Nitrogen, phosphorus co-doped eave-like hierarchical porous carbon for efficient capacitive deionization
Carbon-based electrodes play important roles in constructing efficient capacitive deionization (CDI) devices. Therefore, the rational design of carbon materials with optimized structure, composition, and morphology is crucial for further improving the CDI performance. Herein, a novel N, P co-doped e...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 9; no. 21; pp. 1287 - 12817 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
01.06.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2050-7488 2050-7496 2050-7496 |
DOI | 10.1039/d0ta10797b |
Cover
Loading…
Abstract | Carbon-based electrodes play important roles in constructing efficient capacitive deionization (CDI) devices. Therefore, the rational design of carbon materials with optimized structure, composition, and morphology is crucial for further improving the CDI performance. Herein, a novel N, P co-doped eave-like hierarchical porous carbon (NP-EHPC) for CDI is reported. To prepare the NP-EHPC, the core-shell ZIF-8@AF particles are first prepared through the kinetically-controlled growth of zeolitic imidazolate framework-8 (ZIF-8) and polymerization of
p
-aminophenol and formaldehyde (AF), followed by subsequent pyrolysis and post-doping with phosphorus. Owing to the unique eave-like morphology, presence of abundant mesopores, and co-doping of P and N, the NP-EHPC exhibits a high desalination capacity of 24.14 mg g
−1
in 500 mg L
−1
NaCl solution at 1.2 V and long cycling stability of over 150 cycles. Moreover, the density functional theory (DFT) calculation results reveal that the co-doping of N and P atoms can greatly enhance the binding energies for Na and Cl atoms and lead to superior electrosorption capacity. This work provides a new insight into the design of high-performance carbon materials for the desalination of brackish water.
Novel nitrogen, phosphorus co-doped eave-like hierarchical porous carbon prepared from a metal-organic framework (MOF) precursor shows outstanding capacitive deionization performance. |
---|---|
AbstractList | Carbon-based electrodes play important roles in constructing efficient capacitive deionization (CDI) devices. Therefore, the rational design of carbon materials with optimized structure, composition, and morphology is crucial for further improving the CDI performance. Herein, a novel N, P co-doped eave-like hierarchical porous carbon (NP-EHPC) for CDI is reported. To prepare the NP-EHPC, the core-shell ZIF-8@AF particles are first prepared through the kinetically-controlled growth of zeolitic imidazolate framework-8 (ZIF-8) and polymerization of
p
-aminophenol and formaldehyde (AF), followed by subsequent pyrolysis and post-doping with phosphorus. Owing to the unique eave-like morphology, presence of abundant mesopores, and co-doping of P and N, the NP-EHPC exhibits a high desalination capacity of 24.14 mg g
−1
in 500 mg L
−1
NaCl solution at 1.2 V and long cycling stability of over 150 cycles. Moreover, the density functional theory (DFT) calculation results reveal that the co-doping of N and P atoms can greatly enhance the binding energies for Na and Cl atoms and lead to superior electrosorption capacity. This work provides a new insight into the design of high-performance carbon materials for the desalination of brackish water.
Novel nitrogen, phosphorus co-doped eave-like hierarchical porous carbon prepared from a metal-organic framework (MOF) precursor shows outstanding capacitive deionization performance. Carbon-based electrodes play important roles in constructing efficient capacitive deionization (CDI) devices. Therefore, the rational design of carbon materials with optimized structure, composition, and morphology is crucial for further improving the CDI performance. Herein, a novel N, P co-doped eave-like hierarchical porous carbon (NP-EHPC) for CDI is reported. To prepare the NP-EHPC, the core–shell ZIF-8@AF particles are first prepared through the kinetically-controlled growth of zeolitic imidazolate framework-8 (ZIF-8) and polymerization of p-aminophenol and formaldehyde (AF), followed by subsequent pyrolysis and post-doping with phosphorus. Owing to the unique eave-like morphology, presence of abundant mesopores, and co-doping of P and N, the NP-EHPC exhibits a high desalination capacity of 24.14 mg g⁻¹ in 500 mg L⁻¹ NaCl solution at 1.2 V and long cycling stability of over 150 cycles. Moreover, the density functional theory (DFT) calculation results reveal that the co-doping of N and P atoms can greatly enhance the binding energies for Na and Cl atoms and lead to superior electrosorption capacity. This work provides a new insight into the design of high-performance carbon materials for the desalination of brackish water. Carbon-based electrodes play important roles in constructing efficient capacitive deionization (CDI) devices. Therefore, the rational design of carbon materials with optimized structure, composition, and morphology is crucial for further improving the CDI performance. Herein, a novel N, P co-doped eave-like hierarchical porous carbon (NP-EHPC) for CDI is reported. To prepare the NP-EHPC, the core–shell ZIF-8@AF particles are first prepared through the kinetically-controlled growth of zeolitic imidazolate framework-8 (ZIF-8) and polymerization of p -aminophenol and formaldehyde (AF), followed by subsequent pyrolysis and post-doping with phosphorus. Owing to the unique eave-like morphology, presence of abundant mesopores, and co-doping of P and N, the NP-EHPC exhibits a high desalination capacity of 24.14 mg g −1 in 500 mg L −1 NaCl solution at 1.2 V and long cycling stability of over 150 cycles. Moreover, the density functional theory (DFT) calculation results reveal that the co-doping of N and P atoms can greatly enhance the binding energies for Na and Cl atoms and lead to superior electrosorption capacity. This work provides a new insight into the design of high-performance carbon materials for the desalination of brackish water. Carbon-based electrodes play important roles in constructing efficient capacitive deionization (CDI) devices. Therefore, the rational design of carbon materials with optimized structure, composition, and morphology is crucial for further improving the CDI performance. Herein, a novel N, P co-doped eave-like hierarchical porous carbon (NP-EHPC) for CDI is reported. To prepare the NP-EHPC, the core–shell ZIF-8@AF particles are first prepared through the kinetically-controlled growth of zeolitic imidazolate framework-8 (ZIF-8) and polymerization of p-aminophenol and formaldehyde (AF), followed by subsequent pyrolysis and post-doping with phosphorus. Owing to the unique eave-like morphology, presence of abundant mesopores, and co-doping of P and N, the NP-EHPC exhibits a high desalination capacity of 24.14 mg g−1 in 500 mg L−1 NaCl solution at 1.2 V and long cycling stability of over 150 cycles. Moreover, the density functional theory (DFT) calculation results reveal that the co-doping of N and P atoms can greatly enhance the binding energies for Na and Cl atoms and lead to superior electrosorption capacity. This work provides a new insight into the design of high-performance carbon materials for the desalination of brackish water. |
Author | Yi, Jin Woo Yuliarto, Brian Qian, Jieshu Zhang, Wuxiang Na, Jongbeom Zhang, Hao Sun, Xiuyun Yamauchi, Yusuke Wang, Chaohai Li, Jiansheng Park, Teahoon Kaneti, Yusuf Valentino Gomaa, Hassanien Gomaa Abdien Qi, Junwen Zhang, Ming |
AuthorAffiliation | Carbon Composite Department Al-Azhar University National Institute for Materials Science (NIMS) Institute of Technology Bandung Research Center for Nanosciences and Nanotechnology (RCNN) Korea Institute of Materials Science (KIMS) School of Environmental and Biological Engineering Composites Research Division Faculty of Science School of Chemical Engineering The University of Queensland Chemistry Department JST-ERATO Yamauchi Materials Space-Tectonics Project Nanjing University of Science and Technology Department of Engineering Physics Australian Institute for Bioengineering and Nanotechnology (AIBN) Advanced Functional Materials Laboratory International Center for Materials Nanoarchitectonics (WPI-MANA) Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse |
AuthorAffiliation_xml | – name: Advanced Functional Materials Laboratory – name: National Institute for Materials Science (NIMS) – name: Australian Institute for Bioengineering and Nanotechnology (AIBN) – name: Carbon Composite Department – name: Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse – name: Nanjing University of Science and Technology – name: Institute of Technology Bandung – name: School of Chemical Engineering – name: Department of Engineering Physics – name: Korea Institute of Materials Science (KIMS) – name: Faculty of Science – name: Al-Azhar University – name: International Center for Materials Nanoarchitectonics (WPI-MANA) – name: Research Center for Nanosciences and Nanotechnology (RCNN) – name: Composites Research Division – name: Chemistry Department – name: School of Environmental and Biological Engineering – name: JST-ERATO Yamauchi Materials Space-Tectonics Project – name: The University of Queensland |
Author_xml | – sequence: 1 givenname: Hao surname: Zhang fullname: Zhang, Hao – sequence: 2 givenname: Chaohai surname: Wang fullname: Wang, Chaohai – sequence: 3 givenname: Wuxiang surname: Zhang fullname: Zhang, Wuxiang – sequence: 4 givenname: Ming surname: Zhang fullname: Zhang, Ming – sequence: 5 givenname: Junwen surname: Qi fullname: Qi, Junwen – sequence: 6 givenname: Jieshu surname: Qian fullname: Qian, Jieshu – sequence: 7 givenname: Xiuyun surname: Sun fullname: Sun, Xiuyun – sequence: 8 givenname: Brian surname: Yuliarto fullname: Yuliarto, Brian – sequence: 9 givenname: Jongbeom surname: Na fullname: Na, Jongbeom – sequence: 10 givenname: Teahoon surname: Park fullname: Park, Teahoon – sequence: 11 givenname: Hassanien Gomaa Abdien surname: Gomaa fullname: Gomaa, Hassanien Gomaa Abdien – sequence: 12 givenname: Yusuf Valentino surname: Kaneti fullname: Kaneti, Yusuf Valentino – sequence: 13 givenname: Jin Woo surname: Yi fullname: Yi, Jin Woo – sequence: 14 givenname: Yusuke surname: Yamauchi fullname: Yamauchi, Yusuke – sequence: 15 givenname: Jiansheng surname: Li fullname: Li, Jiansheng |
BookMark | eNpt0c1LwzAUAPAgE5xzF-9CwYuI1ZemXZrjnJ8w9DLPJU1fbWbX1KQb6F9vtsmEYSB5IfxeeC85Jr3GNEjIKYVrCkzcFNBJClzw_ID0I0gg5LEY9Xb7ND0iQ-fm4EcKMBKiT6oX3Vnzjs1V0FbG-WmXLlAmLEyLRYByhWGtPzCoNFppVaWVrIPWWLNm0uamCUpjAyxLrTQ2nT9spdKdXmFQoDaN_padDyfksJS1w-FvHJC3h_vZ5Cmcvj4-T8bTULGEdmE-orwQXEmhKC1SvyRccRiVFKUAxhTnEZN5HIPwSgGjZYxFmhccVM5UzAbkYntva83nEl2XLbRTWNeyQV9zFiUJFSB4RD0936Nzs7SNr84rxhOeRulawVYpa5yzWGa-u01LnZW6zihk69fP7mA23rz-rU-53EtprV5I-_U_Ptti69TO_X0l-wG_JJGF |
CitedBy_id | crossref_primary_10_1002_cjce_24550 crossref_primary_10_1016_j_cej_2023_145421 crossref_primary_10_1016_j_jece_2023_109684 crossref_primary_10_1016_j_ces_2025_121221 crossref_primary_10_1016_j_cej_2024_158221 crossref_primary_10_1021_acsami_3c07630 crossref_primary_10_1016_j_cej_2024_157137 crossref_primary_10_1038_s41578_023_00564_y crossref_primary_10_1016_j_jcis_2024_01_144 crossref_primary_10_1016_j_seppur_2022_121916 crossref_primary_10_1016_j_flatc_2024_100772 crossref_primary_10_1016_j_desal_2021_115461 crossref_primary_10_1016_j_seppur_2023_125432 crossref_primary_10_1016_j_desal_2021_115341 crossref_primary_10_1016_j_desal_2023_117122 crossref_primary_10_1016_j_carbon_2022_05_020 crossref_primary_10_1016_j_seppur_2025_132641 crossref_primary_10_1021_acsnano_1c09036 crossref_primary_10_1016_j_seppur_2024_128020 crossref_primary_10_3390_w15030394 crossref_primary_10_1016_j_scitotenv_2023_167339 crossref_primary_10_1016_j_seppur_2024_127962 crossref_primary_10_1007_s13204_021_02318_0 crossref_primary_10_1016_j_jelechem_2022_116298 crossref_primary_10_1039_D1EN00654A crossref_primary_10_1002_wer_10696 crossref_primary_10_1149_1945_7111_ac964c crossref_primary_10_1016_j_chemosphere_2023_140190 crossref_primary_10_1002_smll_202403518 crossref_primary_10_1016_j_mseb_2023_116398 crossref_primary_10_1016_j_watres_2023_119831 crossref_primary_10_1016_j_ijhydene_2022_03_284 crossref_primary_10_1039_D4SC00971A crossref_primary_10_1039_D3TA06973G crossref_primary_10_1515_revce_2021_0100 crossref_primary_10_1039_D2MH01149B crossref_primary_10_1021_acsomega_1c05729 crossref_primary_10_1016_j_desal_2021_115325 crossref_primary_10_1016_j_seppur_2025_131944 crossref_primary_10_1016_j_jece_2022_109028 crossref_primary_10_1016_j_jcis_2022_07_034 crossref_primary_10_1016_j_mtener_2024_101720 crossref_primary_10_1016_j_jcis_2024_09_241 crossref_primary_10_1021_acsnano_4c17436 crossref_primary_10_1002_adfm_202213578 crossref_primary_10_1016_j_colsurfa_2022_128811 crossref_primary_10_1016_j_jclepro_2021_129416 crossref_primary_10_1071_CH21156 crossref_primary_10_1016_j_jcis_2023_05_118 crossref_primary_10_1016_j_cej_2024_156534 crossref_primary_10_1016_j_seppur_2024_130397 crossref_primary_10_2139_ssrn_4194539 crossref_primary_10_1016_j_electacta_2021_139828 crossref_primary_10_1016_j_jphotochem_2021_113758 crossref_primary_10_1016_j_desal_2024_118246 crossref_primary_10_1016_j_desal_2025_118700 crossref_primary_10_1016_j_indcrop_2024_118657 crossref_primary_10_1016_j_seppur_2023_125915 crossref_primary_10_1016_j_desal_2024_118140 crossref_primary_10_1016_j_cej_2022_135381 crossref_primary_10_1039_D1SC06476B crossref_primary_10_1016_S1872_5805_23_60736_X crossref_primary_10_1016_j_seppur_2023_125354 crossref_primary_10_1016_j_electacta_2024_145193 crossref_primary_10_1016_j_carbon_2022_10_002 crossref_primary_10_1016_j_seppur_2024_126606 crossref_primary_10_1016_j_cej_2023_143163 crossref_primary_10_1038_s41545_024_00372_z crossref_primary_10_1002_chem_202301117 crossref_primary_10_1016_j_cej_2022_137211 crossref_primary_10_1016_j_ccr_2024_215695 crossref_primary_10_1016_j_cej_2024_158899 crossref_primary_10_1080_10916466_2022_2059084 crossref_primary_10_1016_j_jhazmat_2022_129673 crossref_primary_10_1016_j_desal_2024_117850 crossref_primary_10_1016_j_seppur_2024_129944 crossref_primary_10_1016_j_desal_2024_117610 crossref_primary_10_1039_D3TA06096A crossref_primary_10_1002_adfm_202209741 crossref_primary_10_1016_j_seppur_2022_122147 crossref_primary_10_1039_D4CC00433G crossref_primary_10_1016_j_cej_2024_150630 crossref_primary_10_1016_j_cej_2022_139764 crossref_primary_10_1002_cite_202100162 crossref_primary_10_1039_D2SC06946F crossref_primary_10_1007_s11705_023_2346_4 crossref_primary_10_1039_D3TA00696D crossref_primary_10_1016_j_seppur_2023_124843 crossref_primary_10_1016_j_seppur_2022_121962 crossref_primary_10_1016_j_seppur_2024_127907 crossref_primary_10_1016_j_cej_2023_144465 crossref_primary_10_1016_j_carbon_2023_118761 crossref_primary_10_1016_j_desal_2023_117062 crossref_primary_10_1016_j_cej_2024_151214 crossref_primary_10_1016_j_jcis_2024_01_112 crossref_primary_10_3866_PKU_WHXB202311032 crossref_primary_10_1016_j_desal_2022_115933 crossref_primary_10_1039_D2NR00040G crossref_primary_10_1016_j_jcis_2023_10_070 crossref_primary_10_1016_j_seppur_2022_120912 crossref_primary_10_1016_j_desal_2023_116766 crossref_primary_10_1016_j_micromeso_2021_111578 crossref_primary_10_1016_j_jece_2023_109914 crossref_primary_10_1016_j_desal_2022_115653 crossref_primary_10_1021_acsami_2c14999 |
Cites_doi | 10.1016/j.memsci.2009.09.043 10.1039/c3ta11926b 10.1002/ange.202002665 10.1039/C4EE02378A 10.1016/j.desal.2012.10.015 10.1016/j.cap.2020.06.017 10.1016/j.cej.2017.11.069 10.1021/acssuschemeng.7b00551 10.1039/C8NR02288G 10.1039/C8MH00133B 10.1002/adma.201806937 10.1021/acssuschemeng.7b00884 10.1039/C8TA10918D 10.1002/chem.201303345 10.1002/adma.201907404 10.1039/C3CS60472A 10.1002/adma.201302223 10.1021/acsami.7b02712 10.1021/acsami.0c08286 10.1016/j.apsusc.2015.05.119 10.1038/s41586-018-0123-1 10.1002/anie.201701252 10.1039/C7TA07746G 10.1016/j.cej.2020.124493 10.1126/sciadv.aaz0906 10.1038/ncomms3220 10.1039/C8TA07190J 10.1021/acsami.6b08658 10.1021/acs.est.9b00662 10.1002/adma.201803444 10.1039/c2jm31393f 10.1021/acsnano.5b07054 10.1021/acssuschemeng.9b04504 10.1016/j.chempr.2019.09.005 10.1016/j.desal.2020.114362 10.1016/j.desal.2019.114173 10.1038/s41467-019-08644-w 10.1039/C6TA00618C 10.1021/acs.est.0c06549 10.1039/C8EE02694G 10.1016/j.carbon.2019.12.004 10.1016/j.electacta.2019.135420 10.1002/aenm.201803478 10.1016/j.desal.2019.07.009 10.1016/j.cej.2019.01.098 10.1021/acs.est.0c01518 10.1021/acssuschemeng.0c01393 10.1021/acs.estlett.7b00540 10.1039/D0SC02518F 10.1016/j.carbon.2017.04.033 10.1016/j.jhazmat.2020.124314 10.1016/j.cap.2016.03.001 10.1039/C7CC05673G 10.1016/j.desal.2020.114794 10.1021/acsami.5b05510 10.1039/C9TA12170F 10.1039/C9MH00306A 10.1039/c3cp52891j 10.1039/C9MH01829H 10.1039/C6TA03748H 10.1039/C9TA06609H 10.1039/C7TA08264A 10.1002/smll.201702054 10.1016/j.jelechem.2018.05.024 10.1002/ange.201600455 10.1016/j.carbon.2014.01.056 10.1038/s41578-020-0193-1 10.1039/C5EE00519A 10.1039/D0TA05709F 10.1016/j.desal.2018.08.024 10.1002/adma.201502315 10.1016/j.carbon.2017.01.084 10.1039/C4RA11257A 10.1039/C8TA04813D 10.1002/anie.201408990 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
DOI | 10.1039/d0ta10797b |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 12817 |
ExternalDocumentID | 10_1039_D0TA10797B d0ta10797b |
GroupedDBID | -JG 0-7 0R~ 705 AAEMU AAGNR AAIWI AANOJ ABASK ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFOGI AFRAH AFVBQ AGRSR AGSTE ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- GNO HZ~ H~N J3I O-G O9- R7C RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ AAJAE AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFRDS AFRZK AGEGJ AHGCF AKMSF ALUYA APEMP CITATION GGIMP H13 RAOCF 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c351t-b617d97ca9c11d8c1157c706f1ea9033c7723ab440997cc031f4ed8bd70cb3c43 |
ISSN | 2050-7488 2050-7496 |
IngestDate | Fri Jul 11 02:47:51 EDT 2025 Mon Jun 30 12:02:53 EDT 2025 Tue Jul 01 01:13:09 EDT 2025 Thu Apr 24 23:03:39 EDT 2025 Fri Oct 14 17:30:42 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c351t-b617d97ca9c11d8c1157c706f1ea9033c7723ab440997cc031f4ed8bd70cb3c43 |
Notes | Electronic supplementary information (ESI) available. See DOI 10.1039/d0ta10797b ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0662-7923 0000-0003-3379-6677 0000-0001-6587-5797 0000-0002-3708-3677 0000-0001-7854-927X 0000-0002-8866-8157 0000-0003-2433-7305 0000-0002-7470-7741 |
PQID | 2537578281 |
PQPubID | 2047523 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2551909721 crossref_citationtrail_10_1039_D0TA10797B proquest_journals_2537578281 crossref_primary_10_1039_D0TA10797B rsc_primary_d0ta10797b |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210601 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 6 year: 2021 text: 20210601 day: 1 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Yang (D0TA10797B/cit28/1) 2016; 128 Zan (D0TA10797B/cit68/1) 2017; 5 Srimuk (D0TA10797B/cit4/1) 2020; 5 Biesheuvel (D0TA10797B/cit7/1) 2010; 346 Wang (D0TA10797B/cit24/1) 2013; 1 Lee (D0TA10797B/cit62/1) 2015; 351 Liu (D0TA10797B/cit21/1) 2020; 6 Patel (D0TA10797B/cit27/1) 2016; 10 Li (D0TA10797B/cit52/1) 2017; 5 Dianbudiyanto (D0TA10797B/cit74/1) 2019; 468 Chen (D0TA10797B/cit20/1) 2015; 27 Zhang (D0TA10797B/cit11/1) 2012; 22 Kim (D0TA10797B/cit35/1) 2019; 31 Zhu (D0TA10797B/cit45/1) 2020; 12 Das (D0TA10797B/cit64/1) 2013; 15 Xu (D0TA10797B/cit37/1) 2020; 390 Zhang (D0TA10797B/cit49/1) 2017; 56 Yin (D0TA10797B/cit71/1) 2013; 25 Zhang (D0TA10797B/cit33/1) 2020; 473 Wang (D0TA10797B/cit17/1) 2020; 6 Wu (D0TA10797B/cit38/1) 2018; 5 Wang (D0TA10797B/cit50/1) 2018; 5 Gomaa (D0TA10797B/cit42/1) 2021; 406 Shi (D0TA10797B/cit6/1) 2020; 32 Lee (D0TA10797B/cit63/1) 2017; 119 Xu (D0TA10797B/cit76/1) 2020; 7 Yang (D0TA10797B/cit18/1) 2014; 71 Sun (D0TA10797B/cit51/1) 2014; 20 Sun (D0TA10797B/cit14/1) 2020; 8 He (D0TA10797B/cit39/1) 2019; 12 Wang (D0TA10797B/cit59/1) 2019; 53 Liu (D0TA10797B/cit61/1) 2020; 54 Zhao (D0TA10797B/cit15/1) 2018; 334 Wang (D0TA10797B/cit72/1) 2019; 6 Rodell (D0TA10797B/cit1/1) 2018; 557 Yan (D0TA10797B/cit34/1) 2018; 5 Yao (D0TA10797B/cit65/1) 2016; 16 Kang (D0TA10797B/cit26/1) 2018; 6 Liu (D0TA10797B/cit57/1) 2019; 10 Huo (D0TA10797B/cit44/1) 2020; 8 Wang (D0TA10797B/cit29/1) 2017; 53 Zhu (D0TA10797B/cit69/1) 2018; 822 Lee (D0TA10797B/cit8/1) 2014; 7 Xia (D0TA10797B/cit30/1) 2020; 11 Liu (D0TA10797B/cit47/1) 2016; 4 Xu (D0TA10797B/cit12/1) 2016; 4 Li (D0TA10797B/cit22/1) 2017; 116 Wang (D0TA10797B/cit48/1) 2017; 5 Kim (D0TA10797B/cit58/1) 2015; 5 Jia (D0TA10797B/cit53/1) 2018; 446 Wang (D0TA10797B/cit25/1) 2017; 9 El-Deen (D0TA10797B/cit55/1) 2016; 8 Lian (D0TA10797B/cit13/1) 2018; 14 Zhang (D0TA10797B/cit23/1) 2020; 8 Zhang (D0TA10797B/cit41/1) 2019; 7 Xu (D0TA10797B/cit67/1) 2017; 5 Wang (D0TA10797B/cit54/1) 2020; 54 Pugazhenthiran (D0TA10797B/cit70/1) 2015; 7 Ghaffour (D0TA10797B/cit2/1) 2013; 309 Suss (D0TA10797B/cit5/1) 2015; 8 Li (D0TA10797B/cit31/1) 2018; 10 Zhang (D0TA10797B/cit19/1) 2019; 7 Wu (D0TA10797B/cit56/1) 2019; 9 Zhong (D0TA10797B/cit46/1) 2014; 53 Arulrajan (D0TA10797B/cit10/1) 2019; 31 Lado (D0TA10797B/cit60/1) 2019; 7 Zhang (D0TA10797B/cit36/1) 2018; 6 Zhao (D0TA10797B/cit73/1) 2020; 331 Liu (D0TA10797B/cit77/1) 2021; 498 Xu (D0TA10797B/cit43/1) 2019; 362 Hou (D0TA10797B/cit40/1) 2020; 132 Yang (D0TA10797B/cit3/1) 2013; 4 Ramalingam (D0TA10797B/cit9/1) 2020; 12 Zhu (D0TA10797B/cit16/1) 2014; 43 Xie (D0TA10797B/cit32/1) 2020; 158 Hsu (D0TA10797B/cit75/1) 2020; 481 Jeon (D0TA10797B/cit66/1) 2020; 20 |
References_xml | – volume: 346 start-page: 256 year: 2010 ident: D0TA10797B/cit7/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2009.09.043 – volume: 1 start-page: 11778 year: 2013 ident: D0TA10797B/cit24/1 publication-title: J. Mater. Chem. A doi: 10.1039/c3ta11926b – volume: 132 start-page: 7454 year: 2020 ident: D0TA10797B/cit40/1 publication-title: Angew. Chem. doi: 10.1002/ange.202002665 – volume: 7 start-page: 3683 year: 2014 ident: D0TA10797B/cit8/1 publication-title: Energy Environ. Sci. doi: 10.1039/C4EE02378A – volume: 309 start-page: 197 year: 2013 ident: D0TA10797B/cit2/1 publication-title: Desalination doi: 10.1016/j.desal.2012.10.015 – volume: 20 start-page: 988 year: 2020 ident: D0TA10797B/cit66/1 publication-title: Curr. Appl. Phys. doi: 10.1016/j.cap.2020.06.017 – volume: 334 start-page: 1270 year: 2018 ident: D0TA10797B/cit15/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.11.069 – volume: 5 start-page: 5810 year: 2017 ident: D0TA10797B/cit67/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.7b00551 – volume: 10 start-page: 14852 year: 2018 ident: D0TA10797B/cit31/1 publication-title: Nanoscale doi: 10.1039/C8NR02288G – volume: 5 start-page: 394 year: 2018 ident: D0TA10797B/cit50/1 publication-title: Mater. Horiz. doi: 10.1039/C8MH00133B – volume: 31 start-page: 1806937 year: 2019 ident: D0TA10797B/cit10/1 publication-title: Adv. Mater. doi: 10.1002/adma.201806937 – volume: 5 start-page: 6635 year: 2017 ident: D0TA10797B/cit52/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.7b00884 – volume: 7 start-page: 5173 year: 2019 ident: D0TA10797B/cit41/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA10918D – volume: 20 start-page: 564 year: 2014 ident: D0TA10797B/cit51/1 publication-title: Chem.–Eur. J. doi: 10.1002/chem.201303345 – volume: 32 start-page: 1907404 year: 2020 ident: D0TA10797B/cit6/1 publication-title: Adv. Mater. doi: 10.1002/adma.201907404 – volume: 43 start-page: 5468 year: 2014 ident: D0TA10797B/cit16/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60472A – volume: 25 start-page: 6270 year: 2013 ident: D0TA10797B/cit71/1 publication-title: Adv. Mater. doi: 10.1002/adma.201302223 – volume: 9 start-page: 15068 year: 2017 ident: D0TA10797B/cit25/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b02712 – volume: 12 start-page: 32788 year: 2020 ident: D0TA10797B/cit9/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c08286 – volume: 351 start-page: 193 year: 2015 ident: D0TA10797B/cit62/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.05.119 – volume: 557 start-page: 651 year: 2018 ident: D0TA10797B/cit1/1 publication-title: Nature doi: 10.1038/s41586-018-0123-1 – volume: 56 start-page: 8435 year: 2017 ident: D0TA10797B/cit49/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201701252 – volume: 5 start-page: 24329 year: 2017 ident: D0TA10797B/cit68/1 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA07746G – volume: 390 start-page: 124493 year: 2020 ident: D0TA10797B/cit37/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124493 – volume: 6 start-page: eaaz0906 year: 2020 ident: D0TA10797B/cit21/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.aaz0906 – volume: 4 start-page: 2220 year: 2013 ident: D0TA10797B/cit3/1 publication-title: Nat. Commun. doi: 10.1038/ncomms3220 – volume: 12 start-page: 29706 year: 2020 ident: D0TA10797B/cit45/1 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 20170 year: 2018 ident: D0TA10797B/cit26/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA07190J – volume: 8 start-page: 25313 year: 2016 ident: D0TA10797B/cit55/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b08658 – volume: 53 start-page: 6292 year: 2019 ident: D0TA10797B/cit59/1 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b00662 – volume: 31 start-page: 1803444 year: 2019 ident: D0TA10797B/cit35/1 publication-title: Adv. Mater. doi: 10.1002/adma.201803444 – volume: 22 start-page: 14696 year: 2012 ident: D0TA10797B/cit11/1 publication-title: J. Mater. Chem. doi: 10.1039/c2jm31393f – volume: 10 start-page: 2305 year: 2016 ident: D0TA10797B/cit27/1 publication-title: ACS Nano doi: 10.1021/acsnano.5b07054 – volume: 7 start-page: 18992 year: 2019 ident: D0TA10797B/cit60/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.9b04504 – volume: 6 start-page: 19 year: 2020 ident: D0TA10797B/cit17/1 publication-title: Chem doi: 10.1016/j.chempr.2019.09.005 – volume: 481 start-page: 114362 year: 2020 ident: D0TA10797B/cit75/1 publication-title: Desalination doi: 10.1016/j.desal.2020.114362 – volume: 473 start-page: 114173 year: 2020 ident: D0TA10797B/cit33/1 publication-title: Desalination doi: 10.1016/j.desal.2019.114173 – volume: 10 start-page: 675 year: 2019 ident: D0TA10797B/cit57/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-08644-w – volume: 4 start-page: 5467 year: 2016 ident: D0TA10797B/cit12/1 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA00618C – volume: 5 start-page: 2722 year: 2018 ident: D0TA10797B/cit34/1 publication-title: Environ. Sci.: Nano – volume: 54 start-page: 15516 year: 2020 ident: D0TA10797B/cit61/1 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c06549 – volume: 12 start-page: 250 year: 2019 ident: D0TA10797B/cit39/1 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE02694G – volume: 158 start-page: 184 year: 2020 ident: D0TA10797B/cit32/1 publication-title: Carbon doi: 10.1016/j.carbon.2019.12.004 – volume: 331 start-page: 135420 year: 2020 ident: D0TA10797B/cit73/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.135420 – volume: 9 start-page: 1803478 year: 2019 ident: D0TA10797B/cit56/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201803478 – volume: 468 start-page: 114069 year: 2019 ident: D0TA10797B/cit74/1 publication-title: Desalination doi: 10.1016/j.desal.2019.07.009 – volume: 362 start-page: 887 year: 2019 ident: D0TA10797B/cit43/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.01.098 – volume: 54 start-page: 8411 year: 2020 ident: D0TA10797B/cit54/1 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c01518 – volume: 8 start-page: 11114 year: 2020 ident: D0TA10797B/cit14/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.0c01393 – volume: 5 start-page: 98 year: 2018 ident: D0TA10797B/cit38/1 publication-title: Environ. Sci. Technol. Lett. doi: 10.1021/acs.estlett.7b00540 – volume: 11 start-page: 9584 year: 2020 ident: D0TA10797B/cit30/1 publication-title: Chem. Sci. doi: 10.1039/D0SC02518F – volume: 119 start-page: 492 year: 2017 ident: D0TA10797B/cit63/1 publication-title: Carbon doi: 10.1016/j.carbon.2017.04.033 – volume: 406 start-page: 124314 year: 2021 ident: D0TA10797B/cit42/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.124314 – volume: 16 start-page: 574 year: 2016 ident: D0TA10797B/cit65/1 publication-title: Curr. Appl. Phys. doi: 10.1016/j.cap.2016.03.001 – volume: 53 start-page: 10784 year: 2017 ident: D0TA10797B/cit29/1 publication-title: Chem. Commun. doi: 10.1039/C7CC05673G – volume: 498 start-page: 114794 year: 2021 ident: D0TA10797B/cit77/1 publication-title: Desalination doi: 10.1016/j.desal.2020.114794 – volume: 7 start-page: 20156 year: 2015 ident: D0TA10797B/cit70/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b05510 – volume: 8 start-page: 2505 year: 2020 ident: D0TA10797B/cit44/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA12170F – volume: 6 start-page: 1433 year: 2019 ident: D0TA10797B/cit72/1 publication-title: Mater. Horiz. doi: 10.1039/C9MH00306A – volume: 15 start-page: 15128 year: 2013 ident: D0TA10797B/cit64/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp52891j – volume: 7 start-page: 1404 year: 2020 ident: D0TA10797B/cit76/1 publication-title: Mater. Horiz. doi: 10.1039/C9MH01829H – volume: 4 start-page: 11916 year: 2016 ident: D0TA10797B/cit47/1 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA03748H – volume: 7 start-page: 20162 year: 2019 ident: D0TA10797B/cit19/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA06609H – volume: 5 start-page: 24269 year: 2017 ident: D0TA10797B/cit48/1 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA08264A – volume: 14 start-page: 1702054 year: 2018 ident: D0TA10797B/cit13/1 publication-title: Small doi: 10.1002/smll.201702054 – volume: 822 start-page: 81 year: 2018 ident: D0TA10797B/cit69/1 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2018.05.024 – volume: 128 start-page: 4084 year: 2016 ident: D0TA10797B/cit28/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.201600455 – volume: 71 start-page: 294 year: 2014 ident: D0TA10797B/cit18/1 publication-title: Carbon doi: 10.1016/j.carbon.2014.01.056 – volume: 5 start-page: 517 year: 2020 ident: D0TA10797B/cit4/1 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-020-0193-1 – volume: 8 start-page: 2296 year: 2015 ident: D0TA10797B/cit5/1 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE00519A – volume: 8 start-page: 14653 year: 2020 ident: D0TA10797B/cit23/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA05709F – volume: 446 start-page: 21 year: 2018 ident: D0TA10797B/cit53/1 publication-title: Desalination doi: 10.1016/j.desal.2018.08.024 – volume: 27 start-page: 5010 year: 2015 ident: D0TA10797B/cit20/1 publication-title: Adv. Mater. doi: 10.1002/adma.201502315 – volume: 116 start-page: 21 year: 2017 ident: D0TA10797B/cit22/1 publication-title: Carbon doi: 10.1016/j.carbon.2017.01.084 – volume: 5 start-page: 1456 year: 2015 ident: D0TA10797B/cit58/1 publication-title: RSC Adv. doi: 10.1039/C4RA11257A – volume: 6 start-page: 15245 year: 2018 ident: D0TA10797B/cit36/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA04813D – volume: 53 start-page: 14235 year: 2014 ident: D0TA10797B/cit46/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201408990 |
SSID | ssj0000800699 |
Score | 2.6171584 |
Snippet | Carbon-based electrodes play important roles in constructing efficient capacitive deionization (CDI) devices. Therefore, the rational design of carbon... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1287 |
SubjectTerms | Aminophenol Atomic properties Brackish water Brackish water desalination Carbon Deionization Density functional theory Desalination Design optimization Doping formaldehyde Metal-organic frameworks Morphology Nitrogen p-Aminophenol Phosphorus polymerization Pyrolysis Sodium chloride Zeolites |
Title | Nitrogen, phosphorus co-doped eave-like hierarchical porous carbon for efficient capacitive deionization |
URI | https://www.proquest.com/docview/2537578281 https://www.proquest.com/docview/2551909721 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELW63QscEF8rCgsyggsqWZI4aeJjWboqqFsuqegtcmxnW23VVG2K0P4-fhhjO06CWiHg0KhyLCfxvNgzkzczCL0VYFVRUNQdRnMwUEJPOAwsLYcoW4CJPOJERSNfTwfjWfBlHs47nZ8t1tK-zC743dG4kv-RKrSBXFWU7D9Ith4UGuA_yBeOIGE4_pWMp8tyW9yYhWOzKHbw2-53fV44otiAJinZd-mslrcqrbAKNNZ1T1Z9ULkV8ZWzbVbxDKVOJKFoARw2T274REIqX-1dI7pDHRbUXfOcfW4Lx130hyYGyJ7R45sIQ-2ktxFbipRb-_Nrv_WYFY2P3zRdLlixYMuDrt_2PwDbNwft13Y3rpwZfot0VbGglMvE8lU1H6W6-WZZ9N3QVRlQzaot222mNq5d12kLviYKu1qkPZUBqLXjq4-J0dHtxCUqG6twSwZWMo2yZtO0RIHp1_RqNpmkyWienKBTH4wVt4tOh6Pk86T29SmtfKBLmdY3bzPlEvqhGf533agxeE62thqN1nqSh-hBJWo8NNh7hDpy_RjdbyWxfIIWFoXvcYNBbDGIawziNgaxwSA2GMSAEVxjEDcYxG0MPkWzq1FyOXaq-h0OJ6FXOhlox4JGnFHueSLmKq8Tj9xB7klGXUI4TBZhWRCo6G3OYXvJAyniTEQuzwgPyBnqrou1fIYwjcMwzkC1lT4NYi6znAqXCE-owGjiez30zs5cyqvk9qrGyirVJAtC009uMtSz_LGH3tR9Nyaly9Fe51YAafXK71I_JLr-QwwXfF2fBoSqr2xsLWHioA8YRTopVg-dgeDqazRyfv7nsV-ge827cY665XYvX4LqW2avKmT9AncmtUk |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nitrogen%2C+phosphorus+co-doped+eave-like+hierarchical+porous+carbon+for+efficient+capacitive+deionization&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Zhang%2C+Hao&rft.au=Wang%2C+Chaohai&rft.au=Zhang%2C+Wuxiang&rft.au=Zhang%2C+Ming&rft.date=2021-06-01&rft.pub=Royal+Society+of+Chemistry&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=9&rft.issue=21&rft.spage=12807&rft.epage=12817&rft_id=info:doi/10.1039%2Fd0ta10797b&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |