Viewport-Based CNN: A Multi-Task Approach for Assessing 360° Video Quality

For 360° video, the existing visual quality assessment (VQA) approaches are designed based on either the whole frames or the cropped patches, ignoring the fact that subjects can only access viewports. When watching 360° video, subjects select viewports through head movement (HM) and then fixate on a...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 44; no. 4; pp. 2198 - 2215
Main Authors Xu, Mai, Jiang, Lai, Li, Chen, Wang, Zulin, Tao, Xiaoming
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0162-8828
1939-3539
2160-9292
1939-3539
DOI10.1109/TPAMI.2020.3028509

Cover

Abstract For 360° video, the existing visual quality assessment (VQA) approaches are designed based on either the whole frames or the cropped patches, ignoring the fact that subjects can only access viewports. When watching 360° video, subjects select viewports through head movement (HM) and then fixate on attractive regions within the viewports through eye movement (EM). Therefore, this paper proposes a two-staged multi-task approach for viewport-based VQA on 360° video. Specifically, we first establish a large-scale VQA dataset of 360° video, called VQA-ODV, which collects the subjective quality scores and the HM and EM data on 600 video sequences. By mining our dataset, we find that the subjective quality of 360° video is related to camera motion, viewport positions and saliency within viewports. Accordingly, we propose a viewport-based convolutional neural network (V-CNN) approach for VQA on 360° video, which has a novel multi-task architecture composed of a viewport proposal network (VP-net) and viewport quality network (VQ-net). The VP-net handles the auxiliary tasks of camera motion detection and viewport proposal, while the VQ-net accomplishes the auxiliary task of viewport saliency prediction and the main task of VQA. The experiments validate that our V-CNN approach significantly advances state-of-the-art VQA performance on 360° video and it is also effective in the three auxiliary tasks.
AbstractList For 360° video, the existing visual quality assessment (VQA) approaches are designed based on either the whole frames or the cropped patches, ignoring the fact that subjects can only access viewports. When watching 360° video, subjects select viewports through head movement (HM) and then fixate on attractive regions within the viewports through eye movement (EM). Therefore, this paper proposes a two-staged multi-task approach for viewport-based VQA on 360° video. Specifically, we first establish a large-scale VQA dataset of 360° video, called VQA-ODV, which collects the subjective quality scores and the HM and EM data on 600 video sequences. By mining our dataset, we find that the subjective quality of 360° video is related to camera motion, viewport positions and saliency within viewports. Accordingly, we propose a viewport-based convolutional neural network (V-CNN) approach for VQA on 360° video, which has a novel multi-task architecture composed of a viewport proposal network (VP-net) and viewport quality network (VQ-net). The VP-net handles the auxiliary tasks of camera motion detection and viewport proposal, while the VQ-net accomplishes the auxiliary task of viewport saliency prediction and the main task of VQA. The experiments validate that our V-CNN approach significantly advances state-of-the-art VQA performance on 360° video and it is also effective in the three auxiliary tasks.
For 360° video, the existing visual quality assessment (VQA) approaches are designed based on either the whole frames or the cropped patches, ignoring the fact that subjects can only access viewports. When watching 360° video, subjects select viewports through head movement (HM) and then fixate on attractive regions within the viewports through eye movement (EM). Therefore, this paper proposes a two-staged multi-task approach for viewport-based VQA on 360° video. Specifically, we first establish a large-scale VQA dataset of 360° video, called VQA-ODV, which collects the subjective quality scores and the HM and EM data on 600 video sequences. By mining our dataset, we find that the subjective quality of 360° video is related to camera motion, viewport positions and saliency within viewports. Accordingly, we propose a viewport-based convolutional neural network (V-CNN) approach for VQA on 360° video, which has a novel multi-task architecture composed of a viewport proposal network (VP-net) and viewport quality network (VQ-net). The VP-net handles the auxiliary tasks of camera motion detection and viewport proposal, while the VQ-net accomplishes the auxiliary task of viewport saliency prediction and the main task of VQA. The experiments validate that our V-CNN approach significantly advances state-of-the-art VQA performance on 360° video and it is also effective in the three auxiliary tasks.For 360° video, the existing visual quality assessment (VQA) approaches are designed based on either the whole frames or the cropped patches, ignoring the fact that subjects can only access viewports. When watching 360° video, subjects select viewports through head movement (HM) and then fixate on attractive regions within the viewports through eye movement (EM). Therefore, this paper proposes a two-staged multi-task approach for viewport-based VQA on 360° video. Specifically, we first establish a large-scale VQA dataset of 360° video, called VQA-ODV, which collects the subjective quality scores and the HM and EM data on 600 video sequences. By mining our dataset, we find that the subjective quality of 360° video is related to camera motion, viewport positions and saliency within viewports. Accordingly, we propose a viewport-based convolutional neural network (V-CNN) approach for VQA on 360° video, which has a novel multi-task architecture composed of a viewport proposal network (VP-net) and viewport quality network (VQ-net). The VP-net handles the auxiliary tasks of camera motion detection and viewport proposal, while the VQ-net accomplishes the auxiliary task of viewport saliency prediction and the main task of VQA. The experiments validate that our V-CNN approach significantly advances state-of-the-art VQA performance on 360° video and it is also effective in the three auxiliary tasks.
Author Li, Chen
Wang, Zulin
Xu, Mai
Tao, Xiaoming
Jiang, Lai
Author_xml – sequence: 1
  givenname: Mai
  orcidid: 0000-0002-0277-3301
  surname: Xu
  fullname: Xu, Mai
  email: MaiXu@buaa.edu.cn
  organization: School of Electronic and Information Engineering, Beihang University, Beijing, China
– sequence: 2
  givenname: Lai
  surname: Jiang
  fullname: Jiang, Lai
  email: jianglai.china@buaa.edu.cn
  organization: School of Electronic and Information Engineering, Beihang University, Beijing, China
– sequence: 3
  givenname: Chen
  orcidid: 0000-0002-9085-2922
  surname: Li
  fullname: Li, Chen
  email: jnlichen123@buaa.edu.cn
  organization: School of Electronic and Information Engineering, Beihang University, Beijing, China
– sequence: 4
  givenname: Zulin
  surname: Wang
  fullname: Wang, Zulin
  email: wzulin@buaa.edu.cn
  organization: School of Electronic and Information Engineering, Beihang University, Beijing, China
– sequence: 5
  givenname: Xiaoming
  orcidid: 0000-0002-8763-9338
  surname: Tao
  fullname: Tao, Xiaoming
  email: taoxm@mail.tsinghua.edu.cn
  organization: Tsinghua University, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33017289$$D View this record in MEDLINE/PubMed
BookMark eNp9kctuFDEQRS2UiEwCPwASssSGTU_s8ptdMwIS5QFIQ7aW2-MGh572xO4Wyl_xDXwZncwkiyxY1eacqqu6h2ivT31A6BUlc0qJOV5-rS9O50CAzBkBLYh5hmZAJakMGNhDM0IlVFqDPkCHpVwTQrkg7Dk6YIxQBdrM0NlVDL83KQ_VB1fCCi8uL9_jGl-M3RCrpSu_cL3Z5OT8T9ymjOtSQimx_4GZJH__4Ku4Cgl_G10Xh9sXaL91XQkvd_MIff_0cbk4qc6_fD5d1OeVZ4IOVeOZEoJp4AaYWkkCkmsGyjVAG6-EA9GKYAIPQbWMayUbo5yghvlWeSbZEXq33TsFuxlDGew6Fh-6zvUhjcUC51pzaTib0LdP0Os05n5KZ0EyoYgRQk3Umx01Nuuwspsc1y7f2oc3TQBsAZ9TKTm0jwgl9q4Le9-FvevC7rqYJP1E8nFwQ0z9kF3s_q--3qoxhPB4ywAFSTT7By5ikvo
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1109_TCSVT_2024_3469180
crossref_primary_10_1109_TPAMI_2021_3117019
crossref_primary_10_1109_TPAMI_2024_3510793
crossref_primary_10_1109_TPAMI_2024_3350049
crossref_primary_10_1145_3551641
crossref_primary_10_1109_TCSVT_2021_3112120
crossref_primary_10_1109_TCSVT_2022_3179575
crossref_primary_10_1016_j_cmpb_2023_107747
crossref_primary_10_1109_TMM_2021_3121875
crossref_primary_10_1109_TBC_2023_3342707
crossref_primary_10_1109_TIP_2022_3226417
crossref_primary_10_1109_TCSVT_2022_3172135
crossref_primary_10_1109_TCSVT_2021_3095843
crossref_primary_10_1109_TCSVT_2024_3419910
crossref_primary_10_1109_TCSVT_2021_3126590
crossref_primary_10_1007_s10489_024_05421_1
crossref_primary_10_1109_JSTSP_2023_3295597
crossref_primary_10_1109_TIP_2022_3177127
crossref_primary_10_1109_JBHI_2021_3119519
crossref_primary_10_1109_TIM_2024_3485447
Cites_doi 10.1109/TIP.2016.2628583
10.1007/978-3-030-01261-8_1
10.1109/ISM.2016.0126
10.1109/CCST.2012.6393587
10.1007/978-3-030-01264-9_37
10.7551/mitpress/7503.003.0073
10.1145/2536853.2536903
10.1109/TPAMI.2015.2473844
10.1109/CVPR.2019.00300
10.1109/CVPR.2018.00154
10.1109/CVPR.2019.01042
10.1109/ICMEW.2018.8551543
10.1109/CVPR.2018.00559
10.1109/TIP.2015.2487833
10.1109/ICMEW.2017.8026231
10.1109/ICIEA.2012.6360868
10.1145/3204949.3208139
10.1109/TIP.2017.2774045
10.1109/TIP.2017.2760518
10.1145/3083187.3083215
10.1007/s00041-003-0018-9
10.1109/TPAMI.2018.2858783
10.1109/ICSIMA.2017.8312035
10.3133/pp1395
10.1109/TPAMI.2016.2577031
10.1109/APSIPA.2017.8282085
10.1007/978-3-030-01246-5_14
10.1109/PCS.2018.8456255
10.3390/s19173632
10.1117/12.2235885
10.1109/ICIP.2014.7025220
10.1109/TCSVT.2018.2826074
10.1109/ICME.2017.8019351
10.1109/CVPR.2008.4587715
10.1109/ICASSP.2018.8461317
10.1109/CC.2015.7275256
10.1109/TCSVT.2004.839989
10.1109/ISMAR.2015.12
10.1016/j.image.2018.03.006
10.1109/ICUFN.2017.7993736
10.1145/3083187.3083210
10.1109/TIP.2010.2042111
10.1109/ICCVW.2017.275
10.1109/ICMEW.2017.8026226
10.1177/2041669517708205
10.1016/j.patcog.2020.107234
10.1109/TVCG.2018.2793599
10.1145/1854229.1854272
10.1109/VCIP.2017.8305084
10.1109/CVPR.2017.179
10.1109/TBC.2018.2811627
10.1109/CVPR.2018.00514
10.1109/TCSVT.2016.2589878
10.1145/3107616
10.1109/TIP.2003.819861
10.1109/TCSVT.2018.2886277
10.1007/s13398-014-0173-7.2
10.1109/QoMEX.2017.7965659
10.1145/3240508.3240581
10.1109/VCIP.2017.8305133
10.1109/CVPR.2017.213
10.1109/LSP.2017.2720693
10.1109/ICCV.2015.169
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2020.3028509
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Technology Research Database

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 2215
ExternalDocumentID 33017289
10_1109_TPAMI_2020_3028509
9212608
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Beijing Natural Science Foundation
  grantid: JQ20020
– fundername: NSFC
  grantid: 61876013; 61922009; 61573037
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
5VS
9M8
AAYOK
AAYXX
ABFSI
ADRHT
AETEA
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
FA8
H~9
IBMZZ
ICLAB
IFJZH
RIG
RNI
RZB
VH1
XJT
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c351t-bc375538249237d602648327ab21bc75a25f5e9e4ee7f34876b97a5193cf7c363
IEDL.DBID RIE
ISSN 0162-8828
1939-3539
IngestDate Fri Jul 11 04:51:43 EDT 2025
Mon Jun 30 03:59:03 EDT 2025
Mon Jul 21 06:04:58 EDT 2025
Tue Jul 01 03:18:25 EDT 2025
Thu Apr 24 22:54:49 EDT 2025
Wed Aug 27 02:49:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-bc375538249237d602648327ab21bc75a25f5e9e4ee7f34876b97a5193cf7c363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0277-3301
0000-0002-9085-2922
0000-0002-8763-9338
PMID 33017289
PQID 2635709557
PQPubID 85458
PageCount 18
ParticipantIDs ieee_primary_9212608
crossref_primary_10_1109_TPAMI_2020_3028509
pubmed_primary_33017289
proquest_journals_2635709557
crossref_citationtrail_10_1109_TPAMI_2020_3028509
proquest_miscellaneous_2448846943
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
der Auwera (ref38) 2016
ref54
Davies (ref68) 2016
ref17
(ref45) 2002
ref16
ref19
ref18
ref51
ref50
Li (ref12)
ref46
ref48
ref47
ref42
ref41
(ref33) 2016
ref43
ref49
ref8
ref7
Boyce (ref9) 2016
ref4
ref3
ref6
ref5
ref35
ref34
(ref44) 2019
ref37
ref36
ref31
ref75
ref30
ref74
ref77
Ye (ref2) 2017; 16
ref32
ref76
Cohen (ref60)
Kells (ref63) 1940
ref39
Maas (ref57)
Choi (ref1) 2017
ref71
ref70
ref73
ref72
ref24
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref22
ref66
ref21
ref65
ref28
ref27
Lopes (ref13)
ref29
Kuzyakov (ref40) 2016
ref62
ref61
References_xml – ident: ref70
  doi: 10.1109/TIP.2016.2628583
– ident: ref56
  doi: 10.1007/978-3-030-01261-8_1
– ident: ref41
  doi: 10.1109/ISM.2016.0126
– ident: ref51
  doi: 10.1109/CCST.2012.6393587
– ident: ref67
  doi: 10.1007/978-3-030-01264-9_37
– year: 2016
  ident: ref40
  article-title: Next-generation video encoding techniques for 360 video and VR
– ident: ref74
  doi: 10.7551/mitpress/7503.003.0073
– ident: ref49
  doi: 10.1145/2536853.2536903
– ident: ref73
  doi: 10.1109/TPAMI.2015.2473844
– volume: 16
  year: 2017
  ident: ref2
  article-title: Algorithm descriptions of projection format conversion and video quality metrics in 360Lib
  publication-title: Joint Video Exploration Team ITU-T SG 5th Meeting; Document: JVET E1003_v3
– ident: ref62
  doi: 10.1109/CVPR.2019.00300
– ident: ref30
  doi: 10.1109/CVPR.2018.00154
– ident: ref8
  doi: 10.1109/CVPR.2019.01042
– ident: ref72
  doi: 10.1109/ICMEW.2018.8551543
– ident: ref29
  doi: 10.1109/CVPR.2018.00559
– year: 2019
  ident: ref44
  article-title: The VR eye tracking accessory Droolon F1.
– ident: ref53
  doi: 10.1109/TIP.2015.2487833
– ident: ref54
  doi: 10.1109/ICMEW.2017.8026231
– ident: ref52
  doi: 10.1109/ICIEA.2012.6360868
– ident: ref21
  doi: 10.1145/3204949.3208139
– ident: ref23
  doi: 10.1109/TIP.2017.2774045
– ident: ref26
  doi: 10.1109/TIP.2017.2760518
– year: 2002
  ident: ref45
  article-title: Methodology for the subjective assessment of the quality of television pictures
  publication-title: Int. Telecommun. Union
– ident: ref18
  doi: 10.1145/3083187.3083215
– volume-title: Plane and Spherical Trigonometry With Tables by Lyman M. Kells, Willis F. Kern, James R. Bland
  year: 1940
  ident: ref63
– ident: ref59
  doi: 10.1007/s00041-003-0018-9
– ident: ref20
  doi: 10.1109/TPAMI.2018.2858783
– ident: ref50
  doi: 10.1109/ICSIMA.2017.8312035
– ident: ref64
  doi: 10.3133/pp1395
– year: 2016
  ident: ref68
  article-title: Oculus Rift vs. HTC Vive vs. PlayStation VR
– ident: ref61
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref31
  doi: 10.1109/APSIPA.2017.8282085
– volume-title: Proc. Appl. Digit. Image Process. XLI
  ident: ref13
  article-title: Subjective and objective quality assessment of omnidirectional video
– ident: ref25
  doi: 10.1007/978-3-030-01246-5_14
– volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref57
  article-title: Rectifier nonlinearities improve neural network acoustic models
– ident: ref11
  doi: 10.1109/PCS.2018.8456255
– ident: ref43
  doi: 10.3390/s19173632
– ident: ref4
  doi: 10.1117/12.2235885
– ident: ref55
  doi: 10.1109/ICIP.2014.7025220
– ident: ref35
  doi: 10.1109/TCSVT.2018.2826074
– ident: ref15
  doi: 10.1109/ICME.2017.8019351
– volume-title: Proc. Int. Conf. Learn. Representations
  ident: ref60
  article-title: Spherical CNNs
– ident: ref75
  doi: 10.1109/CVPR.2008.4587715
– ident: ref6
  doi: 10.1109/ICASSP.2018.8461317
– ident: ref37
  doi: 10.1109/CC.2015.7275256
– ident: ref39
  doi: 10.1109/TCSVT.2004.839989
– ident: ref3
  doi: 10.1109/ISMAR.2015.12
– ident: ref71
  doi: 10.1016/j.image.2018.03.006
– ident: ref10
  doi: 10.1109/ICUFN.2017.7993736
– ident: ref19
  doi: 10.1145/3083187.3083210
– ident: ref47
  doi: 10.1109/TIP.2010.2042111
– ident: ref32
  doi: 10.1109/ICCVW.2017.275
– ident: ref14
  doi: 10.1109/ICMEW.2017.8026226
– ident: ref42
  doi: 10.1177/2041669517708205
– year: 2016
  ident: ref38
  article-title: AHG8: Truncated square pyramid projection (TSP) for 360 video
  publication-title: Joint Video Exploration Team ITU T SG 4th Meeting
– ident: ref77
  doi: 10.1016/j.patcog.2020.107234
– ident: ref28
  doi: 10.1109/TVCG.2018.2793599
– ident: ref48
  doi: 10.1145/1854229.1854272
– ident: ref22
  doi: 10.1109/VCIP.2017.8305084
– ident: ref58
  doi: 10.1109/CVPR.2017.179
– start-page: 258
  volume-title: Proc. IEEE Int. Conf. Ubi-Media Comput.
  ident: ref12
  article-title: Evaluation of H. 265 and H. 264 for panoramas video under different map projections
– ident: ref17
  doi: 10.1109/TBC.2018.2811627
– year: 2016
  ident: ref33
  article-title: 1857.9–01-n0001 output document
– ident: ref76
  doi: 10.1109/CVPR.2018.00514
– ident: ref34
  doi: 10.1109/TCSVT.2016.2589878
– ident: ref36
  doi: 10.1145/3107616
– year: 2016
  ident: ref9
  article-title: Common test conditions and evaluation procedures for 360° video coding
  publication-title: Joint Video Exploration Team ITU-T SG 7th Meeting; Document: JVET G1030v2
– ident: ref46
  doi: 10.1109/TIP.2003.819861
– ident: ref16
  doi: 10.1109/TCSVT.2018.2886277
– ident: ref65
  doi: 10.1007/s13398-014-0173-7.2
– year: 2017
  ident: ref1
  publication-title: Information Technology–Coded Representation of Immersive Media (MPEG-I)–Part 2: Omnidirectional Media Format
– ident: ref27
  doi: 10.1109/QoMEX.2017.7965659
– ident: ref7
  doi: 10.1145/3240508.3240581
– ident: ref69
  doi: 10.1109/VCIP.2017.8305133
– ident: ref24
  doi: 10.1109/CVPR.2017.213
– ident: ref5
  doi: 10.1109/LSP.2017.2720693
– ident: ref66
  doi: 10.1109/ICCV.2015.169
SSID ssj0014503
Score 2.547836
Snippet For 360° video, the existing visual quality assessment (VQA) approaches are designed based on either the whole frames or the cropped patches, ignoring the fact...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2198
SubjectTerms 360° video
Algorithms
Artificial neural networks
Cameras
CNN
Datasets
Eye Movements
Head movement
Head Movements
Humans
Motion
Motion detection
Motion perception
Neural Networks, Computer
Proposals
Quality assessment
Salience
Task analysis
Two dimensional displays
viewport
Visual quality assessment
Visualization
Title Viewport-Based CNN: A Multi-Task Approach for Assessing 360° Video Quality
URI https://ieeexplore.ieee.org/document/9212608
https://www.ncbi.nlm.nih.gov/pubmed/33017289
https://www.proquest.com/docview/2635709557
https://www.proquest.com/docview/2448846943
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB0BBwQHtrKUTUbiBi5tE8c2t4JALGrFoSBuUeJMpKqoRbQVgq_iG_gyxs4iQIC4RYqdOJqx573Y8wZgP4hkrBvG4yKtp9xXScIVhXEulFESla266g7IdoKLW__qXtxPwWGZC4OI7vAZ1uyl28tPhmZif5UdaVpnA5vZO01uluVqlTsGvnBVkAnB0AwnGlEkyNT1Ufem1b4kKtgkhkrhlELkHMwSj7elmfSXeOQKrPyONV3MOV-EdjHa7KhJvzYZxzXz-k3I8b-fswQLOfhkrcxblmEKByuwWBR2YPk8X4H5TyqFFbi-6-Gzhen8hEJewk47nWPWYi51l3ejUZ-1cmFyRgiYZdvI1JN5Qf39jd31EhyyTKvjZRVuz8-6pxc8r8HAjScaYx4bshYtilZY0JOJLVjl0yIgo7jZiI0UUVOkAjX6iDL1iP0EsZaRhYUmlcYLvDWYGQwHuAEsVegHyhiljPBTE-lUJET4YiSMZYiFVqFRWCI0uUC5rZPxEDqiUtehM2RoDRnmhqzCQdnnMZPn-LN1xVqhbJkboArbhcHDfAaPQivSI60-H41rr7xNc89uqEQDHE6oDXFbwm_a96qwnjlK-ezCvzZ_fucWzDVtIoU7A7QNM-OnCe4QvBnHu86vPwCtku_V
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED5VIG3sgQ46WKHbjLS3zaVt7NjeW4eGWqDVHkrFW5Q4FwkVtdPaCsFfxd_AX8bZ-aExbdPeIsVOHJ3t-76c7zuAj2GsEtO1AZdZJ-NCpynX5Ma51FYr1K7qqj8gOw4Hl-LsSl7V4HOVC4OI_vAZtt2lj-WnC7t2v8qODe2zocvs3SS_L2SerVXFDIT0dZAJw9AaJyJRpsh0zPHke380JDLYI45KDpWc5Ba8ICbvijOZZx7Jl1j5O9r0Xue0DqNyvPlhk1l7vUra9v43Kcf__aDXsF3AT9bP58sO1HC-C_WytAMrVvouvPpFp7AB59NrvHVAnX8lp5eyk_H4C-szn7zLJ_FyxvqFNDkjDMzyQDL1ZEHYeXxg0-sUFyxX67h7A5en3yYnA15UYeA2kN0VTyzZi7ZFJy0YqNSVrBK0Dag46XUTq2Tck5lEgwJRZQHxnzAxKnbA0GbKBmGwBxvzxRzfAss0ilBbq7WVIrOxyWRKlC9BQlmWeGgTuqUlIltIlLtKGTeRpyodE3lDRs6QUWHIJnyq-vzIBTr-2brhrFC1LAzQhFZp8KhYw8vIyfQop9BH4zqqbtPqcyGVeI6LNbUhdksIzoigCfv5RKmeXc6vgz-_8wO8HExGF9HFcHx-CFs9l1bhTwS1YGP1c43vCOyskvd-jj8BZqbzIg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Viewport-Based+CNN%3A+A+Multi-Task+Approach+for+Assessing+360%C2%B0+Video+Quality&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Xu%2C+Mai&rft.au=Jiang%2C+Lai&rft.au=Li%2C+Chen&rft.au=Wang%2C+Zulin&rft.date=2022-04-01&rft.issn=1939-3539&rft.eissn=1939-3539&rft.volume=44&rft.issue=4&rft.spage=2198&rft_id=info:doi/10.1109%2FTPAMI.2020.3028509&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon