Decoding Movement-Related Cortical Potentials Based on Subject-Dependent and Section-Wise Spectral Filtering

An important challenge in developing a movement-related cortical potential (MRCP)-based brain-machine interface (BMI) is an accurate decoding of the user intention for real-world environments. However, the performance remains insufficient for real-time decoding owing to the endogenous signal charact...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 28; no. 3; pp. 687 - 698
Main Authors Jeong, Ji-Hoon, Kwak, No-Sang, Guan, Cuntai, Lee, Seong-Whan
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An important challenge in developing a movement-related cortical potential (MRCP)-based brain-machine interface (BMI) is an accurate decoding of the user intention for real-world environments. However, the performance remains insufficient for real-time decoding owing to the endogenous signal characteristics compared to other BMI paradigms. This study aims to enhance the MRCP decoding performance from the perspective of preprocessing techniques (i.e., spectral filtering). To the best of our knowledge,existing MRCP studies have used spectral filters with a fixed frequency bandwidth for all subjects. Hence, we propose a subject-dependent and section-wise spectral filtering (SSSF) method that considers the subjects' individual MRCP characteristics for two different temporal sections. In this study, MRCP data were acquired under a powered exoskeleton environments in which the subjects conducted self-initiated walking. We evaluated our method using both our experimental data and a public dataset (BNCI Horizon 2020). The decoding performance using the SSSF was 0.86 (±0.09), and the performance on the public dataset was 0.73 (±0.06) across all subjects. The experimental results showed a statistically significant enhancement (p<; 0.01) compared with the fixed frequency bands used in previous methods on both datasets. In addition, we presented successful decoding results from a pseudoonline analysis. Therefore, we demonstrated that the proposed SSSF method can involve more meaningful MRCP information than conventional methods.
AbstractList An important challenge in developing a movement-related cortical potential (MRCP)-based brain-machine interface (BMI) is an accurate decoding of the user intention for real-world environments. However, the performance remains insufficient for real-time decoding owing to the endogenous signal characteristics compared to other BMI paradigms. This study aims to enhance the MRCP decoding performance from the perspective of preprocessing techniques (i.e., spectral filtering). To the best of our knowledge,existing MRCP studies have used spectral filters with a fixed frequency bandwidth for all subjects. Hence, we propose a subject-dependent and section-wise spectral filtering (SSSF) method that considers the subjects' individual MRCP characteristics for two different temporal sections. In this study, MRCP data were acquired under a powered exoskeleton environments in which the subjects conducted self-initiated walking. We evaluated our method using both our experimental data and a public dataset (BNCI Horizon 2020). The decoding performance using the SSSF was 0.86 (±0.09), and the performance on the public dataset was 0.73 (±0.06) across all subjects. The experimental results showed a statistically significant enhancement (p<; 0.01) compared with the fixed frequency bands used in previous methods on both datasets. In addition, we presented successful decoding results from a pseudoonline analysis. Therefore, we demonstrated that the proposed SSSF method can involve more meaningful MRCP information than conventional methods.
An important challenge in developing a movement-related cortical potential (MRCP)-based brain-machine interface (BMI) is an accurate decoding of the user intention for real-world environments. However, the performance remains insufficient for real-time decoding owing to the endogenous signal characteristics compared to other BMI paradigms. This study aims to enhance the MRCP decoding performance from the perspective of preprocessing techniques (i.e., spectral filtering). To the best of our knowledge, existing MRCP studies have used spectral filters with a fixed frequency bandwidth for all subjects. Hence, we propose a subject-dependent and section-wise spectral filtering (SSSF) method that considers the subjects’ individual MRCP characteristics for two different temporal sections. In this study, MRCP data were acquired under a powered exoskeleton environments in which the subjects conducted self-initiated walking. We evaluated our method using both our experimental data and a public dataset (BNCI Horizon 2020). The decoding performance using the SSSF was 0.86 (±0.09), and the performance on the public dataset was 0.73 (±0.06) across all subjects. The experimental results showed a statistically significant enhancement ([Formula Omitted]) compared with the fixed frequency bands used in previous methods on both datasets. In addition, we presented successful decoding results from a pseudo-online analysis. Therefore, we demonstrated that the proposed SSSF method can involve more meaningful MRCP information than conventional methods.
An important challenge in developing a movement-related cortical potential (MRCP)-based brain-machine interface (BMI) is an accurate decoding of the user intention for real-world environments. However, the performance remains insufficient for real-time decoding owing to the endogenous signal characteristics compared to other BMI paradigms. This study aims to enhance the MRCP decoding performance from the perspective of preprocessing techniques (i.e., spectral filtering). To the best of our knowledge, existing MRCP studies have used spectral filters with a fixed frequency bandwidth for all subjects. Hence, we propose a subject-dependent and section-wise spectral filtering (SSSF) method that considers the subjects' individual MRCP characteristics for two different temporal sections. In this study, MRCP data were acquired under a powered exoskeleton environments in which the subjects conducted self-initiated walking. We evaluated our method using both our experimental data and a public dataset (BNCI Horizon 2020). The decoding performance using the SSSF was 0.86 (±0.09), and the performance on the public dataset was 0.73 (±0.06) across all subjects. The experimental results showed a statistically significant enhancement ( ) compared with the fixed frequency bands used in previous methods on both datasets. In addition, we presented successful decoding results from a pseudo-online analysis. Therefore, we demonstrated that the proposed SSSF method can involve more meaningful MRCP information than conventional methods.
An important challenge in developing a movement-related cortical potential (MRCP)-based brain-machine interface (BMI) is an accurate decoding of the user intention for real-world environments. However, the performance remains insufficient for real-time decoding owing to the endogenous signal characteristics compared to other BMI paradigms. This study aims to enhance the MRCP decoding performance from the perspective of preprocessing techniques (i.e., spectral filtering). To the best of our knowledge, existing MRCP studies have used spectral filters with a fixed frequency bandwidth for all subjects. Hence, we propose a subject-dependent and section-wise spectral filtering (SSSF) method that considers the subjects' individual MRCP characteristics for two different temporal sections. In this study, MRCP data were acquired under a powered exoskeleton environments in which the subjects conducted self-initiated walking. We evaluated our method using both our experimental data and a public dataset (BNCI Horizon 2020). The decoding performance using the SSSF was 0.86 (±0.09), and the performance on the public dataset was 0.73 (±0.06) across all subjects. The experimental results showed a statistically significant enhancement ( ) compared with the fixed frequency bands used in previous methods on both datasets. In addition, we presented successful decoding results from a pseudo-online analysis. Therefore, we demonstrated that the proposed SSSF method can involve more meaningful MRCP information than conventional methods.An important challenge in developing a movement-related cortical potential (MRCP)-based brain-machine interface (BMI) is an accurate decoding of the user intention for real-world environments. However, the performance remains insufficient for real-time decoding owing to the endogenous signal characteristics compared to other BMI paradigms. This study aims to enhance the MRCP decoding performance from the perspective of preprocessing techniques (i.e., spectral filtering). To the best of our knowledge, existing MRCP studies have used spectral filters with a fixed frequency bandwidth for all subjects. Hence, we propose a subject-dependent and section-wise spectral filtering (SSSF) method that considers the subjects' individual MRCP characteristics for two different temporal sections. In this study, MRCP data were acquired under a powered exoskeleton environments in which the subjects conducted self-initiated walking. We evaluated our method using both our experimental data and a public dataset (BNCI Horizon 2020). The decoding performance using the SSSF was 0.86 (±0.09), and the performance on the public dataset was 0.73 (±0.06) across all subjects. The experimental results showed a statistically significant enhancement ( ) compared with the fixed frequency bands used in previous methods on both datasets. In addition, we presented successful decoding results from a pseudo-online analysis. Therefore, we demonstrated that the proposed SSSF method can involve more meaningful MRCP information than conventional methods.
Author Kwak, No-Sang
Guan, Cuntai
Jeong, Ji-Hoon
Lee, Seong-Whan
Author_xml – sequence: 1
  givenname: Ji-Hoon
  orcidid: 0000-0001-6940-2700
  surname: Jeong
  fullname: Jeong, Ji-Hoon
  email: jh_jeong@korea.ac.kr
  organization: Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
– sequence: 2
  givenname: No-Sang
  orcidid: 0000-0003-2822-2863
  surname: Kwak
  fullname: Kwak, No-Sang
  email: nskwak@korea.ac.kr
  organization: Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
– sequence: 3
  givenname: Cuntai
  orcidid: 0000-0002-0872-3276
  surname: Guan
  fullname: Guan, Cuntai
  email: ctguan@ntu.edu.sg
  organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore
– sequence: 4
  givenname: Seong-Whan
  orcidid: 0000-0002-6249-4996
  surname: Lee
  fullname: Lee, Seong-Whan
  email: sw.lee@korea.ac.kr
  organization: Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31944982$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1DAUhS3Uij7gD4CEIrFhk-n1I34sYdoCUguoU8Qycpwb5FHGHmIHiX-Phxm66KIr2_d-517rnDNyFGJAQl5RWFAK5uL-y-ruasGAwYIZKTWTz8gpbRpdA6NwtLtzUQvO4IScpbQGoEo26jk54dQIYTQ7JeMlutj78LO6jb9xgyHXdzjajH21jFP2zo7Vt5hL3dsxVR9sKp0YqtXcrdHl-hK3GPrSrmzoq1Up-RjqHz5htdqW11T0137MOJUdL8jxUKbgy8N5Tr5fX90vP9U3Xz9-Xr6_qR1vaK47y5EZ0MoNg1Moe077TjJtDWAjrekMU4LrTjk5SNs4RukguGBKMW5o0_Nz8m4_dzvFXzOm3G58cjiONmCcU8u4oBJAgyno20foOs5TKL8rlBJKGQpQqDcHau422LfbyW_s9Kf972MB2B5wU0xpwuEBodDuwmr_hdXuwmoPYRWRfiRyPtudgcU2Pz4tfb2XekR82KWNBMEl_wuDsqEP
CODEN ITNSB3
CitedBy_id crossref_primary_10_1109_TCYB_2021_3122969
crossref_primary_10_1109_ACCESS_2022_3167703
crossref_primary_10_1109_TNSRE_2020_2981659
crossref_primary_10_1109_TNSRE_2021_3106897
crossref_primary_10_1109_TNSRE_2023_3241846
crossref_primary_10_1007_s11571_024_10164_3
crossref_primary_10_1142_S0129065721500386
crossref_primary_10_1142_S0129065723500685
crossref_primary_10_1080_17483107_2023_2211602
crossref_primary_10_1093_gigascience_giaa098
crossref_primary_10_1007_s12559_021_09941_7
crossref_primary_10_1038_s41597_021_01094_4
crossref_primary_10_1186_s12938_023_01102_1
crossref_primary_10_3389_fnhum_2021_732946
crossref_primary_10_3390_s24237611
crossref_primary_10_3389_fnbot_2024_1491721
crossref_primary_10_3390_bios12121134
crossref_primary_10_3389_fnhum_2022_898300
crossref_primary_10_1109_TBME_2021_3137184
crossref_primary_10_1016_j_engappai_2024_108473
crossref_primary_10_1109_TNSRE_2021_3087506
crossref_primary_10_1109_TNSRE_2022_3143836
crossref_primary_10_1016_j_heliyon_2024_e30406
crossref_primary_10_1109_ACCESS_2020_3006907
crossref_primary_10_1109_JBHI_2023_3278747
crossref_primary_10_1109_JSEN_2023_3328615
crossref_primary_10_3389_fnins_2023_1303242
crossref_primary_10_29109_gujsc_1083912
crossref_primary_10_1088_1741_2552_ac9e75
crossref_primary_10_1109_ACCESS_2020_2983182
crossref_primary_10_1109_ACCESS_2020_3011140
crossref_primary_10_1109_JBHI_2024_3356580
crossref_primary_10_1109_JSEN_2020_3005968
crossref_primary_10_1109_TAFFC_2020_3025004
crossref_primary_10_1109_TNSRE_2022_3229330
crossref_primary_10_3389_fnins_2023_1305850
crossref_primary_10_1007_s42600_023_00321_8
crossref_primary_10_1109_TBME_2020_3034112
crossref_primary_10_1109_TCYB_2022_3211694
crossref_primary_10_3390_app15042176
crossref_primary_10_1007_s11571_021_09766_y
crossref_primary_10_3233_JIFS_237890
crossref_primary_10_1109_JSEN_2022_3171808
Cites_doi 10.1227/01.neu.0000508601.15824.39
10.3389/fneur.2018.00822
10.1109/TNSRE.2018.2877987
10.1109/TNSRE.2016.2531118
10.3389/fnins.2017.00356
10.1109/TNSRE.2003.814799
10.1109/TNSRE.2013.2243471
10.1093/gigascience/giz002
10.1016/j.robot.2016.10.005
10.1080/2326263X.2015.1114978
10.3389/fnins.2017.00170
10.1109/TNNLS.2019.2946869
10.3233/RNN-150534
10.1016/j.jneumeth.2014.05.007
10.1088/1741-2552/aaa8c0
10.1088/1741-2560/12/5/056009
10.1016/S1350-4533(99)00067-3
10.1038/srep38565
10.1016/bs.pbr.2016.03.014
10.1109/TNSRE.2016.2597854
10.1088/1741-2560/12/5/056003
10.1016/j.rehab.2018.05.431
10.1109/TNSRE.2018.2864119
10.1109/TCYB.2019.2924237
10.1109/SMC.2018.00096
10.1016/j.patcog.2015.03.010
10.1088/1741-2552/aaf12e
10.1016/j.neucom.2012.12.002
10.1088/1741-2560/10/3/036014
10.1186/s12984-017-0219-0
10.1088/1741-2560/11/5/056009
10.1126/scirobotics.aat1228
10.1109/TPAMI.2012.69
10.1109/TNSRE.2014.2375879
10.1016/j.clinph.2006.04.025
10.1016/S1388-2457(02)00057-3
10.1109/TNNLS.2015.2476656
10.3389/fnins.2017.00028
10.1016/j.neuroimage.2010.06.048
10.1109/TNSRE.2014.2346621
10.1088/1741-2552/aa8911
10.1109/TNSRE.2016.2646763
10.1016/j.jneumeth.2014.03.011
10.1109/IWW-BCI.2017.7858156
10.3389/fnins.2016.00122
10.1016/j.jneumeth.2003.10.009
10.1109/TNSRE.2003.814435
10.1088/1741-2560/12/3/036007
10.1016/j.neuroimage.2016.01.019
10.1186/s12984-015-0095-4
10.1073/pnas.1513569112
10.1155/2015/346217
10.1088/1741-2552/aa5f2f
10.1109/TNSRE.2018.2855053
10.1007/978-3-030-05668-1_1
10.1109/TNSRE.2017.2703586
10.1109/TBME.2015.2487738
10.1371/journal.pone.0182578
10.1109/TCYB.2018.2841847
10.1016/j.clinph.2014.05.003
10.1109/TNSRE.2012.2227278
10.1016/j.bspc.2017.11.012
10.3389/fnins.2010.00198
10.1088/1741-2560/12/5/056013
10.3389/fnhum.2017.00604
10.1088/1741-2560/12/1/016001
10.1371/journal.pone.0125479
10.1109/TNSRE.2018.2848883
10.1371/journal.pone.0172578
10.1109/EMBC.2019.8856312
10.1186/1743-0003-10-111
10.1109/TBME.2013.2294203
10.1109/TNSRE.2019.2913880
10.1088/1741-2560/13/3/031001
10.1088/1741-2560/8/6/066009
10.1371/journal.pone.0111157
10.3389/fnins.2014.00376
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TNSRE.2020.2966826
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 698
ExternalDocumentID 31944982
10_1109_TNSRE_2020_2966826
8960436
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Korea Government (Development of BCI based Brain and Cognitive Computing Technology for Recognizing User’s Intentions using Deep Learning
  grantid: 2017-0-00451
– fundername: Institute of Information & Communications Technology Planning & Evaluation (IITP)
– fundername: Ministry of Science, ICT and Future Planning
  grantid: 2017-0-00432
  funderid: 10.13039/501100003621
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c351t-ba3e29087cffc7e6d31db628a90e56a9b927438b7c6f6a5c211f43427723915d3
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Fri Jul 11 06:37:37 EDT 2025
Fri Jul 25 04:03:04 EDT 2025
Thu Apr 03 07:00:00 EDT 2025
Thu Apr 24 22:50:52 EDT 2025
Tue Jul 01 00:43:20 EDT 2025
Wed Aug 27 02:51:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-ba3e29087cffc7e6d31db628a90e56a9b927438b7c6f6a5c211f43427723915d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6249-4996
0000-0003-2822-2863
0000-0001-6940-2700
0000-0002-0872-3276
PMID 31944982
PQID 2374779100
PQPubID 85423
PageCount 12
ParticipantIDs pubmed_primary_31944982
crossref_primary_10_1109_TNSRE_2020_2966826
ieee_primary_8960436
proquest_journals_2374779100
proquest_miscellaneous_2341600809
crossref_citationtrail_10_1109_TNSRE_2020_2966826
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref59
ibáñez (ref54) 2014; 11
ref15
ref58
ref14
ref53
blankertz (ref68) 2002
ref52
ref55
ref11
ref10
ref17
ref16
ref19
ref18
xu (ref51) 2014; 61
wolpaw (ref3) 2002; 113
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref6
ref5
ref40
ref35
ref78
ref34
ref37
ref36
ref75
ref31
ref74
ref30
ref77
ref33
ref76
ref32
ref2
ref1
úbeda (ref23) 2017; 14
ref39
ref38
ref71
ref70
ref73
ref72
kwak (ref12) 2015; 12
ref24
ref67
ref26
ref69
ref25
ref64
ref20
ref63
ref66
ref22
ref65
ref21
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref35
  doi: 10.1227/01.neu.0000508601.15824.39
– ident: ref53
  doi: 10.3389/fneur.2018.00822
– ident: ref74
  doi: 10.1109/TNSRE.2018.2877987
– ident: ref43
  doi: 10.1109/TNSRE.2016.2531118
– ident: ref59
  doi: 10.3389/fnins.2017.00356
– ident: ref1
  doi: 10.1109/TNSRE.2003.814799
– ident: ref71
  doi: 10.1109/TNSRE.2013.2243471
– ident: ref62
  doi: 10.1093/gigascience/giz002
– ident: ref45
  doi: 10.1016/j.robot.2016.10.005
– ident: ref58
  doi: 10.1080/2326263X.2015.1114978
– ident: ref17
  doi: 10.3389/fnins.2017.00170
– ident: ref78
  doi: 10.1109/TNNLS.2019.2946869
– ident: ref20
  doi: 10.3233/RNN-150534
– ident: ref31
  doi: 10.1016/j.jneumeth.2014.05.007
– ident: ref14
  doi: 10.1088/1741-2552/aaa8c0
– volume: 12
  year: 2015
  ident: ref12
  article-title: A lower limb exoskeleton control system based on steady state visual evoked potentials
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/12/5/056009
– ident: ref60
  doi: 10.1016/S1350-4533(99)00067-3
– ident: ref10
  doi: 10.1038/srep38565
– ident: ref25
  doi: 10.1016/bs.pbr.2016.03.014
– ident: ref5
  doi: 10.1109/TNSRE.2016.2597854
– ident: ref44
  doi: 10.1088/1741-2560/12/5/056003
– ident: ref29
  doi: 10.1016/j.rehab.2018.05.431
– ident: ref22
  doi: 10.1109/TNSRE.2018.2864119
– ident: ref77
  doi: 10.1109/TCYB.2019.2924237
– ident: ref36
  doi: 10.1109/SMC.2018.00096
– ident: ref69
  doi: 10.1016/j.patcog.2015.03.010
– ident: ref4
  doi: 10.1088/1741-2552/aaf12e
– ident: ref21
  doi: 10.1016/j.neucom.2012.12.002
– ident: ref48
  doi: 10.1088/1741-2560/10/3/036014
– volume: 14
  start-page: 9
  year: 2017
  ident: ref23
  article-title: Classification of upper limb center-out reaching tasks by means of EEG-based continuous decoding techniques
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/s12984-017-0219-0
– volume: 11
  year: 2014
  ident: ref54
  article-title: Detection of the onset of upper-limb movements based on the combined analysis of changes in the sensorimotor rhythms and slow cortical potentials
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/11/5/056009
– ident: ref7
  doi: 10.1126/scirobotics.aat1228
– ident: ref32
  doi: 10.1109/TPAMI.2012.69
– ident: ref9
  doi: 10.1109/TNSRE.2014.2375879
– ident: ref33
  doi: 10.1016/j.clinph.2006.04.025
– volume: 113
  start-page: 767
  year: 2002
  ident: ref3
  article-title: Brain-computer interfaces for communication and control
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(02)00057-3
– ident: ref72
  doi: 10.1109/TNNLS.2015.2476656
– ident: ref75
  doi: 10.3389/fnins.2017.00028
– ident: ref66
  doi: 10.1016/j.neuroimage.2010.06.048
– ident: ref70
  doi: 10.1109/TNSRE.2014.2346621
– ident: ref38
  doi: 10.1088/1741-2552/aa8911
– ident: ref18
  doi: 10.1109/TNSRE.2016.2646763
– ident: ref6
  doi: 10.1016/j.jneumeth.2014.03.011
– ident: ref27
  doi: 10.1109/IWW-BCI.2017.7858156
– ident: ref57
  doi: 10.3389/fnins.2016.00122
– ident: ref64
  doi: 10.1016/j.jneumeth.2003.10.009
– ident: ref2
  doi: 10.1109/TNSRE.2003.814435
– ident: ref46
  doi: 10.1088/1741-2560/12/3/036007
– ident: ref67
  doi: 10.1016/j.neuroimage.2016.01.019
– ident: ref24
  doi: 10.1186/s12984-015-0095-4
– ident: ref40
  doi: 10.1073/pnas.1513569112
– ident: ref34
  doi: 10.1155/2015/346217
– ident: ref56
  doi: 10.1088/1741-2552/aa5f2f
– ident: ref42
  doi: 10.1109/TNSRE.2018.2855053
– ident: ref63
  doi: 10.1007/978-3-030-05668-1_1
– ident: ref19
  doi: 10.1109/TNSRE.2017.2703586
– ident: ref76
  doi: 10.1109/TBME.2015.2487738
– ident: ref50
  doi: 10.1371/journal.pone.0182578
– ident: ref73
  doi: 10.1109/TCYB.2018.2841847
– ident: ref52
  doi: 10.1016/j.clinph.2014.05.003
– ident: ref41
  doi: 10.1109/TNSRE.2012.2227278
– ident: ref30
  doi: 10.1016/j.bspc.2017.11.012
– ident: ref61
  doi: 10.3389/fnins.2010.00198
– ident: ref65
  doi: 10.1088/1741-2560/12/5/056013
– ident: ref37
  doi: 10.3389/fnhum.2017.00604
– ident: ref15
  doi: 10.1088/1741-2560/12/1/016001
– ident: ref47
  doi: 10.1371/journal.pone.0125479
– ident: ref28
  doi: 10.1109/TNSRE.2018.2848883
– ident: ref26
  doi: 10.1371/journal.pone.0172578
– ident: ref8
  doi: 10.1109/EMBC.2019.8856312
– ident: ref11
  doi: 10.1186/1743-0003-10-111
– start-page: 157
  year: 2002
  ident: ref68
  article-title: Classifying single trial EEG: Towards brain computer interfacing
  publication-title: Proc Adv Neural Inf Process Syst
– volume: 61
  start-page: 288
  year: 2014
  ident: ref51
  article-title: Enhanced low-latency detection of motor intention from eeg for closed-loop brain-computer interface applications
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2013.2294203
– ident: ref55
  doi: 10.1109/TNSRE.2019.2913880
– ident: ref13
  doi: 10.1088/1741-2560/13/3/031001
– ident: ref49
  doi: 10.1088/1741-2560/8/6/066009
– ident: ref16
  doi: 10.1371/journal.pone.0111157
– ident: ref39
  doi: 10.3389/fnins.2014.00376
SSID ssj0017657
Score 2.5481002
Snippet An important challenge in developing a movement-related cortical potential (MRCP)-based brain-machine interface (BMI) is an accurate decoding of the user...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 687
SubjectTerms Brain-machine interface
Cerebral cortex
Data acquisition
Datasets
Decoding
Electrodes
Electroencephalography
Electromyography
Exoskeleton
Exoskeletons
Filtration
Frequencies
Legged locomotion
Man-machine interfaces
movement-related cortical potentials
Muscles
Spectra
Statistical analysis
Title Decoding Movement-Related Cortical Potentials Based on Subject-Dependent and Section-Wise Spectral Filtering
URI https://ieeexplore.ieee.org/document/8960436
https://www.ncbi.nlm.nih.gov/pubmed/31944982
https://www.proquest.com/docview/2374779100
https://www.proquest.com/docview/2341600809
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PSAkxKtQAgUZCbiAt17bsZMjtF1VSK1Qdyt6i_yKVFElaJu98OsZOw9RBIhbpNh5zUz8jWfmG4A3ri6sYyGn9TzXVFojqfExbcdJw5S3WrmUbXGmTi7k58v8cgs-TLUwIYSUfBZm8TDF8n3rNnGr7KCITCJCbcM2Om59rdYUMdAqsXqiAUsqBWdjgQwrD1Zny_NjdAU5m3FE9wio78IdVD0py4LfWo9Sg5W_Y8205iwewOn4tH2qybfZprMz9-M3Isf_fZ2HcH8An-Rjry2PYCs0j-Htr0TDZNWzDJB35PwWh_cuXB-hpxpXOnLaJpLxjqZMuuDJYbtOW-LkS9vF7CNUafIJl0dP2obgrynu9dCjod1uR0zjyTKlgDX069VNIMtY7rnG-YurGLzHezyBi8Xx6vCEDr0aqBP5vKPWiMBLVmhX104H5cXcW8ULU6IiKFPaEt1fUVjtVK1M7tDvrKWQHMF9pKj34insNG0TngHRtfXOMSm10dL4spAOgZkXVklV-NxnMB8lVrnhI8R-GtdVcmhYWSWBV1Hg1SDwDN5Pc773NB7_HL0bpTWNHASVwf6oGNVg6TcVF-iQaQRdLIPX02m00Rh4MU1oN3EMwt6IzcsM9nqFmq496uHzP9_zBdzjsRganfyU-LYPO916E14iEursq2QCPwEM-ALw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1bb9MwGP00hgR74TYugQFGYrygdKnj2MkDD7Cu6thWobXT9hZ8izQxJahNheC38Ff4b3x2LmIIeJvEW6U6FznH9jn28THAS12kSkc2CYthIkKmJAulcbYdzWTEjRJce7fFlE9O2Puz5GwNvvd7Yay13nxmB-6nX8s3lV65qbKd1CWJxLy1UB7Yr19QoC3f7I_wa25TOt6b707C9gyBUMfJsA6VjC3NolTootDCchMPjeI0lRm-IJeZylCWxakSmhdcJhr1UMFiRpF0uuh0E-N9r8F15BkJbXaH9WsUgvscUewyWMhiGnVbcqJsZz6dHe-h-KTRgKKeQAq_ATcQ7IxlKb00AvojXf7Obv0oN74NP7r6acwtnwarWg30t9-iI__XCrwDt1p6Td427eEurNnyHmz_GqVM5k2OAnlFji-llG_CxQi1uBvLyVHlY9Tr0HsFrSG71cJP-pMPVe38VdhoyTskAIZUJcHO181mhaP2QOGayNKQmTe5leHp-dKSmdvQusDrx-fOnoDPuA8nV1IRD2C9rEr7CIgolNE6YkxIwaTJUqaReppYccZTk5gAhh1Cct1Wgjsx5CL3ki3Kcg-w3AEsbwEWwOv-ms9NUMk_S286dPQlW2AEsNUBMW_7smVOY5ScAmllFMCL_m_shdzSkixttXJlkNg79ZEF8LABcH_vDveP__zM53BzMj86zA_3pwdPYMO9ZePx24L1erGyT5H01eqZb3sEPl41Vn8CEgxegg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decoding+Movement-Related+Cortical+Potentials+Based+on+Subject-Dependent+and+Section-Wise+Spectral+Filtering&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Jeong%2C+Ji-Hoon&rft.au=Kwak%2C+No-Sang&rft.au=Guan%2C+Cuntai&rft.au=Lee%2C+Seong-Whan&rft.date=2020-03-01&rft.pub=IEEE&rft.issn=1534-4320&rft.volume=28&rft.issue=3&rft.spage=687&rft.epage=698&rft_id=info:doi/10.1109%2FTNSRE.2020.2966826&rft_id=info%3Apmid%2F31944982&rft.externalDocID=8960436
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon