Stability Analysis for Delayed Neural Networks via a Generalized Reciprocally Convex Inequality

This article deals with the stability of neural networks (NNs) with time-varying delay. First, a generalized reciprocally convex inequality (RCI) is presented, providing a tight bound for reciprocally convex combinations. This inequality includes some existing ones as special case. Second, in order...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 34; no. 10; pp. 7491 - 7499
Main Authors Lin, Hui-Chao, Zeng, Hong-Bing, Zhang, Xian-Ming, Wang, Wei
Format Journal Article
LanguageEnglish
Published United States IEEE 01.10.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article deals with the stability of neural networks (NNs) with time-varying delay. First, a generalized reciprocally convex inequality (RCI) is presented, providing a tight bound for reciprocally convex combinations. This inequality includes some existing ones as special case. Second, in order to cater for the use of the generalized RCI, a novel Lyapunov-Krasovskii functional (LKF) is constructed, which includes a generalized delay-product term. Third, based on the generalized RCI and the novel LKF, several stability criteria for the delayed NNs under study are put forward. Finally, two numerical examples are given to illustrate the effectiveness and advantages of the proposed stability criteria.
AbstractList This article deals with the stability of neural networks (NNs) with time-varying delay. First, a generalized reciprocally convex inequality (RCI) is presented, providing a tight bound for reciprocally convex combinations. This inequality includes some existing ones as special case. Second, in order to cater for the use of the generalized RCI, a novel Lyapunov-Krasovskii functional (LKF) is constructed, which includes a generalized delay-product term. Third, based on the generalized RCI and the novel LKF, several stability criteria for the delayed NNs under study are put forward. Finally, two numerical examples are given to illustrate the effectiveness and advantages of the proposed stability criteria.
This article deals with the stability of neural networks (NNs) with time-varying delay. First, a generalized reciprocally convex inequality (RCI) is presented, providing a tight bound for reciprocally convex combinations. This inequality includes some existing ones as special case. Second, in order to cater for the use of the generalized RCI, a novel Lyapunov-Krasovskii functional (LKF) is constructed, which includes a generalized delay-product term. Third, based on the generalized RCI and the novel LKF, several stability criteria for the delayed NNs under study are put forward. Finally, two numerical examples are given to illustrate the effectiveness and advantages of the proposed stability criteria.This article deals with the stability of neural networks (NNs) with time-varying delay. First, a generalized reciprocally convex inequality (RCI) is presented, providing a tight bound for reciprocally convex combinations. This inequality includes some existing ones as special case. Second, in order to cater for the use of the generalized RCI, a novel Lyapunov-Krasovskii functional (LKF) is constructed, which includes a generalized delay-product term. Third, based on the generalized RCI and the novel LKF, several stability criteria for the delayed NNs under study are put forward. Finally, two numerical examples are given to illustrate the effectiveness and advantages of the proposed stability criteria.
Author Lin, Hui-Chao
Wang, Wei
Zhang, Xian-Ming
Zeng, Hong-Bing
Author_xml – sequence: 1
  givenname: Hui-Chao
  orcidid: 0000-0003-1113-2423
  surname: Lin
  fullname: Lin, Hui-Chao
  email: linhuichao@stumail.neu.edu.cn
  organization: School of Electrical and Information Engineering, and the Institute of Intelligent Equipment and Control Technology, Hunan University of Technology, Zhuzhou, Hunan, China
– sequence: 2
  givenname: Hong-Bing
  orcidid: 0000-0002-0226-2405
  surname: Zeng
  fullname: Zeng, Hong-Bing
  email: zenghongbing@hut.edu.com
  organization: School of Electrical and Information Engineering, and the Institute of Intelligent Equipment and Control Technology, Hunan University of Technology, Zhuzhou, Hunan, China
– sequence: 3
  givenname: Xian-Ming
  orcidid: 0000-0003-0691-5386
  surname: Zhang
  fullname: Zhang, Xian-Ming
  email: xianmingzhang@swin.edu.au
  organization: School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, VIC, Australia
– sequence: 4
  givenname: Wei
  orcidid: 0000-0003-3457-9324
  surname: Wang
  fullname: Wang, Wei
  email: wangwei9804@163.com
  organization: School of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou, Hunan, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35108209$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFv1DAQhS1UREvpHwAJReLCZRd7HDv2sVqgVFotEi0SN8tJxpKLN27tpBB-PV5220MPzGVG1veeZvxekqMhDkjIa0aXjFH94XqzWV8tgQIsOatryuEZOQEmYQFcqaPHuflxTM5yvqGlJBWy1i_IMReMKqD6hJir0bY--HGuzgcb5uxz5WKqPmKwM_bVBqdkQ2njr5h-5ure28pWFzhgefZ_CvENO3-bYmdDmKtVHO7xd3U54N1kd66vyHNnQ8azQz8l3z9_ul59Way_XlyuzteLruwyLlpda23bGgVw5ywTPUOAXrFGcdkpynqndas0VwJF17ROorbgGtTCUS4pPyXv975llbsJ82i2PncYgh0wTtmABAFSsBoK-u4JehOnVI4vlGq4UKoBXai3B2pqt9ib2-S3Ns3m4esKoPZAl2LOCZ3p_GhHH4cxWR8Mo2YXlPkXlNkFZQ5BFSk8kT64_1f0Zi_yiPgo0A1lUmr-F446nZ8
CODEN ITNNAL
CitedBy_id crossref_primary_10_1007_s12346_022_00651_5
crossref_primary_10_1109_ACCESS_2022_3206959
crossref_primary_10_1016_j_neucom_2022_10_020
crossref_primary_10_1109_TCYB_2024_3518578
crossref_primary_10_1080_00207721_2025_2474133
crossref_primary_10_1109_TFUZZ_2022_3187180
crossref_primary_10_1109_ACCESS_2023_3277210
crossref_primary_10_1109_ACCESS_2024_3402815
crossref_primary_10_1109_ACCESS_2024_3359250
crossref_primary_10_1049_cth2_12778
crossref_primary_10_1109_TCYB_2024_3365709
crossref_primary_10_1016_j_jfranklin_2024_107125
crossref_primary_10_1007_s11063_022_11074_3
crossref_primary_10_1007_s11071_024_10441_0
crossref_primary_10_1016_j_ejcon_2024_101076
crossref_primary_10_1109_TFUZZ_2022_3182786
crossref_primary_10_1016_j_jfranklin_2023_12_001
crossref_primary_10_3934_mmc_2024010
crossref_primary_10_1109_TFUZZ_2024_3375449
crossref_primary_10_3390_math10173096
crossref_primary_10_1109_TSMC_2023_3346060
crossref_primary_10_1016_j_jfranklin_2023_11_016
crossref_primary_10_1109_ACCESS_2022_3183149
crossref_primary_10_1016_j_jfranklin_2024_107476
crossref_primary_10_1109_TFUZZ_2023_3240250
crossref_primary_10_3934_era_2024305
crossref_primary_10_3934_math_2025182
crossref_primary_10_1109_ACCESS_2024_3354030
crossref_primary_10_1109_ACCESS_2022_3226698
crossref_primary_10_1007_s12555_022_0696_1
crossref_primary_10_1109_TFUZZ_2023_3276818
crossref_primary_10_1109_TPWRS_2024_3382146
crossref_primary_10_1016_j_neunet_2024_106637
crossref_primary_10_1080_00207721_2023_2244122
crossref_primary_10_1109_ACCESS_2023_3327190
crossref_primary_10_1016_j_jfranklin_2024_107223
crossref_primary_10_1016_j_neucom_2025_129730
crossref_primary_10_1016_j_amc_2024_128837
crossref_primary_10_1016_j_matcom_2023_10_013
crossref_primary_10_1049_cth2_12632
crossref_primary_10_1002_rnc_7781
crossref_primary_10_1016_j_neunet_2024_106676
crossref_primary_10_1007_s12559_023_10212_w
crossref_primary_10_1007_s12555_023_0181_5
crossref_primary_10_1002_rnc_7802
crossref_primary_10_1016_j_jfranklin_2022_10_016
crossref_primary_10_1016_j_jfranklin_2024_106927
crossref_primary_10_1007_s00034_023_02584_z
crossref_primary_10_1109_ACCESS_2023_3290046
crossref_primary_10_3390_math11173697
crossref_primary_10_1016_j_jfranklin_2024_107050
crossref_primary_10_1016_j_jfranklin_2023_11_037
crossref_primary_10_1016_j_jfranklin_2024_01_008
crossref_primary_10_3934_era_2025054
crossref_primary_10_1109_TETCI_2023_3341330
crossref_primary_10_1002_rnc_7579
crossref_primary_10_1016_j_amc_2024_128529
crossref_primary_10_1109_JAS_2022_106025
crossref_primary_10_1016_j_jfranklin_2024_01_047
crossref_primary_10_1002_rnc_7178
Cites_doi 10.1109/TAC.2011.2121410
10.1109/TCYB.2019.2938217
10.1109/TNNLS.2018.2869375
10.1109/TNNLS.2013.2284968
10.1109/TCYB.2017.2690676
10.1016/j.isatra.2021.06.015
10.1080/00207170802635476
10.1109/TNNLS.2021.3069926
10.1016/j.automatica.2009.08.002
10.1007/978-1-4612-4342-7
10.1109/TNNLS.2015.2441697
10.1109/TNNLS.2020.3017171
10.1016/j.automatica.2017.07.056
10.1007/978-1-4471-0345-5
10.1109/TNNLS.2020.3042307
10.1109/TNNLS.2017.2760979
10.1109/TNNLS.2020.3030638
10.1109/TCYB.2014.2367591
10.1109/CDC.2000.914233
10.1016/j.amc.2016.08.043
10.1109/TNNLS.2020.2978898
10.1109/TNNLS.2020.2968342
10.1016/j.jfranklin.2020.07.034
10.1016/j.jfranklin.2014.12.023
10.1109/JAS.2020.1003111
10.1016/j.neucom.2020.07.021
10.1016/j.neucom.2016.04.058
10.1016/j.automatica.2009.11.002
10.1016/j.automatica.2020.109390
10.1016/j.sysconle.2015.03.007
10.1109/72.822526
10.1016/j.neucom.2015.02.055
10.1016/j.automatica.2017.02.004
10.1016/j.neucom.2018.06.038
10.1049/iet-cta.2018.5188
10.1109/TNNLS.2020.2979778
10.1109/TCYB.2020.3031087
10.1016/j.automatica.2010.10.014
10.1016/j.automatica.2019.108764
10.1109/TNNLS.2017.2750708
10.1109/TNNLS.2014.2317880
10.1016/j.amc.2021.126222
10.1109/TCYB.2017.2776283
10.1109/31.7601
10.1016/j.automatica.2015.08.025
10.1049/iet-cta.2019.1464
10.1109/TNNLS.2019.2909350
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2022.3144032
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 7499
ExternalDocumentID 35108209
10_1109_TNNLS_2022_3144032
9701669
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Hunan Province
  grantid: 2020JJ2013; 2021JJ50047
  funderid: 10.13039/501100004735
– fundername: National Natural Science Foundation of China
  grantid: 62173136
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-b9499ab4e523ffa15d1e22d817836c801df99b89385e5c7bf6e9a2f7e95f03603
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Fri Jul 11 15:35:36 EDT 2025
Mon Jun 30 02:38:17 EDT 2025
Thu Jan 02 22:55:48 EST 2025
Tue Jul 01 00:27:44 EDT 2025
Thu Apr 24 23:04:12 EDT 2025
Wed Aug 27 02:36:29 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-b9499ab4e523ffa15d1e22d817836c801df99b89385e5c7bf6e9a2f7e95f03603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1113-2423
0000-0002-0226-2405
0000-0003-3457-9324
0000-0003-0691-5386
PMID 35108209
PQID 2873588729
PQPubID 85436
PageCount 9
ParticipantIDs pubmed_primary_35108209
ieee_primary_9701669
proquest_miscellaneous_2625265142
crossref_citationtrail_10_1109_TNNLS_2022_3144032
crossref_primary_10_1109_TNNLS_2022_3144032
proquest_journals_2873588729
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref10
ref17
ref16
ref19
ref18
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref6
ref5
ref40
Seuret (ref32)
ref35
ref34
Zell (ref11) 2003
ref37
ref36
ref31
ref30
ref33
ref2
ref1
ref39
ref38
Liu (ref3) 2001
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref29
  doi: 10.1109/TAC.2011.2121410
– ident: ref48
  doi: 10.1109/TCYB.2019.2938217
– ident: ref5
  doi: 10.1109/TNNLS.2018.2869375
– ident: ref13
  doi: 10.1109/TNNLS.2013.2284968
– ident: ref18
  doi: 10.1109/TCYB.2017.2690676
– ident: ref9
  doi: 10.1016/j.isatra.2021.06.015
– ident: ref23
  doi: 10.1080/00207170802635476
– ident: ref47
  doi: 10.1109/TNNLS.2021.3069926
– ident: ref25
  doi: 10.1016/j.automatica.2009.08.002
– ident: ref49
  doi: 10.1007/978-1-4612-4342-7
– ident: ref6
  doi: 10.1109/TNNLS.2015.2441697
– ident: ref8
  doi: 10.1109/TNNLS.2020.3017171
– ident: ref33
  doi: 10.1016/j.automatica.2017.07.056
– volume-title: Nonlinear Identification and Control: A Neural Network Approach
  year: 2001
  ident: ref3
  doi: 10.1007/978-1-4471-0345-5
– ident: ref14
  doi: 10.1109/TNNLS.2020.3042307
– ident: ref45
  doi: 10.1109/TNNLS.2017.2760979
– ident: ref7
  doi: 10.1109/TNNLS.2020.3030638
– ident: ref16
  doi: 10.1109/TCYB.2014.2367591
– ident: ref27
  doi: 10.1109/CDC.2000.914233
– ident: ref38
  doi: 10.1016/j.amc.2016.08.043
– ident: ref4
  doi: 10.1109/TNNLS.2020.2978898
– ident: ref10
  doi: 10.1109/TNNLS.2020.2968342
– ident: ref35
  doi: 10.1016/j.jfranklin.2020.07.034
– ident: ref17
  doi: 10.1016/j.jfranklin.2014.12.023
– ident: ref26
  doi: 10.1109/JAS.2020.1003111
– ident: ref43
  doi: 10.1016/j.neucom.2020.07.021
– ident: ref44
  doi: 10.1016/j.neucom.2016.04.058
– volume-title: Simulation Neuronaler Netze [Simulation of Neural Networks]
  year: 2003
  ident: ref11
– start-page: 1297
  volume-title: Proc. IFAC World Congr.
  ident: ref32
  article-title: Allowable delay sets for the stability analysis of linear timevarying delay systems using a delay-dependent reciprocally convex lemma
– ident: ref24
  doi: 10.1016/j.automatica.2009.11.002
– ident: ref37
  doi: 10.1016/j.automatica.2020.109390
– ident: ref36
  doi: 10.1016/j.sysconle.2015.03.007
– ident: ref2
  doi: 10.1109/72.822526
– ident: ref15
  doi: 10.1016/j.neucom.2015.02.055
– ident: ref22
  doi: 10.1016/j.automatica.2017.02.004
– ident: ref30
  doi: 10.1016/j.neucom.2018.06.038
– ident: ref21
  doi: 10.1049/iet-cta.2018.5188
– ident: ref41
  doi: 10.1109/TNNLS.2020.2979778
– ident: ref46
  doi: 10.1109/TCYB.2020.3031087
– ident: ref31
  doi: 10.1016/j.automatica.2010.10.014
– ident: ref34
  doi: 10.1016/j.automatica.2019.108764
– ident: ref39
  doi: 10.1109/TNNLS.2017.2750708
– ident: ref12
  doi: 10.1109/TNNLS.2014.2317880
– ident: ref28
  doi: 10.1016/j.amc.2021.126222
– ident: ref40
  doi: 10.1109/TCYB.2017.2776283
– ident: ref1
  doi: 10.1109/31.7601
– ident: ref20
  doi: 10.1016/j.automatica.2015.08.025
– ident: ref19
  doi: 10.1049/iet-cta.2019.1464
– ident: ref42
  doi: 10.1109/TNNLS.2019.2909350
SSID ssj0000605649
Score 2.6616566
Snippet This article deals with the stability of neural networks (NNs) with time-varying delay. First, a generalized reciprocally convex inequality (RCI) is presented,...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7491
SubjectTerms Artificial neural networks
Delayed neural network (NN)
Delays
Linear matrix inequalities
Lyapunov-Krasovskii functional (LKF)
Neural networks
Neurons
reciprocally convex combination
Stability analysis
Stability criteria
Symmetric matrices
Time-varying systems
Title Stability Analysis for Delayed Neural Networks via a Generalized Reciprocally Convex Inequality
URI https://ieeexplore.ieee.org/document/9701669
https://www.ncbi.nlm.nih.gov/pubmed/35108209
https://www.proquest.com/docview/2873588729
https://www.proquest.com/docview/2625265142
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZT-MwEB4BT7ws1-5SLhmJtyUlcQ7Hj4hDgKAvgNS3yHbGUkWVItoiyq9n7BzSrljESxQpE-eYceb7nDkAjvLMSPIcOsh1IoLEhDLQIlEBFybmyhib-ticu0F29ZjcDNPhEhx3uTCI6IPPsO92_b_8cmLmbqnsRAoCKJlchmUibnWuVreeEhIuzzza5VHGAx6LYZsjE8qTh8Hg9p7YIOdEUpMkjF0Xm5jskRyg_Msl-R4r_4eb3u1crsFde8N1tMlTfz7TffP-Ty3H7z7ROvxo8Cc7rQ1mA5aw2oS1trcDa6b6FhSEQn3c7IK1dUsY4Vt2jmO1wJK5oh40zqCOIp-y15FiijVFrEfvJEGAdOTcoxqPF-zMBbe_sesK6yzOxU94vLx4OLsKmmYMgaH3NAu0q2KjdILEXK1VUVpGyHmZRy4NxJCfK62UmtBPnmJqhLYZSsWtQJla8pJh_AtWqkmF28BK-kjEWAqNwiS5xdwQBzS0ydFYIog9iFp9FKapVO4aZowLz1hCWXh1Fk6dRaPOHvzpznmu63R8Kb3ldNFJNmrowV6r9qKZytOCKGVMBkskpAeH3WGahO7PiqpwMicZYpE8I-xJI_-uzaUbu7Wync-vuQurroN9HR-4ByuzlznuE86Z6QNv4B9sVPac
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoALBcpjoQUjcYNsE-fh-Ihaqi3s5sJW2ptlO2Np1VUW0V3E9tczdh4SFaBeokiZOI8ZZ77PmQfA-7KwkjyHiUqTiSizsYyMyHTEhU25ttblITZnVhWTy-zLIl_swcchFwYRQ_AZjv1u-Jdfr-3WL5WdSEEApZD34D75_Zy32VrDikpMyLwIeJcnBY94KhZ9lkwsT-ZVNf1GfJBzoqlZFqe-j01KFkkuUP7hlEKXlX8DzuB4zg9g1t9yG29yNd5uzNje3KrmeNdnegyPOgTKPrUm8wT2sHkKB313B9ZN9kNQhEND5OyO9ZVLGCFcdoYrvcOa-bIeNE7VxpFfs59LzTTrylgvb0iCIOnSO0i9Wu3YqQ9v_8UuGmzzOHfP4PL88_x0EnXtGCJL72kTGV_HRpsMibs6p5O8TpDzukx8IoglT1c7KQ3hnzLH3ArjCpSaO4Eyd-Qn4_Q57DfrBl8Cq-kzkWItDAqblQ5LSyzQ0qZE64gijiDp9aFsV6vct8xYqcBZYqmCOpVXp-rUOYIPwznf20od_5U-9LoYJDs1jOCoV7vqJvO1IlKZkskSDRnBu-EwTUP_b0U3uN6SDPFIXhD6pJFftOYyjN1b2au_X_MtPJjMZ1M1vai-voaHvp99Gy14BPubH1s8JtSzMW-Csf8GcjT55g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+Analysis+for+Delayed+Neural+Networks+via+a+Generalized+Reciprocally+Convex+Inequality&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Lin%2C+Hui-Chao&rft.au=Zeng%2C+Hong-Bing&rft.au=Zhang%2C+Xian-Ming&rft.au=Wang%2C+Wei&rft.date=2023-10-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=34&rft.issue=10&rft.spage=7491&rft.epage=7499&rft_id=info:doi/10.1109%2FTNNLS.2022.3144032&rft_id=info%3Apmid%2F35108209&rft.externalDocID=9701669
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon