19b6d915c77e21ee4d04aa096d26baa7095a43b7a3e1c9a2333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8513-5013
0000-0002-7590-7411
0000-0003-1188-9303
PMID 36446013
PQID 3064715309
PQPubID 85436
PageCount 11
ParticipantIDs crossref_primary_10_1109_TNNLS_2022_3224029
proquest_miscellaneous_2743508607
pubmed_primary_36446013
crossref_citationtrail_10_1109_TNNLS_2022_3224029
ieee_primary_9966486
proquest_journals_3064715309
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref5
  doi: 10.1109/taes.2022.3205566
– ident: ref7
  doi: 10.1109/TNNLS.2020.2984944
– ident: ref13
  doi: 10.1109/tsmc.2022.3179444
– ident: ref12
  doi: 10.1109/TII.2019.2900121
– ident: ref23
  doi: 10.1109/TCYB.2019.2926298
– ident: ref41
  doi: 10.1016/j.nahs.2019.03.003
– ident: ref20
  doi: 10.1109/TCYB.2018.2875559
– ident: ref30
  doi: 10.1109/TCYB.2018.2856747
– ident: ref22
  doi: 10.1109/TMECH.2020.3044289
– ident: ref31
  doi: 10.1016/j.automatica.2017.03.033
– ident: ref52
  doi: 10.1109/TCYB.2020.2972748
– ident: ref55
  doi: 10.1109/TCYB.2020.3037321
– ident: ref27
  doi: 10.1109/TFUZZ.2020.2999746
– ident: ref53
  doi: 10.1109/TITS.2021.3093025
– ident: ref16
  doi: 10.1109/TIE.2021.3137619
– ident: ref24
  doi: 10.1109/TIE.2019.2914573
– ident: ref11
  doi: 10.1109/tcyb.2022.3172127
– ident: ref10
  doi: 10.1109/TNNLS.2020.3003950
– ident: ref26
  doi: 10.1007/s11424-021-0160-y
– ident: ref50
  doi: 10.1016/j.ast.2019.04.003
– ident: ref40
  doi: 10.1109/TNNLS.2018.2832025
– ident: ref49
  doi: 10.1002/rnc.4044
– ident: ref9
  doi: 10.1109/TIE.2021.3057015
– ident: ref17
  doi: 10.1016/j.automatica.2021.110030
– ident: ref44
  doi: 10.1109/TNNLS.2020.2976787
– ident: ref3
  doi: 10.1109/TCSII.2021.3106694
– ident: ref58
  doi: 10.1016/j.neucom.2018.08.092
– ident: ref59
  doi: 10.1007/s11432-020-3128-2
– ident: ref33
  doi: 10.1002/rnc.4465
– ident: ref43
  doi: 10.1002/rnc.5403
– ident: ref8
  doi: 10.1109/tnnls.2022.3203074
– ident: ref25
  doi: 10.1016/j.automatica.2008.11.017
– ident: ref6
  doi: 10.1109/TCSI.2021.3116670
– ident: ref35
  doi: 10.1109/TCYB.2020.2982168
– ident: ref4
  doi: 10.1109/JAS.2022.105413
– ident: ref36
  doi: 10.1109/TAC.2020.3029342
– ident: ref56
  doi: 10.1080/00207179.2013.848292
– ident: ref21
  doi: 10.1109/TCNS.2020.2976271
– ident: ref39
  doi: 10.1109/TFUZZ.2014.2310238
– ident: ref18
  doi: 10.1109/JAS.2017.7510679
– ident: ref48
  doi: 10.1002/rnc.4831
– ident: ref14
  doi: 10.1007/s11431-022-2126-7
– ident: ref29
  doi: 10.1109/TCYB.2021.3063481
– ident: ref42
  doi: 10.1109/TNNLS.2020.3023711
– ident: ref19
  doi: 10.1109/TIE.2019.2937065
– ident: ref38
  doi: 10.1109/TNNLS.2019.2900510
– ident: ref47
  doi: 10.1109/TNNLS.2020.2967871
– ident: ref34
  doi: 10.1016/j.fss.2022.03.005
– ident: ref46
  doi: 10.1016/j.isatra.2020.10.043
– ident: ref51
  doi: 10.1109/TCYB.2015.2417170
– ident: ref54
  doi: 10.1109/TNNLS.2019.2954983
– ident: ref2
  doi: 10.1109/tnnls.2022.3166531
– ident: ref28
  doi: 10.1109/TII.2019.2939263
– ident: ref32
  doi: 10.1109/TCYB.2019.2944761
– ident: ref37
  doi: 10.1109/TFUZZ.2021.3130201
– ident: ref45
  doi: 10.1109/TSMC.2020.2997559
– ident: ref57
  doi: 10.1016/j.automatica.2014.05.011
– ident: ref1
  doi: 10.1109/TNNLS.2018.2876130
– ident: ref15
  doi: 10.1109/TII.2020.3026336
SSID ssj0000605649
Score 2.5871189
Snippet This article proposes a distributed optimal attitude synchronization control strategy for multiple quadrotor unmanned aerial vehicles (QUAVs) through the...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8053
SubjectTerms Adaptive control
Adaptive dynamic programming (ADP)
Algorithms
attitude constraints
Attitude control
Attitudes
Closed loops
concurrent learning (CL)
Constraints
Control systems
Cost function
distributed optimal synchronization control
Dynamic programming
Feedback control
Neural networks
Parameter uncertainty
Robustness
Safety
Stability
Synchronism
Synchronization
Uncertainty
Unmanned aerial vehicles
Unmanned helicopters
Title Distributed Optimal Attitude Synchronization Control of Multiple QUAVs via Adaptive Dynamic Programming
URI https://ieeexplore.ieee.org/document/9966486
https://www.ncbi.nlm.nih.gov/pubmed/36446013
https://www.proquest.com/docview/3064715309
https://www.proquest.com/docview/2743508607
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanrhQoDwWCjISN8g2fm-OVUtVIXZBaov2FvkxQRVstmKzSOXXM7aTSCBA3CLFzkMz4_nG_maGkFfKSM9Z7BEWGijkLDSFQ9SAFt8oZ52CWWo2MV_o8yv5bqmWO-TNmAsDAIl8BtN4mc7yw9pv41bZUcTmcqZ3yS4GbjlXa9xPKRGX64R2OdO84MIshxyZsjq6XCzeX2A0yPlURCfGY7VQgVgA4xHxi0tKPVb-DjeT2znbJ_PhgzPb5Mt027mp__FbLcf__aN75G6PP-lxVpj7ZAfaB2R_6O1Ae1M_IJ9PY0Xd2AwLAv2A68oqzuoisSAAvbhtfaqqm5M46UkmvNN1Q-c9Q5EiVv60od-vLT0O9iauqvT0trWra08_ZlLYCt3mQ3J19vby5LzomzIUXijWFS5IDcIYU5rgPaucDhVT3hjgDECGUlqLYVHg2llrEMBZKZyxApivLBdCPCJ77bqFJ4QqCN40TXDglJRWu5lE9WBepcNRySeEDXKpfV-xPDbO-FqnyKWs6iTWOoq17sU6Ia_HOTe5Xsc_Rx9EmYwje3FMyOEg_ro36U0dQzWD_qHEWS_H22iM8YTFtrDebmoM8QUiXl2aCXmc1WZ89qBtT__8zmfkDn6ZzCy0Q7LXfdvCc8Q7nXuRFP0nkjr6Og
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9NAEB6V8gAvtFAogRYWiTdw6r288WPVQwGSgNQU5c3ay6iCOBVxkMqv7-z6kECAeLPkXR_6Zna-2Z0D4LVUwjIaeoS50idi5MrEIGtAjS-l0Ub6UWw2MZ1l40vxfiEXW_C2z4Xx3sfgMz8Ml_Es363sJmyVHQVuLkbZHbiLdl_SJlur31FJkZlnke8ymrGEcbXosmTS_Gg-m00u0B9kbMiDGWOhXihHNoAeCf_FKMUuK38nnNHwnO_AtPvkJt7k63BTm6H9-Vs1x__9p1140DJQctyIzEPY8tUj2Om6O5BW2ffgy2moqRvaYXlHPuLKsgyz6hBa4Dy5uKlsrKvbpHGSkybknaxKMm1jFAmy5c9r8uNKk2Onr8O6Sk5vKr28suRTExa2RMP5GC7Pz-Yn46Rty5BYLmmdGCcyz5VSqXLW0txkLqfSKuUZ9V64VGiNjpFjmdFaIYXTghuluac214xz_gS2q1XlnwKR3llVls54I4XQmRkJFBBqZTweFWwAtMOlsG3N8tA641sRfZc0LyKsRYC1aGEdwJt-znVTseOfo_cCJv3IFo4BHHTwF61Sr4vgrCm0ECnOetXfRnUMZyy68qvNukAnnyPnzVI1gP1GbPpnd9L27M_vfAn3xvPppJi8m314DvfxK0UTk3YA2_X3jT9E9lObF1HobwHDjv2D
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Optimal+Attitude+Synchronization+Control+of+Multiple+QUAVs+via+Adaptive+Dynamic+Programming&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Guo%2C+Zijie&rft.au=Li%2C+Hongyi&rft.au=Ma%2C+Hui&rft.au=Meng%2C+Wei&rft.date=2024-06-01&rft.eissn=2162-2388&rft.volume=PP&rft_id=info:doi/10.1109%2FTNNLS.2022.3224029&rft_id=info%3Apmid%2F36446013&rft.externalDocID=36446013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon