Distributed Optimal Attitude Synchronization Control of Multiple QUAVs via Adaptive Dynamic Programming
This article proposes a distributed optimal attitude synchronization control strategy for multiple quadrotor unmanned aerial vehicles (QUAVs) through the adaptive dynamic programming (ADP) algorithm. The attitude systems of QUAVs are modeled as affine nominal systems subject to parameter uncertainti...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 35; no. 6; pp. 8053 - 8063 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.06.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article proposes a distributed optimal attitude synchronization control strategy for multiple quadrotor unmanned aerial vehicles (QUAVs) through the adaptive dynamic programming (ADP) algorithm. The attitude systems of QUAVs are modeled as affine nominal systems subject to parameter uncertainties and external disturbances. Considering attitude constraints in complex flying environments, a one-to-one mapping technique is utilized to transform the constrained systems into equivalent unconstrained systems. An improved nonquadratic cost function is constructed for each QUAV, which reflects the requirements of robustness and the constraints of control input simultaneously. To overcome the issue that the persistence of excitation (PE) condition is difficult to meet, a novel tuning rule of critic neural network (NN) weights is developed via the concurrent learning (CL) technique. In terms of the Lyapunov stability theorem, the stability of the closed-loop system and the convergence of critic NN weights are proved. Finally, simulation results on multiple QUAVs show the effectiveness of the proposed control strategy. |
---|---|
AbstractList | This article proposes a distributed optimal attitude synchronization control strategy for multiple quadrotor unmanned aerial vehicles (QUAVs) through the adaptive dynamic programming (ADP) algorithm. The attitude systems of QUAVs are modeled as affine nominal systems subject to parameter uncertainties and external disturbances. Considering attitude constraints in complex flying environments, a one-to-one mapping technique is utilized to transform the constrained systems into equivalent unconstrained systems. An improved nonquadratic cost function is constructed for each QUAV, which reflects the requirements of robustness and the constraints of control input simultaneously. To overcome the issue that the persistence of excitation (PE) condition is difficult to meet, a novel tuning rule of critic neural network (NN) weights is developed via the concurrent learning (CL) technique. In terms of the Lyapunov stability theorem, the stability of the closed-loop system and the convergence of critic NN weights are proved. Finally, simulation results on multiple QUAVs show the effectiveness of the proposed control strategy. This article proposes a distributed optimal attitude synchronization control strategy for multiple quadrotor unmanned aerial vehicles (QUAVs) through the adaptive dynamic programming (ADP) algorithm. The attitude systems of QUAVs are modeled as affine nominal systems subject to parameter uncertainties and external disturbances. Considering attitude constraints in complex flying environments, a one-to-one mapping technique is utilized to transform the constrained systems into equivalent unconstrained systems. An improved nonquadratic cost function is constructed for each QUAV, which reflects the requirements of robustness and the constraints of control input simultaneously. To overcome the issue that the persistence of excitation (PE) condition is difficult to meet, a novel tuning rule of critic neural network (NN) weights is developed via the concurrent learning (CL) technique. In terms of the Lyapunov stability theorem, the stability of the closed-loop system and the convergence of critic NN weights are proved. Finally, simulation results on multiple QUAVs show the effectiveness of the proposed control strategy.This article proposes a distributed optimal attitude synchronization control strategy for multiple quadrotor unmanned aerial vehicles (QUAVs) through the adaptive dynamic programming (ADP) algorithm. The attitude systems of QUAVs are modeled as affine nominal systems subject to parameter uncertainties and external disturbances. Considering attitude constraints in complex flying environments, a one-to-one mapping technique is utilized to transform the constrained systems into equivalent unconstrained systems. An improved nonquadratic cost function is constructed for each QUAV, which reflects the requirements of robustness and the constraints of control input simultaneously. To overcome the issue that the persistence of excitation (PE) condition is difficult to meet, a novel tuning rule of critic neural network (NN) weights is developed via the concurrent learning (CL) technique. In terms of the Lyapunov stability theorem, the stability of the closed-loop system and the convergence of critic NN weights are proved. Finally, simulation results on multiple QUAVs show the effectiveness of the proposed control strategy. |
Author | Guo, Zijie Ma, Hui Meng, Wei Li, Hongyi |
Author_xml | – sequence: 1 givenname: Zijie surname: Guo fullname: Guo, Zijie email: guozijie1995@163.com organization: School of Automation and the Guangdong Province Key Laboratory of Intelligent Decision and Cooperative Control, Guangdong University of Technology, Guangzhou, China – sequence: 2 givenname: Hongyi orcidid: 0000-0002-7590-7411 surname: Li fullname: Li, Hongyi email: lihongyi2009@gmail.com organization: School of Automation and the Guangdong Province Key Laboratory of Intelligent Decision and Cooperative Control, Guangdong University of Technology, Guangzhou, China – sequence: 3 givenname: Hui orcidid: 0000-0003-1188-9303 surname: Ma fullname: Ma, Hui email: huima2016@163.com organization: School of Mathematics and Statistics, Guangdong University of Technology, Guangzhou, China – sequence: 4 givenname: Wei orcidid: 0000-0002-8513-5013 surname: Meng fullname: Meng, Wei email: meng0025@ntu.edu.sg organization: School of Automation and the Guangdong Province Key Laboratory of Intelligent Decision and Cooperative Control, Guangdong University of Technology, Guangzhou, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36446013$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9vEzEQxS1UREvpFwAJWeLCJan_rb0-RinQSqEFtUXcLK93Elzt2qntrRQ-Pdsm5NBD5zJz-L2Z0Xtv0UGIARB6T8mUUqJPby4vF9dTRhibcsYEYfoVOmJUsgnjdX2wn9XvQ3SS8x0ZS5JKCv0GHXIphCSUH6HVmc8l-WYo0OKrdfG97fCsFF-GFvD1Jrg_KQb_1xYfA57HUFLscFzi70NX_LoD_PN29ivjB2_xrLXjggfAZ5tge-_wjxRXyfa9D6t36PXSdhlOdv0Y3X79cjM_nyyuvl3MZ4uJ4xUtk6YVErhSiqjWOaob2WpaOaWAUQDREmEt0bJlsrFWEV1ZwRtlOVCnLeOcH6PP273rFO8HyMX0PjvoOhsgDtkwJXhFaknUiH56ht7FIYXxO8OJFIpWnOiR-rijhqaH1qzTaFHamP8WjgDbAi7FnBMs9wgl5jEq8xSVeYzK7KIaRfUzkfPlyeOSrO9eln7YSj0A7G9pLaWoJf8Hz4Cg7Q |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1007_s10489_024_05631_7 crossref_primary_10_1177_01423312241265531 crossref_primary_10_1051_sands_2023024 crossref_primary_10_1080_00207721_2024_2392836 crossref_primary_10_1016_j_ins_2023_119116 crossref_primary_10_1007_s11431_024_2694_x crossref_primary_10_1080_00207721_2023_2272220 crossref_primary_10_1080_00207179_2024_2435029 crossref_primary_10_1177_09596518241272850 crossref_primary_10_1007_s11431_024_2780_3 crossref_primary_10_1080_00207721_2024_2329739 crossref_primary_10_3389_fnbot_2025_1549414 crossref_primary_10_1016_j_neucom_2024_128135 crossref_primary_10_1016_j_neunet_2024_106737 crossref_primary_10_1109_TASE_2024_3467382 crossref_primary_10_1109_TCYB_2025_3530456 crossref_primary_10_1002_rnc_7601 crossref_primary_10_1002_rnc_7138 crossref_primary_10_1002_rnc_7545 crossref_primary_10_1080_00207721_2024_2393699 crossref_primary_10_1002_rnc_7631 crossref_primary_10_1177_09596518241286422 crossref_primary_10_1007_s11071_024_09785_4 crossref_primary_10_1109_TII_2024_3435512 |
Cites_doi | 10.1109/taes.2022.3205566 10.1109/TNNLS.2020.2984944 10.1109/tsmc.2022.3179444 10.1109/TII.2019.2900121 10.1109/TCYB.2019.2926298 10.1016/j.nahs.2019.03.003 10.1109/TCYB.2018.2875559 10.1109/TCYB.2018.2856747 10.1109/TMECH.2020.3044289 10.1016/j.automatica.2017.03.033 10.1109/TCYB.2020.2972748 10.1109/TCYB.2020.3037321 10.1109/TFUZZ.2020.2999746 10.1109/TITS.2021.3093025 10.1109/TIE.2021.3137619 10.1109/TIE.2019.2914573 10.1109/tcyb.2022.3172127 10.1109/TNNLS.2020.3003950 10.1007/s11424-021-0160-y 10.1016/j.ast.2019.04.003 10.1109/TNNLS.2018.2832025 10.1002/rnc.4044 10.1109/TIE.2021.3057015 10.1016/j.automatica.2021.110030 10.1109/TNNLS.2020.2976787 10.1109/TCSII.2021.3106694 10.1016/j.neucom.2018.08.092 10.1007/s11432-020-3128-2 10.1002/rnc.4465 10.1002/rnc.5403 10.1109/tnnls.2022.3203074 10.1016/j.automatica.2008.11.017 10.1109/TCSI.2021.3116670 10.1109/TCYB.2020.2982168 10.1109/JAS.2022.105413 10.1109/TAC.2020.3029342 10.1080/00207179.2013.848292 10.1109/TCNS.2020.2976271 10.1109/TFUZZ.2014.2310238 10.1109/JAS.2017.7510679 10.1002/rnc.4831 10.1007/s11431-022-2126-7 10.1109/TCYB.2021.3063481 10.1109/TNNLS.2020.3023711 10.1109/TIE.2019.2937065 10.1109/TNNLS.2019.2900510 10.1109/TNNLS.2020.2967871 10.1016/j.fss.2022.03.005 10.1016/j.isatra.2020.10.043 10.1109/TCYB.2015.2417170 10.1109/TNNLS.2019.2954983 10.1109/tnnls.2022.3166531 10.1109/TII.2019.2939263 10.1109/TCYB.2019.2944761 10.1109/TFUZZ.2021.3130201 10.1109/TSMC.2020.2997559 10.1016/j.automatica.2014.05.011 10.1109/TNNLS.2018.2876130 10.1109/TII.2020.3026336 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2022.3224029 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 8063 |
ExternalDocumentID | 36446013 10_1109_TNNLS_2022_3224029 9966486 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Special Project for Research and Development in Key areas of Guangdong Province; Key Area Research and Development Program of Guangdong Province grantid: 2021B0101410005 funderid: 10.13039/501100015956 – fundername: Local Innovative and Research Teams Project of Guangdong Special Support Program grantid: 2019BT02X353 – fundername: National Natural Science Foundation of China grantid: 62121004; 62033003; 62203119; U1911401; U21A20476 funderid: 10.13039/501100001809 – fundername: China National Postdoctoral Program grantid: BX20220095; 2022M710826 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c351t-bd46e377707dcc19b6d915c77e21ee4d04aa096d26baa7095a43b7a3e1c9a2333 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Thu Jul 10 18:22:49 EDT 2025 Mon Jun 30 04:18:45 EDT 2025 Thu Jul 24 03:25:35 EDT 2025 Tue Jul 01 00:27:48 EDT 2025 Thu Apr 24 23:06:46 EDT 2025 Wed Aug 27 02:07:28 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-bd46e377707dcc19b6d915c77e21ee4d04aa096d26baa7095a43b7a3e1c9a2333 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8513-5013 0000-0002-7590-7411 0000-0003-1188-9303 |
PMID | 36446013 |
PQID | 3064715309 |
PQPubID | 85436 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1109_TNNLS_2022_3224029 proquest_miscellaneous_2743508607 pubmed_primary_36446013 crossref_citationtrail_10_1109_TNNLS_2022_3224029 ieee_primary_9966486 proquest_journals_3064715309 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref5 doi: 10.1109/taes.2022.3205566 – ident: ref7 doi: 10.1109/TNNLS.2020.2984944 – ident: ref13 doi: 10.1109/tsmc.2022.3179444 – ident: ref12 doi: 10.1109/TII.2019.2900121 – ident: ref23 doi: 10.1109/TCYB.2019.2926298 – ident: ref41 doi: 10.1016/j.nahs.2019.03.003 – ident: ref20 doi: 10.1109/TCYB.2018.2875559 – ident: ref30 doi: 10.1109/TCYB.2018.2856747 – ident: ref22 doi: 10.1109/TMECH.2020.3044289 – ident: ref31 doi: 10.1016/j.automatica.2017.03.033 – ident: ref52 doi: 10.1109/TCYB.2020.2972748 – ident: ref55 doi: 10.1109/TCYB.2020.3037321 – ident: ref27 doi: 10.1109/TFUZZ.2020.2999746 – ident: ref53 doi: 10.1109/TITS.2021.3093025 – ident: ref16 doi: 10.1109/TIE.2021.3137619 – ident: ref24 doi: 10.1109/TIE.2019.2914573 – ident: ref11 doi: 10.1109/tcyb.2022.3172127 – ident: ref10 doi: 10.1109/TNNLS.2020.3003950 – ident: ref26 doi: 10.1007/s11424-021-0160-y – ident: ref50 doi: 10.1016/j.ast.2019.04.003 – ident: ref40 doi: 10.1109/TNNLS.2018.2832025 – ident: ref49 doi: 10.1002/rnc.4044 – ident: ref9 doi: 10.1109/TIE.2021.3057015 – ident: ref17 doi: 10.1016/j.automatica.2021.110030 – ident: ref44 doi: 10.1109/TNNLS.2020.2976787 – ident: ref3 doi: 10.1109/TCSII.2021.3106694 – ident: ref58 doi: 10.1016/j.neucom.2018.08.092 – ident: ref59 doi: 10.1007/s11432-020-3128-2 – ident: ref33 doi: 10.1002/rnc.4465 – ident: ref43 doi: 10.1002/rnc.5403 – ident: ref8 doi: 10.1109/tnnls.2022.3203074 – ident: ref25 doi: 10.1016/j.automatica.2008.11.017 – ident: ref6 doi: 10.1109/TCSI.2021.3116670 – ident: ref35 doi: 10.1109/TCYB.2020.2982168 – ident: ref4 doi: 10.1109/JAS.2022.105413 – ident: ref36 doi: 10.1109/TAC.2020.3029342 – ident: ref56 doi: 10.1080/00207179.2013.848292 – ident: ref21 doi: 10.1109/TCNS.2020.2976271 – ident: ref39 doi: 10.1109/TFUZZ.2014.2310238 – ident: ref18 doi: 10.1109/JAS.2017.7510679 – ident: ref48 doi: 10.1002/rnc.4831 – ident: ref14 doi: 10.1007/s11431-022-2126-7 – ident: ref29 doi: 10.1109/TCYB.2021.3063481 – ident: ref42 doi: 10.1109/TNNLS.2020.3023711 – ident: ref19 doi: 10.1109/TIE.2019.2937065 – ident: ref38 doi: 10.1109/TNNLS.2019.2900510 – ident: ref47 doi: 10.1109/TNNLS.2020.2967871 – ident: ref34 doi: 10.1016/j.fss.2022.03.005 – ident: ref46 doi: 10.1016/j.isatra.2020.10.043 – ident: ref51 doi: 10.1109/TCYB.2015.2417170 – ident: ref54 doi: 10.1109/TNNLS.2019.2954983 – ident: ref2 doi: 10.1109/tnnls.2022.3166531 – ident: ref28 doi: 10.1109/TII.2019.2939263 – ident: ref32 doi: 10.1109/TCYB.2019.2944761 – ident: ref37 doi: 10.1109/TFUZZ.2021.3130201 – ident: ref45 doi: 10.1109/TSMC.2020.2997559 – ident: ref57 doi: 10.1016/j.automatica.2014.05.011 – ident: ref1 doi: 10.1109/TNNLS.2018.2876130 – ident: ref15 doi: 10.1109/TII.2020.3026336 |
SSID | ssj0000605649 |
Score | 2.5871189 |
Snippet | This article proposes a distributed optimal attitude synchronization control strategy for multiple quadrotor unmanned aerial vehicles (QUAVs) through the... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8053 |
SubjectTerms | Adaptive control Adaptive dynamic programming (ADP) Algorithms attitude constraints Attitude control Attitudes Closed loops concurrent learning (CL) Constraints Control systems Cost function distributed optimal synchronization control Dynamic programming Feedback control Neural networks Parameter uncertainty Robustness Safety Stability Synchronism Synchronization Uncertainty Unmanned aerial vehicles Unmanned helicopters |
Title | Distributed Optimal Attitude Synchronization Control of Multiple QUAVs via Adaptive Dynamic Programming |
URI | https://ieeexplore.ieee.org/document/9966486 https://www.ncbi.nlm.nih.gov/pubmed/36446013 https://www.proquest.com/docview/3064715309 https://www.proquest.com/docview/2743508607 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanrhQoDwWCjISN8g2fm-OVUtVIXZBaov2FvkxQRVstmKzSOXXM7aTSCBA3CLFzkMz4_nG_maGkFfKSM9Z7BEWGijkLDSFQ9SAFt8oZ52CWWo2MV_o8yv5bqmWO-TNmAsDAIl8BtN4mc7yw9pv41bZUcTmcqZ3yS4GbjlXa9xPKRGX64R2OdO84MIshxyZsjq6XCzeX2A0yPlURCfGY7VQgVgA4xHxi0tKPVb-DjeT2znbJ_PhgzPb5Mt027mp__FbLcf__aN75G6PP-lxVpj7ZAfaB2R_6O1Ae1M_IJ9PY0Xd2AwLAv2A68oqzuoisSAAvbhtfaqqm5M46UkmvNN1Q-c9Q5EiVv60od-vLT0O9iauqvT0trWra08_ZlLYCt3mQ3J19vby5LzomzIUXijWFS5IDcIYU5rgPaucDhVT3hjgDECGUlqLYVHg2llrEMBZKZyxApivLBdCPCJ77bqFJ4QqCN40TXDglJRWu5lE9WBepcNRySeEDXKpfV-xPDbO-FqnyKWs6iTWOoq17sU6Ia_HOTe5Xsc_Rx9EmYwje3FMyOEg_ro36U0dQzWD_qHEWS_H22iM8YTFtrDebmoM8QUiXl2aCXmc1WZ89qBtT__8zmfkDn6ZzCy0Q7LXfdvCc8Q7nXuRFP0nkjr6Og |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9NAEB6V8gAvtFAogRYWiTdw6r288WPVQwGSgNQU5c3ay6iCOBVxkMqv7-z6kECAeLPkXR_6Zna-2Z0D4LVUwjIaeoS50idi5MrEIGtAjS-l0Ub6UWw2MZ1l40vxfiEXW_C2z4Xx3sfgMz8Ml_Es363sJmyVHQVuLkbZHbiLdl_SJlur31FJkZlnke8ymrGEcbXosmTS_Gg-m00u0B9kbMiDGWOhXihHNoAeCf_FKMUuK38nnNHwnO_AtPvkJt7k63BTm6H9-Vs1x__9p1140DJQctyIzEPY8tUj2Om6O5BW2ffgy2moqRvaYXlHPuLKsgyz6hBa4Dy5uKlsrKvbpHGSkybknaxKMm1jFAmy5c9r8uNKk2Onr8O6Sk5vKr28suRTExa2RMP5GC7Pz-Yn46Rty5BYLmmdGCcyz5VSqXLW0txkLqfSKuUZ9V64VGiNjpFjmdFaIYXTghuluac214xz_gS2q1XlnwKR3llVls54I4XQmRkJFBBqZTweFWwAtMOlsG3N8tA641sRfZc0LyKsRYC1aGEdwJt-znVTseOfo_cCJv3IFo4BHHTwF61Sr4vgrCm0ECnOetXfRnUMZyy68qvNukAnnyPnzVI1gP1GbPpnd9L27M_vfAn3xvPppJi8m314DvfxK0UTk3YA2_X3jT9E9lObF1HobwHDjv2D |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Optimal+Attitude+Synchronization+Control+of+Multiple+QUAVs+via+Adaptive+Dynamic+Programming&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Guo%2C+Zijie&rft.au=Li%2C+Hongyi&rft.au=Ma%2C+Hui&rft.au=Meng%2C+Wei&rft.date=2024-06-01&rft.eissn=2162-2388&rft.volume=PP&rft_id=info:doi/10.1109%2FTNNLS.2022.3224029&rft_id=info%3Apmid%2F36446013&rft.externalDocID=36446013 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |