Nitrogen, phosphorus co-doped eave-like hierarchical porous carbon for efficient capacitive deionization

Carbon-based electrodes play important roles in constructing efficient capacitive deionization (CDI) devices. Therefore, the rational design of carbon materials with optimized structure, composition, and morphology is crucial for further improving the CDI performance. Herein, a novel N, P co-doped e...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 9; no. 21; pp. 1287 - 12817
Main Authors Zhang, Hao, Wang, Chaohai, Zhang, Wuxiang, Zhang, Ming, Qi, Junwen, Qian, Jieshu, Sun, Xiuyun, Yuliarto, Brian, Na, Jongbeom, Park, Teahoon, Gomaa, Hassanien Gomaa Abdien, Kaneti, Yusuf Valentino, Yi, Jin Woo, Yamauchi, Yusuke, Li, Jiansheng
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 01.06.2021
Subjects
Online AccessGet full text
ISSN2050-7488
2050-7496
2050-7496
DOI10.1039/d0ta10797b

Cover

Loading…
Abstract Carbon-based electrodes play important roles in constructing efficient capacitive deionization (CDI) devices. Therefore, the rational design of carbon materials with optimized structure, composition, and morphology is crucial for further improving the CDI performance. Herein, a novel N, P co-doped eave-like hierarchical porous carbon (NP-EHPC) for CDI is reported. To prepare the NP-EHPC, the core-shell ZIF-8@AF particles are first prepared through the kinetically-controlled growth of zeolitic imidazolate framework-8 (ZIF-8) and polymerization of p -aminophenol and formaldehyde (AF), followed by subsequent pyrolysis and post-doping with phosphorus. Owing to the unique eave-like morphology, presence of abundant mesopores, and co-doping of P and N, the NP-EHPC exhibits a high desalination capacity of 24.14 mg g −1 in 500 mg L −1 NaCl solution at 1.2 V and long cycling stability of over 150 cycles. Moreover, the density functional theory (DFT) calculation results reveal that the co-doping of N and P atoms can greatly enhance the binding energies for Na and Cl atoms and lead to superior electrosorption capacity. This work provides a new insight into the design of high-performance carbon materials for the desalination of brackish water. Novel nitrogen, phosphorus co-doped eave-like hierarchical porous carbon prepared from a metal-organic framework (MOF) precursor shows outstanding capacitive deionization performance.
AbstractList Carbon-based electrodes play important roles in constructing efficient capacitive deionization (CDI) devices. Therefore, the rational design of carbon materials with optimized structure, composition, and morphology is crucial for further improving the CDI performance. Herein, a novel N, P co-doped eave-like hierarchical porous carbon (NP-EHPC) for CDI is reported. To prepare the NP-EHPC, the core-shell ZIF-8@AF particles are first prepared through the kinetically-controlled growth of zeolitic imidazolate framework-8 (ZIF-8) and polymerization of p -aminophenol and formaldehyde (AF), followed by subsequent pyrolysis and post-doping with phosphorus. Owing to the unique eave-like morphology, presence of abundant mesopores, and co-doping of P and N, the NP-EHPC exhibits a high desalination capacity of 24.14 mg g −1 in 500 mg L −1 NaCl solution at 1.2 V and long cycling stability of over 150 cycles. Moreover, the density functional theory (DFT) calculation results reveal that the co-doping of N and P atoms can greatly enhance the binding energies for Na and Cl atoms and lead to superior electrosorption capacity. This work provides a new insight into the design of high-performance carbon materials for the desalination of brackish water. Novel nitrogen, phosphorus co-doped eave-like hierarchical porous carbon prepared from a metal-organic framework (MOF) precursor shows outstanding capacitive deionization performance.
Carbon-based electrodes play important roles in constructing efficient capacitive deionization (CDI) devices. Therefore, the rational design of carbon materials with optimized structure, composition, and morphology is crucial for further improving the CDI performance. Herein, a novel N, P co-doped eave-like hierarchical porous carbon (NP-EHPC) for CDI is reported. To prepare the NP-EHPC, the core–shell ZIF-8@AF particles are first prepared through the kinetically-controlled growth of zeolitic imidazolate framework-8 (ZIF-8) and polymerization of p-aminophenol and formaldehyde (AF), followed by subsequent pyrolysis and post-doping with phosphorus. Owing to the unique eave-like morphology, presence of abundant mesopores, and co-doping of P and N, the NP-EHPC exhibits a high desalination capacity of 24.14 mg g⁻¹ in 500 mg L⁻¹ NaCl solution at 1.2 V and long cycling stability of over 150 cycles. Moreover, the density functional theory (DFT) calculation results reveal that the co-doping of N and P atoms can greatly enhance the binding energies for Na and Cl atoms and lead to superior electrosorption capacity. This work provides a new insight into the design of high-performance carbon materials for the desalination of brackish water.
Carbon-based electrodes play important roles in constructing efficient capacitive deionization (CDI) devices. Therefore, the rational design of carbon materials with optimized structure, composition, and morphology is crucial for further improving the CDI performance. Herein, a novel N, P co-doped eave-like hierarchical porous carbon (NP-EHPC) for CDI is reported. To prepare the NP-EHPC, the core–shell ZIF-8@AF particles are first prepared through the kinetically-controlled growth of zeolitic imidazolate framework-8 (ZIF-8) and polymerization of p -aminophenol and formaldehyde (AF), followed by subsequent pyrolysis and post-doping with phosphorus. Owing to the unique eave-like morphology, presence of abundant mesopores, and co-doping of P and N, the NP-EHPC exhibits a high desalination capacity of 24.14 mg g −1 in 500 mg L −1 NaCl solution at 1.2 V and long cycling stability of over 150 cycles. Moreover, the density functional theory (DFT) calculation results reveal that the co-doping of N and P atoms can greatly enhance the binding energies for Na and Cl atoms and lead to superior electrosorption capacity. This work provides a new insight into the design of high-performance carbon materials for the desalination of brackish water.
Carbon-based electrodes play important roles in constructing efficient capacitive deionization (CDI) devices. Therefore, the rational design of carbon materials with optimized structure, composition, and morphology is crucial for further improving the CDI performance. Herein, a novel N, P co-doped eave-like hierarchical porous carbon (NP-EHPC) for CDI is reported. To prepare the NP-EHPC, the core–shell ZIF-8@AF particles are first prepared through the kinetically-controlled growth of zeolitic imidazolate framework-8 (ZIF-8) and polymerization of p-aminophenol and formaldehyde (AF), followed by subsequent pyrolysis and post-doping with phosphorus. Owing to the unique eave-like morphology, presence of abundant mesopores, and co-doping of P and N, the NP-EHPC exhibits a high desalination capacity of 24.14 mg g−1 in 500 mg L−1 NaCl solution at 1.2 V and long cycling stability of over 150 cycles. Moreover, the density functional theory (DFT) calculation results reveal that the co-doping of N and P atoms can greatly enhance the binding energies for Na and Cl atoms and lead to superior electrosorption capacity. This work provides a new insight into the design of high-performance carbon materials for the desalination of brackish water.
Author Yi, Jin Woo
Yuliarto, Brian
Qian, Jieshu
Zhang, Wuxiang
Na, Jongbeom
Zhang, Hao
Sun, Xiuyun
Yamauchi, Yusuke
Wang, Chaohai
Li, Jiansheng
Park, Teahoon
Kaneti, Yusuf Valentino
Gomaa, Hassanien Gomaa Abdien
Qi, Junwen
Zhang, Ming
AuthorAffiliation Carbon Composite Department
Al-Azhar University
National Institute for Materials Science (NIMS)
Institute of Technology Bandung
Research Center for Nanosciences and Nanotechnology (RCNN)
Korea Institute of Materials Science (KIMS)
School of Environmental and Biological Engineering
Composites Research Division
Faculty of Science
School of Chemical Engineering
The University of Queensland
Chemistry Department
JST-ERATO Yamauchi Materials Space-Tectonics Project
Nanjing University of Science and Technology
Department of Engineering Physics
Australian Institute for Bioengineering and Nanotechnology (AIBN)
Advanced Functional Materials Laboratory
International Center for Materials Nanoarchitectonics (WPI-MANA)
Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse
AuthorAffiliation_xml – name: Advanced Functional Materials Laboratory
– name: National Institute for Materials Science (NIMS)
– name: Australian Institute for Bioengineering and Nanotechnology (AIBN)
– name: Carbon Composite Department
– name: Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse
– name: Nanjing University of Science and Technology
– name: Institute of Technology Bandung
– name: School of Chemical Engineering
– name: Department of Engineering Physics
– name: Korea Institute of Materials Science (KIMS)
– name: Faculty of Science
– name: Al-Azhar University
– name: International Center for Materials Nanoarchitectonics (WPI-MANA)
– name: Research Center for Nanosciences and Nanotechnology (RCNN)
– name: Composites Research Division
– name: Chemistry Department
– name: School of Environmental and Biological Engineering
– name: JST-ERATO Yamauchi Materials Space-Tectonics Project
– name: The University of Queensland
Author_xml – sequence: 1
  givenname: Hao
  surname: Zhang
  fullname: Zhang, Hao
– sequence: 2
  givenname: Chaohai
  surname: Wang
  fullname: Wang, Chaohai
– sequence: 3
  givenname: Wuxiang
  surname: Zhang
  fullname: Zhang, Wuxiang
– sequence: 4
  givenname: Ming
  surname: Zhang
  fullname: Zhang, Ming
– sequence: 5
  givenname: Junwen
  surname: Qi
  fullname: Qi, Junwen
– sequence: 6
  givenname: Jieshu
  surname: Qian
  fullname: Qian, Jieshu
– sequence: 7
  givenname: Xiuyun
  surname: Sun
  fullname: Sun, Xiuyun
– sequence: 8
  givenname: Brian
  surname: Yuliarto
  fullname: Yuliarto, Brian
– sequence: 9
  givenname: Jongbeom
  surname: Na
  fullname: Na, Jongbeom
– sequence: 10
  givenname: Teahoon
  surname: Park
  fullname: Park, Teahoon
– sequence: 11
  givenname: Hassanien Gomaa Abdien
  surname: Gomaa
  fullname: Gomaa, Hassanien Gomaa Abdien
– sequence: 12
  givenname: Yusuf Valentino
  surname: Kaneti
  fullname: Kaneti, Yusuf Valentino
– sequence: 13
  givenname: Jin Woo
  surname: Yi
  fullname: Yi, Jin Woo
– sequence: 14
  givenname: Yusuke
  surname: Yamauchi
  fullname: Yamauchi, Yusuke
– sequence: 15
  givenname: Jiansheng
  surname: Li
  fullname: Li, Jiansheng
BookMark eNpt0c1LwzAUAPAgE5xzF-9CwYuI1ZemXZrjnJ8w9DLPJU1fbWbX1KQb6F9vtsmEYSB5IfxeeC85Jr3GNEjIKYVrCkzcFNBJClzw_ID0I0gg5LEY9Xb7ND0iQ-fm4EcKMBKiT6oX3Vnzjs1V0FbG-WmXLlAmLEyLRYByhWGtPzCoNFppVaWVrIPWWLNm0uamCUpjAyxLrTQ2nT9spdKdXmFQoDaN_padDyfksJS1w-FvHJC3h_vZ5Cmcvj4-T8bTULGEdmE-orwQXEmhKC1SvyRccRiVFKUAxhTnEZN5HIPwSgGjZYxFmhccVM5UzAbkYntva83nEl2XLbRTWNeyQV9zFiUJFSB4RD0936Nzs7SNr84rxhOeRulawVYpa5yzWGa-u01LnZW6zihk69fP7mA23rz-rU-53EtprV5I-_U_Ptti69TO_X0l-wG_JJGF
CitedBy_id crossref_primary_10_1002_cjce_24550
crossref_primary_10_1016_j_cej_2023_145421
crossref_primary_10_1016_j_jece_2023_109684
crossref_primary_10_1016_j_ces_2025_121221
crossref_primary_10_1016_j_cej_2024_158221
crossref_primary_10_1021_acsami_3c07630
crossref_primary_10_1016_j_cej_2024_157137
crossref_primary_10_1038_s41578_023_00564_y
crossref_primary_10_1016_j_jcis_2024_01_144
crossref_primary_10_1016_j_seppur_2022_121916
crossref_primary_10_1016_j_flatc_2024_100772
crossref_primary_10_1016_j_desal_2021_115461
crossref_primary_10_1016_j_seppur_2023_125432
crossref_primary_10_1016_j_desal_2021_115341
crossref_primary_10_1016_j_desal_2023_117122
crossref_primary_10_1016_j_carbon_2022_05_020
crossref_primary_10_1016_j_seppur_2025_132641
crossref_primary_10_1021_acsnano_1c09036
crossref_primary_10_1016_j_seppur_2024_128020
crossref_primary_10_3390_w15030394
crossref_primary_10_1016_j_scitotenv_2023_167339
crossref_primary_10_1016_j_seppur_2024_127962
crossref_primary_10_1007_s13204_021_02318_0
crossref_primary_10_1016_j_jelechem_2022_116298
crossref_primary_10_1039_D1EN00654A
crossref_primary_10_1002_wer_10696
crossref_primary_10_1149_1945_7111_ac964c
crossref_primary_10_1016_j_chemosphere_2023_140190
crossref_primary_10_1002_smll_202403518
crossref_primary_10_1016_j_mseb_2023_116398
crossref_primary_10_1016_j_watres_2023_119831
crossref_primary_10_1016_j_ijhydene_2022_03_284
crossref_primary_10_1039_D4SC00971A
crossref_primary_10_1039_D3TA06973G
crossref_primary_10_1515_revce_2021_0100
crossref_primary_10_1039_D2MH01149B
crossref_primary_10_1021_acsomega_1c05729
crossref_primary_10_1016_j_desal_2021_115325
crossref_primary_10_1016_j_seppur_2025_131944
crossref_primary_10_1016_j_jece_2022_109028
crossref_primary_10_1016_j_jcis_2022_07_034
crossref_primary_10_1016_j_mtener_2024_101720
crossref_primary_10_1016_j_jcis_2024_09_241
crossref_primary_10_1021_acsnano_4c17436
crossref_primary_10_1002_adfm_202213578
crossref_primary_10_1016_j_colsurfa_2022_128811
crossref_primary_10_1016_j_jclepro_2021_129416
crossref_primary_10_1071_CH21156
crossref_primary_10_1016_j_jcis_2023_05_118
crossref_primary_10_1016_j_cej_2024_156534
crossref_primary_10_1016_j_seppur_2024_130397
crossref_primary_10_2139_ssrn_4194539
crossref_primary_10_1016_j_electacta_2021_139828
crossref_primary_10_1016_j_jphotochem_2021_113758
crossref_primary_10_1016_j_desal_2024_118246
crossref_primary_10_1016_j_desal_2025_118700
crossref_primary_10_1016_j_indcrop_2024_118657
crossref_primary_10_1016_j_seppur_2023_125915
crossref_primary_10_1016_j_desal_2024_118140
crossref_primary_10_1016_j_cej_2022_135381
crossref_primary_10_1039_D1SC06476B
crossref_primary_10_1016_S1872_5805_23_60736_X
crossref_primary_10_1016_j_seppur_2023_125354
crossref_primary_10_1016_j_electacta_2024_145193
crossref_primary_10_1016_j_carbon_2022_10_002
crossref_primary_10_1016_j_seppur_2024_126606
crossref_primary_10_1016_j_cej_2023_143163
crossref_primary_10_1038_s41545_024_00372_z
crossref_primary_10_1002_chem_202301117
crossref_primary_10_1016_j_cej_2022_137211
crossref_primary_10_1016_j_ccr_2024_215695
crossref_primary_10_1016_j_cej_2024_158899
crossref_primary_10_1080_10916466_2022_2059084
crossref_primary_10_1016_j_jhazmat_2022_129673
crossref_primary_10_1016_j_desal_2024_117850
crossref_primary_10_1016_j_seppur_2024_129944
crossref_primary_10_1016_j_desal_2024_117610
crossref_primary_10_1039_D3TA06096A
crossref_primary_10_1002_adfm_202209741
crossref_primary_10_1016_j_seppur_2022_122147
crossref_primary_10_1039_D4CC00433G
crossref_primary_10_1016_j_cej_2024_150630
crossref_primary_10_1016_j_cej_2022_139764
crossref_primary_10_1002_cite_202100162
crossref_primary_10_1039_D2SC06946F
crossref_primary_10_1007_s11705_023_2346_4
crossref_primary_10_1039_D3TA00696D
crossref_primary_10_1016_j_seppur_2023_124843
crossref_primary_10_1016_j_seppur_2022_121962
crossref_primary_10_1016_j_seppur_2024_127907
crossref_primary_10_1016_j_cej_2023_144465
crossref_primary_10_1016_j_carbon_2023_118761
crossref_primary_10_1016_j_desal_2023_117062
crossref_primary_10_1016_j_cej_2024_151214
crossref_primary_10_1016_j_jcis_2024_01_112
crossref_primary_10_3866_PKU_WHXB202311032
crossref_primary_10_1016_j_desal_2022_115933
crossref_primary_10_1039_D2NR00040G
crossref_primary_10_1016_j_jcis_2023_10_070
crossref_primary_10_1016_j_seppur_2022_120912
crossref_primary_10_1016_j_desal_2023_116766
crossref_primary_10_1016_j_micromeso_2021_111578
crossref_primary_10_1016_j_jece_2023_109914
crossref_primary_10_1016_j_desal_2022_115653
crossref_primary_10_1021_acsami_2c14999
Cites_doi 10.1016/j.memsci.2009.09.043
10.1039/c3ta11926b
10.1002/ange.202002665
10.1039/C4EE02378A
10.1016/j.desal.2012.10.015
10.1016/j.cap.2020.06.017
10.1016/j.cej.2017.11.069
10.1021/acssuschemeng.7b00551
10.1039/C8NR02288G
10.1039/C8MH00133B
10.1002/adma.201806937
10.1021/acssuschemeng.7b00884
10.1039/C8TA10918D
10.1002/chem.201303345
10.1002/adma.201907404
10.1039/C3CS60472A
10.1002/adma.201302223
10.1021/acsami.7b02712
10.1021/acsami.0c08286
10.1016/j.apsusc.2015.05.119
10.1038/s41586-018-0123-1
10.1002/anie.201701252
10.1039/C7TA07746G
10.1016/j.cej.2020.124493
10.1126/sciadv.aaz0906
10.1038/ncomms3220
10.1039/C8TA07190J
10.1021/acsami.6b08658
10.1021/acs.est.9b00662
10.1002/adma.201803444
10.1039/c2jm31393f
10.1021/acsnano.5b07054
10.1021/acssuschemeng.9b04504
10.1016/j.chempr.2019.09.005
10.1016/j.desal.2020.114362
10.1016/j.desal.2019.114173
10.1038/s41467-019-08644-w
10.1039/C6TA00618C
10.1021/acs.est.0c06549
10.1039/C8EE02694G
10.1016/j.carbon.2019.12.004
10.1016/j.electacta.2019.135420
10.1002/aenm.201803478
10.1016/j.desal.2019.07.009
10.1016/j.cej.2019.01.098
10.1021/acs.est.0c01518
10.1021/acssuschemeng.0c01393
10.1021/acs.estlett.7b00540
10.1039/D0SC02518F
10.1016/j.carbon.2017.04.033
10.1016/j.jhazmat.2020.124314
10.1016/j.cap.2016.03.001
10.1039/C7CC05673G
10.1016/j.desal.2020.114794
10.1021/acsami.5b05510
10.1039/C9TA12170F
10.1039/C9MH00306A
10.1039/c3cp52891j
10.1039/C9MH01829H
10.1039/C6TA03748H
10.1039/C9TA06609H
10.1039/C7TA08264A
10.1002/smll.201702054
10.1016/j.jelechem.2018.05.024
10.1002/ange.201600455
10.1016/j.carbon.2014.01.056
10.1038/s41578-020-0193-1
10.1039/C5EE00519A
10.1039/D0TA05709F
10.1016/j.desal.2018.08.024
10.1002/adma.201502315
10.1016/j.carbon.2017.01.084
10.1039/C4RA11257A
10.1039/C8TA04813D
10.1002/anie.201408990
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2021
Copyright_xml – notice: Copyright Royal Society of Chemistry 2021
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
DOI 10.1039/d0ta10797b
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 12817
ExternalDocumentID 10_1039_D0TA10797B
d0ta10797b
GroupedDBID -JG
0-7
0R~
705
AAEMU
AAGNR
AAIWI
AANOJ
ABASK
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFOGI
AFRAH
AFVBQ
AGRSR
AGSTE
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
GNO
HZ~
H~N
J3I
O-G
O9-
R7C
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
AAJAE
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFRDS
AFRZK
AGEGJ
AHGCF
AKMSF
ALUYA
APEMP
CITATION
GGIMP
H13
RAOCF
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c351t-b617d97ca9c11d8c1157c706f1ea9033c7723ab440997cc031f4ed8bd70cb3c43
ISSN 2050-7488
2050-7496
IngestDate Fri Jul 11 02:47:51 EDT 2025
Mon Jun 30 12:02:53 EDT 2025
Tue Jul 01 01:13:09 EDT 2025
Thu Apr 24 23:03:39 EDT 2025
Fri Oct 14 17:30:42 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c351t-b617d97ca9c11d8c1157c706f1ea9033c7723ab440997cc031f4ed8bd70cb3c43
Notes Electronic supplementary information (ESI) available. See DOI
10.1039/d0ta10797b
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0662-7923
0000-0003-3379-6677
0000-0001-6587-5797
0000-0002-3708-3677
0000-0001-7854-927X
0000-0002-8866-8157
0000-0003-2433-7305
0000-0002-7470-7741
PQID 2537578281
PQPubID 2047523
PageCount 11
ParticipantIDs proquest_miscellaneous_2551909721
crossref_citationtrail_10_1039_D0TA10797B
proquest_journals_2537578281
crossref_primary_10_1039_D0TA10797B
rsc_primary_d0ta10797b
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210601
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 6
  year: 2021
  text: 20210601
  day: 1
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2021
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Yang (D0TA10797B/cit28/1) 2016; 128
Zan (D0TA10797B/cit68/1) 2017; 5
Srimuk (D0TA10797B/cit4/1) 2020; 5
Biesheuvel (D0TA10797B/cit7/1) 2010; 346
Wang (D0TA10797B/cit24/1) 2013; 1
Lee (D0TA10797B/cit62/1) 2015; 351
Liu (D0TA10797B/cit21/1) 2020; 6
Patel (D0TA10797B/cit27/1) 2016; 10
Li (D0TA10797B/cit52/1) 2017; 5
Dianbudiyanto (D0TA10797B/cit74/1) 2019; 468
Chen (D0TA10797B/cit20/1) 2015; 27
Zhang (D0TA10797B/cit11/1) 2012; 22
Kim (D0TA10797B/cit35/1) 2019; 31
Zhu (D0TA10797B/cit45/1) 2020; 12
Das (D0TA10797B/cit64/1) 2013; 15
Xu (D0TA10797B/cit37/1) 2020; 390
Zhang (D0TA10797B/cit49/1) 2017; 56
Yin (D0TA10797B/cit71/1) 2013; 25
Zhang (D0TA10797B/cit33/1) 2020; 473
Wang (D0TA10797B/cit17/1) 2020; 6
Wu (D0TA10797B/cit38/1) 2018; 5
Wang (D0TA10797B/cit50/1) 2018; 5
Gomaa (D0TA10797B/cit42/1) 2021; 406
Shi (D0TA10797B/cit6/1) 2020; 32
Lee (D0TA10797B/cit63/1) 2017; 119
Xu (D0TA10797B/cit76/1) 2020; 7
Yang (D0TA10797B/cit18/1) 2014; 71
Sun (D0TA10797B/cit51/1) 2014; 20
Sun (D0TA10797B/cit14/1) 2020; 8
He (D0TA10797B/cit39/1) 2019; 12
Wang (D0TA10797B/cit59/1) 2019; 53
Liu (D0TA10797B/cit61/1) 2020; 54
Zhao (D0TA10797B/cit15/1) 2018; 334
Wang (D0TA10797B/cit72/1) 2019; 6
Rodell (D0TA10797B/cit1/1) 2018; 557
Yan (D0TA10797B/cit34/1) 2018; 5
Yao (D0TA10797B/cit65/1) 2016; 16
Kang (D0TA10797B/cit26/1) 2018; 6
Liu (D0TA10797B/cit57/1) 2019; 10
Huo (D0TA10797B/cit44/1) 2020; 8
Wang (D0TA10797B/cit29/1) 2017; 53
Zhu (D0TA10797B/cit69/1) 2018; 822
Lee (D0TA10797B/cit8/1) 2014; 7
Xia (D0TA10797B/cit30/1) 2020; 11
Liu (D0TA10797B/cit47/1) 2016; 4
Xu (D0TA10797B/cit12/1) 2016; 4
Li (D0TA10797B/cit22/1) 2017; 116
Wang (D0TA10797B/cit48/1) 2017; 5
Kim (D0TA10797B/cit58/1) 2015; 5
Jia (D0TA10797B/cit53/1) 2018; 446
Wang (D0TA10797B/cit25/1) 2017; 9
El-Deen (D0TA10797B/cit55/1) 2016; 8
Lian (D0TA10797B/cit13/1) 2018; 14
Zhang (D0TA10797B/cit23/1) 2020; 8
Zhang (D0TA10797B/cit41/1) 2019; 7
Xu (D0TA10797B/cit67/1) 2017; 5
Wang (D0TA10797B/cit54/1) 2020; 54
Pugazhenthiran (D0TA10797B/cit70/1) 2015; 7
Ghaffour (D0TA10797B/cit2/1) 2013; 309
Suss (D0TA10797B/cit5/1) 2015; 8
Li (D0TA10797B/cit31/1) 2018; 10
Zhang (D0TA10797B/cit19/1) 2019; 7
Wu (D0TA10797B/cit56/1) 2019; 9
Zhong (D0TA10797B/cit46/1) 2014; 53
Arulrajan (D0TA10797B/cit10/1) 2019; 31
Lado (D0TA10797B/cit60/1) 2019; 7
Zhang (D0TA10797B/cit36/1) 2018; 6
Zhao (D0TA10797B/cit73/1) 2020; 331
Liu (D0TA10797B/cit77/1) 2021; 498
Xu (D0TA10797B/cit43/1) 2019; 362
Hou (D0TA10797B/cit40/1) 2020; 132
Yang (D0TA10797B/cit3/1) 2013; 4
Ramalingam (D0TA10797B/cit9/1) 2020; 12
Zhu (D0TA10797B/cit16/1) 2014; 43
Xie (D0TA10797B/cit32/1) 2020; 158
Hsu (D0TA10797B/cit75/1) 2020; 481
Jeon (D0TA10797B/cit66/1) 2020; 20
References_xml – volume: 346
  start-page: 256
  year: 2010
  ident: D0TA10797B/cit7/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2009.09.043
– volume: 1
  start-page: 11778
  year: 2013
  ident: D0TA10797B/cit24/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta11926b
– volume: 132
  start-page: 7454
  year: 2020
  ident: D0TA10797B/cit40/1
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202002665
– volume: 7
  start-page: 3683
  year: 2014
  ident: D0TA10797B/cit8/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE02378A
– volume: 309
  start-page: 197
  year: 2013
  ident: D0TA10797B/cit2/1
  publication-title: Desalination
  doi: 10.1016/j.desal.2012.10.015
– volume: 20
  start-page: 988
  year: 2020
  ident: D0TA10797B/cit66/1
  publication-title: Curr. Appl. Phys.
  doi: 10.1016/j.cap.2020.06.017
– volume: 334
  start-page: 1270
  year: 2018
  ident: D0TA10797B/cit15/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.11.069
– volume: 5
  start-page: 5810
  year: 2017
  ident: D0TA10797B/cit67/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.7b00551
– volume: 10
  start-page: 14852
  year: 2018
  ident: D0TA10797B/cit31/1
  publication-title: Nanoscale
  doi: 10.1039/C8NR02288G
– volume: 5
  start-page: 394
  year: 2018
  ident: D0TA10797B/cit50/1
  publication-title: Mater. Horiz.
  doi: 10.1039/C8MH00133B
– volume: 31
  start-page: 1806937
  year: 2019
  ident: D0TA10797B/cit10/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201806937
– volume: 5
  start-page: 6635
  year: 2017
  ident: D0TA10797B/cit52/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.7b00884
– volume: 7
  start-page: 5173
  year: 2019
  ident: D0TA10797B/cit41/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA10918D
– volume: 20
  start-page: 564
  year: 2014
  ident: D0TA10797B/cit51/1
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.201303345
– volume: 32
  start-page: 1907404
  year: 2020
  ident: D0TA10797B/cit6/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201907404
– volume: 43
  start-page: 5468
  year: 2014
  ident: D0TA10797B/cit16/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60472A
– volume: 25
  start-page: 6270
  year: 2013
  ident: D0TA10797B/cit71/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201302223
– volume: 9
  start-page: 15068
  year: 2017
  ident: D0TA10797B/cit25/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b02712
– volume: 12
  start-page: 32788
  year: 2020
  ident: D0TA10797B/cit9/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c08286
– volume: 351
  start-page: 193
  year: 2015
  ident: D0TA10797B/cit62/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.05.119
– volume: 557
  start-page: 651
  year: 2018
  ident: D0TA10797B/cit1/1
  publication-title: Nature
  doi: 10.1038/s41586-018-0123-1
– volume: 56
  start-page: 8435
  year: 2017
  ident: D0TA10797B/cit49/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201701252
– volume: 5
  start-page: 24329
  year: 2017
  ident: D0TA10797B/cit68/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA07746G
– volume: 390
  start-page: 124493
  year: 2020
  ident: D0TA10797B/cit37/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124493
– volume: 6
  start-page: eaaz0906
  year: 2020
  ident: D0TA10797B/cit21/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaz0906
– volume: 4
  start-page: 2220
  year: 2013
  ident: D0TA10797B/cit3/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3220
– volume: 12
  start-page: 29706
  year: 2020
  ident: D0TA10797B/cit45/1
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 20170
  year: 2018
  ident: D0TA10797B/cit26/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA07190J
– volume: 8
  start-page: 25313
  year: 2016
  ident: D0TA10797B/cit55/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b08658
– volume: 53
  start-page: 6292
  year: 2019
  ident: D0TA10797B/cit59/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b00662
– volume: 31
  start-page: 1803444
  year: 2019
  ident: D0TA10797B/cit35/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803444
– volume: 22
  start-page: 14696
  year: 2012
  ident: D0TA10797B/cit11/1
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm31393f
– volume: 10
  start-page: 2305
  year: 2016
  ident: D0TA10797B/cit27/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b07054
– volume: 7
  start-page: 18992
  year: 2019
  ident: D0TA10797B/cit60/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.9b04504
– volume: 6
  start-page: 19
  year: 2020
  ident: D0TA10797B/cit17/1
  publication-title: Chem
  doi: 10.1016/j.chempr.2019.09.005
– volume: 481
  start-page: 114362
  year: 2020
  ident: D0TA10797B/cit75/1
  publication-title: Desalination
  doi: 10.1016/j.desal.2020.114362
– volume: 473
  start-page: 114173
  year: 2020
  ident: D0TA10797B/cit33/1
  publication-title: Desalination
  doi: 10.1016/j.desal.2019.114173
– volume: 10
  start-page: 675
  year: 2019
  ident: D0TA10797B/cit57/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08644-w
– volume: 4
  start-page: 5467
  year: 2016
  ident: D0TA10797B/cit12/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA00618C
– volume: 5
  start-page: 2722
  year: 2018
  ident: D0TA10797B/cit34/1
  publication-title: Environ. Sci.: Nano
– volume: 54
  start-page: 15516
  year: 2020
  ident: D0TA10797B/cit61/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c06549
– volume: 12
  start-page: 250
  year: 2019
  ident: D0TA10797B/cit39/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE02694G
– volume: 158
  start-page: 184
  year: 2020
  ident: D0TA10797B/cit32/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.12.004
– volume: 331
  start-page: 135420
  year: 2020
  ident: D0TA10797B/cit73/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.135420
– volume: 9
  start-page: 1803478
  year: 2019
  ident: D0TA10797B/cit56/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201803478
– volume: 468
  start-page: 114069
  year: 2019
  ident: D0TA10797B/cit74/1
  publication-title: Desalination
  doi: 10.1016/j.desal.2019.07.009
– volume: 362
  start-page: 887
  year: 2019
  ident: D0TA10797B/cit43/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.01.098
– volume: 54
  start-page: 8411
  year: 2020
  ident: D0TA10797B/cit54/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c01518
– volume: 8
  start-page: 11114
  year: 2020
  ident: D0TA10797B/cit14/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.0c01393
– volume: 5
  start-page: 98
  year: 2018
  ident: D0TA10797B/cit38/1
  publication-title: Environ. Sci. Technol. Lett.
  doi: 10.1021/acs.estlett.7b00540
– volume: 11
  start-page: 9584
  year: 2020
  ident: D0TA10797B/cit30/1
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC02518F
– volume: 119
  start-page: 492
  year: 2017
  ident: D0TA10797B/cit63/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.04.033
– volume: 406
  start-page: 124314
  year: 2021
  ident: D0TA10797B/cit42/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.124314
– volume: 16
  start-page: 574
  year: 2016
  ident: D0TA10797B/cit65/1
  publication-title: Curr. Appl. Phys.
  doi: 10.1016/j.cap.2016.03.001
– volume: 53
  start-page: 10784
  year: 2017
  ident: D0TA10797B/cit29/1
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC05673G
– volume: 498
  start-page: 114794
  year: 2021
  ident: D0TA10797B/cit77/1
  publication-title: Desalination
  doi: 10.1016/j.desal.2020.114794
– volume: 7
  start-page: 20156
  year: 2015
  ident: D0TA10797B/cit70/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b05510
– volume: 8
  start-page: 2505
  year: 2020
  ident: D0TA10797B/cit44/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA12170F
– volume: 6
  start-page: 1433
  year: 2019
  ident: D0TA10797B/cit72/1
  publication-title: Mater. Horiz.
  doi: 10.1039/C9MH00306A
– volume: 15
  start-page: 15128
  year: 2013
  ident: D0TA10797B/cit64/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp52891j
– volume: 7
  start-page: 1404
  year: 2020
  ident: D0TA10797B/cit76/1
  publication-title: Mater. Horiz.
  doi: 10.1039/C9MH01829H
– volume: 4
  start-page: 11916
  year: 2016
  ident: D0TA10797B/cit47/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA03748H
– volume: 7
  start-page: 20162
  year: 2019
  ident: D0TA10797B/cit19/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA06609H
– volume: 5
  start-page: 24269
  year: 2017
  ident: D0TA10797B/cit48/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA08264A
– volume: 14
  start-page: 1702054
  year: 2018
  ident: D0TA10797B/cit13/1
  publication-title: Small
  doi: 10.1002/smll.201702054
– volume: 822
  start-page: 81
  year: 2018
  ident: D0TA10797B/cit69/1
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2018.05.024
– volume: 128
  start-page: 4084
  year: 2016
  ident: D0TA10797B/cit28/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.201600455
– volume: 71
  start-page: 294
  year: 2014
  ident: D0TA10797B/cit18/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2014.01.056
– volume: 5
  start-page: 517
  year: 2020
  ident: D0TA10797B/cit4/1
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-020-0193-1
– volume: 8
  start-page: 2296
  year: 2015
  ident: D0TA10797B/cit5/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE00519A
– volume: 8
  start-page: 14653
  year: 2020
  ident: D0TA10797B/cit23/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA05709F
– volume: 446
  start-page: 21
  year: 2018
  ident: D0TA10797B/cit53/1
  publication-title: Desalination
  doi: 10.1016/j.desal.2018.08.024
– volume: 27
  start-page: 5010
  year: 2015
  ident: D0TA10797B/cit20/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502315
– volume: 116
  start-page: 21
  year: 2017
  ident: D0TA10797B/cit22/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.01.084
– volume: 5
  start-page: 1456
  year: 2015
  ident: D0TA10797B/cit58/1
  publication-title: RSC Adv.
  doi: 10.1039/C4RA11257A
– volume: 6
  start-page: 15245
  year: 2018
  ident: D0TA10797B/cit36/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA04813D
– volume: 53
  start-page: 14235
  year: 2014
  ident: D0TA10797B/cit46/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201408990
SSID ssj0000800699
Score 2.6171584
Snippet Carbon-based electrodes play important roles in constructing efficient capacitive deionization (CDI) devices. Therefore, the rational design of carbon...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1287
SubjectTerms Aminophenol
Atomic properties
Brackish water
Brackish water desalination
Carbon
Deionization
Density functional theory
Desalination
Design optimization
Doping
formaldehyde
Metal-organic frameworks
Morphology
Nitrogen
p-Aminophenol
Phosphorus
polymerization
Pyrolysis
Sodium chloride
Zeolites
Title Nitrogen, phosphorus co-doped eave-like hierarchical porous carbon for efficient capacitive deionization
URI https://www.proquest.com/docview/2537578281
https://www.proquest.com/docview/2551909721
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELW63QscEF8rCgsyggsqWZI4aeJjWboqqFsuqegtcmxnW23VVG2K0P4-fhhjO06CWiHg0KhyLCfxvNgzkzczCL0VYFVRUNQdRnMwUEJPOAwsLYcoW4CJPOJERSNfTwfjWfBlHs47nZ8t1tK-zC743dG4kv-RKrSBXFWU7D9Ith4UGuA_yBeOIGE4_pWMp8tyW9yYhWOzKHbw2-53fV44otiAJinZd-mslrcqrbAKNNZ1T1Z9ULkV8ZWzbVbxDKVOJKFoARw2T274REIqX-1dI7pDHRbUXfOcfW4Lx130hyYGyJ7R45sIQ-2ktxFbipRb-_Nrv_WYFY2P3zRdLlixYMuDrt_2PwDbNwft13Y3rpwZfot0VbGglMvE8lU1H6W6-WZZ9N3QVRlQzaot222mNq5d12kLviYKu1qkPZUBqLXjq4-J0dHtxCUqG6twSwZWMo2yZtO0RIHp1_RqNpmkyWienKBTH4wVt4tOh6Pk86T29SmtfKBLmdY3bzPlEvqhGf533agxeE62thqN1nqSh-hBJWo8NNh7hDpy_RjdbyWxfIIWFoXvcYNBbDGIawziNgaxwSA2GMSAEVxjEDcYxG0MPkWzq1FyOXaq-h0OJ6FXOhlox4JGnFHueSLmKq8Tj9xB7klGXUI4TBZhWRCo6G3OYXvJAyniTEQuzwgPyBnqrou1fIYwjcMwzkC1lT4NYi6znAqXCE-owGjiez30zs5cyqvk9qrGyirVJAtC009uMtSz_LGH3tR9Nyaly9Fe51YAafXK71I_JLr-QwwXfF2fBoSqr2xsLWHioA8YRTopVg-dgeDqazRyfv7nsV-ge827cY665XYvX4LqW2avKmT9AncmtUk
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nitrogen%2C+phosphorus+co-doped+eave-like+hierarchical+porous+carbon+for+efficient+capacitive+deionization&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Zhang%2C+Hao&rft.au=Wang%2C+Chaohai&rft.au=Zhang%2C+Wuxiang&rft.au=Zhang%2C+Ming&rft.date=2021-06-01&rft.pub=Royal+Society+of+Chemistry&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=9&rft.issue=21&rft.spage=12807&rft.epage=12817&rft_id=info:doi/10.1039%2Fd0ta10797b&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon