Viewport-Based CNN: A Multi-Task Approach for Assessing 360° Video Quality
For 360° video, the existing visual quality assessment (VQA) approaches are designed based on either the whole frames or the cropped patches, ignoring the fact that subjects can only access viewports. When watching 360° video, subjects select viewports through head movement (HM) and then fixate on a...
Saved in:
Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 44; no. 4; pp. 2198 - 2215 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0162-8828 1939-3539 2160-9292 1939-3539 |
DOI | 10.1109/TPAMI.2020.3028509 |
Cover
Abstract | For 360° video, the existing visual quality assessment (VQA) approaches are designed based on either the whole frames or the cropped patches, ignoring the fact that subjects can only access viewports. When watching 360° video, subjects select viewports through head movement (HM) and then fixate on attractive regions within the viewports through eye movement (EM). Therefore, this paper proposes a two-staged multi-task approach for viewport-based VQA on 360° video. Specifically, we first establish a large-scale VQA dataset of 360° video, called VQA-ODV, which collects the subjective quality scores and the HM and EM data on 600 video sequences. By mining our dataset, we find that the subjective quality of 360° video is related to camera motion, viewport positions and saliency within viewports. Accordingly, we propose a viewport-based convolutional neural network (V-CNN) approach for VQA on 360° video, which has a novel multi-task architecture composed of a viewport proposal network (VP-net) and viewport quality network (VQ-net). The VP-net handles the auxiliary tasks of camera motion detection and viewport proposal, while the VQ-net accomplishes the auxiliary task of viewport saliency prediction and the main task of VQA. The experiments validate that our V-CNN approach significantly advances state-of-the-art VQA performance on 360° video and it is also effective in the three auxiliary tasks. |
---|---|
AbstractList | For 360° video, the existing visual quality assessment (VQA) approaches are designed based on either the whole frames or the cropped patches, ignoring the fact that subjects can only access viewports. When watching 360° video, subjects select viewports through head movement (HM) and then fixate on attractive regions within the viewports through eye movement (EM). Therefore, this paper proposes a two-staged multi-task approach for viewport-based VQA on 360° video. Specifically, we first establish a large-scale VQA dataset of 360° video, called VQA-ODV, which collects the subjective quality scores and the HM and EM data on 600 video sequences. By mining our dataset, we find that the subjective quality of 360° video is related to camera motion, viewport positions and saliency within viewports. Accordingly, we propose a viewport-based convolutional neural network (V-CNN) approach for VQA on 360° video, which has a novel multi-task architecture composed of a viewport proposal network (VP-net) and viewport quality network (VQ-net). The VP-net handles the auxiliary tasks of camera motion detection and viewport proposal, while the VQ-net accomplishes the auxiliary task of viewport saliency prediction and the main task of VQA. The experiments validate that our V-CNN approach significantly advances state-of-the-art VQA performance on 360° video and it is also effective in the three auxiliary tasks. For 360° video, the existing visual quality assessment (VQA) approaches are designed based on either the whole frames or the cropped patches, ignoring the fact that subjects can only access viewports. When watching 360° video, subjects select viewports through head movement (HM) and then fixate on attractive regions within the viewports through eye movement (EM). Therefore, this paper proposes a two-staged multi-task approach for viewport-based VQA on 360° video. Specifically, we first establish a large-scale VQA dataset of 360° video, called VQA-ODV, which collects the subjective quality scores and the HM and EM data on 600 video sequences. By mining our dataset, we find that the subjective quality of 360° video is related to camera motion, viewport positions and saliency within viewports. Accordingly, we propose a viewport-based convolutional neural network (V-CNN) approach for VQA on 360° video, which has a novel multi-task architecture composed of a viewport proposal network (VP-net) and viewport quality network (VQ-net). The VP-net handles the auxiliary tasks of camera motion detection and viewport proposal, while the VQ-net accomplishes the auxiliary task of viewport saliency prediction and the main task of VQA. The experiments validate that our V-CNN approach significantly advances state-of-the-art VQA performance on 360° video and it is also effective in the three auxiliary tasks.For 360° video, the existing visual quality assessment (VQA) approaches are designed based on either the whole frames or the cropped patches, ignoring the fact that subjects can only access viewports. When watching 360° video, subjects select viewports through head movement (HM) and then fixate on attractive regions within the viewports through eye movement (EM). Therefore, this paper proposes a two-staged multi-task approach for viewport-based VQA on 360° video. Specifically, we first establish a large-scale VQA dataset of 360° video, called VQA-ODV, which collects the subjective quality scores and the HM and EM data on 600 video sequences. By mining our dataset, we find that the subjective quality of 360° video is related to camera motion, viewport positions and saliency within viewports. Accordingly, we propose a viewport-based convolutional neural network (V-CNN) approach for VQA on 360° video, which has a novel multi-task architecture composed of a viewport proposal network (VP-net) and viewport quality network (VQ-net). The VP-net handles the auxiliary tasks of camera motion detection and viewport proposal, while the VQ-net accomplishes the auxiliary task of viewport saliency prediction and the main task of VQA. The experiments validate that our V-CNN approach significantly advances state-of-the-art VQA performance on 360° video and it is also effective in the three auxiliary tasks. |
Author | Li, Chen Wang, Zulin Xu, Mai Tao, Xiaoming Jiang, Lai |
Author_xml | – sequence: 1 givenname: Mai orcidid: 0000-0002-0277-3301 surname: Xu fullname: Xu, Mai email: MaiXu@buaa.edu.cn organization: School of Electronic and Information Engineering, Beihang University, Beijing, China – sequence: 2 givenname: Lai surname: Jiang fullname: Jiang, Lai email: jianglai.china@buaa.edu.cn organization: School of Electronic and Information Engineering, Beihang University, Beijing, China – sequence: 3 givenname: Chen orcidid: 0000-0002-9085-2922 surname: Li fullname: Li, Chen email: jnlichen123@buaa.edu.cn organization: School of Electronic and Information Engineering, Beihang University, Beijing, China – sequence: 4 givenname: Zulin surname: Wang fullname: Wang, Zulin email: wzulin@buaa.edu.cn organization: School of Electronic and Information Engineering, Beihang University, Beijing, China – sequence: 5 givenname: Xiaoming orcidid: 0000-0002-8763-9338 surname: Tao fullname: Tao, Xiaoming email: taoxm@mail.tsinghua.edu.cn organization: Tsinghua University, Beijing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33017289$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctuFDEQRS2UiEwCPwASssSGTU_s8ptdMwIS5QFIQ7aW2-MGh572xO4Wyl_xDXwZncwkiyxY1eacqqu6h2ivT31A6BUlc0qJOV5-rS9O50CAzBkBLYh5hmZAJakMGNhDM0IlVFqDPkCHpVwTQrkg7Dk6YIxQBdrM0NlVDL83KQ_VB1fCCi8uL9_jGl-M3RCrpSu_cL3Z5OT8T9ymjOtSQimx_4GZJH__4Ku4Cgl_G10Xh9sXaL91XQkvd_MIff_0cbk4qc6_fD5d1OeVZ4IOVeOZEoJp4AaYWkkCkmsGyjVAG6-EA9GKYAIPQbWMayUbo5yghvlWeSbZEXq33TsFuxlDGew6Fh-6zvUhjcUC51pzaTib0LdP0Os05n5KZ0EyoYgRQk3Umx01Nuuwspsc1y7f2oc3TQBsAZ9TKTm0jwgl9q4Le9-FvevC7rqYJP1E8nFwQ0z9kF3s_q--3qoxhPB4ywAFSTT7By5ikvo |
CODEN | ITPIDJ |
CitedBy_id | crossref_primary_10_1109_TCSVT_2024_3469180 crossref_primary_10_1109_TPAMI_2021_3117019 crossref_primary_10_1109_TPAMI_2024_3510793 crossref_primary_10_1109_TPAMI_2024_3350049 crossref_primary_10_1145_3551641 crossref_primary_10_1109_TCSVT_2021_3112120 crossref_primary_10_1109_TCSVT_2022_3179575 crossref_primary_10_1016_j_cmpb_2023_107747 crossref_primary_10_1109_TMM_2021_3121875 crossref_primary_10_1109_TBC_2023_3342707 crossref_primary_10_1109_TIP_2022_3226417 crossref_primary_10_1109_TCSVT_2022_3172135 crossref_primary_10_1109_TCSVT_2021_3095843 crossref_primary_10_1109_TCSVT_2024_3419910 crossref_primary_10_1109_TCSVT_2021_3126590 crossref_primary_10_1007_s10489_024_05421_1 crossref_primary_10_1109_JSTSP_2023_3295597 crossref_primary_10_1109_TIP_2022_3177127 crossref_primary_10_1109_JBHI_2021_3119519 crossref_primary_10_1109_TIM_2024_3485447 |
Cites_doi | 10.1109/TIP.2016.2628583 10.1007/978-3-030-01261-8_1 10.1109/ISM.2016.0126 10.1109/CCST.2012.6393587 10.1007/978-3-030-01264-9_37 10.7551/mitpress/7503.003.0073 10.1145/2536853.2536903 10.1109/TPAMI.2015.2473844 10.1109/CVPR.2019.00300 10.1109/CVPR.2018.00154 10.1109/CVPR.2019.01042 10.1109/ICMEW.2018.8551543 10.1109/CVPR.2018.00559 10.1109/TIP.2015.2487833 10.1109/ICMEW.2017.8026231 10.1109/ICIEA.2012.6360868 10.1145/3204949.3208139 10.1109/TIP.2017.2774045 10.1109/TIP.2017.2760518 10.1145/3083187.3083215 10.1007/s00041-003-0018-9 10.1109/TPAMI.2018.2858783 10.1109/ICSIMA.2017.8312035 10.3133/pp1395 10.1109/TPAMI.2016.2577031 10.1109/APSIPA.2017.8282085 10.1007/978-3-030-01246-5_14 10.1109/PCS.2018.8456255 10.3390/s19173632 10.1117/12.2235885 10.1109/ICIP.2014.7025220 10.1109/TCSVT.2018.2826074 10.1109/ICME.2017.8019351 10.1109/CVPR.2008.4587715 10.1109/ICASSP.2018.8461317 10.1109/CC.2015.7275256 10.1109/TCSVT.2004.839989 10.1109/ISMAR.2015.12 10.1016/j.image.2018.03.006 10.1109/ICUFN.2017.7993736 10.1145/3083187.3083210 10.1109/TIP.2010.2042111 10.1109/ICCVW.2017.275 10.1109/ICMEW.2017.8026226 10.1177/2041669517708205 10.1016/j.patcog.2020.107234 10.1109/TVCG.2018.2793599 10.1145/1854229.1854272 10.1109/VCIP.2017.8305084 10.1109/CVPR.2017.179 10.1109/TBC.2018.2811627 10.1109/CVPR.2018.00514 10.1109/TCSVT.2016.2589878 10.1145/3107616 10.1109/TIP.2003.819861 10.1109/TCSVT.2018.2886277 10.1007/s13398-014-0173-7.2 10.1109/QoMEX.2017.7965659 10.1145/3240508.3240581 10.1109/VCIP.2017.8305133 10.1109/CVPR.2017.213 10.1109/LSP.2017.2720693 10.1109/ICCV.2015.169 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TPAMI.2020.3028509 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Technology Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 2160-9292 1939-3539 |
EndPage | 2215 |
ExternalDocumentID | 33017289 10_1109_TPAMI_2020_3028509 9212608 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Beijing Natural Science Foundation grantid: JQ20020 – fundername: NSFC grantid: 61876013; 61922009; 61573037 |
GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB ~02 5VS 9M8 AAYOK AAYXX ABFSI ADRHT AETEA AETIX AGSQL AI. AIBXA ALLEH CITATION FA8 H~9 IBMZZ ICLAB IFJZH RIG RNI RZB VH1 XJT CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c351t-bc375538249237d602648327ab21bc75a25f5e9e4ee7f34876b97a5193cf7c363 |
IEDL.DBID | RIE |
ISSN | 0162-8828 1939-3539 |
IngestDate | Fri Jul 11 04:51:43 EDT 2025 Mon Jun 30 03:59:03 EDT 2025 Mon Jul 21 06:04:58 EDT 2025 Tue Jul 01 03:18:25 EDT 2025 Thu Apr 24 22:54:49 EDT 2025 Wed Aug 27 02:49:31 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-bc375538249237d602648327ab21bc75a25f5e9e4ee7f34876b97a5193cf7c363 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0277-3301 0000-0002-9085-2922 0000-0002-8763-9338 |
PMID | 33017289 |
PQID | 2635709557 |
PQPubID | 85458 |
PageCount | 18 |
ParticipantIDs | ieee_primary_9212608 crossref_primary_10_1109_TPAMI_2020_3028509 pubmed_primary_33017289 proquest_journals_2635709557 crossref_citationtrail_10_1109_TPAMI_2020_3028509 proquest_miscellaneous_2448846943 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-01 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
PublicationTitleAbbrev | TPAMI |
PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 der Auwera (ref38) 2016 ref54 Davies (ref68) 2016 ref17 (ref45) 2002 ref16 ref19 ref18 ref51 ref50 Li (ref12) ref46 ref48 ref47 ref42 ref41 (ref33) 2016 ref43 ref49 ref8 ref7 Boyce (ref9) 2016 ref4 ref3 ref6 ref5 ref35 ref34 (ref44) 2019 ref37 ref36 ref31 ref75 ref30 ref74 ref77 Ye (ref2) 2017; 16 ref32 ref76 Cohen (ref60) Kells (ref63) 1940 ref39 Maas (ref57) Choi (ref1) 2017 ref71 ref70 ref73 ref72 ref24 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref22 ref66 ref21 ref65 ref28 ref27 Lopes (ref13) ref29 Kuzyakov (ref40) 2016 ref62 ref61 |
References_xml | – ident: ref70 doi: 10.1109/TIP.2016.2628583 – ident: ref56 doi: 10.1007/978-3-030-01261-8_1 – ident: ref41 doi: 10.1109/ISM.2016.0126 – ident: ref51 doi: 10.1109/CCST.2012.6393587 – ident: ref67 doi: 10.1007/978-3-030-01264-9_37 – year: 2016 ident: ref40 article-title: Next-generation video encoding techniques for 360 video and VR – ident: ref74 doi: 10.7551/mitpress/7503.003.0073 – ident: ref49 doi: 10.1145/2536853.2536903 – ident: ref73 doi: 10.1109/TPAMI.2015.2473844 – volume: 16 year: 2017 ident: ref2 article-title: Algorithm descriptions of projection format conversion and video quality metrics in 360Lib publication-title: Joint Video Exploration Team ITU-T SG 5th Meeting; Document: JVET E1003_v3 – ident: ref62 doi: 10.1109/CVPR.2019.00300 – ident: ref30 doi: 10.1109/CVPR.2018.00154 – ident: ref8 doi: 10.1109/CVPR.2019.01042 – ident: ref72 doi: 10.1109/ICMEW.2018.8551543 – ident: ref29 doi: 10.1109/CVPR.2018.00559 – year: 2019 ident: ref44 article-title: The VR eye tracking accessory Droolon F1. – ident: ref53 doi: 10.1109/TIP.2015.2487833 – ident: ref54 doi: 10.1109/ICMEW.2017.8026231 – ident: ref52 doi: 10.1109/ICIEA.2012.6360868 – ident: ref21 doi: 10.1145/3204949.3208139 – ident: ref23 doi: 10.1109/TIP.2017.2774045 – ident: ref26 doi: 10.1109/TIP.2017.2760518 – year: 2002 ident: ref45 article-title: Methodology for the subjective assessment of the quality of television pictures publication-title: Int. Telecommun. Union – ident: ref18 doi: 10.1145/3083187.3083215 – volume-title: Plane and Spherical Trigonometry With Tables by Lyman M. Kells, Willis F. Kern, James R. Bland year: 1940 ident: ref63 – ident: ref59 doi: 10.1007/s00041-003-0018-9 – ident: ref20 doi: 10.1109/TPAMI.2018.2858783 – ident: ref50 doi: 10.1109/ICSIMA.2017.8312035 – ident: ref64 doi: 10.3133/pp1395 – year: 2016 ident: ref68 article-title: Oculus Rift vs. HTC Vive vs. PlayStation VR – ident: ref61 doi: 10.1109/TPAMI.2016.2577031 – ident: ref31 doi: 10.1109/APSIPA.2017.8282085 – volume-title: Proc. Appl. Digit. Image Process. XLI ident: ref13 article-title: Subjective and objective quality assessment of omnidirectional video – ident: ref25 doi: 10.1007/978-3-030-01246-5_14 – volume-title: Proc. Int. Conf. Mach. Learn. ident: ref57 article-title: Rectifier nonlinearities improve neural network acoustic models – ident: ref11 doi: 10.1109/PCS.2018.8456255 – ident: ref43 doi: 10.3390/s19173632 – ident: ref4 doi: 10.1117/12.2235885 – ident: ref55 doi: 10.1109/ICIP.2014.7025220 – ident: ref35 doi: 10.1109/TCSVT.2018.2826074 – ident: ref15 doi: 10.1109/ICME.2017.8019351 – volume-title: Proc. Int. Conf. Learn. Representations ident: ref60 article-title: Spherical CNNs – ident: ref75 doi: 10.1109/CVPR.2008.4587715 – ident: ref6 doi: 10.1109/ICASSP.2018.8461317 – ident: ref37 doi: 10.1109/CC.2015.7275256 – ident: ref39 doi: 10.1109/TCSVT.2004.839989 – ident: ref3 doi: 10.1109/ISMAR.2015.12 – ident: ref71 doi: 10.1016/j.image.2018.03.006 – ident: ref10 doi: 10.1109/ICUFN.2017.7993736 – ident: ref19 doi: 10.1145/3083187.3083210 – ident: ref47 doi: 10.1109/TIP.2010.2042111 – ident: ref32 doi: 10.1109/ICCVW.2017.275 – ident: ref14 doi: 10.1109/ICMEW.2017.8026226 – ident: ref42 doi: 10.1177/2041669517708205 – year: 2016 ident: ref38 article-title: AHG8: Truncated square pyramid projection (TSP) for 360 video publication-title: Joint Video Exploration Team ITU T SG 4th Meeting – ident: ref77 doi: 10.1016/j.patcog.2020.107234 – ident: ref28 doi: 10.1109/TVCG.2018.2793599 – ident: ref48 doi: 10.1145/1854229.1854272 – ident: ref22 doi: 10.1109/VCIP.2017.8305084 – ident: ref58 doi: 10.1109/CVPR.2017.179 – start-page: 258 volume-title: Proc. IEEE Int. Conf. Ubi-Media Comput. ident: ref12 article-title: Evaluation of H. 265 and H. 264 for panoramas video under different map projections – ident: ref17 doi: 10.1109/TBC.2018.2811627 – year: 2016 ident: ref33 article-title: 1857.9–01-n0001 output document – ident: ref76 doi: 10.1109/CVPR.2018.00514 – ident: ref34 doi: 10.1109/TCSVT.2016.2589878 – ident: ref36 doi: 10.1145/3107616 – year: 2016 ident: ref9 article-title: Common test conditions and evaluation procedures for 360° video coding publication-title: Joint Video Exploration Team ITU-T SG 7th Meeting; Document: JVET G1030v2 – ident: ref46 doi: 10.1109/TIP.2003.819861 – ident: ref16 doi: 10.1109/TCSVT.2018.2886277 – ident: ref65 doi: 10.1007/s13398-014-0173-7.2 – year: 2017 ident: ref1 publication-title: Information Technology–Coded Representation of Immersive Media (MPEG-I)–Part 2: Omnidirectional Media Format – ident: ref27 doi: 10.1109/QoMEX.2017.7965659 – ident: ref7 doi: 10.1145/3240508.3240581 – ident: ref69 doi: 10.1109/VCIP.2017.8305133 – ident: ref24 doi: 10.1109/CVPR.2017.213 – ident: ref5 doi: 10.1109/LSP.2017.2720693 – ident: ref66 doi: 10.1109/ICCV.2015.169 |
SSID | ssj0014503 |
Score | 2.547836 |
Snippet | For 360° video, the existing visual quality assessment (VQA) approaches are designed based on either the whole frames or the cropped patches, ignoring the fact... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2198 |
SubjectTerms | 360° video Algorithms Artificial neural networks Cameras CNN Datasets Eye Movements Head movement Head Movements Humans Motion Motion detection Motion perception Neural Networks, Computer Proposals Quality assessment Salience Task analysis Two dimensional displays viewport Visual quality assessment Visualization |
Title | Viewport-Based CNN: A Multi-Task Approach for Assessing 360° Video Quality |
URI | https://ieeexplore.ieee.org/document/9212608 https://www.ncbi.nlm.nih.gov/pubmed/33017289 https://www.proquest.com/docview/2635709557 https://www.proquest.com/docview/2448846943 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB0BBwQHtrKUTUbiBi5tE8c2t4JALGrFoSBuUeJMpKqoRbQVgq_iG_gyxs4iQIC4RYqdOJqx573Y8wZgP4hkrBvG4yKtp9xXScIVhXEulFESla266g7IdoKLW__qXtxPwWGZC4OI7vAZ1uyl28tPhmZif5UdaVpnA5vZO01uluVqlTsGvnBVkAnB0AwnGlEkyNT1Ufem1b4kKtgkhkrhlELkHMwSj7elmfSXeOQKrPyONV3MOV-EdjHa7KhJvzYZxzXz-k3I8b-fswQLOfhkrcxblmEKByuwWBR2YPk8X4H5TyqFFbi-6-Gzhen8hEJewk47nWPWYi51l3ejUZ-1cmFyRgiYZdvI1JN5Qf39jd31EhyyTKvjZRVuz8-6pxc8r8HAjScaYx4bshYtilZY0JOJLVjl0yIgo7jZiI0UUVOkAjX6iDL1iP0EsZaRhYUmlcYLvDWYGQwHuAEsVegHyhiljPBTE-lUJET4YiSMZYiFVqFRWCI0uUC5rZPxEDqiUtehM2RoDRnmhqzCQdnnMZPn-LN1xVqhbJkboArbhcHDfAaPQivSI60-H41rr7xNc89uqEQDHE6oDXFbwm_a96qwnjlK-ezCvzZ_fucWzDVtIoU7A7QNM-OnCe4QvBnHu86vPwCtku_V |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED5VIG3sgQ46WKHbjLS3zaVt7NjeW4eGWqDVHkrFW5Q4FwkVtdPaCsFfxd_AX8bZ-aExbdPeIsVOHJ3t-76c7zuAj2GsEtO1AZdZJ-NCpynX5Ma51FYr1K7qqj8gOw4Hl-LsSl7V4HOVC4OI_vAZtt2lj-WnC7t2v8qODe2zocvs3SS_L2SerVXFDIT0dZAJw9AaJyJRpsh0zPHke380JDLYI45KDpWc5Ba8ICbvijOZZx7Jl1j5O9r0Xue0DqNyvPlhk1l7vUra9v43Kcf__aDXsF3AT9bP58sO1HC-C_WytAMrVvouvPpFp7AB59NrvHVAnX8lp5eyk_H4C-szn7zLJ_FyxvqFNDkjDMzyQDL1ZEHYeXxg0-sUFyxX67h7A5en3yYnA15UYeA2kN0VTyzZi7ZFJy0YqNSVrBK0Dag46XUTq2Tck5lEgwJRZQHxnzAxKnbA0GbKBmGwBxvzxRzfAss0ilBbq7WVIrOxyWRKlC9BQlmWeGgTuqUlIltIlLtKGTeRpyodE3lDRs6QUWHIJnyq-vzIBTr-2brhrFC1LAzQhFZp8KhYw8vIyfQop9BH4zqqbtPqcyGVeI6LNbUhdksIzoigCfv5RKmeXc6vgz-_8wO8HExGF9HFcHx-CFs9l1bhTwS1YGP1c43vCOyskvd-jj8BZqbzIg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Viewport-Based+CNN%3A+A+Multi-Task+Approach+for+Assessing+360%C2%B0+Video+Quality&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Xu%2C+Mai&rft.au=Jiang%2C+Lai&rft.au=Li%2C+Chen&rft.au=Wang%2C+Zulin&rft.date=2022-04-01&rft.issn=1939-3539&rft.eissn=1939-3539&rft.volume=44&rft.issue=4&rft.spage=2198&rft_id=info:doi/10.1109%2FTPAMI.2020.3028509&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |