Decoding Movement-Related Cortical Potentials Based on Subject-Dependent and Section-Wise Spectral Filtering
An important challenge in developing a movement-related cortical potential (MRCP)-based brain-machine interface (BMI) is an accurate decoding of the user intention for real-world environments. However, the performance remains insufficient for real-time decoding owing to the endogenous signal charact...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 28; no. 3; pp. 687 - 698 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.03.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An important challenge in developing a movement-related cortical potential (MRCP)-based brain-machine interface (BMI) is an accurate decoding of the user intention for real-world environments. However, the performance remains insufficient for real-time decoding owing to the endogenous signal characteristics compared to other BMI paradigms. This study aims to enhance the MRCP decoding performance from the perspective of preprocessing techniques (i.e., spectral filtering). To the best of our knowledge,existing MRCP studies have used spectral filters with a fixed frequency bandwidth for all subjects. Hence, we propose a subject-dependent and section-wise spectral filtering (SSSF) method that considers the subjects' individual MRCP characteristics for two different temporal sections. In this study, MRCP data were acquired under a powered exoskeleton environments in which the subjects conducted self-initiated walking. We evaluated our method using both our experimental data and a public dataset (BNCI Horizon 2020). The decoding performance using the SSSF was 0.86 (±0.09), and the performance on the public dataset was 0.73 (±0.06) across all subjects. The experimental results showed a statistically significant enhancement (p<; 0.01) compared with the fixed frequency bands used in previous methods on both datasets. In addition, we presented successful decoding results from a pseudoonline analysis. Therefore, we demonstrated that the proposed SSSF method can involve more meaningful MRCP information than conventional methods. |
---|---|
AbstractList | An important challenge in developing a movement-related cortical potential (MRCP)-based brain-machine interface (BMI) is an accurate decoding of the user intention for real-world environments. However, the performance remains insufficient for real-time decoding owing to the endogenous signal characteristics compared to other BMI paradigms. This study aims to enhance the MRCP decoding performance from the perspective of preprocessing techniques (i.e., spectral filtering). To the best of our knowledge,existing MRCP studies have used spectral filters with a fixed frequency bandwidth for all subjects. Hence, we propose a subject-dependent and section-wise spectral filtering (SSSF) method that considers the subjects' individual MRCP characteristics for two different temporal sections. In this study, MRCP data were acquired under a powered exoskeleton environments in which the subjects conducted self-initiated walking. We evaluated our method using both our experimental data and a public dataset (BNCI Horizon 2020). The decoding performance using the SSSF was 0.86 (±0.09), and the performance on the public dataset was 0.73 (±0.06) across all subjects. The experimental results showed a statistically significant enhancement (p<; 0.01) compared with the fixed frequency bands used in previous methods on both datasets. In addition, we presented successful decoding results from a pseudoonline analysis. Therefore, we demonstrated that the proposed SSSF method can involve more meaningful MRCP information than conventional methods. An important challenge in developing a movement-related cortical potential (MRCP)-based brain-machine interface (BMI) is an accurate decoding of the user intention for real-world environments. However, the performance remains insufficient for real-time decoding owing to the endogenous signal characteristics compared to other BMI paradigms. This study aims to enhance the MRCP decoding performance from the perspective of preprocessing techniques (i.e., spectral filtering). To the best of our knowledge, existing MRCP studies have used spectral filters with a fixed frequency bandwidth for all subjects. Hence, we propose a subject-dependent and section-wise spectral filtering (SSSF) method that considers the subjects’ individual MRCP characteristics for two different temporal sections. In this study, MRCP data were acquired under a powered exoskeleton environments in which the subjects conducted self-initiated walking. We evaluated our method using both our experimental data and a public dataset (BNCI Horizon 2020). The decoding performance using the SSSF was 0.86 (±0.09), and the performance on the public dataset was 0.73 (±0.06) across all subjects. The experimental results showed a statistically significant enhancement ([Formula Omitted]) compared with the fixed frequency bands used in previous methods on both datasets. In addition, we presented successful decoding results from a pseudo-online analysis. Therefore, we demonstrated that the proposed SSSF method can involve more meaningful MRCP information than conventional methods. An important challenge in developing a movement-related cortical potential (MRCP)-based brain-machine interface (BMI) is an accurate decoding of the user intention for real-world environments. However, the performance remains insufficient for real-time decoding owing to the endogenous signal characteristics compared to other BMI paradigms. This study aims to enhance the MRCP decoding performance from the perspective of preprocessing techniques (i.e., spectral filtering). To the best of our knowledge, existing MRCP studies have used spectral filters with a fixed frequency bandwidth for all subjects. Hence, we propose a subject-dependent and section-wise spectral filtering (SSSF) method that considers the subjects' individual MRCP characteristics for two different temporal sections. In this study, MRCP data were acquired under a powered exoskeleton environments in which the subjects conducted self-initiated walking. We evaluated our method using both our experimental data and a public dataset (BNCI Horizon 2020). The decoding performance using the SSSF was 0.86 (±0.09), and the performance on the public dataset was 0.73 (±0.06) across all subjects. The experimental results showed a statistically significant enhancement ( ) compared with the fixed frequency bands used in previous methods on both datasets. In addition, we presented successful decoding results from a pseudo-online analysis. Therefore, we demonstrated that the proposed SSSF method can involve more meaningful MRCP information than conventional methods. An important challenge in developing a movement-related cortical potential (MRCP)-based brain-machine interface (BMI) is an accurate decoding of the user intention for real-world environments. However, the performance remains insufficient for real-time decoding owing to the endogenous signal characteristics compared to other BMI paradigms. This study aims to enhance the MRCP decoding performance from the perspective of preprocessing techniques (i.e., spectral filtering). To the best of our knowledge, existing MRCP studies have used spectral filters with a fixed frequency bandwidth for all subjects. Hence, we propose a subject-dependent and section-wise spectral filtering (SSSF) method that considers the subjects' individual MRCP characteristics for two different temporal sections. In this study, MRCP data were acquired under a powered exoskeleton environments in which the subjects conducted self-initiated walking. We evaluated our method using both our experimental data and a public dataset (BNCI Horizon 2020). The decoding performance using the SSSF was 0.86 (±0.09), and the performance on the public dataset was 0.73 (±0.06) across all subjects. The experimental results showed a statistically significant enhancement ( ) compared with the fixed frequency bands used in previous methods on both datasets. In addition, we presented successful decoding results from a pseudo-online analysis. Therefore, we demonstrated that the proposed SSSF method can involve more meaningful MRCP information than conventional methods.An important challenge in developing a movement-related cortical potential (MRCP)-based brain-machine interface (BMI) is an accurate decoding of the user intention for real-world environments. However, the performance remains insufficient for real-time decoding owing to the endogenous signal characteristics compared to other BMI paradigms. This study aims to enhance the MRCP decoding performance from the perspective of preprocessing techniques (i.e., spectral filtering). To the best of our knowledge, existing MRCP studies have used spectral filters with a fixed frequency bandwidth for all subjects. Hence, we propose a subject-dependent and section-wise spectral filtering (SSSF) method that considers the subjects' individual MRCP characteristics for two different temporal sections. In this study, MRCP data were acquired under a powered exoskeleton environments in which the subjects conducted self-initiated walking. We evaluated our method using both our experimental data and a public dataset (BNCI Horizon 2020). The decoding performance using the SSSF was 0.86 (±0.09), and the performance on the public dataset was 0.73 (±0.06) across all subjects. The experimental results showed a statistically significant enhancement ( ) compared with the fixed frequency bands used in previous methods on both datasets. In addition, we presented successful decoding results from a pseudo-online analysis. Therefore, we demonstrated that the proposed SSSF method can involve more meaningful MRCP information than conventional methods. |
Author | Kwak, No-Sang Guan, Cuntai Jeong, Ji-Hoon Lee, Seong-Whan |
Author_xml | – sequence: 1 givenname: Ji-Hoon orcidid: 0000-0001-6940-2700 surname: Jeong fullname: Jeong, Ji-Hoon email: jh_jeong@korea.ac.kr organization: Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea – sequence: 2 givenname: No-Sang orcidid: 0000-0003-2822-2863 surname: Kwak fullname: Kwak, No-Sang email: nskwak@korea.ac.kr organization: Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea – sequence: 3 givenname: Cuntai orcidid: 0000-0002-0872-3276 surname: Guan fullname: Guan, Cuntai email: ctguan@ntu.edu.sg organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore – sequence: 4 givenname: Seong-Whan orcidid: 0000-0002-6249-4996 surname: Lee fullname: Lee, Seong-Whan email: sw.lee@korea.ac.kr organization: Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31944982$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtv1DAUhS3Uij7gD4CEIrFhk-n1I34sYdoCUguoU8Qycpwb5FHGHmIHiX-Phxm66KIr2_d-517rnDNyFGJAQl5RWFAK5uL-y-ruasGAwYIZKTWTz8gpbRpdA6NwtLtzUQvO4IScpbQGoEo26jk54dQIYTQ7JeMlutj78LO6jb9xgyHXdzjajH21jFP2zo7Vt5hL3dsxVR9sKp0YqtXcrdHl-hK3GPrSrmzoq1Up-RjqHz5htdqW11T0137MOJUdL8jxUKbgy8N5Tr5fX90vP9U3Xz9-Xr6_qR1vaK47y5EZ0MoNg1Moe077TjJtDWAjrekMU4LrTjk5SNs4RukguGBKMW5o0_Nz8m4_dzvFXzOm3G58cjiONmCcU8u4oBJAgyno20foOs5TKL8rlBJKGQpQqDcHau422LfbyW_s9Kf972MB2B5wU0xpwuEBodDuwmr_hdXuwmoPYRWRfiRyPtudgcU2Pz4tfb2XekR82KWNBMEl_wuDsqEP |
CODEN | ITNSB3 |
CitedBy_id | crossref_primary_10_1109_TCYB_2021_3122969 crossref_primary_10_1109_ACCESS_2022_3167703 crossref_primary_10_1109_TNSRE_2020_2981659 crossref_primary_10_1109_TNSRE_2021_3106897 crossref_primary_10_1109_TNSRE_2023_3241846 crossref_primary_10_1007_s11571_024_10164_3 crossref_primary_10_1142_S0129065721500386 crossref_primary_10_1142_S0129065723500685 crossref_primary_10_1080_17483107_2023_2211602 crossref_primary_10_1093_gigascience_giaa098 crossref_primary_10_1007_s12559_021_09941_7 crossref_primary_10_1038_s41597_021_01094_4 crossref_primary_10_1186_s12938_023_01102_1 crossref_primary_10_3389_fnhum_2021_732946 crossref_primary_10_3390_s24237611 crossref_primary_10_3389_fnbot_2024_1491721 crossref_primary_10_3390_bios12121134 crossref_primary_10_3389_fnhum_2022_898300 crossref_primary_10_1109_TBME_2021_3137184 crossref_primary_10_1016_j_engappai_2024_108473 crossref_primary_10_1109_TNSRE_2021_3087506 crossref_primary_10_1109_TNSRE_2022_3143836 crossref_primary_10_1016_j_heliyon_2024_e30406 crossref_primary_10_1109_ACCESS_2020_3006907 crossref_primary_10_1109_JBHI_2023_3278747 crossref_primary_10_1109_JSEN_2023_3328615 crossref_primary_10_3389_fnins_2023_1303242 crossref_primary_10_29109_gujsc_1083912 crossref_primary_10_1088_1741_2552_ac9e75 crossref_primary_10_1109_ACCESS_2020_2983182 crossref_primary_10_1109_ACCESS_2020_3011140 crossref_primary_10_1109_JBHI_2024_3356580 crossref_primary_10_1109_JSEN_2020_3005968 crossref_primary_10_1109_TAFFC_2020_3025004 crossref_primary_10_1109_TNSRE_2022_3229330 crossref_primary_10_3389_fnins_2023_1305850 crossref_primary_10_1007_s42600_023_00321_8 crossref_primary_10_1109_TBME_2020_3034112 crossref_primary_10_1109_TCYB_2022_3211694 crossref_primary_10_3390_app15042176 crossref_primary_10_1007_s11571_021_09766_y crossref_primary_10_3233_JIFS_237890 crossref_primary_10_1109_JSEN_2022_3171808 |
Cites_doi | 10.1227/01.neu.0000508601.15824.39 10.3389/fneur.2018.00822 10.1109/TNSRE.2018.2877987 10.1109/TNSRE.2016.2531118 10.3389/fnins.2017.00356 10.1109/TNSRE.2003.814799 10.1109/TNSRE.2013.2243471 10.1093/gigascience/giz002 10.1016/j.robot.2016.10.005 10.1080/2326263X.2015.1114978 10.3389/fnins.2017.00170 10.1109/TNNLS.2019.2946869 10.3233/RNN-150534 10.1016/j.jneumeth.2014.05.007 10.1088/1741-2552/aaa8c0 10.1088/1741-2560/12/5/056009 10.1016/S1350-4533(99)00067-3 10.1038/srep38565 10.1016/bs.pbr.2016.03.014 10.1109/TNSRE.2016.2597854 10.1088/1741-2560/12/5/056003 10.1016/j.rehab.2018.05.431 10.1109/TNSRE.2018.2864119 10.1109/TCYB.2019.2924237 10.1109/SMC.2018.00096 10.1016/j.patcog.2015.03.010 10.1088/1741-2552/aaf12e 10.1016/j.neucom.2012.12.002 10.1088/1741-2560/10/3/036014 10.1186/s12984-017-0219-0 10.1088/1741-2560/11/5/056009 10.1126/scirobotics.aat1228 10.1109/TPAMI.2012.69 10.1109/TNSRE.2014.2375879 10.1016/j.clinph.2006.04.025 10.1016/S1388-2457(02)00057-3 10.1109/TNNLS.2015.2476656 10.3389/fnins.2017.00028 10.1016/j.neuroimage.2010.06.048 10.1109/TNSRE.2014.2346621 10.1088/1741-2552/aa8911 10.1109/TNSRE.2016.2646763 10.1016/j.jneumeth.2014.03.011 10.1109/IWW-BCI.2017.7858156 10.3389/fnins.2016.00122 10.1016/j.jneumeth.2003.10.009 10.1109/TNSRE.2003.814435 10.1088/1741-2560/12/3/036007 10.1016/j.neuroimage.2016.01.019 10.1186/s12984-015-0095-4 10.1073/pnas.1513569112 10.1155/2015/346217 10.1088/1741-2552/aa5f2f 10.1109/TNSRE.2018.2855053 10.1007/978-3-030-05668-1_1 10.1109/TNSRE.2017.2703586 10.1109/TBME.2015.2487738 10.1371/journal.pone.0182578 10.1109/TCYB.2018.2841847 10.1016/j.clinph.2014.05.003 10.1109/TNSRE.2012.2227278 10.1016/j.bspc.2017.11.012 10.3389/fnins.2010.00198 10.1088/1741-2560/12/5/056013 10.3389/fnhum.2017.00604 10.1088/1741-2560/12/1/016001 10.1371/journal.pone.0125479 10.1109/TNSRE.2018.2848883 10.1371/journal.pone.0172578 10.1109/EMBC.2019.8856312 10.1186/1743-0003-10-111 10.1109/TBME.2013.2294203 10.1109/TNSRE.2019.2913880 10.1088/1741-2560/13/3/031001 10.1088/1741-2560/8/6/066009 10.1371/journal.pone.0111157 10.3389/fnins.2014.00376 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/TNSRE.2020.2966826 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 698 |
ExternalDocumentID | 31944982 10_1109_TNSRE_2020_2966826 8960436 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Korea Government (Development of BCI based Brain and Cognitive Computing Technology for Recognizing User’s Intentions using Deep Learning grantid: 2017-0-00451 – fundername: Institute of Information & Communications Technology Planning & Evaluation (IITP) – fundername: Ministry of Science, ICT and Future Planning grantid: 2017-0-00432 funderid: 10.13039/501100003621 |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c351t-ba3e29087cffc7e6d31db628a90e56a9b927438b7c6f6a5c211f43427723915d3 |
IEDL.DBID | RIE |
ISSN | 1534-4320 1558-0210 |
IngestDate | Fri Jul 11 06:37:37 EDT 2025 Fri Jul 25 04:03:04 EDT 2025 Thu Apr 03 07:00:00 EDT 2025 Thu Apr 24 22:50:52 EDT 2025 Tue Jul 01 00:43:20 EDT 2025 Wed Aug 27 02:51:14 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-ba3e29087cffc7e6d31db628a90e56a9b927438b7c6f6a5c211f43427723915d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6249-4996 0000-0003-2822-2863 0000-0001-6940-2700 0000-0002-0872-3276 |
PMID | 31944982 |
PQID | 2374779100 |
PQPubID | 85423 |
PageCount | 12 |
ParticipantIDs | pubmed_primary_31944982 crossref_primary_10_1109_TNSRE_2020_2966826 ieee_primary_8960436 proquest_journals_2374779100 proquest_miscellaneous_2341600809 crossref_citationtrail_10_1109_TNSRE_2020_2966826 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-01 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref59 ibáñez (ref54) 2014; 11 ref15 ref58 ref14 ref53 blankertz (ref68) 2002 ref52 ref55 ref11 ref10 ref17 ref16 ref19 ref18 xu (ref51) 2014; 61 wolpaw (ref3) 2002; 113 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref6 ref5 ref40 ref35 ref78 ref34 ref37 ref36 ref75 ref31 ref74 ref30 ref77 ref33 ref76 ref32 ref2 ref1 úbeda (ref23) 2017; 14 ref39 ref38 ref71 ref70 ref73 ref72 kwak (ref12) 2015; 12 ref24 ref67 ref26 ref69 ref25 ref64 ref20 ref63 ref66 ref22 ref65 ref21 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref35 doi: 10.1227/01.neu.0000508601.15824.39 – ident: ref53 doi: 10.3389/fneur.2018.00822 – ident: ref74 doi: 10.1109/TNSRE.2018.2877987 – ident: ref43 doi: 10.1109/TNSRE.2016.2531118 – ident: ref59 doi: 10.3389/fnins.2017.00356 – ident: ref1 doi: 10.1109/TNSRE.2003.814799 – ident: ref71 doi: 10.1109/TNSRE.2013.2243471 – ident: ref62 doi: 10.1093/gigascience/giz002 – ident: ref45 doi: 10.1016/j.robot.2016.10.005 – ident: ref58 doi: 10.1080/2326263X.2015.1114978 – ident: ref17 doi: 10.3389/fnins.2017.00170 – ident: ref78 doi: 10.1109/TNNLS.2019.2946869 – ident: ref20 doi: 10.3233/RNN-150534 – ident: ref31 doi: 10.1016/j.jneumeth.2014.05.007 – ident: ref14 doi: 10.1088/1741-2552/aaa8c0 – volume: 12 year: 2015 ident: ref12 article-title: A lower limb exoskeleton control system based on steady state visual evoked potentials publication-title: J Neural Eng doi: 10.1088/1741-2560/12/5/056009 – ident: ref60 doi: 10.1016/S1350-4533(99)00067-3 – ident: ref10 doi: 10.1038/srep38565 – ident: ref25 doi: 10.1016/bs.pbr.2016.03.014 – ident: ref5 doi: 10.1109/TNSRE.2016.2597854 – ident: ref44 doi: 10.1088/1741-2560/12/5/056003 – ident: ref29 doi: 10.1016/j.rehab.2018.05.431 – ident: ref22 doi: 10.1109/TNSRE.2018.2864119 – ident: ref77 doi: 10.1109/TCYB.2019.2924237 – ident: ref36 doi: 10.1109/SMC.2018.00096 – ident: ref69 doi: 10.1016/j.patcog.2015.03.010 – ident: ref4 doi: 10.1088/1741-2552/aaf12e – ident: ref21 doi: 10.1016/j.neucom.2012.12.002 – ident: ref48 doi: 10.1088/1741-2560/10/3/036014 – volume: 14 start-page: 9 year: 2017 ident: ref23 article-title: Classification of upper limb center-out reaching tasks by means of EEG-based continuous decoding techniques publication-title: J Neuroeng Rehabil doi: 10.1186/s12984-017-0219-0 – volume: 11 year: 2014 ident: ref54 article-title: Detection of the onset of upper-limb movements based on the combined analysis of changes in the sensorimotor rhythms and slow cortical potentials publication-title: J Neural Eng doi: 10.1088/1741-2560/11/5/056009 – ident: ref7 doi: 10.1126/scirobotics.aat1228 – ident: ref32 doi: 10.1109/TPAMI.2012.69 – ident: ref9 doi: 10.1109/TNSRE.2014.2375879 – ident: ref33 doi: 10.1016/j.clinph.2006.04.025 – volume: 113 start-page: 767 year: 2002 ident: ref3 article-title: Brain-computer interfaces for communication and control publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(02)00057-3 – ident: ref72 doi: 10.1109/TNNLS.2015.2476656 – ident: ref75 doi: 10.3389/fnins.2017.00028 – ident: ref66 doi: 10.1016/j.neuroimage.2010.06.048 – ident: ref70 doi: 10.1109/TNSRE.2014.2346621 – ident: ref38 doi: 10.1088/1741-2552/aa8911 – ident: ref18 doi: 10.1109/TNSRE.2016.2646763 – ident: ref6 doi: 10.1016/j.jneumeth.2014.03.011 – ident: ref27 doi: 10.1109/IWW-BCI.2017.7858156 – ident: ref57 doi: 10.3389/fnins.2016.00122 – ident: ref64 doi: 10.1016/j.jneumeth.2003.10.009 – ident: ref2 doi: 10.1109/TNSRE.2003.814435 – ident: ref46 doi: 10.1088/1741-2560/12/3/036007 – ident: ref67 doi: 10.1016/j.neuroimage.2016.01.019 – ident: ref24 doi: 10.1186/s12984-015-0095-4 – ident: ref40 doi: 10.1073/pnas.1513569112 – ident: ref34 doi: 10.1155/2015/346217 – ident: ref56 doi: 10.1088/1741-2552/aa5f2f – ident: ref42 doi: 10.1109/TNSRE.2018.2855053 – ident: ref63 doi: 10.1007/978-3-030-05668-1_1 – ident: ref19 doi: 10.1109/TNSRE.2017.2703586 – ident: ref76 doi: 10.1109/TBME.2015.2487738 – ident: ref50 doi: 10.1371/journal.pone.0182578 – ident: ref73 doi: 10.1109/TCYB.2018.2841847 – ident: ref52 doi: 10.1016/j.clinph.2014.05.003 – ident: ref41 doi: 10.1109/TNSRE.2012.2227278 – ident: ref30 doi: 10.1016/j.bspc.2017.11.012 – ident: ref61 doi: 10.3389/fnins.2010.00198 – ident: ref65 doi: 10.1088/1741-2560/12/5/056013 – ident: ref37 doi: 10.3389/fnhum.2017.00604 – ident: ref15 doi: 10.1088/1741-2560/12/1/016001 – ident: ref47 doi: 10.1371/journal.pone.0125479 – ident: ref28 doi: 10.1109/TNSRE.2018.2848883 – ident: ref26 doi: 10.1371/journal.pone.0172578 – ident: ref8 doi: 10.1109/EMBC.2019.8856312 – ident: ref11 doi: 10.1186/1743-0003-10-111 – start-page: 157 year: 2002 ident: ref68 article-title: Classifying single trial EEG: Towards brain computer interfacing publication-title: Proc Adv Neural Inf Process Syst – volume: 61 start-page: 288 year: 2014 ident: ref51 article-title: Enhanced low-latency detection of motor intention from eeg for closed-loop brain-computer interface applications publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2013.2294203 – ident: ref55 doi: 10.1109/TNSRE.2019.2913880 – ident: ref13 doi: 10.1088/1741-2560/13/3/031001 – ident: ref49 doi: 10.1088/1741-2560/8/6/066009 – ident: ref16 doi: 10.1371/journal.pone.0111157 – ident: ref39 doi: 10.3389/fnins.2014.00376 |
SSID | ssj0017657 |
Score | 2.5481002 |
Snippet | An important challenge in developing a movement-related cortical potential (MRCP)-based brain-machine interface (BMI) is an accurate decoding of the user... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 687 |
SubjectTerms | Brain-machine interface Cerebral cortex Data acquisition Datasets Decoding Electrodes Electroencephalography Electromyography Exoskeleton Exoskeletons Filtration Frequencies Legged locomotion Man-machine interfaces movement-related cortical potentials Muscles Spectra Statistical analysis |
Title | Decoding Movement-Related Cortical Potentials Based on Subject-Dependent and Section-Wise Spectral Filtering |
URI | https://ieeexplore.ieee.org/document/8960436 https://www.ncbi.nlm.nih.gov/pubmed/31944982 https://www.proquest.com/docview/2374779100 https://www.proquest.com/docview/2341600809 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PSAkxKtQAgUZCbiAt17bsZMjtF1VSK1Qdyt6i_yKVFElaJu98OsZOw9RBIhbpNh5zUz8jWfmG4A3ri6sYyGn9TzXVFojqfExbcdJw5S3WrmUbXGmTi7k58v8cgs-TLUwIYSUfBZm8TDF8n3rNnGr7KCITCJCbcM2Om59rdYUMdAqsXqiAUsqBWdjgQwrD1Zny_NjdAU5m3FE9wio78IdVD0py4LfWo9Sg5W_Y8205iwewOn4tH2qybfZprMz9-M3Isf_fZ2HcH8An-Rjry2PYCs0j-Htr0TDZNWzDJB35PwWh_cuXB-hpxpXOnLaJpLxjqZMuuDJYbtOW-LkS9vF7CNUafIJl0dP2obgrynu9dCjod1uR0zjyTKlgDX069VNIMtY7rnG-YurGLzHezyBi8Xx6vCEDr0aqBP5vKPWiMBLVmhX104H5cXcW8ULU6IiKFPaEt1fUVjtVK1M7tDvrKWQHMF9pKj34insNG0TngHRtfXOMSm10dL4spAOgZkXVklV-NxnMB8lVrnhI8R-GtdVcmhYWSWBV1Hg1SDwDN5Pc773NB7_HL0bpTWNHASVwf6oGNVg6TcVF-iQaQRdLIPX02m00Rh4MU1oN3EMwt6IzcsM9nqFmq496uHzP9_zBdzjsRganfyU-LYPO916E14iEursq2QCPwEM-ALw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1bb9MwGP00hgR74TYugQFGYrygdKnj2MkDD7Cu6thWobXT9hZ8izQxJahNheC38Ff4b3x2LmIIeJvEW6U6FznH9jn28THAS12kSkc2CYthIkKmJAulcbYdzWTEjRJce7fFlE9O2Puz5GwNvvd7Yay13nxmB-6nX8s3lV65qbKd1CWJxLy1UB7Yr19QoC3f7I_wa25TOt6b707C9gyBUMfJsA6VjC3NolTootDCchMPjeI0lRm-IJeZylCWxakSmhdcJhr1UMFiRpF0uuh0E-N9r8F15BkJbXaH9WsUgvscUewyWMhiGnVbcqJsZz6dHe-h-KTRgKKeQAq_ATcQ7IxlKb00AvojXf7Obv0oN74NP7r6acwtnwarWg30t9-iI__XCrwDt1p6Td427eEurNnyHmz_GqVM5k2OAnlFji-llG_CxQi1uBvLyVHlY9Tr0HsFrSG71cJP-pMPVe38VdhoyTskAIZUJcHO181mhaP2QOGayNKQmTe5leHp-dKSmdvQusDrx-fOnoDPuA8nV1IRD2C9rEr7CIgolNE6YkxIwaTJUqaReppYccZTk5gAhh1Cct1Wgjsx5CL3ki3Kcg-w3AEsbwEWwOv-ms9NUMk_S286dPQlW2AEsNUBMW_7smVOY5ScAmllFMCL_m_shdzSkixttXJlkNg79ZEF8LABcH_vDveP__zM53BzMj86zA_3pwdPYMO9ZePx24L1erGyT5H01eqZb3sEPl41Vn8CEgxegg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decoding+Movement-Related+Cortical+Potentials+Based+on+Subject-Dependent+and+Section-Wise+Spectral+Filtering&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Jeong%2C+Ji-Hoon&rft.au=Kwak%2C+No-Sang&rft.au=Guan%2C+Cuntai&rft.au=Lee%2C+Seong-Whan&rft.date=2020-03-01&rft.pub=IEEE&rft.issn=1534-4320&rft.volume=28&rft.issue=3&rft.spage=687&rft.epage=698&rft_id=info:doi/10.1109%2FTNSRE.2020.2966826&rft_id=info%3Apmid%2F31944982&rft.externalDocID=8960436 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |