An improved unscented particle filter approach for lithium-ion battery remaining useful life prediction

Lithium-ion rechargeable batteries are widely used as power sources for mobile phones, laptops and electric cars, and gradually extended to military communication, navigation, aviation, aerospace and other fields. Accurate remaining useful life (RUL) prediction of lithium-ion battery plays an import...

Full description

Saved in:
Bibliographic Details
Published inMicroelectronics and reliability Vol. 81; pp. 288 - 298
Main Authors Zhang, Heng, Miao, Qiang, Zhang, Xin, Liu, Zhiwen
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium-ion rechargeable batteries are widely used as power sources for mobile phones, laptops and electric cars, and gradually extended to military communication, navigation, aviation, aerospace and other fields. Accurate remaining useful life (RUL) prediction of lithium-ion battery plays an important role in avoiding serious security and economic consequences caused by failure to supply required power levels. Thus, the RUL prediction for lithium-ion battery has become a critical task in engineering practices. With its superiority in handling nonlinear and non-Gaussian system behaviors, the particle filtering (PF) technique is widely used in the remaining life prediction. However, the choice of importance function and the degradation of diversity in sampling particles limit the estimation accuracy. This paper presents an improved PF algorithm, that is, the unscented particle filter (UPF) based on linear optimizing combination resampling (U-LOCR-PF) to improve the prediction accuracy. In one aspect, the unscented Kalman filter (UKF) is used to generate a proposal distribution as an importance function for particle filtering. In the other aspect, the linear optimizing combination resampling (LOCR) algorithm is used to overcome the particle diversity deficiency. It should be noted that the step coefficient K can affect the performance of LOCR algorithm, and the fuzzy inference system is applied to determine the value of step coefficient K. According to the analysis results, it can be seen that the proposed prognostic method shows higher accuracy in the RUL prediction of lithium-ion battery, compared with the existing PF-based and UPF-based prognostic methods. •An improved UPF method, namely, the U-LOCR-PF, is proposed to realize battery RUL prediction.•Linear optimizing combination resampling technique is used to overcome the particle diversity deficiency problem in UPF.•Comparison study shows the proposed U-LOCR-PF method has higher accuracy in battery RUL prediction.
AbstractList Lithium-ion rechargeable batteries are widely used as power sources for mobile phones, laptops and electric cars, and gradually extended to military communication, navigation, aviation, aerospace and other fields. Accurate remaining useful life (RUL) prediction of lithium-ion battery plays an important role in avoiding serious security and economic consequences caused by failure to supply required power levels. Thus, the RUL prediction for lithium-ion battery has become a critical task in engineering practices. With its superiority in handling nonlinear and non-Gaussian system behaviors, the particle filtering (PF) technique is widely used in the remaining life prediction. However, the choice of importance function and the degradation of diversity in sampling particles limit the estimation accuracy. This paper presents an improved PF algorithm, that is, the unscented particle filter (UPF) based on linear optimizing combination resampling (U-LOCR-PF) to improve the prediction accuracy. In one aspect, the unscented Kalman filter (UKF) is used to generate a proposal distribution as an importance function for particle filtering. In the other aspect, the linear optimizing combination resampling (LOCR) algorithm is used to overcome the particle diversity deficiency. It should be noted that the step coefficient K can affect the performance of LOCR algorithm, and the fuzzy inference system is applied to determine the value of step coefficient K. According to the analysis results, it can be seen that the proposed prognostic method shows higher accuracy in the RUL prediction of lithium-ion battery, compared with the existing PF-based and UPF-based prognostic methods. •An improved UPF method, namely, the U-LOCR-PF, is proposed to realize battery RUL prediction.•Linear optimizing combination resampling technique is used to overcome the particle diversity deficiency problem in UPF.•Comparison study shows the proposed U-LOCR-PF method has higher accuracy in battery RUL prediction.
Author Zhang, Xin
Miao, Qiang
Liu, Zhiwen
Zhang, Heng
Author_xml – sequence: 1
  givenname: Heng
  surname: Zhang
  fullname: Zhang, Heng
– sequence: 2
  givenname: Qiang
  orcidid: 0000-0002-8879-7266
  surname: Miao
  fullname: Miao, Qiang
  email: mqiang@scu.edu.cn
– sequence: 3
  givenname: Xin
  surname: Zhang
  fullname: Zhang, Xin
– sequence: 4
  givenname: Zhiwen
  surname: Liu
  fullname: Liu, Zhiwen
BookMark eNqFkM1qwzAQhEVJoUnaVyh6Abta27Ec6KEh9A8CvbTQm5DlVaJgy0aSA3n7KqS99JLTLuzMsPPNyMT2Fgm5B5YCg_Jhn3ZGud5hm2YMeApZyvLyikyh4lmyLOB7QqaMZWWScShuyMz7PWOMM4Ap2a4sNd3g-gM2dLReoQ1xG6QLRrVItWkDOiqHKJFqR3XvaGvCzoxdYnpLaxni_UgddtJYY7d09KjHNoo00sFhY1SIwltyrWXr8e53zsnXy_Pn-i3ZfLy-r1ebROULCEldAOeKLZscAcqiUgUqvahYDlDnOXJdy1JjrM2qouGaLyRXyxqqShec8SiZk_KcG4l471CLwZlOuqMAJk64xF784RInXAIyEXFF4-M_ozJBnl4PTpr2sv3pbMdY7mDQCa8MWhX7O1RBNL25FPED1ZqQGQ
CitedBy_id crossref_primary_10_1016_j_probengmech_2023_103531
crossref_primary_10_1016_j_apenergy_2021_116897
crossref_primary_10_1002_ente_202300232
crossref_primary_10_1016_j_est_2019_100837
crossref_primary_10_1016_j_energy_2023_129067
crossref_primary_10_1016_j_microrel_2022_114625
crossref_primary_10_1049_tje2_12182
crossref_primary_10_1109_TPEL_2020_3033297
crossref_primary_10_3390_en14165000
crossref_primary_10_1177_09576509231153907
crossref_primary_10_1109_ACCESS_2019_2914236
crossref_primary_10_1016_j_jpowsour_2023_233842
crossref_primary_10_1109_ACCESS_2019_2936822
crossref_primary_10_1109_ACCESS_2019_2907131
crossref_primary_10_1002_er_8321
crossref_primary_10_1016_j_jpowsour_2018_08_064
crossref_primary_10_1016_j_jpowsour_2022_231026
crossref_primary_10_1016_j_measurement_2021_109544
crossref_primary_10_1039_D2SE01209J
crossref_primary_10_1016_j_energy_2023_127675
crossref_primary_10_1109_ACCESS_2023_3318121
crossref_primary_10_1016_j_egyr_2022_09_043
crossref_primary_10_1109_TIM_2020_3006776
crossref_primary_10_1016_j_est_2020_102118
crossref_primary_10_1049_iet_cds_2019_0092
crossref_primary_10_1049_stg2_12013
crossref_primary_10_1109_ACCESS_2021_3111927
crossref_primary_10_1007_s40430_023_04202_0
crossref_primary_10_1016_j_egyr_2020_07_026
crossref_primary_10_1109_ACCESS_2020_2987426
crossref_primary_10_1155_2023_8569161
crossref_primary_10_1016_j_measurement_2019_07_064
crossref_primary_10_1007_s42979_021_00905_0
crossref_primary_10_1016_j_ress_2022_108947
crossref_primary_10_1109_ACCESS_2021_3136131
crossref_primary_10_1109_TR_2019_2930195
crossref_primary_10_1016_j_est_2023_108160
crossref_primary_10_1016_j_est_2023_108044
crossref_primary_10_1155_2021_9590969
crossref_primary_10_1002_er_8671
crossref_primary_10_1177_1748006X221080345
crossref_primary_10_3390_en13092380
crossref_primary_10_1016_j_apenergy_2022_119011
crossref_primary_10_1016_j_est_2021_103158
crossref_primary_10_1016_j_est_2022_104701
crossref_primary_10_1063_5_0221822
crossref_primary_10_1109_ACCESS_2019_2947843
crossref_primary_10_1016_j_cie_2018_09_015
crossref_primary_10_1016_j_jpowsour_2020_227700
crossref_primary_10_1016_j_est_2022_104750
crossref_primary_10_1109_ACCESS_2022_3200478
crossref_primary_10_1016_j_rser_2019_109254
crossref_primary_10_3390_batteries9060323
crossref_primary_10_3390_computers12110219
crossref_primary_10_1007_s00202_022_01728_9
crossref_primary_10_1115_1_4042987
crossref_primary_10_1016_j_ijhydene_2018_11_100
crossref_primary_10_1109_ACCESS_2019_2913163
crossref_primary_10_1016_j_conengprac_2024_105852
crossref_primary_10_1016_j_measurement_2021_109057
crossref_primary_10_1016_j_ijepes_2019_02_046
crossref_primary_10_1016_j_rser_2020_110015
crossref_primary_10_1016_j_measurement_2020_108679
crossref_primary_10_1016_j_energy_2022_123890
crossref_primary_10_1002_ese3_1823
crossref_primary_10_1016_j_energy_2022_125278
crossref_primary_10_1016_j_energy_2023_128984
crossref_primary_10_1109_TIA_2021_3112392
crossref_primary_10_1016_j_rser_2019_109405
crossref_primary_10_1016_j_est_2022_105731
crossref_primary_10_1109_ACCESS_2019_2901744
crossref_primary_10_1016_j_microrel_2023_114914
crossref_primary_10_1016_j_energy_2022_123829
crossref_primary_10_46670_JSST_2023_32_6_462
crossref_primary_10_3390_s22103803
crossref_primary_10_3390_electronics12122647
crossref_primary_10_1016_j_measurement_2022_110836
crossref_primary_10_1177_1687814020911475
crossref_primary_10_1016_j_measurement_2021_110269
crossref_primary_10_1109_TNNLS_2023_3311443
crossref_primary_10_1049_cje_2020_10_012
crossref_primary_10_1016_j_measurement_2020_107517
crossref_primary_10_1108_IJICC_09_2020_0131
crossref_primary_10_1016_j_microrel_2020_113682
crossref_primary_10_1016_j_ress_2023_109352
crossref_primary_10_1115_1_4052093
crossref_primary_10_1016_j_microrel_2020_113857
crossref_primary_10_1016_j_est_2022_106193
crossref_primary_10_1007_s40430_023_04176_z
crossref_primary_10_1109_TTE_2022_3209629
crossref_primary_10_1109_TII_2020_3017194
crossref_primary_10_20964_2019_10_15
crossref_primary_10_3390_en12142784
crossref_primary_10_1016_j_energy_2021_122581
crossref_primary_10_20964_2020_10_41
crossref_primary_10_1016_j_seta_2022_102915
crossref_primary_10_1109_ACCESS_2020_2977429
crossref_primary_10_1109_TVT_2020_2993949
crossref_primary_10_3390_pr11082333
crossref_primary_10_1016_j_est_2020_101741
crossref_primary_10_1016_j_apenergy_2019_113841
crossref_primary_10_1109_TIE_2021_3060675
crossref_primary_10_11648_j_ijecec_20241001_11
crossref_primary_10_17531_ein_2019_3_17
crossref_primary_10_1016_j_jpowsour_2020_228581
crossref_primary_10_1038_s41598_022_17455_x
crossref_primary_10_1109_ACCESS_2019_2917891
crossref_primary_10_1016_j_est_2024_113458
crossref_primary_10_1002_ese3_1338
crossref_primary_10_1007_s00170_021_08351_1
crossref_primary_10_1016_j_rser_2024_114915
crossref_primary_10_3390_s20236842
crossref_primary_10_1109_TIM_2023_3291798
crossref_primary_10_1016_j_ress_2021_108082
crossref_primary_10_1007_s12598_022_02156_1
crossref_primary_10_1109_JESTPE_2021_3098378
crossref_primary_10_1109_ACCESS_2020_2978245
crossref_primary_10_1016_j_est_2022_106457
crossref_primary_10_1016_j_est_2022_104399
crossref_primary_10_1109_TR_2023_3295943
crossref_primary_10_1109_TTE_2024_3427334
crossref_primary_10_3390_pr9122174
crossref_primary_10_1109_TIE_2021_3075873
crossref_primary_10_1016_j_ymssp_2020_106961
crossref_primary_10_1109_ACCESS_2019_2947294
crossref_primary_10_1186_s10033_021_00668_y
crossref_primary_10_3390_en17071695
crossref_primary_10_1007_s40435_020_00688_x
crossref_primary_10_3390_machines10070512
crossref_primary_10_3389_fmech_2021_719718
crossref_primary_10_1016_j_jclepro_2021_128265
crossref_primary_10_1109_TR_2020_3010937
crossref_primary_10_1039_D2TA07148G
crossref_primary_10_20964_2019_08_44
crossref_primary_10_1016_j_energy_2020_119682
crossref_primary_10_20964_2020_10_21
crossref_primary_10_1061_AJRUA6_0001186
crossref_primary_10_1002_er_5750
crossref_primary_10_1016_j_energy_2021_121712
crossref_primary_10_1109_ACCESS_2019_2925468
crossref_primary_10_1109_TIA_2022_3210081
crossref_primary_10_1177_0959651818806419
crossref_primary_10_1016_j_est_2019_03_022
crossref_primary_10_1016_j_jclepro_2021_125814
crossref_primary_10_1109_TPEL_2019_2952620
crossref_primary_10_1109_JSEN_2019_2957413
crossref_primary_10_1109_TTE_2024_3365275
crossref_primary_10_3390_batteries7020035
crossref_primary_10_1016_j_measurement_2022_111046
crossref_primary_10_3390_wevj15050177
crossref_primary_10_1109_TIE_2021_3109527
crossref_primary_10_1016_j_eswa_2021_116075
crossref_primary_10_3390_en11061420
crossref_primary_10_1007_s12206_022_1132_4
crossref_primary_10_1109_TR_2019_2896230
crossref_primary_10_1016_j_ymssp_2022_109347
crossref_primary_10_1109_JSEN_2020_2979797
crossref_primary_10_1016_j_ijhydene_2019_03_101
crossref_primary_10_1109_ACCESS_2021_3089032
crossref_primary_10_1016_j_microrel_2021_114071
crossref_primary_10_1016_j_ymssp_2022_109747
crossref_primary_10_1016_j_ress_2023_109315
crossref_primary_10_3390_en12091685
crossref_primary_10_1115_1_4053141
crossref_primary_10_1016_j_asoc_2020_106474
crossref_primary_10_1016_j_est_2023_108547
Cites_doi 10.1109/TIE.2015.2393840
10.1016/j.microrel.2012.12.004
10.1016/S0378-7753(01)00887-4
10.1016/j.jpowsour.2017.01.105
10.1109/TIM.2016.2534258
10.1016/j.compchemeng.2016.08.018
10.1016/j.apenergy.2011.08.002
10.1109/TIM.2014.2303534
10.1016/S0378-7753(01)00560-2
10.1016/j.engfailanal.2016.04.014
10.1109/TR.2015.2451074
10.1177/1687814015622327
10.1016/j.jpowsour.2014.07.176
10.1109/TIM.2016.2622838
10.1016/j.jpowsour.2015.12.012
10.1016/j.energy.2016.09.099
10.1016/j.microrel.2016.03.030
10.1016/j.microrel.2017.02.012
10.1016/j.jpowsour.2013.03.129
10.1016/j.ress.2015.07.013
10.1016/j.jpowsour.2011.08.040
10.1016/j.microrel.2017.02.003
10.1016/j.apenergy.2014.03.086
10.1109/MIM.2008.4579269
10.1109/TIE.2016.2623260
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright_xml – notice: 2017 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.microrel.2017.12.036
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-941X
EndPage 298
ExternalDocumentID 10_1016_j_microrel_2017_12_036
S0026271417306005
GroupedDBID --K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
29M
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSM
SST
SSV
SSZ
T5K
T9H
TAE
UHS
UNMZH
WUQ
XOL
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c351t-b4177c09d3e11648c4ecf580311b33e7fba6fe101084d7f75a7c9b188f4707b33
IEDL.DBID .~1
ISSN 0026-2714
IngestDate Tue Jul 01 01:27:27 EDT 2025
Thu Apr 24 22:52:58 EDT 2025
Fri Feb 23 02:18:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Linear optimizing combination resampling
Remaining useful life prediction
Lithium-ion battery
Unscented Kalman filter
Particle filter
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-b4177c09d3e11648c4ecf580311b33e7fba6fe101084d7f75a7c9b188f4707b33
ORCID 0000-0002-8879-7266
PageCount 11
ParticipantIDs crossref_primary_10_1016_j_microrel_2017_12_036
crossref_citationtrail_10_1016_j_microrel_2017_12_036
elsevier_sciencedirect_doi_10_1016_j_microrel_2017_12_036
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-01
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Microelectronics and reliability
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chen, Peng, Li (bb0035) 2015; 29
Hu, Youn, Chung (bb0090) 2012; 92
He, Williard, Osterman (bb0175) 2011; 196
Tagade, Hariharan, Gambhire (bb0025) 2016; 306
Piller, Perrin, Jossen (bb0045) 2001; 96
Jiang, Wang, Wu (bb0145) 2016; 62
Miao, Xie, Cui (bb0110) 2013; 53
Liu, Zhou, Guo (bb0020) 2015; 36
Gebel (bb0040) 2016
Saha, Goebel (bb0165) 2007
Liu, Sun, Bu (bb0140) 2017; 66
Zhang, Miao, Liu (bb0155) 2017; 75
Zou, Jing, Hong-Tao (bb0160) 2006; 40
Chao, Lai, Ge (bb0060) 2016; 120
Li, Miao, Ye (bb0105) 2015; 7
Sbarufatti, Corbetta, Giglio (bb0125) 2017; 344
Guha, Patra, Vaisakh (bb0050) 2017
Nishi (bb0005) 2001; 100
Saha, Goebel (bb0010) 2009
Jha, Bressel, Ould-Bouamama (bb0055) 2016; 95
Wang, Miao, Pecht (bb0085) 2013; 239
Zheng, Fang (bb0095) 2015; 144
Wang, Yang, Tsui (bb0135) 2016; 65
Si (bb0075) 2015; 62
Hu, Jain, Tamirisa (bb0115) 2014; 126
Yu, Liu (bb0030) 2014; 35
Dong, Jin, Lou (bb0130) 2014; 271
Khelif, Chebel-Morello, Malinowski (bb0100) 2016; 64
Su, Wang, Pecht (bb0150) 2017; 70
Li, Wang, Ismail (bb0120) 2014; 63
Saha, Kai, Christophersen (bb0170) 2010; 31
Feng, Kvam, Tang (bb0080) 2016; 70
Goebel, Saha, Saxena (bb0015) 2008; 11
Xu, Li, Chen (bb0065) 2016; 65
Li, Fan, Rizzoni (bb0070) 2016; 116
Li (10.1016/j.microrel.2017.12.036_bb0120) 2014; 63
Zhang (10.1016/j.microrel.2017.12.036_bb0155) 2017; 75
Nishi (10.1016/j.microrel.2017.12.036_bb0005) 2001; 100
Chen (10.1016/j.microrel.2017.12.036_bb0035) 2015; 29
Liu (10.1016/j.microrel.2017.12.036_bb0140) 2017; 66
Li (10.1016/j.microrel.2017.12.036_bb0070) 2016; 116
Hu (10.1016/j.microrel.2017.12.036_bb0115) 2014; 126
Su (10.1016/j.microrel.2017.12.036_bb0150) 2017; 70
Xu (10.1016/j.microrel.2017.12.036_bb0065) 2016; 65
Miao (10.1016/j.microrel.2017.12.036_bb0110) 2013; 53
Feng (10.1016/j.microrel.2017.12.036_bb0080) 2016; 70
Wang (10.1016/j.microrel.2017.12.036_bb0085) 2013; 239
Dong (10.1016/j.microrel.2017.12.036_bb0130) 2014; 271
Chao (10.1016/j.microrel.2017.12.036_bb0060) 2016; 120
Guha (10.1016/j.microrel.2017.12.036_bb0050) 2017
Zou (10.1016/j.microrel.2017.12.036_bb0160) 2006; 40
Hu (10.1016/j.microrel.2017.12.036_bb0090) 2012; 92
Gebel (10.1016/j.microrel.2017.12.036_bb0040) 2016
Sbarufatti (10.1016/j.microrel.2017.12.036_bb0125) 2017; 344
Goebel (10.1016/j.microrel.2017.12.036_bb0015) 2008; 11
Saha (10.1016/j.microrel.2017.12.036_bb0165) 2007
Si (10.1016/j.microrel.2017.12.036_bb0075) 2015; 62
Zheng (10.1016/j.microrel.2017.12.036_bb0095) 2015; 144
Liu (10.1016/j.microrel.2017.12.036_bb0020) 2015; 36
Saha (10.1016/j.microrel.2017.12.036_bb0170) 2010; 31
Tagade (10.1016/j.microrel.2017.12.036_bb0025) 2016; 306
Yu (10.1016/j.microrel.2017.12.036_bb0030) 2014; 35
Wang (10.1016/j.microrel.2017.12.036_bb0135) 2016; 65
Jha (10.1016/j.microrel.2017.12.036_bb0055) 2016; 95
Jiang (10.1016/j.microrel.2017.12.036_bb0145) 2016; 62
Khelif (10.1016/j.microrel.2017.12.036_bb0100) 2016; 64
Saha (10.1016/j.microrel.2017.12.036_bb0010) 2009
Piller (10.1016/j.microrel.2017.12.036_bb0045) 2001; 96
He (10.1016/j.microrel.2017.12.036_bb0175) 2011; 196
Li (10.1016/j.microrel.2017.12.036_bb0105) 2015; 7
References_xml – volume: 29
  start-page: 1536
  year: 2015
  end-page: 1543
  ident: bb0035
  article-title: Data-driven PHM software system for airborne equipment
  publication-title: J. Electron. Measur. Instrum.
– volume: 75
  start-page: 288
  year: 2017
  end-page: 295
  ident: bb0155
  article-title: Remaining useful life prediction of lithium-ion battery using an improved UPF method based on MCMC
  publication-title: Microelectron. Reliab.
– volume: 62
  start-page: 5082
  year: 2015
  end-page: 5096
  ident: bb0075
  article-title: An adaptive prognostic approach via nonlinear degradation modeling: application to battery data
  publication-title: IEEE Trans. Ind. Electron.
– volume: 92
  start-page: 694
  year: 2012
  end-page: 704
  ident: bb0090
  article-title: A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation
  publication-title: Appl. Energy
– volume: 66
  start-page: 280
  year: 2017
  end-page: 293
  ident: bb0140
  article-title: Particle learning framework for estimating the remaining useful life of lithium-ion batteries
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 53
  start-page: 805
  year: 2013
  end-page: 810
  ident: bb0110
  article-title: Remaining useful life prediction of lithium-ion battery with unscented particle filter technique
  publication-title: Microelectron. Reliab.
– volume: 31
  start-page: 293
  year: 2010
  end-page: 308
  ident: bb0170
  article-title: Comparison of prognostic algorithms for estimating remaining useful life of batteries
  publication-title: Trans. Inst. Meas. Control.
– volume: 11
  start-page: 33
  year: 2008
  end-page: 40
  ident: bb0015
  article-title: Prognostics in battery health management
  publication-title: IEEE Instrum. Meas. Mag.
– start-page: 33
  year: 2017
  end-page: 38
  ident: bb0050
  article-title: Remaining useful life estimation of lithium-ion batteries based on the internal resistance growth model
  publication-title: 2017 Indian Control Conference
– volume: 63
  start-page: 2034
  year: 2014
  end-page: 2043
  ident: bb0120
  article-title: A mutated particle filter technique for system state estimation and battery life prediction
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 65
  start-page: 310
  year: 2016
  end-page: 325
  ident: bb0065
  article-title: Hierarchical model for lithium-ion battery degradation prediction
  publication-title: IEEE Trans. Reliab.
– volume: 344
  start-page: 128
  year: 2017
  end-page: 140
  ident: bb0125
  article-title: Adaptive prognosis of lithium-ion batteries based on the combination of particle filters and radial basis function neural networks
  publication-title: J. Power Sources
– volume: 7
  start-page: 1
  year: 2015
  end-page: 8
  ident: bb0105
  article-title: Lithium-ion battery remaining useful life prediction based on grey support vector machines
  publication-title: Adv. Mech. Eng.
– volume: 126
  start-page: 182
  year: 2014
  end-page: 189
  ident: bb0115
  article-title: Method for estimating capacity and predicting remaining useful life of lithium-ion battery
  publication-title: Appl. Energy
– volume: 271
  start-page: 114
  year: 2014
  end-page: 123
  ident: bb0130
  article-title: Lithium-ion battery state of health monitoring and remaining useful life prediction based on support vector regression-particle filter
  publication-title: J. Power Sources
– volume: 40
  start-page: 1135
  year: 2006
  end-page: 1139
  ident: bb0160
  article-title: Particle filter algorithm based on optimizing combination resampling
  publication-title: J. Shanghai Jiaotong Univ.
– year: 2007
  ident: bb0165
  article-title: Battery Data Set. NASA Ames Prognostics Data Repository
– volume: 116
  start-page: 154
  year: 2016
  end-page: 169
  ident: bb0070
  article-title: A simplified multi-particle model for lithium ion batteries via a predictor-corrector strategy and quasi-linearization
  publication-title: Energy
– volume: 70
  start-page: 323
  year: 2016
  end-page: 342
  ident: bb0080
  article-title: Remaining useful lifetime prediction based on the damage-marker bivariate degradation model: a case study on lithium-ion batteries used in electric vehicles
  publication-title: Eng. Fail. Anal.
– volume: 144
  start-page: 74
  year: 2015
  end-page: 82
  ident: bb0095
  article-title: An integrated unscented kalman filter and relevance vector regression approach for lithium-ion battery remaining useful life and short-term capacity prediction
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 62
  start-page: 167
  year: 2016
  end-page: 177
  ident: bb0145
  article-title: Fault prognostic of electronics based on optimal multi-order particle filter
  publication-title: Microelectron. Reliab.
– volume: 36
  start-page: 1
  year: 2015
  end-page: 16
  ident: bb0020
  article-title: Survey on lithium-ion battery health assessment and cycle life estimation
  publication-title: Chin. J. Sci. Instrum.
– volume: 95
  start-page: 216
  year: 2016
  end-page: 230
  ident: bb0055
  article-title: Particle filter based hybrid prognostics of proton exchange membrane fuel cell in bond graph framework
  publication-title: Comput. Chem. Eng.
– volume: 239
  start-page: 253
  year: 2013
  end-page: 264
  ident: bb0085
  article-title: Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model
  publication-title: J. Power Sources
– start-page: 1
  year: 2016
  end-page: 6
  ident: bb0040
  article-title: An approach to determine the state of charge of a lithium iron phosphate cell using classification methods based on frequency domain data
  publication-title: IET International Conference on Power Electronics, Machines and Drives
– volume: 120
  start-page: 975
  year: 2016
  end-page: 984
  ident: bb0060
  article-title: A lead-acid battery's remaining useful life prediction by using electrochemical model in the particle filtering framework
  publication-title: Energy
– volume: 100
  start-page: 101
  year: 2001
  end-page: 106
  ident: bb0005
  article-title: Lithium ion secondary batteries; past 10
  publication-title: J. Power Sources
– volume: 306
  start-page: 274
  year: 2016
  end-page: 288
  ident: bb0025
  article-title: Recursive Bayesian filtering framework for lithium-ion cell state estimation
  publication-title: J. Power Sources
– volume: 65
  start-page: 1282
  year: 2016
  end-page: 1291
  ident: bb0135
  article-title: Remaining useful life prediction of lithium-ion batteries based on spherical cubature particle filter
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 196
  start-page: 10314
  year: 2011
  end-page: 10321
  ident: bb0175
  article-title: Prognostics of lithium-ion batteries based on Dempster–Shafer theory and the Bayesian Monte Carlo method
  publication-title: J. Power Sources
– volume: 64
  start-page: 2276
  year: 2016
  end-page: 2285
  ident: bb0100
  article-title: Direct remaining useful life estimation based on support vector regression
  publication-title: IEEE Trans. Ind. Electron.
– volume: 96
  start-page: 113
  year: 2001
  end-page: 120
  ident: bb0045
  article-title: Methods for state-of-charge determination and their applications
  publication-title: J. Power Sources
– volume: 35
  start-page: 481
  year: 2014
  end-page: 495
  ident: bb0030
  article-title: Data-driven prognostics and health management: a review of recent advances
  publication-title: Chin. J. Sci. Instrum.
– year: 2009
  ident: bb0010
  article-title: Modeling Li-ion battery capacity depletion in a particle filtering framework
– volume: 70
  start-page: 59
  year: 2017
  end-page: 69
  ident: bb0150
  article-title: Interacting multiple model particle filter for prognostics of lithium-ion batteries
  publication-title: Microelectron. Reliab.
– volume: 35
  start-page: 481
  issue: 3
  year: 2014
  ident: 10.1016/j.microrel.2017.12.036_bb0030
  article-title: Data-driven prognostics and health management: a review of recent advances
  publication-title: Chin. J. Sci. Instrum.
– volume: 62
  start-page: 5082
  issue: 8
  year: 2015
  ident: 10.1016/j.microrel.2017.12.036_bb0075
  article-title: An adaptive prognostic approach via nonlinear degradation modeling: application to battery data
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2015.2393840
– volume: 36
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.microrel.2017.12.036_bb0020
  article-title: Survey on lithium-ion battery health assessment and cycle life estimation
  publication-title: Chin. J. Sci. Instrum.
– volume: 53
  start-page: 805
  issue: 6
  year: 2013
  ident: 10.1016/j.microrel.2017.12.036_bb0110
  article-title: Remaining useful life prediction of lithium-ion battery with unscented particle filter technique
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2012.12.004
– volume: 100
  start-page: 101
  issue: 1–2
  year: 2001
  ident: 10.1016/j.microrel.2017.12.036_bb0005
  article-title: Lithium ion secondary batteries; past 10years and the future
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(01)00887-4
– start-page: 1
  year: 2016
  ident: 10.1016/j.microrel.2017.12.036_bb0040
  article-title: An approach to determine the state of charge of a lithium iron phosphate cell using classification methods based on frequency domain data
– year: 2007
  ident: 10.1016/j.microrel.2017.12.036_bb0165
– volume: 344
  start-page: 128
  year: 2017
  ident: 10.1016/j.microrel.2017.12.036_bb0125
  article-title: Adaptive prognosis of lithium-ion batteries based on the combination of particle filters and radial basis function neural networks
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.01.105
– volume: 65
  start-page: 1282
  issue: 6
  year: 2016
  ident: 10.1016/j.microrel.2017.12.036_bb0135
  article-title: Remaining useful life prediction of lithium-ion batteries based on spherical cubature particle filter
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2016.2534258
– volume: 95
  start-page: 216
  year: 2016
  ident: 10.1016/j.microrel.2017.12.036_bb0055
  article-title: Particle filter based hybrid prognostics of proton exchange membrane fuel cell in bond graph framework
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2016.08.018
– volume: 120
  start-page: 975
  year: 2016
  ident: 10.1016/j.microrel.2017.12.036_bb0060
  article-title: A lead-acid battery's remaining useful life prediction by using electrochemical model in the particle filtering framework
  publication-title: Energy
– volume: 92
  start-page: 694
  issue: 4
  year: 2012
  ident: 10.1016/j.microrel.2017.12.036_bb0090
  article-title: A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2011.08.002
– volume: 63
  start-page: 2034
  issue: 8
  year: 2014
  ident: 10.1016/j.microrel.2017.12.036_bb0120
  article-title: A mutated particle filter technique for system state estimation and battery life prediction
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2014.2303534
– volume: 31
  start-page: 293
  issue: 3
  year: 2010
  ident: 10.1016/j.microrel.2017.12.036_bb0170
  article-title: Comparison of prognostic algorithms for estimating remaining useful life of batteries
  publication-title: Trans. Inst. Meas. Control.
– volume: 96
  start-page: 113
  issue: 1
  year: 2001
  ident: 10.1016/j.microrel.2017.12.036_bb0045
  article-title: Methods for state-of-charge determination and their applications
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(01)00560-2
– volume: 29
  start-page: 1536
  issue: 10
  year: 2015
  ident: 10.1016/j.microrel.2017.12.036_bb0035
  article-title: Data-driven PHM software system for airborne equipment
  publication-title: J. Electron. Measur. Instrum.
– volume: 70
  start-page: 323
  year: 2016
  ident: 10.1016/j.microrel.2017.12.036_bb0080
  article-title: Remaining useful lifetime prediction based on the damage-marker bivariate degradation model: a case study on lithium-ion batteries used in electric vehicles
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2016.04.014
– volume: 65
  start-page: 310
  issue: 1
  year: 2016
  ident: 10.1016/j.microrel.2017.12.036_bb0065
  article-title: Hierarchical model for lithium-ion battery degradation prediction
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2015.2451074
– volume: 40
  start-page: 1135
  issue: 7
  year: 2006
  ident: 10.1016/j.microrel.2017.12.036_bb0160
  article-title: Particle filter algorithm based on optimizing combination resampling
  publication-title: J. Shanghai Jiaotong Univ.
– volume: 7
  start-page: 1
  issue: 12
  year: 2015
  ident: 10.1016/j.microrel.2017.12.036_bb0105
  article-title: Lithium-ion battery remaining useful life prediction based on grey support vector machines
  publication-title: Adv. Mech. Eng.
  doi: 10.1177/1687814015622327
– volume: 271
  start-page: 114
  year: 2014
  ident: 10.1016/j.microrel.2017.12.036_bb0130
  article-title: Lithium-ion battery state of health monitoring and remaining useful life prediction based on support vector regression-particle filter
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.07.176
– volume: 66
  start-page: 280
  issue: 2
  year: 2017
  ident: 10.1016/j.microrel.2017.12.036_bb0140
  article-title: Particle learning framework for estimating the remaining useful life of lithium-ion batteries
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2016.2622838
– volume: 306
  start-page: 274
  year: 2016
  ident: 10.1016/j.microrel.2017.12.036_bb0025
  article-title: Recursive Bayesian filtering framework for lithium-ion cell state estimation
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.12.012
– volume: 116
  start-page: 154
  issue: 1
  year: 2016
  ident: 10.1016/j.microrel.2017.12.036_bb0070
  article-title: A simplified multi-particle model for lithium ion batteries via a predictor-corrector strategy and quasi-linearization
  publication-title: Energy
  doi: 10.1016/j.energy.2016.09.099
– volume: 62
  start-page: 167
  year: 2016
  ident: 10.1016/j.microrel.2017.12.036_bb0145
  article-title: Fault prognostic of electronics based on optimal multi-order particle filter
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2016.03.030
– volume: 75
  start-page: 288
  year: 2017
  ident: 10.1016/j.microrel.2017.12.036_bb0155
  article-title: Remaining useful life prediction of lithium-ion battery using an improved UPF method based on MCMC
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2017.02.012
– volume: 239
  start-page: 253
  issue: 10
  year: 2013
  ident: 10.1016/j.microrel.2017.12.036_bb0085
  article-title: Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.03.129
– volume: 144
  start-page: 74
  year: 2015
  ident: 10.1016/j.microrel.2017.12.036_bb0095
  article-title: An integrated unscented kalman filter and relevance vector regression approach for lithium-ion battery remaining useful life and short-term capacity prediction
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2015.07.013
– volume: 196
  start-page: 10314
  issue: 23
  year: 2011
  ident: 10.1016/j.microrel.2017.12.036_bb0175
  article-title: Prognostics of lithium-ion batteries based on Dempster–Shafer theory and the Bayesian Monte Carlo method
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.08.040
– volume: 70
  start-page: 59
  year: 2017
  ident: 10.1016/j.microrel.2017.12.036_bb0150
  article-title: Interacting multiple model particle filter for prognostics of lithium-ion batteries
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2017.02.003
– start-page: 33
  year: 2017
  ident: 10.1016/j.microrel.2017.12.036_bb0050
  article-title: Remaining useful life estimation of lithium-ion batteries based on the internal resistance growth model
– volume: 126
  start-page: 182
  year: 2014
  ident: 10.1016/j.microrel.2017.12.036_bb0115
  article-title: Method for estimating capacity and predicting remaining useful life of lithium-ion battery
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.03.086
– volume: 11
  start-page: 33
  issue: 4
  year: 2008
  ident: 10.1016/j.microrel.2017.12.036_bb0015
  article-title: Prognostics in battery health management
  publication-title: IEEE Instrum. Meas. Mag.
  doi: 10.1109/MIM.2008.4579269
– year: 2009
  ident: 10.1016/j.microrel.2017.12.036_bb0010
– volume: 64
  start-page: 2276
  issue: 3
  year: 2016
  ident: 10.1016/j.microrel.2017.12.036_bb0100
  article-title: Direct remaining useful life estimation based on support vector regression
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2016.2623260
SSID ssj0007011
Score 2.5774512
Snippet Lithium-ion rechargeable batteries are widely used as power sources for mobile phones, laptops and electric cars, and gradually extended to military...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 288
SubjectTerms Linear optimizing combination resampling
Lithium-ion battery
Particle filter
Remaining useful life prediction
Unscented Kalman filter
Title An improved unscented particle filter approach for lithium-ion battery remaining useful life prediction
URI https://dx.doi.org/10.1016/j.microrel.2017.12.036
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqssCAeIryqDywuo0TJ3bGqqIqIDpRqZuVuDakakMVmoGF387ZSaBISB1YoiTyScl3F985d_4OodvApIliniI8ngeE-TwmsTYJHBKeWHr22GXPnybReMoeZuGshYbNXhhbVlnP_dWc7mbr-k6_RrO_zjK7x9ePfE4ZBSONKh5Txri18t7nT5kH92jVNc-PiB29tUt40VvZordC2xQE5e63oKNq_sNBbTmd0RE6rKNFPKge6Bi1dH6CDrY4BE_RyyDHmfszoOe4zB05E5yt65fAJrP5cNxwh2MIUjGE3q9ZuSKgE5w6gs0PXOhV1SwCl-_alEsYZDReFzaRY5V3hqaju-fhmNTdE4gKQrohKQDDlQcq0BTWREIxrUwo4COmaRBoDkqKjAYgPMHm3PAw4SpOqRCGcY_DkHPUzt9yfYEwNxp8aRpRE4Mzg5Au8oTxtIGlXSyUYh0UNpBJVVOL2w4XS9nUkC1kA7W0UEvqS4C6g_rfcuuKXGOnRNxoRP4yEwkeYIfs5T9kr9A-XImqXPsatTdFqW8gGtmkXWduXbQ3uH8cT74ARjHiDg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwELaqMgAD4inK0wOMaePEiZOBoQKqlkcnkLqZ2LUhVRuqthHqwp_iD3LOA4qE1AGxRFGSk5zPp7uz7_wdQmeuFpGktrRY2Hct6rDQCpWO4BKxyNCzh1n2_L7rtx_pTc_rVdBHeRbGlFUWtj-36Zm1Lp40CjQb4zg2Z3wd32GEElBScNtlZeWtmr_Bum160bmCST53nNb1w2XbKloLWNL1yMwSIMWkDeNTBBYMgaRKai8ADSfCdRWDP_C1AnW1A9pnmnkRk6EgQaAps5kwu6Bg91comAvTNqH-_l1XwmySt-lzfMsMb-FY8qA-MlV2E2VyHoRl-5AZN_QvHnHBy7U20UYRnuJmjsAWqqhkG60vkBbuoOdmguNsK0L1cZpkbFBwNy5Qwzo2CXhckpVjiIoxxPovcTqyQAmwyBg953iiRnl3CpxOlU6H8JFWeDwxmSOjLbvo8V8w3UPV5DVR-wgzrcB5C5_oELwnxJC-HWhbaVhLhoGUtIa8EjIuCy5z01JjyMuitQEvoeYGak4cDlDXUONLbpyzeSyVCMsZ4T_0koPLWSJ78AfZU7Tafri_43ed7u0hWoM3QV4rfoSqs0mqjiEUmomTTPUwevpvXf8E8eUcvQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+unscented+particle+filter+approach+for+lithium-ion+battery+remaining+useful+life+prediction&rft.jtitle=Microelectronics+and+reliability&rft.au=Zhang%2C+Heng&rft.au=Miao%2C+Qiang&rft.au=Zhang%2C+Xin&rft.au=Liu%2C+Zhiwen&rft.date=2018-02-01&rft.pub=Elsevier+Ltd&rft.issn=0026-2714&rft.eissn=1872-941X&rft.volume=81&rft.spage=288&rft.epage=298&rft_id=info:doi/10.1016%2Fj.microrel.2017.12.036&rft.externalDocID=S0026271417306005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-2714&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-2714&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-2714&client=summon