An improved unscented particle filter approach for lithium-ion battery remaining useful life prediction
Lithium-ion rechargeable batteries are widely used as power sources for mobile phones, laptops and electric cars, and gradually extended to military communication, navigation, aviation, aerospace and other fields. Accurate remaining useful life (RUL) prediction of lithium-ion battery plays an import...
Saved in:
Published in | Microelectronics and reliability Vol. 81; pp. 288 - 298 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium-ion rechargeable batteries are widely used as power sources for mobile phones, laptops and electric cars, and gradually extended to military communication, navigation, aviation, aerospace and other fields. Accurate remaining useful life (RUL) prediction of lithium-ion battery plays an important role in avoiding serious security and economic consequences caused by failure to supply required power levels. Thus, the RUL prediction for lithium-ion battery has become a critical task in engineering practices. With its superiority in handling nonlinear and non-Gaussian system behaviors, the particle filtering (PF) technique is widely used in the remaining life prediction. However, the choice of importance function and the degradation of diversity in sampling particles limit the estimation accuracy. This paper presents an improved PF algorithm, that is, the unscented particle filter (UPF) based on linear optimizing combination resampling (U-LOCR-PF) to improve the prediction accuracy. In one aspect, the unscented Kalman filter (UKF) is used to generate a proposal distribution as an importance function for particle filtering. In the other aspect, the linear optimizing combination resampling (LOCR) algorithm is used to overcome the particle diversity deficiency. It should be noted that the step coefficient K can affect the performance of LOCR algorithm, and the fuzzy inference system is applied to determine the value of step coefficient K. According to the analysis results, it can be seen that the proposed prognostic method shows higher accuracy in the RUL prediction of lithium-ion battery, compared with the existing PF-based and UPF-based prognostic methods.
•An improved UPF method, namely, the U-LOCR-PF, is proposed to realize battery RUL prediction.•Linear optimizing combination resampling technique is used to overcome the particle diversity deficiency problem in UPF.•Comparison study shows the proposed U-LOCR-PF method has higher accuracy in battery RUL prediction. |
---|---|
AbstractList | Lithium-ion rechargeable batteries are widely used as power sources for mobile phones, laptops and electric cars, and gradually extended to military communication, navigation, aviation, aerospace and other fields. Accurate remaining useful life (RUL) prediction of lithium-ion battery plays an important role in avoiding serious security and economic consequences caused by failure to supply required power levels. Thus, the RUL prediction for lithium-ion battery has become a critical task in engineering practices. With its superiority in handling nonlinear and non-Gaussian system behaviors, the particle filtering (PF) technique is widely used in the remaining life prediction. However, the choice of importance function and the degradation of diversity in sampling particles limit the estimation accuracy. This paper presents an improved PF algorithm, that is, the unscented particle filter (UPF) based on linear optimizing combination resampling (U-LOCR-PF) to improve the prediction accuracy. In one aspect, the unscented Kalman filter (UKF) is used to generate a proposal distribution as an importance function for particle filtering. In the other aspect, the linear optimizing combination resampling (LOCR) algorithm is used to overcome the particle diversity deficiency. It should be noted that the step coefficient K can affect the performance of LOCR algorithm, and the fuzzy inference system is applied to determine the value of step coefficient K. According to the analysis results, it can be seen that the proposed prognostic method shows higher accuracy in the RUL prediction of lithium-ion battery, compared with the existing PF-based and UPF-based prognostic methods.
•An improved UPF method, namely, the U-LOCR-PF, is proposed to realize battery RUL prediction.•Linear optimizing combination resampling technique is used to overcome the particle diversity deficiency problem in UPF.•Comparison study shows the proposed U-LOCR-PF method has higher accuracy in battery RUL prediction. |
Author | Zhang, Xin Miao, Qiang Liu, Zhiwen Zhang, Heng |
Author_xml | – sequence: 1 givenname: Heng surname: Zhang fullname: Zhang, Heng – sequence: 2 givenname: Qiang orcidid: 0000-0002-8879-7266 surname: Miao fullname: Miao, Qiang email: mqiang@scu.edu.cn – sequence: 3 givenname: Xin surname: Zhang fullname: Zhang, Xin – sequence: 4 givenname: Zhiwen surname: Liu fullname: Liu, Zhiwen |
BookMark | eNqFkM1qwzAQhEVJoUnaVyh6Abta27Ec6KEh9A8CvbTQm5DlVaJgy0aSA3n7KqS99JLTLuzMsPPNyMT2Fgm5B5YCg_Jhn3ZGud5hm2YMeApZyvLyikyh4lmyLOB7QqaMZWWScShuyMz7PWOMM4Ap2a4sNd3g-gM2dLReoQ1xG6QLRrVItWkDOiqHKJFqR3XvaGvCzoxdYnpLaxni_UgddtJYY7d09KjHNoo00sFhY1SIwltyrWXr8e53zsnXy_Pn-i3ZfLy-r1ebROULCEldAOeKLZscAcqiUgUqvahYDlDnOXJdy1JjrM2qouGaLyRXyxqqShec8SiZk_KcG4l471CLwZlOuqMAJk64xF784RInXAIyEXFF4-M_ozJBnl4PTpr2sv3pbMdY7mDQCa8MWhX7O1RBNL25FPED1ZqQGQ |
CitedBy_id | crossref_primary_10_1016_j_probengmech_2023_103531 crossref_primary_10_1016_j_apenergy_2021_116897 crossref_primary_10_1002_ente_202300232 crossref_primary_10_1016_j_est_2019_100837 crossref_primary_10_1016_j_energy_2023_129067 crossref_primary_10_1016_j_microrel_2022_114625 crossref_primary_10_1049_tje2_12182 crossref_primary_10_1109_TPEL_2020_3033297 crossref_primary_10_3390_en14165000 crossref_primary_10_1177_09576509231153907 crossref_primary_10_1109_ACCESS_2019_2914236 crossref_primary_10_1016_j_jpowsour_2023_233842 crossref_primary_10_1109_ACCESS_2019_2936822 crossref_primary_10_1109_ACCESS_2019_2907131 crossref_primary_10_1002_er_8321 crossref_primary_10_1016_j_jpowsour_2018_08_064 crossref_primary_10_1016_j_jpowsour_2022_231026 crossref_primary_10_1016_j_measurement_2021_109544 crossref_primary_10_1039_D2SE01209J crossref_primary_10_1016_j_energy_2023_127675 crossref_primary_10_1109_ACCESS_2023_3318121 crossref_primary_10_1016_j_egyr_2022_09_043 crossref_primary_10_1109_TIM_2020_3006776 crossref_primary_10_1016_j_est_2020_102118 crossref_primary_10_1049_iet_cds_2019_0092 crossref_primary_10_1049_stg2_12013 crossref_primary_10_1109_ACCESS_2021_3111927 crossref_primary_10_1007_s40430_023_04202_0 crossref_primary_10_1016_j_egyr_2020_07_026 crossref_primary_10_1109_ACCESS_2020_2987426 crossref_primary_10_1155_2023_8569161 crossref_primary_10_1016_j_measurement_2019_07_064 crossref_primary_10_1007_s42979_021_00905_0 crossref_primary_10_1016_j_ress_2022_108947 crossref_primary_10_1109_ACCESS_2021_3136131 crossref_primary_10_1109_TR_2019_2930195 crossref_primary_10_1016_j_est_2023_108160 crossref_primary_10_1016_j_est_2023_108044 crossref_primary_10_1155_2021_9590969 crossref_primary_10_1002_er_8671 crossref_primary_10_1177_1748006X221080345 crossref_primary_10_3390_en13092380 crossref_primary_10_1016_j_apenergy_2022_119011 crossref_primary_10_1016_j_est_2021_103158 crossref_primary_10_1016_j_est_2022_104701 crossref_primary_10_1063_5_0221822 crossref_primary_10_1109_ACCESS_2019_2947843 crossref_primary_10_1016_j_cie_2018_09_015 crossref_primary_10_1016_j_jpowsour_2020_227700 crossref_primary_10_1016_j_est_2022_104750 crossref_primary_10_1109_ACCESS_2022_3200478 crossref_primary_10_1016_j_rser_2019_109254 crossref_primary_10_3390_batteries9060323 crossref_primary_10_3390_computers12110219 crossref_primary_10_1007_s00202_022_01728_9 crossref_primary_10_1115_1_4042987 crossref_primary_10_1016_j_ijhydene_2018_11_100 crossref_primary_10_1109_ACCESS_2019_2913163 crossref_primary_10_1016_j_conengprac_2024_105852 crossref_primary_10_1016_j_measurement_2021_109057 crossref_primary_10_1016_j_ijepes_2019_02_046 crossref_primary_10_1016_j_rser_2020_110015 crossref_primary_10_1016_j_measurement_2020_108679 crossref_primary_10_1016_j_energy_2022_123890 crossref_primary_10_1002_ese3_1823 crossref_primary_10_1016_j_energy_2022_125278 crossref_primary_10_1016_j_energy_2023_128984 crossref_primary_10_1109_TIA_2021_3112392 crossref_primary_10_1016_j_rser_2019_109405 crossref_primary_10_1016_j_est_2022_105731 crossref_primary_10_1109_ACCESS_2019_2901744 crossref_primary_10_1016_j_microrel_2023_114914 crossref_primary_10_1016_j_energy_2022_123829 crossref_primary_10_46670_JSST_2023_32_6_462 crossref_primary_10_3390_s22103803 crossref_primary_10_3390_electronics12122647 crossref_primary_10_1016_j_measurement_2022_110836 crossref_primary_10_1177_1687814020911475 crossref_primary_10_1016_j_measurement_2021_110269 crossref_primary_10_1109_TNNLS_2023_3311443 crossref_primary_10_1049_cje_2020_10_012 crossref_primary_10_1016_j_measurement_2020_107517 crossref_primary_10_1108_IJICC_09_2020_0131 crossref_primary_10_1016_j_microrel_2020_113682 crossref_primary_10_1016_j_ress_2023_109352 crossref_primary_10_1115_1_4052093 crossref_primary_10_1016_j_microrel_2020_113857 crossref_primary_10_1016_j_est_2022_106193 crossref_primary_10_1007_s40430_023_04176_z crossref_primary_10_1109_TTE_2022_3209629 crossref_primary_10_1109_TII_2020_3017194 crossref_primary_10_20964_2019_10_15 crossref_primary_10_3390_en12142784 crossref_primary_10_1016_j_energy_2021_122581 crossref_primary_10_20964_2020_10_41 crossref_primary_10_1016_j_seta_2022_102915 crossref_primary_10_1109_ACCESS_2020_2977429 crossref_primary_10_1109_TVT_2020_2993949 crossref_primary_10_3390_pr11082333 crossref_primary_10_1016_j_est_2020_101741 crossref_primary_10_1016_j_apenergy_2019_113841 crossref_primary_10_1109_TIE_2021_3060675 crossref_primary_10_11648_j_ijecec_20241001_11 crossref_primary_10_17531_ein_2019_3_17 crossref_primary_10_1016_j_jpowsour_2020_228581 crossref_primary_10_1038_s41598_022_17455_x crossref_primary_10_1109_ACCESS_2019_2917891 crossref_primary_10_1016_j_est_2024_113458 crossref_primary_10_1002_ese3_1338 crossref_primary_10_1007_s00170_021_08351_1 crossref_primary_10_1016_j_rser_2024_114915 crossref_primary_10_3390_s20236842 crossref_primary_10_1109_TIM_2023_3291798 crossref_primary_10_1016_j_ress_2021_108082 crossref_primary_10_1007_s12598_022_02156_1 crossref_primary_10_1109_JESTPE_2021_3098378 crossref_primary_10_1109_ACCESS_2020_2978245 crossref_primary_10_1016_j_est_2022_106457 crossref_primary_10_1016_j_est_2022_104399 crossref_primary_10_1109_TR_2023_3295943 crossref_primary_10_1109_TTE_2024_3427334 crossref_primary_10_3390_pr9122174 crossref_primary_10_1109_TIE_2021_3075873 crossref_primary_10_1016_j_ymssp_2020_106961 crossref_primary_10_1109_ACCESS_2019_2947294 crossref_primary_10_1186_s10033_021_00668_y crossref_primary_10_3390_en17071695 crossref_primary_10_1007_s40435_020_00688_x crossref_primary_10_3390_machines10070512 crossref_primary_10_3389_fmech_2021_719718 crossref_primary_10_1016_j_jclepro_2021_128265 crossref_primary_10_1109_TR_2020_3010937 crossref_primary_10_1039_D2TA07148G crossref_primary_10_20964_2019_08_44 crossref_primary_10_1016_j_energy_2020_119682 crossref_primary_10_20964_2020_10_21 crossref_primary_10_1061_AJRUA6_0001186 crossref_primary_10_1002_er_5750 crossref_primary_10_1016_j_energy_2021_121712 crossref_primary_10_1109_ACCESS_2019_2925468 crossref_primary_10_1109_TIA_2022_3210081 crossref_primary_10_1177_0959651818806419 crossref_primary_10_1016_j_est_2019_03_022 crossref_primary_10_1016_j_jclepro_2021_125814 crossref_primary_10_1109_TPEL_2019_2952620 crossref_primary_10_1109_JSEN_2019_2957413 crossref_primary_10_1109_TTE_2024_3365275 crossref_primary_10_3390_batteries7020035 crossref_primary_10_1016_j_measurement_2022_111046 crossref_primary_10_3390_wevj15050177 crossref_primary_10_1109_TIE_2021_3109527 crossref_primary_10_1016_j_eswa_2021_116075 crossref_primary_10_3390_en11061420 crossref_primary_10_1007_s12206_022_1132_4 crossref_primary_10_1109_TR_2019_2896230 crossref_primary_10_1016_j_ymssp_2022_109347 crossref_primary_10_1109_JSEN_2020_2979797 crossref_primary_10_1016_j_ijhydene_2019_03_101 crossref_primary_10_1109_ACCESS_2021_3089032 crossref_primary_10_1016_j_microrel_2021_114071 crossref_primary_10_1016_j_ymssp_2022_109747 crossref_primary_10_1016_j_ress_2023_109315 crossref_primary_10_3390_en12091685 crossref_primary_10_1115_1_4053141 crossref_primary_10_1016_j_asoc_2020_106474 crossref_primary_10_1016_j_est_2023_108547 |
Cites_doi | 10.1109/TIE.2015.2393840 10.1016/j.microrel.2012.12.004 10.1016/S0378-7753(01)00887-4 10.1016/j.jpowsour.2017.01.105 10.1109/TIM.2016.2534258 10.1016/j.compchemeng.2016.08.018 10.1016/j.apenergy.2011.08.002 10.1109/TIM.2014.2303534 10.1016/S0378-7753(01)00560-2 10.1016/j.engfailanal.2016.04.014 10.1109/TR.2015.2451074 10.1177/1687814015622327 10.1016/j.jpowsour.2014.07.176 10.1109/TIM.2016.2622838 10.1016/j.jpowsour.2015.12.012 10.1016/j.energy.2016.09.099 10.1016/j.microrel.2016.03.030 10.1016/j.microrel.2017.02.012 10.1016/j.jpowsour.2013.03.129 10.1016/j.ress.2015.07.013 10.1016/j.jpowsour.2011.08.040 10.1016/j.microrel.2017.02.003 10.1016/j.apenergy.2014.03.086 10.1109/MIM.2008.4579269 10.1109/TIE.2016.2623260 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd |
Copyright_xml | – notice: 2017 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.microrel.2017.12.036 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-941X |
EndPage | 298 |
ExternalDocumentID | 10_1016_j_microrel_2017_12_036 S0026271417306005 |
GroupedDBID | --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 29M 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ RXW SDF SDG SES SET SEW SPC SPCBC SPD SSM SST SSV SSZ T5K T9H TAE UHS UNMZH WUQ XOL ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c351t-b4177c09d3e11648c4ecf580311b33e7fba6fe101084d7f75a7c9b188f4707b33 |
IEDL.DBID | .~1 |
ISSN | 0026-2714 |
IngestDate | Tue Jul 01 01:27:27 EDT 2025 Thu Apr 24 22:52:58 EDT 2025 Fri Feb 23 02:18:36 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Linear optimizing combination resampling Remaining useful life prediction Lithium-ion battery Unscented Kalman filter Particle filter |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-b4177c09d3e11648c4ecf580311b33e7fba6fe101084d7f75a7c9b188f4707b33 |
ORCID | 0000-0002-8879-7266 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1016_j_microrel_2017_12_036 crossref_citationtrail_10_1016_j_microrel_2017_12_036 elsevier_sciencedirect_doi_10_1016_j_microrel_2017_12_036 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-01 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Microelectronics and reliability |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Chen, Peng, Li (bb0035) 2015; 29 Hu, Youn, Chung (bb0090) 2012; 92 He, Williard, Osterman (bb0175) 2011; 196 Tagade, Hariharan, Gambhire (bb0025) 2016; 306 Piller, Perrin, Jossen (bb0045) 2001; 96 Jiang, Wang, Wu (bb0145) 2016; 62 Miao, Xie, Cui (bb0110) 2013; 53 Liu, Zhou, Guo (bb0020) 2015; 36 Gebel (bb0040) 2016 Saha, Goebel (bb0165) 2007 Liu, Sun, Bu (bb0140) 2017; 66 Zhang, Miao, Liu (bb0155) 2017; 75 Zou, Jing, Hong-Tao (bb0160) 2006; 40 Chao, Lai, Ge (bb0060) 2016; 120 Li, Miao, Ye (bb0105) 2015; 7 Sbarufatti, Corbetta, Giglio (bb0125) 2017; 344 Guha, Patra, Vaisakh (bb0050) 2017 Nishi (bb0005) 2001; 100 Saha, Goebel (bb0010) 2009 Jha, Bressel, Ould-Bouamama (bb0055) 2016; 95 Wang, Miao, Pecht (bb0085) 2013; 239 Zheng, Fang (bb0095) 2015; 144 Wang, Yang, Tsui (bb0135) 2016; 65 Si (bb0075) 2015; 62 Hu, Jain, Tamirisa (bb0115) 2014; 126 Yu, Liu (bb0030) 2014; 35 Dong, Jin, Lou (bb0130) 2014; 271 Khelif, Chebel-Morello, Malinowski (bb0100) 2016; 64 Su, Wang, Pecht (bb0150) 2017; 70 Li, Wang, Ismail (bb0120) 2014; 63 Saha, Kai, Christophersen (bb0170) 2010; 31 Feng, Kvam, Tang (bb0080) 2016; 70 Goebel, Saha, Saxena (bb0015) 2008; 11 Xu, Li, Chen (bb0065) 2016; 65 Li, Fan, Rizzoni (bb0070) 2016; 116 Li (10.1016/j.microrel.2017.12.036_bb0120) 2014; 63 Zhang (10.1016/j.microrel.2017.12.036_bb0155) 2017; 75 Nishi (10.1016/j.microrel.2017.12.036_bb0005) 2001; 100 Chen (10.1016/j.microrel.2017.12.036_bb0035) 2015; 29 Liu (10.1016/j.microrel.2017.12.036_bb0140) 2017; 66 Li (10.1016/j.microrel.2017.12.036_bb0070) 2016; 116 Hu (10.1016/j.microrel.2017.12.036_bb0115) 2014; 126 Su (10.1016/j.microrel.2017.12.036_bb0150) 2017; 70 Xu (10.1016/j.microrel.2017.12.036_bb0065) 2016; 65 Miao (10.1016/j.microrel.2017.12.036_bb0110) 2013; 53 Feng (10.1016/j.microrel.2017.12.036_bb0080) 2016; 70 Wang (10.1016/j.microrel.2017.12.036_bb0085) 2013; 239 Dong (10.1016/j.microrel.2017.12.036_bb0130) 2014; 271 Chao (10.1016/j.microrel.2017.12.036_bb0060) 2016; 120 Guha (10.1016/j.microrel.2017.12.036_bb0050) 2017 Zou (10.1016/j.microrel.2017.12.036_bb0160) 2006; 40 Hu (10.1016/j.microrel.2017.12.036_bb0090) 2012; 92 Gebel (10.1016/j.microrel.2017.12.036_bb0040) 2016 Sbarufatti (10.1016/j.microrel.2017.12.036_bb0125) 2017; 344 Goebel (10.1016/j.microrel.2017.12.036_bb0015) 2008; 11 Saha (10.1016/j.microrel.2017.12.036_bb0165) 2007 Si (10.1016/j.microrel.2017.12.036_bb0075) 2015; 62 Zheng (10.1016/j.microrel.2017.12.036_bb0095) 2015; 144 Liu (10.1016/j.microrel.2017.12.036_bb0020) 2015; 36 Saha (10.1016/j.microrel.2017.12.036_bb0170) 2010; 31 Tagade (10.1016/j.microrel.2017.12.036_bb0025) 2016; 306 Yu (10.1016/j.microrel.2017.12.036_bb0030) 2014; 35 Wang (10.1016/j.microrel.2017.12.036_bb0135) 2016; 65 Jha (10.1016/j.microrel.2017.12.036_bb0055) 2016; 95 Jiang (10.1016/j.microrel.2017.12.036_bb0145) 2016; 62 Khelif (10.1016/j.microrel.2017.12.036_bb0100) 2016; 64 Saha (10.1016/j.microrel.2017.12.036_bb0010) 2009 Piller (10.1016/j.microrel.2017.12.036_bb0045) 2001; 96 He (10.1016/j.microrel.2017.12.036_bb0175) 2011; 196 Li (10.1016/j.microrel.2017.12.036_bb0105) 2015; 7 |
References_xml | – volume: 29 start-page: 1536 year: 2015 end-page: 1543 ident: bb0035 article-title: Data-driven PHM software system for airborne equipment publication-title: J. Electron. Measur. Instrum. – volume: 75 start-page: 288 year: 2017 end-page: 295 ident: bb0155 article-title: Remaining useful life prediction of lithium-ion battery using an improved UPF method based on MCMC publication-title: Microelectron. Reliab. – volume: 62 start-page: 5082 year: 2015 end-page: 5096 ident: bb0075 article-title: An adaptive prognostic approach via nonlinear degradation modeling: application to battery data publication-title: IEEE Trans. Ind. Electron. – volume: 92 start-page: 694 year: 2012 end-page: 704 ident: bb0090 article-title: A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation publication-title: Appl. Energy – volume: 66 start-page: 280 year: 2017 end-page: 293 ident: bb0140 article-title: Particle learning framework for estimating the remaining useful life of lithium-ion batteries publication-title: IEEE Trans. Instrum. Meas. – volume: 53 start-page: 805 year: 2013 end-page: 810 ident: bb0110 article-title: Remaining useful life prediction of lithium-ion battery with unscented particle filter technique publication-title: Microelectron. Reliab. – volume: 31 start-page: 293 year: 2010 end-page: 308 ident: bb0170 article-title: Comparison of prognostic algorithms for estimating remaining useful life of batteries publication-title: Trans. Inst. Meas. Control. – volume: 11 start-page: 33 year: 2008 end-page: 40 ident: bb0015 article-title: Prognostics in battery health management publication-title: IEEE Instrum. Meas. Mag. – start-page: 33 year: 2017 end-page: 38 ident: bb0050 article-title: Remaining useful life estimation of lithium-ion batteries based on the internal resistance growth model publication-title: 2017 Indian Control Conference – volume: 63 start-page: 2034 year: 2014 end-page: 2043 ident: bb0120 article-title: A mutated particle filter technique for system state estimation and battery life prediction publication-title: IEEE Trans. Instrum. Meas. – volume: 65 start-page: 310 year: 2016 end-page: 325 ident: bb0065 article-title: Hierarchical model for lithium-ion battery degradation prediction publication-title: IEEE Trans. Reliab. – volume: 344 start-page: 128 year: 2017 end-page: 140 ident: bb0125 article-title: Adaptive prognosis of lithium-ion batteries based on the combination of particle filters and radial basis function neural networks publication-title: J. Power Sources – volume: 7 start-page: 1 year: 2015 end-page: 8 ident: bb0105 article-title: Lithium-ion battery remaining useful life prediction based on grey support vector machines publication-title: Adv. Mech. Eng. – volume: 126 start-page: 182 year: 2014 end-page: 189 ident: bb0115 article-title: Method for estimating capacity and predicting remaining useful life of lithium-ion battery publication-title: Appl. Energy – volume: 271 start-page: 114 year: 2014 end-page: 123 ident: bb0130 article-title: Lithium-ion battery state of health monitoring and remaining useful life prediction based on support vector regression-particle filter publication-title: J. Power Sources – volume: 40 start-page: 1135 year: 2006 end-page: 1139 ident: bb0160 article-title: Particle filter algorithm based on optimizing combination resampling publication-title: J. Shanghai Jiaotong Univ. – year: 2007 ident: bb0165 article-title: Battery Data Set. NASA Ames Prognostics Data Repository – volume: 116 start-page: 154 year: 2016 end-page: 169 ident: bb0070 article-title: A simplified multi-particle model for lithium ion batteries via a predictor-corrector strategy and quasi-linearization publication-title: Energy – volume: 70 start-page: 323 year: 2016 end-page: 342 ident: bb0080 article-title: Remaining useful lifetime prediction based on the damage-marker bivariate degradation model: a case study on lithium-ion batteries used in electric vehicles publication-title: Eng. Fail. Anal. – volume: 144 start-page: 74 year: 2015 end-page: 82 ident: bb0095 article-title: An integrated unscented kalman filter and relevance vector regression approach for lithium-ion battery remaining useful life and short-term capacity prediction publication-title: Reliab. Eng. Syst. Saf. – volume: 62 start-page: 167 year: 2016 end-page: 177 ident: bb0145 article-title: Fault prognostic of electronics based on optimal multi-order particle filter publication-title: Microelectron. Reliab. – volume: 36 start-page: 1 year: 2015 end-page: 16 ident: bb0020 article-title: Survey on lithium-ion battery health assessment and cycle life estimation publication-title: Chin. J. Sci. Instrum. – volume: 95 start-page: 216 year: 2016 end-page: 230 ident: bb0055 article-title: Particle filter based hybrid prognostics of proton exchange membrane fuel cell in bond graph framework publication-title: Comput. Chem. Eng. – volume: 239 start-page: 253 year: 2013 end-page: 264 ident: bb0085 article-title: Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model publication-title: J. Power Sources – start-page: 1 year: 2016 end-page: 6 ident: bb0040 article-title: An approach to determine the state of charge of a lithium iron phosphate cell using classification methods based on frequency domain data publication-title: IET International Conference on Power Electronics, Machines and Drives – volume: 120 start-page: 975 year: 2016 end-page: 984 ident: bb0060 article-title: A lead-acid battery's remaining useful life prediction by using electrochemical model in the particle filtering framework publication-title: Energy – volume: 100 start-page: 101 year: 2001 end-page: 106 ident: bb0005 article-title: Lithium ion secondary batteries; past 10 publication-title: J. Power Sources – volume: 306 start-page: 274 year: 2016 end-page: 288 ident: bb0025 article-title: Recursive Bayesian filtering framework for lithium-ion cell state estimation publication-title: J. Power Sources – volume: 65 start-page: 1282 year: 2016 end-page: 1291 ident: bb0135 article-title: Remaining useful life prediction of lithium-ion batteries based on spherical cubature particle filter publication-title: IEEE Trans. Instrum. Meas. – volume: 196 start-page: 10314 year: 2011 end-page: 10321 ident: bb0175 article-title: Prognostics of lithium-ion batteries based on Dempster–Shafer theory and the Bayesian Monte Carlo method publication-title: J. Power Sources – volume: 64 start-page: 2276 year: 2016 end-page: 2285 ident: bb0100 article-title: Direct remaining useful life estimation based on support vector regression publication-title: IEEE Trans. Ind. Electron. – volume: 96 start-page: 113 year: 2001 end-page: 120 ident: bb0045 article-title: Methods for state-of-charge determination and their applications publication-title: J. Power Sources – volume: 35 start-page: 481 year: 2014 end-page: 495 ident: bb0030 article-title: Data-driven prognostics and health management: a review of recent advances publication-title: Chin. J. Sci. Instrum. – year: 2009 ident: bb0010 article-title: Modeling Li-ion battery capacity depletion in a particle filtering framework – volume: 70 start-page: 59 year: 2017 end-page: 69 ident: bb0150 article-title: Interacting multiple model particle filter for prognostics of lithium-ion batteries publication-title: Microelectron. Reliab. – volume: 35 start-page: 481 issue: 3 year: 2014 ident: 10.1016/j.microrel.2017.12.036_bb0030 article-title: Data-driven prognostics and health management: a review of recent advances publication-title: Chin. J. Sci. Instrum. – volume: 62 start-page: 5082 issue: 8 year: 2015 ident: 10.1016/j.microrel.2017.12.036_bb0075 article-title: An adaptive prognostic approach via nonlinear degradation modeling: application to battery data publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2015.2393840 – volume: 36 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.microrel.2017.12.036_bb0020 article-title: Survey on lithium-ion battery health assessment and cycle life estimation publication-title: Chin. J. Sci. Instrum. – volume: 53 start-page: 805 issue: 6 year: 2013 ident: 10.1016/j.microrel.2017.12.036_bb0110 article-title: Remaining useful life prediction of lithium-ion battery with unscented particle filter technique publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2012.12.004 – volume: 100 start-page: 101 issue: 1–2 year: 2001 ident: 10.1016/j.microrel.2017.12.036_bb0005 article-title: Lithium ion secondary batteries; past 10years and the future publication-title: J. Power Sources doi: 10.1016/S0378-7753(01)00887-4 – start-page: 1 year: 2016 ident: 10.1016/j.microrel.2017.12.036_bb0040 article-title: An approach to determine the state of charge of a lithium iron phosphate cell using classification methods based on frequency domain data – year: 2007 ident: 10.1016/j.microrel.2017.12.036_bb0165 – volume: 344 start-page: 128 year: 2017 ident: 10.1016/j.microrel.2017.12.036_bb0125 article-title: Adaptive prognosis of lithium-ion batteries based on the combination of particle filters and radial basis function neural networks publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.01.105 – volume: 65 start-page: 1282 issue: 6 year: 2016 ident: 10.1016/j.microrel.2017.12.036_bb0135 article-title: Remaining useful life prediction of lithium-ion batteries based on spherical cubature particle filter publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2016.2534258 – volume: 95 start-page: 216 year: 2016 ident: 10.1016/j.microrel.2017.12.036_bb0055 article-title: Particle filter based hybrid prognostics of proton exchange membrane fuel cell in bond graph framework publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2016.08.018 – volume: 120 start-page: 975 year: 2016 ident: 10.1016/j.microrel.2017.12.036_bb0060 article-title: A lead-acid battery's remaining useful life prediction by using electrochemical model in the particle filtering framework publication-title: Energy – volume: 92 start-page: 694 issue: 4 year: 2012 ident: 10.1016/j.microrel.2017.12.036_bb0090 article-title: A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation publication-title: Appl. Energy doi: 10.1016/j.apenergy.2011.08.002 – volume: 63 start-page: 2034 issue: 8 year: 2014 ident: 10.1016/j.microrel.2017.12.036_bb0120 article-title: A mutated particle filter technique for system state estimation and battery life prediction publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2014.2303534 – volume: 31 start-page: 293 issue: 3 year: 2010 ident: 10.1016/j.microrel.2017.12.036_bb0170 article-title: Comparison of prognostic algorithms for estimating remaining useful life of batteries publication-title: Trans. Inst. Meas. Control. – volume: 96 start-page: 113 issue: 1 year: 2001 ident: 10.1016/j.microrel.2017.12.036_bb0045 article-title: Methods for state-of-charge determination and their applications publication-title: J. Power Sources doi: 10.1016/S0378-7753(01)00560-2 – volume: 29 start-page: 1536 issue: 10 year: 2015 ident: 10.1016/j.microrel.2017.12.036_bb0035 article-title: Data-driven PHM software system for airborne equipment publication-title: J. Electron. Measur. Instrum. – volume: 70 start-page: 323 year: 2016 ident: 10.1016/j.microrel.2017.12.036_bb0080 article-title: Remaining useful lifetime prediction based on the damage-marker bivariate degradation model: a case study on lithium-ion batteries used in electric vehicles publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2016.04.014 – volume: 65 start-page: 310 issue: 1 year: 2016 ident: 10.1016/j.microrel.2017.12.036_bb0065 article-title: Hierarchical model for lithium-ion battery degradation prediction publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2015.2451074 – volume: 40 start-page: 1135 issue: 7 year: 2006 ident: 10.1016/j.microrel.2017.12.036_bb0160 article-title: Particle filter algorithm based on optimizing combination resampling publication-title: J. Shanghai Jiaotong Univ. – volume: 7 start-page: 1 issue: 12 year: 2015 ident: 10.1016/j.microrel.2017.12.036_bb0105 article-title: Lithium-ion battery remaining useful life prediction based on grey support vector machines publication-title: Adv. Mech. Eng. doi: 10.1177/1687814015622327 – volume: 271 start-page: 114 year: 2014 ident: 10.1016/j.microrel.2017.12.036_bb0130 article-title: Lithium-ion battery state of health monitoring and remaining useful life prediction based on support vector regression-particle filter publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.07.176 – volume: 66 start-page: 280 issue: 2 year: 2017 ident: 10.1016/j.microrel.2017.12.036_bb0140 article-title: Particle learning framework for estimating the remaining useful life of lithium-ion batteries publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2016.2622838 – volume: 306 start-page: 274 year: 2016 ident: 10.1016/j.microrel.2017.12.036_bb0025 article-title: Recursive Bayesian filtering framework for lithium-ion cell state estimation publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.12.012 – volume: 116 start-page: 154 issue: 1 year: 2016 ident: 10.1016/j.microrel.2017.12.036_bb0070 article-title: A simplified multi-particle model for lithium ion batteries via a predictor-corrector strategy and quasi-linearization publication-title: Energy doi: 10.1016/j.energy.2016.09.099 – volume: 62 start-page: 167 year: 2016 ident: 10.1016/j.microrel.2017.12.036_bb0145 article-title: Fault prognostic of electronics based on optimal multi-order particle filter publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2016.03.030 – volume: 75 start-page: 288 year: 2017 ident: 10.1016/j.microrel.2017.12.036_bb0155 article-title: Remaining useful life prediction of lithium-ion battery using an improved UPF method based on MCMC publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2017.02.012 – volume: 239 start-page: 253 issue: 10 year: 2013 ident: 10.1016/j.microrel.2017.12.036_bb0085 article-title: Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.03.129 – volume: 144 start-page: 74 year: 2015 ident: 10.1016/j.microrel.2017.12.036_bb0095 article-title: An integrated unscented kalman filter and relevance vector regression approach for lithium-ion battery remaining useful life and short-term capacity prediction publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2015.07.013 – volume: 196 start-page: 10314 issue: 23 year: 2011 ident: 10.1016/j.microrel.2017.12.036_bb0175 article-title: Prognostics of lithium-ion batteries based on Dempster–Shafer theory and the Bayesian Monte Carlo method publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2011.08.040 – volume: 70 start-page: 59 year: 2017 ident: 10.1016/j.microrel.2017.12.036_bb0150 article-title: Interacting multiple model particle filter for prognostics of lithium-ion batteries publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2017.02.003 – start-page: 33 year: 2017 ident: 10.1016/j.microrel.2017.12.036_bb0050 article-title: Remaining useful life estimation of lithium-ion batteries based on the internal resistance growth model – volume: 126 start-page: 182 year: 2014 ident: 10.1016/j.microrel.2017.12.036_bb0115 article-title: Method for estimating capacity and predicting remaining useful life of lithium-ion battery publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.03.086 – volume: 11 start-page: 33 issue: 4 year: 2008 ident: 10.1016/j.microrel.2017.12.036_bb0015 article-title: Prognostics in battery health management publication-title: IEEE Instrum. Meas. Mag. doi: 10.1109/MIM.2008.4579269 – year: 2009 ident: 10.1016/j.microrel.2017.12.036_bb0010 – volume: 64 start-page: 2276 issue: 3 year: 2016 ident: 10.1016/j.microrel.2017.12.036_bb0100 article-title: Direct remaining useful life estimation based on support vector regression publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2016.2623260 |
SSID | ssj0007011 |
Score | 2.5774512 |
Snippet | Lithium-ion rechargeable batteries are widely used as power sources for mobile phones, laptops and electric cars, and gradually extended to military... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 288 |
SubjectTerms | Linear optimizing combination resampling Lithium-ion battery Particle filter Remaining useful life prediction Unscented Kalman filter |
Title | An improved unscented particle filter approach for lithium-ion battery remaining useful life prediction |
URI | https://dx.doi.org/10.1016/j.microrel.2017.12.036 |
Volume | 81 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqssCAeIryqDywuo0TJ3bGqqIqIDpRqZuVuDakakMVmoGF387ZSaBISB1YoiTyScl3F985d_4OodvApIliniI8ngeE-TwmsTYJHBKeWHr22GXPnybReMoeZuGshYbNXhhbVlnP_dWc7mbr-k6_RrO_zjK7x9ePfE4ZBSONKh5Txri18t7nT5kH92jVNc-PiB29tUt40VvZordC2xQE5e63oKNq_sNBbTmd0RE6rKNFPKge6Bi1dH6CDrY4BE_RyyDHmfszoOe4zB05E5yt65fAJrP5cNxwh2MIUjGE3q9ZuSKgE5w6gs0PXOhV1SwCl-_alEsYZDReFzaRY5V3hqaju-fhmNTdE4gKQrohKQDDlQcq0BTWREIxrUwo4COmaRBoDkqKjAYgPMHm3PAw4SpOqRCGcY_DkHPUzt9yfYEwNxp8aRpRE4Mzg5Au8oTxtIGlXSyUYh0UNpBJVVOL2w4XS9nUkC1kA7W0UEvqS4C6g_rfcuuKXGOnRNxoRP4yEwkeYIfs5T9kr9A-XImqXPsatTdFqW8gGtmkXWduXbQ3uH8cT74ARjHiDg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwELaqMgAD4inK0wOMaePEiZOBoQKqlkcnkLqZ2LUhVRuqthHqwp_iD3LOA4qE1AGxRFGSk5zPp7uz7_wdQmeuFpGktrRY2Hct6rDQCpWO4BKxyNCzh1n2_L7rtx_pTc_rVdBHeRbGlFUWtj-36Zm1Lp40CjQb4zg2Z3wd32GEElBScNtlZeWtmr_Bum160bmCST53nNb1w2XbKloLWNL1yMwSIMWkDeNTBBYMgaRKai8ADSfCdRWDP_C1AnW1A9pnmnkRk6EgQaAps5kwu6Bg91comAvTNqH-_l1XwmySt-lzfMsMb-FY8qA-MlV2E2VyHoRl-5AZN_QvHnHBy7U20UYRnuJmjsAWqqhkG60vkBbuoOdmguNsK0L1cZpkbFBwNy5Qwzo2CXhckpVjiIoxxPovcTqyQAmwyBg953iiRnl3CpxOlU6H8JFWeDwxmSOjLbvo8V8w3UPV5DVR-wgzrcB5C5_oELwnxJC-HWhbaVhLhoGUtIa8EjIuCy5z01JjyMuitQEvoeYGak4cDlDXUONLbpyzeSyVCMsZ4T_0koPLWSJ78AfZU7Tafri_43ed7u0hWoM3QV4rfoSqs0mqjiEUmomTTPUwevpvXf8E8eUcvQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+unscented+particle+filter+approach+for+lithium-ion+battery+remaining+useful+life+prediction&rft.jtitle=Microelectronics+and+reliability&rft.au=Zhang%2C+Heng&rft.au=Miao%2C+Qiang&rft.au=Zhang%2C+Xin&rft.au=Liu%2C+Zhiwen&rft.date=2018-02-01&rft.pub=Elsevier+Ltd&rft.issn=0026-2714&rft.eissn=1872-941X&rft.volume=81&rft.spage=288&rft.epage=298&rft_id=info:doi/10.1016%2Fj.microrel.2017.12.036&rft.externalDocID=S0026271417306005 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-2714&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-2714&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-2714&client=summon |