Multi-Target Regression via Robust Low-Rank Learning

Multi-target regression has recently regained great popularity due to its capability of simultaneously learning multiple relevant regression tasks and its wide applications in data mining, computer vision and medical image analysis, while great challenges arise from jointly handling inter-target cor...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 40; no. 2; pp. 497 - 504
Main Authors Zhen, Xiantong, Yu, Mengyang, He, Xiaofei, Li, Shuo
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multi-target regression has recently regained great popularity due to its capability of simultaneously learning multiple relevant regression tasks and its wide applications in data mining, computer vision and medical image analysis, while great challenges arise from jointly handling inter-target correlations and input-output relationships. In this paper, we propose Multi-layer Multi-target Regression (MMR) which enables simultaneously modeling intrinsic inter-target correlations and nonlinear input-output relationships in a general framework via robust low-rank learning. Specifically, the MMR can explicitly encode inter-target correlations in a structure matrix by matrix elastic nets (MEN); the MMR can work in conjunction with the kernel trick to effectively disentangle highly complex nonlinear input-output relationships; the MMR can be efficiently solved by a new alternating optimization algorithm with guaranteed convergence. The MMR leverages the strength of kernel methods for nonlinear feature learning and the structural advantage of multi-layer learning architectures for inter-target correlation modeling. More importantly, it offers a new multi-layer learning paradigm for multi-target regression which is endowed with high generality, flexibility and expressive ability. Extensive experimental evaluation on 18 diverse real-world datasets demonstrates that our MMR can achieve consistently high performance and outperforms representative state-of-the-art algorithms, which shows its great effectiveness and generality for multivariate prediction.
AbstractList Multi-target regression has recently regained great popularity due to its capability of simultaneously learning multiple relevant regression tasks and its wide applications in data mining, computer vision and medical image analysis, while great challenges arise from jointly handling inter-target correlations and input-output relationships. In this paper, we propose Multi-layer Multi-target Regression (MMR) which enables simultaneously modeling intrinsic inter-target correlations and nonlinear input-output relationships in a general framework via robust low-rank learning. Specifically, the MMR can explicitly encode inter-target correlations in a structure matrix by matrix elastic nets (MEN); the MMR can work in conjunction with the kernel trick to effectively disentangle highly complex nonlinear input-output relationships; the MMR can be efficiently solved by a new alternating optimization algorithm with guaranteed convergence. The MMR leverages the strength of kernel methods for nonlinear feature learning and the structural advantage of multi-layer learning architectures for inter-target correlation modeling. More importantly, it offers a new multi-layer learning paradigm for multi-target regression which is endowed with high generality, flexibility and expressive ability. Extensive experimental evaluation on 18 diverse real-world datasets demonstrates that our MMR can achieve consistently high performance and outperforms representative state-of-the-art algorithms, which shows its great effectiveness and generality for multivariate prediction.
Multi-target regression has recently regained great popularity due to its capability of simultaneously learning multiple relevant regression tasks and its wide applications in data mining, computer vision and medical image analysis, while great challenges arise from jointly handling inter-target correlations and input-output relationships. In this paper, we propose Multi-layer Multi-target Regression (MMR) which enables simultaneously modeling intrinsic inter-target correlations and nonlinear input-output relationships in a general framework via robust low-rank learning. Specifically, the MMR can explicitly encode inter-target correlations in a structure matrix by matrix elastic nets (MEN); the MMR can work in conjunction with the kernel trick to effectively disentangle highly complex nonlinear input-output relationships; the MMR can be efficiently solved by a new alternating optimization algorithm with guaranteed convergence. The MMR leverages the strength of kernel methods for nonlinear feature learning and the structural advantage of multi-layer learning architectures for inter-target correlation modeling. More importantly, it offers a new multi-layer learning paradigm for multi-target regression which is endowed with high generality, flexibility and expressive ability. Extensive experimental evaluation on 18 diverse real-world datasets demonstrates that our MMR can achieve consistently high performance and outperforms representative state-of-the-art algorithms, which shows its great effectiveness and generality for multivariate prediction.Multi-target regression has recently regained great popularity due to its capability of simultaneously learning multiple relevant regression tasks and its wide applications in data mining, computer vision and medical image analysis, while great challenges arise from jointly handling inter-target correlations and input-output relationships. In this paper, we propose Multi-layer Multi-target Regression (MMR) which enables simultaneously modeling intrinsic inter-target correlations and nonlinear input-output relationships in a general framework via robust low-rank learning. Specifically, the MMR can explicitly encode inter-target correlations in a structure matrix by matrix elastic nets (MEN); the MMR can work in conjunction with the kernel trick to effectively disentangle highly complex nonlinear input-output relationships; the MMR can be efficiently solved by a new alternating optimization algorithm with guaranteed convergence. The MMR leverages the strength of kernel methods for nonlinear feature learning and the structural advantage of multi-layer learning architectures for inter-target correlation modeling. More importantly, it offers a new multi-layer learning paradigm for multi-target regression which is endowed with high generality, flexibility and expressive ability. Extensive experimental evaluation on 18 diverse real-world datasets demonstrates that our MMR can achieve consistently high performance and outperforms representative state-of-the-art algorithms, which shows its great effectiveness and generality for multivariate prediction.
Author Xiaofei He
Mengyang Yu
Xiantong Zhen
Shuo Li
Author_xml – sequence: 1
  givenname: Xiantong
  orcidid: 0000-0001-5213-0462
  surname: Zhen
  fullname: Zhen, Xiantong
– sequence: 2
  givenname: Mengyang
  surname: Yu
  fullname: Yu, Mengyang
– sequence: 3
  givenname: Xiaofei
  surname: He
  fullname: He, Xiaofei
– sequence: 4
  givenname: Shuo
  surname: Li
  fullname: Li, Shuo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28368816$$D View this record in MEDLINE/PubMed
BookMark eNp9kEtLw0AQgBep2Pr4AwoS8OIldR_ZzexRxBdElFLPyyaZlNU0qbuJ4r832uqhB09z-b5h5tsno6ZtkJBjRqeMUX0xf7p8uJ9yytIpVwBCiR0y4UzRWHPNR2RCmeIxAIcx2Q_hhVKWSCr2yJgPMABTE5I89HXn4rn1C-yiGS48huDaJnp3Npq1eR-6KGs_4pltXqMMrW9cszgku5WtAx5t5gF5vrmeX93F2ePt_dVlFhdCsi7OAZmutLCoygooSp7y0qaltIW0WhUgqkQyKkpQilErKiEsyDKtEp1omubigJyv9658-9Zj6MzShQLr2jbY9sEwgIQpBTod0LMt9KXtfTNcZzhLh7e15HKgTjdUny-xNCvvltZ_mt8eAwBroPBtCB4rU7jOdkOQzltXG0bNd3rzk958pzeb9IPKt9Tf7f9KJ2vJIeKfkAKA1Fp8AXMjjGw
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1109_TFUZZ_2020_2983667
crossref_primary_10_1109_TPAMI_2020_3015859
crossref_primary_10_1088_1742_6596_2113_1_012023
crossref_primary_10_3233_JIFS_220412
crossref_primary_10_1142_S012906571950014X
crossref_primary_10_1016_j_media_2020_101723
crossref_primary_10_1109_TFUZZ_2021_3083956
crossref_primary_10_1016_j_compbiomed_2022_105705
crossref_primary_10_1145_3398728
crossref_primary_10_1016_j_patcog_2020_107640
crossref_primary_10_1109_TCSVT_2018_2849757
crossref_primary_10_1109_OJCAS_2024_3389100
crossref_primary_10_1016_j_ijsrc_2023_08_004
crossref_primary_10_1016_j_knosys_2020_106199
crossref_primary_10_1016_j_patrec_2023_05_036
crossref_primary_10_1109_TCSVT_2018_2823360
crossref_primary_10_1016_j_eswa_2023_122845
crossref_primary_10_1016_j_neucom_2020_12_060
crossref_primary_10_1016_j_neucom_2024_127533
crossref_primary_10_1016_j_neunet_2024_106619
crossref_primary_10_1016_j_fss_2020_08_012
crossref_primary_10_1109_TCSVT_2020_3032964
crossref_primary_10_3390_a16080365
crossref_primary_10_3390_math12030372
crossref_primary_10_1007_s10489_021_02238_0
crossref_primary_10_1007_s10489_024_05570_3
crossref_primary_10_1016_j_eswa_2024_123245
crossref_primary_10_1109_TCYB_2020_3017736
crossref_primary_10_1007_s10489_021_02291_9
crossref_primary_10_1007_s13042_021_01329_1
crossref_primary_10_1109_TPAMI_2022_3222732
crossref_primary_10_1109_TIE_2020_3031525
crossref_primary_10_1109_TIP_2018_2866688
crossref_primary_10_1109_TASE_2023_3290352
crossref_primary_10_3390_app13010435
crossref_primary_10_1007_s10994_022_06170_3
crossref_primary_10_1007_s13042_020_01268_3
crossref_primary_10_1007_s10489_020_02112_5
crossref_primary_10_1109_ACCESS_2019_2913898
crossref_primary_10_1016_j_neunet_2020_09_021
crossref_primary_10_1016_j_media_2019_101591
crossref_primary_10_1016_j_knosys_2024_111566
crossref_primary_10_1016_j_neunet_2019_10_002
crossref_primary_10_1109_TSMC_2021_3102978
crossref_primary_10_1016_j_media_2019_101593
crossref_primary_10_1109_ACCESS_2018_2862159
crossref_primary_10_1016_j_inffus_2019_12_008
crossref_primary_10_1109_TAI_2022_3162570
crossref_primary_10_1016_j_asoc_2020_106255
crossref_primary_10_1016_j_media_2019_101554
crossref_primary_10_1002_eqe_3856
crossref_primary_10_1109_ACCESS_2023_3306721
crossref_primary_10_1016_j_knosys_2021_107226
crossref_primary_10_1016_j_patcog_2024_111289
crossref_primary_10_1007_s13042_023_02075_2
crossref_primary_10_3233_ICA_180581
crossref_primary_10_1016_j_neucom_2021_12_048
crossref_primary_10_1016_j_media_2019_101568
crossref_primary_10_1016_j_scitotenv_2020_140162
crossref_primary_10_1016_j_eswa_2022_118889
crossref_primary_10_1109_TPAMI_2019_2893953
crossref_primary_10_1109_TNNLS_2020_2984635
crossref_primary_10_1007_s11082_023_05817_2
crossref_primary_10_1109_TIP_2020_3024728
crossref_primary_10_1016_j_tust_2024_105960
crossref_primary_10_1109_TCSVT_2018_2832095
crossref_primary_10_1016_j_knosys_2018_06_032
crossref_primary_10_1109_LGRS_2021_3066346
crossref_primary_10_1016_j_inpa_2019_07_001
crossref_primary_10_1109_TCSVT_2019_2952646
crossref_primary_10_1109_ACCESS_2019_2945084
crossref_primary_10_3389_fnagi_2022_810873
crossref_primary_10_1109_TAFFC_2020_3043135
crossref_primary_10_1093_bib_bbad043
crossref_primary_10_1007_s41060_021_00274_0
crossref_primary_10_1016_j_patcog_2020_107311
crossref_primary_10_1016_j_eswa_2022_119208
crossref_primary_10_1016_j_neucom_2023_127226
crossref_primary_10_34133_plantphenomics_0146
crossref_primary_10_1016_j_eswa_2023_122430
crossref_primary_10_1109_TIP_2019_2952739
Cites_doi 10.1145/2783258.2783393
10.1214/08-AOS625
10.1145/2623330.2623641
10.1002/widm.1157
10.1561/9781601985590
10.1109/TSP.2004.831028
10.1111/j.2517-6161.1996.tb02080.x
10.1109/LGRS.2011.2109934
10.1109/ICDM.2014.125
10.1017/CBO9780511809682
10.1137/070697835
10.1007/978-3-319-10605-2_36
10.1109/TPAMI.2010.160
10.1198/jcgs.2010.09188
10.1109/TNNLS.2012.2188906
10.1109/TPAMI.2015.2477843
10.1109/TSP.2004.830991
10.1016/j.neucom.2013.02.024
10.1111/j.1467-9868.2005.00503.x
10.1145/2339530.2339672
10.2140/pjm.1966.16.1
10.1007/s10994-007-5040-8
10.1109/TPAMI.2015.2452911
10.1016/j.media.2015.07.003
10.2307/1969418
10.1023/A:1007379606734
10.1145/2086737.2086742
10.1145/1102351.1102479
10.1007/s10994-016-5546-z
10.1214/aoms/1177697089
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2017.2688363
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Technology Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 504
ExternalDocumentID 28368816
10_1109_TPAMI_2017_2688363
7888599
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
RIG
5VS
9M8
AAYOK
ABFSI
ADRHT
AETIX
AGSQL
AI.
AIBXA
ALLEH
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
PKN
RIC
RNI
RZB
VH1
XJT
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c351t-b8e19f93ae6df80e5272da7d5ac5a96c83f45103d86610a3f33a85d7f494907b3
IEDL.DBID RIE
ISSN 0162-8828
1939-3539
IngestDate Fri Jul 11 09:10:51 EDT 2025
Mon Jun 30 05:16:21 EDT 2025
Wed Feb 19 02:32:29 EST 2025
Tue Jul 01 03:18:23 EDT 2025
Thu Apr 24 23:09:36 EDT 2025
Wed Aug 27 02:47:50 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-b8e19f93ae6df80e5272da7d5ac5a96c83f45103d86610a3f33a85d7f494907b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5213-0462
PMID 28368816
PQID 2174509525
PQPubID 85458
PageCount 8
ParticipantIDs proquest_miscellaneous_1884166897
crossref_citationtrail_10_1109_TPAMI_2017_2688363
pubmed_primary_28368816
crossref_primary_10_1109_TPAMI_2017_2688363
ieee_primary_7888599
proquest_journals_2174509525
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-01
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
bargi (ref24) 2014
ref59
ref14
krizhevsky (ref27) 2012
ref53
ref52
ref55
ref11
ref10
daumé (ref20) 2009
jacob (ref15) 2009
ref16
ref19
rakitsch (ref49) 2013
dinuzzo (ref18) 2012
nie (ref47) 2010
ref50
ref46
ref45
platt (ref56) 1999
long (ref9) 2015
zheng (ref48) 2015
ref42
ref43
golub (ref54) 2012; 3
zou (ref63) 2009; 37
evgeniou (ref23) 2005; 6
ref8
wang (ref30) 2014
ref4
ref3
liu (ref35) 2014
ref40
friedman (ref37) 2001; 1
liu (ref17) 2015; 16
ref34
zhong (ref39) 2015
ref31
sun (ref12) 2011; 33
ref33
ref1
ref38
gillberg (ref44) 2016; 17
wilson (ref28) 2016
wang (ref2) 2015
rai (ref13) 2012
rahimi (ref58) 2007
ciliberto (ref32) 2015
zhang (ref5) 2010
bishop (ref51) 2006
ref25
ando (ref6) 2005; 6
wilson (ref26) 2012
nie (ref41) 2012
aho (ref62) 2012; 13
liu (ref29) 2009
argyriou (ref7) 2006
ref60
ref61
álvarez (ref22) 2012
dinuzzo (ref36) 2011
kumar (ref21) 2012
References_xml – volume: 13
  start-page: 2367
  year: 2012
  ident: ref62
  article-title: Multi-target regression with rule ensembles
  publication-title: J Mach Learn Res
– ident: ref16
  doi: 10.1145/2783258.2783393
– volume: 37
  year: 2009
  ident: ref63
  article-title: On the adaptive elastic-net with a diverging number of parameters
  publication-title: Ann Statist
  doi: 10.1214/08-AOS625
– ident: ref45
  doi: 10.1145/2623330.2623641
– start-page: 1548
  year: 2015
  ident: ref32
  article-title: Convex learning of multiple tasks and their structure
  publication-title: Proc Int Conf Mach Learn
– ident: ref10
  doi: 10.1002/widm.1157
– year: 2012
  ident: ref22
  publication-title: Kernels for Vector-valued Functions A Review
  doi: 10.1561/9781601985590
– start-page: 135
  year: 2009
  ident: ref20
  article-title: Bayesian multitask learning with latent hierarchies
  publication-title: Proc 25th Conf Uncertainty Artif Intell
– ident: ref50
  doi: 10.1109/TSP.2004.831028
– start-page: 1973
  year: 2015
  ident: ref48
  article-title: A closed form solution to multi-view low-rank regression
  publication-title: Proc 29th AAAI Conf Artif Intell
– ident: ref43
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: ref61
  doi: 10.1109/LGRS.2011.2109934
– start-page: 77
  year: 2014
  ident: ref24
  article-title: A non-parametric conditional factor regression model for multi-dimensional input and response
  publication-title: Proc 17th Int Conf Artif Intell Statist
– year: 2006
  ident: ref51
  publication-title: Pattern Recognition and Machine Learning
– start-page: 3185
  year: 2012
  ident: ref13
  article-title: Simultaneously leveraging output and task structures for multiple-output regression
  publication-title: Proc Advances Neural Inf Process Syst
– volume: 16
  start-page: 1579
  year: 2015
  ident: ref17
  article-title: Calibrated multivariate regression with application to neural semantic basis discovery
  publication-title: J Mach Learn Res
– ident: ref34
  doi: 10.1109/ICDM.2014.125
– volume: 1
  year: 2001
  ident: ref37
  publication-title: The Elements of Statistical Learning
– volume: 6
  start-page: 615
  year: 2005
  ident: ref23
  article-title: Learning multiple tasks with kernel methods
  publication-title: J Mach Learn Res
– start-page: 655
  year: 2012
  ident: ref41
  article-title: Low-rank matrix recovery via efficient Schatten p-norm minimization
  publication-title: Proc 26th AAAI Conf Artif Intell
– start-page: 599
  year: 2012
  ident: ref26
  article-title: Gaussian process regression networks
  publication-title: Proc Int Conf Mach Learn
– ident: ref38
  doi: 10.1017/CBO9780511809682
– ident: ref40
  doi: 10.1137/070697835
– ident: ref8
  doi: 10.1007/978-3-319-10605-2_36
– volume: 33
  start-page: 194
  year: 2011
  ident: ref12
  article-title: Canonical correlation analysis for multilabel classification: A least-squares formulation, extensions, and analysis
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2010.160
– ident: ref11
  doi: 10.1198/jcgs.2010.09188
– ident: ref25
  doi: 10.1109/TNNLS.2012.2188906
– ident: ref3
  doi: 10.1109/TPAMI.2015.2477843
– start-page: 733
  year: 2010
  ident: ref5
  article-title: A convex formulation for learning task relationships in multi-task learning
  publication-title: Proc 26th Conf Uncertainty Artif Intell
– start-page: 745
  year: 2009
  ident: ref15
  article-title: Clustered multi-task learning: A convex formulation
  publication-title: Proc Advances Neural Inf Process Syst
– start-page: 1209
  year: 2015
  ident: ref2
  article-title: Multi-task learning for subspace segmentation
  publication-title: Proc Int Conf Mach Learn
– ident: ref57
  doi: 10.1109/TSP.2004.830991
– ident: ref52
  doi: 10.1016/j.neucom.2013.02.024
– start-page: 2411
  year: 2014
  ident: ref30
  article-title: On multiplicative multitask feature learning
  publication-title: Proc Advances Neural Inf Process Syst
– start-page: 97
  year: 2015
  ident: ref9
  article-title: Learning transferable features with deep adaptation networks
  publication-title: Proc Int Conf Mach Learn
– start-page: 41
  year: 2006
  ident: ref7
  article-title: Multi-task feature learning
  publication-title: Proc Advances Neural Inf Process Syst
– ident: ref42
  doi: 10.1111/j.1467-9868.2005.00503.x
– start-page: 1177
  year: 2007
  ident: ref58
  article-title: Random features for large-scale kernel machines
  publication-title: Proc Advances Neural Inf Process Syst
– start-page: 1813
  year: 2010
  ident: ref47
  article-title: Efficient and robust feature selection via joint $\ell _{2,1}$ -norms minimization
  publication-title: Proc Advances Neural Inf Process Syst
– ident: ref53
  doi: 10.1145/2339530.2339672
– start-page: 1466
  year: 2013
  ident: ref49
  article-title: It is all in the noise: Efficient multi-task Gaussian process inference with structured residuals
  publication-title: Proc Advances Neural Inf Process Syst
– ident: ref55
  doi: 10.2140/pjm.1966.16.1
– ident: ref14
  doi: 10.1007/s10994-007-5040-8
– start-page: 49
  year: 2011
  ident: ref36
  article-title: Learning output kernels with block coordinate descent
  publication-title: Proc Int Conf Mach Learn
– start-page: 1097
  year: 2012
  ident: ref27
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Advances Neural Inf Process Syst
– volume: 17
  start-page: 1
  year: 2016
  ident: ref44
  article-title: Multiple output regression with latent noise
  publication-title: J Mach Learn Res
– start-page: 185
  year: 1999
  ident: ref56
  article-title: 12 fast training of support vector machines using sequential minimal optimization
  publication-title: Advances in Kernel Methods
– volume: 6
  start-page: 1817
  year: 2005
  ident: ref6
  article-title: A framework for learning predictive structures from multiple tasks and unlabeled data
  publication-title: J Mach Learn Res
– ident: ref33
  doi: 10.1109/TPAMI.2015.2452911
– ident: ref4
  doi: 10.1016/j.media.2015.07.003
– ident: ref59
  doi: 10.2307/1969418
– volume: 3
  year: 2012
  ident: ref54
  publication-title: Matrix Computations
– start-page: 370
  year: 2016
  ident: ref28
  article-title: Deep kernel learning
  publication-title: Proc 19th Int Conf Artif Intell
– start-page: 1383
  year: 2012
  ident: ref21
  article-title: Learning task grouping and overlap in multi-task learning
  publication-title: Proc Int Conf Mach Learn
– ident: ref1
  doi: 10.1023/A:1007379606734
– ident: ref31
  doi: 10.1145/2086737.2086742
– ident: ref19
  doi: 10.1145/1102351.1102479
– start-page: 1980
  year: 2015
  ident: ref39
  article-title: A nonconvex relaxation approach for rank minimization problems
  publication-title: Proc 29th AAAI Conf Artif Intell
– ident: ref60
  doi: 10.1007/s10994-016-5546-z
– start-page: 189
  year: 2012
  ident: ref18
  article-title: The representer theorem for Hilbert spaces: A necessary and sufficient condition
  publication-title: Proc Advances Neural Inf Process Syst
– ident: ref46
  doi: 10.1214/aoms/1177697089
– start-page: 339
  year: 2009
  ident: ref29
  article-title: Multi-task feature learning via efficient l 2, 1-norm minimization
  publication-title: Proc 25th Conf Uncertainty Artif Intell
– start-page: 127
  year: 2014
  ident: ref35
  article-title: Multivariate regression with calibration
  publication-title: Proc Advances Neural Inf Process Syst
SSID ssj0014503
Score 2.5722225
Snippet Multi-target regression has recently regained great popularity due to its capability of simultaneously learning multiple relevant regression tasks and its wide...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 497
SubjectTerms Algorithms
Biomedical imaging
Computational modeling
Computer vision
Correlation
Data mining
Data models
Image analysis
Input output
Kernel
Kernels
Learning
matrix elastic nets
Medical imaging
Modelling
multi-layer learning
multi-target regression
Multilayers
Optimization
Regression analysis
Robust low-rank learning
Robustness
Robustness (mathematics)
State of the art
Title Multi-Target Regression via Robust Low-Rank Learning
URI https://ieeexplore.ieee.org/document/7888599
https://www.ncbi.nlm.nih.gov/pubmed/28368816
https://www.proquest.com/docview/2174509525
https://www.proquest.com/docview/1884166897
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7WPenB1fVVX1Twpl3bJmmTo4ii4oosK3graZqIrLTitgr-epP0gYiKt0CTtM3MdGY6M98AHGYySJVv4oNRyD2cYmUwIKUniFBcm-Tct9mE49vo8h5fP5CHHhx3tTBSSpt8JkdmaGP5WSEq86vsxLhrhLEFWNCjularixhgYrsgawtGS7h2I9oCGZ-dTO9Ox1cmiysehRGlKDLNc7Ra1WPT5vyLPrINVn63Na3OuRjAuH3aOtVkNqrKdCQ-vgE5_vd1VmC5MT7d05pbVqEn8yEM2sYObiPnQ1j6glK4BtgW6XpTmzPuTuRjnTqbu29P3J0UaTUv3Zvi3ZvwfOY2eK2P63B_cT49u_SaZgueQCQovZTKgCmGuIwyRX1JwjjMeJwRLghnkaBIYYO-l1Gt0X2OFEKckixWBt7Gj1O0Af28yOUWuBhhvQ5ToT8QmOtdEOYoYkLFzFeSIAeC9sgT0SCRm4YYz4n1SHyWWIolhmJJQzEHjro1LzUOx5-z18xxdzObk3Zgt6Vs0ojqPDE-mbaaSEgcOOguayEzkROey6KaJwE10dmIstiBzZojur1bRtr--Z47sKifjNaJ3rvQL18ruaftmDLdtwz8CRDS6Y8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9wwDLcOeIA9wIAxCgyKxBvr0TZJmzyeJtCx3SF0OiTeojRNEAK1iGtB2l-_JP0QQtvEW6QmaRvbtV3bPwOc5CrKdGjjg0ksApxhbTEgVSCJ1MKY5CJ02YTTq2R8g3_ektsBfO9rYZRSLvlMDe3QxfLzUtb2V9mZddcIY0uwYvQ-iZtqrT5mgInrg2xsGCPjxpHoSmRCdja_Hk0vbR5XOowTSlFi2-cYxWrGttH5G43kWqz829p0WudiA6bd8zbJJg_DusqG8vc7KMePvtBnWG_NT3_U8MsmDFSxBRtdawe_lfQt-PQGp3AbsCvTDeYua9yfqbsmebbwX-6FPyuzelH5k_I1mIniwW8RW---wM3F-fzHOGjbLQQSkagKMqoiphkSKsk1DRWJ0zgXaU6EJIIlkiKNLf5eTo1ODwXSCAlK8lRbgJswzdAOLBdloXbBxwibdZhK84nAwuyCsEAJkzploVYEeRB1R85li0VuW2I8cueThIw7inFLMd5SzIPTfs1Tg8Tx39nb9rj7me1Je3DQUZa3wrrg1iszdhOJiQfH_WUjZjZ2IgpV1gseURufTShLPfjacES_d8dIe3-_5xGsjufTCZ9cXv3ahzXzlLRJ-z6A5eq5Vt-MVVNlh46Z_wBuaezZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Target+Regression+via+Robust+Low-Rank+Learning&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Xiantong+Zhen&rft.au=Mengyang+Yu&rft.au=Xiaofei+He&rft.au=Shuo+Li&rft.date=2018-02-01&rft.pub=IEEE&rft.issn=0162-8828&rft.volume=40&rft.issue=2&rft.spage=497&rft.epage=504&rft_id=info:doi/10.1109%2FTPAMI.2017.2688363&rft_id=info%3Apmid%2F28368816&rft.externalDocID=7888599
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon