Engineering ultrasmall metal nanoclusters for photocatalytic and electrocatalytic applications

In view of many of the fundamental properties of ultrasmall noble metal nanoclusters progressively being uncovered, it has become increasingly clear that this class of materials has enormous potential for photocatalytic and electrocatalytic applications due to their unique electronic and optical pro...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 11; no. 43; pp. 2437 - 2448
Main Authors Chai, Osburg Jin Huang, Liu, Zhihe, Chen, Tiankai, Xie, Jianping
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 21.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In view of many of the fundamental properties of ultrasmall noble metal nanoclusters progressively being uncovered, it has become increasingly clear that this class of materials has enormous potential for photocatalytic and electrocatalytic applications due to their unique electronic and optical properties. In this Minireview, we highlight the key electronic and optical properties of metal nanoclusters which are essential to photocatalysis and electrocatalysis. We further use these properties as the basis for our discussion to map out directions or principles for the rational design of high performance photocatalysts and electrocatalysts, highlighting several successful attempts along this direction. The many fundamental properties of ultrasmall noble metal nanoclusters have made it increasingly clear that they possess enormous potential for photo- and electro-catalytic applications due to their unique electronic and optical properties.
AbstractList In view of many of the fundamental properties of ultrasmall noble metal nanoclusters progressively being uncovered, it has become increasingly clear that this class of materials has enormous potential for photocatalytic and electrocatalytic applications due to their unique electronic and optical properties. In this Minireview, we highlight the key electronic and optical properties of metal nanoclusters which are essential to photocatalysis and electrocatalysis. We further use these properties as the basis for our discussion to map out directions or principles for the rational design of high performance photocatalysts and electrocatalysts, highlighting several successful attempts along this direction.
In view of many of the fundamental properties of ultrasmall noble metal nanoclusters progressively being uncovered, it has become increasingly clear that this class of materials has enormous potential for photocatalytic and electrocatalytic applications due to their unique electronic and optical properties. In this Minireview, we highlight the key electronic and optical properties of metal nanoclusters which are essential to photocatalysis and electrocatalysis. We further use these properties as the basis for our discussion to map out directions or principles for the rational design of high performance photocatalysts and electrocatalysts, highlighting several successful attempts along this direction.In view of many of the fundamental properties of ultrasmall noble metal nanoclusters progressively being uncovered, it has become increasingly clear that this class of materials has enormous potential for photocatalytic and electrocatalytic applications due to their unique electronic and optical properties. In this Minireview, we highlight the key electronic and optical properties of metal nanoclusters which are essential to photocatalysis and electrocatalysis. We further use these properties as the basis for our discussion to map out directions or principles for the rational design of high performance photocatalysts and electrocatalysts, highlighting several successful attempts along this direction.
In view of many of the fundamental properties of ultrasmall noble metal nanoclusters progressively being uncovered, it has become increasingly clear that this class of materials has enormous potential for photocatalytic and electrocatalytic applications due to their unique electronic and optical properties. In this Minireview, we highlight the key electronic and optical properties of metal nanoclusters which are essential to photocatalysis and electrocatalysis. We further use these properties as the basis for our discussion to map out directions or principles for the rational design of high performance photocatalysts and electrocatalysts, highlighting several successful attempts along this direction. The many fundamental properties of ultrasmall noble metal nanoclusters have made it increasingly clear that they possess enormous potential for photo- and electro-catalytic applications due to their unique electronic and optical properties.
Author Xie, Jianping
Chai, Osburg Jin Huang
Chen, Tiankai
Liu, Zhihe
AuthorAffiliation National University of Singapore
Department of Chemical and Biomolecular Engineering
Joint School of National University of Singapore and Tianjin University
International Campus of Tianjin University
AuthorAffiliation_xml – sequence: 0
  name: National University of Singapore
– sequence: 0
  name: Department of Chemical and Biomolecular Engineering
– sequence: 0
  name: International Campus of Tianjin University
– sequence: 0
  name: Joint School of National University of Singapore and Tianjin University
Author_xml – sequence: 1
  givenname: Osburg Jin Huang
  surname: Chai
  fullname: Chai, Osburg Jin Huang
– sequence: 2
  givenname: Zhihe
  surname: Liu
  fullname: Liu, Zhihe
– sequence: 3
  givenname: Tiankai
  surname: Chen
  fullname: Chen, Tiankai
– sequence: 4
  givenname: Jianping
  surname: Xie
  fullname: Xie, Jianping
BookMark eNptkUtLAzEQx4NUsK1evAsLXkRYnSTbzeZYSn1AURC9umTTtKakyZpkD_32xlaqFE_z-s2D_wxQzzqrEDrHcIOB8lvJrQdGGBFHqE-ggJxSRnp7vyxO0CCEFUDJaUn76H1ql9oq5bVdZp2JXoS1MCZbqyhMZoV10nQhKh-yhfNZ--GikyLVNlHLTNh5poyS0f9Ntq3RKdTOhlN0vBAmqLMfO0Rvd9PXyUM-e75_nIxnuaQjHPOGKFkRIKShrBFMNYRyDrQqQND5HJOiYaWsinQ_lg0GwQSBhnFcYmDFgmE6RFe7ua13n50KsV7rIJUxwirXhZpQ4BVwOioSenmArlznbbouUWlVRUlaPUTXO0p6F4JXi7r1ei38psZQf0tdT_jTy1bqcYLhAJY6bgVIemrzf8vFrsUHuR_9-z36BXQpjTg
CitedBy_id crossref_primary_10_1002_ange_202316649
crossref_primary_10_1021_acs_chemmater_3c01247
crossref_primary_10_1039_D4RA00931B
crossref_primary_10_1038_s41598_020_64773_z
crossref_primary_10_1039_D3TA04477G
crossref_primary_10_1038_s41467_024_53377_0
crossref_primary_10_1039_D0NR07832H
crossref_primary_10_1002_smll_202200812
crossref_primary_10_1021_acs_jpclett_3c00509
crossref_primary_10_1039_C9CS00633H
crossref_primary_10_1007_s11426_020_9767_9
crossref_primary_10_1016_j_foodchem_2024_140341
crossref_primary_10_1021_acs_inorgchem_4c05541
crossref_primary_10_1021_acs_jpclett_0c03617
crossref_primary_10_1039_D3NR03537A
crossref_primary_10_1039_D3NR03375A
crossref_primary_10_1016_j_pmatsci_2023_101229
crossref_primary_10_1039_C9NR10451H
crossref_primary_10_1021_acs_jpcc_1c07629
crossref_primary_10_1021_acsanm_1c04484
crossref_primary_10_1039_D4SC08408J
crossref_primary_10_1177_00037028231192124
crossref_primary_10_1039_D2NR00878E
crossref_primary_10_1016_j_ccr_2020_213752
crossref_primary_10_1039_D1NR02440J
crossref_primary_10_1002_ppsc_202300031
crossref_primary_10_1039_D1NR05503H
crossref_primary_10_1021_acsmaterialslett_4c00622
crossref_primary_10_1039_D3NH00235G
crossref_primary_10_1021_acs_inorgchem_0c00592
crossref_primary_10_1039_D0SC00520G
crossref_primary_10_1021_acs_jpcc_0c05867
crossref_primary_10_1038_s41467_023_38914_7
crossref_primary_10_1016_j_ijhydene_2025_03_106
crossref_primary_10_1016_j_nantod_2020_101053
crossref_primary_10_1021_acs_chemrev_1c00503
crossref_primary_10_1002_smll_202101638
crossref_primary_10_1021_acsnano_4c15366
crossref_primary_10_1002_smll_202004381
crossref_primary_10_1016_j_jddst_2024_106594
crossref_primary_10_1016_j_mcat_2023_113764
crossref_primary_10_1039_D1NA00514F
crossref_primary_10_1002_cphc_202200035
crossref_primary_10_1021_acs_inorgchem_2c03634
crossref_primary_10_1016_j_molstruc_2023_134979
crossref_primary_10_1002_ppsc_202100202
crossref_primary_10_1016_j_jma_2024_11_002
crossref_primary_10_1021_acsami_3c17662
crossref_primary_10_1016_j_ijhydene_2023_12_015
crossref_primary_10_1016_j_saa_2023_123738
crossref_primary_10_1002_adsu_202000213
crossref_primary_10_3390_nano13121874
crossref_primary_10_1016_j_jcis_2022_06_015
crossref_primary_10_1002_anie_202316649
crossref_primary_10_1007_s43630_021_00153_4
crossref_primary_10_1021_acsnanoscienceau_1c00024
crossref_primary_10_1016_j_cej_2022_138320
crossref_primary_10_1039_D1CP02761A
crossref_primary_10_1039_D0CC00713G
crossref_primary_10_1039_D3QI00678F
crossref_primary_10_1039_D2CP05591K
crossref_primary_10_1002_adma_202103918
crossref_primary_10_1039_D4CS00962B
Cites_doi 10.1002/anie.200901185
10.1039/b904491d
10.1021/ja505361n
10.1039/c4sc00997e
10.1021/cr00033a004
10.1021/jacs.6b12529
10.1021/acs.accounts.5b00007
10.1038/198883b0
10.1021/acsmaterialslett.9b00136
10.1021/acsami.5b09987
10.1021/nl101225f
10.1039/c2nr30501a
10.1039/C6NR01702A
10.1021/jp5125475
10.1021/acs.jpcc.8b03595
10.1039/C7NR05871C
10.1038/ncomms3422
10.1021/jz401447w
10.1021/acscatal.7b00239
10.1002/anie.201801467
10.1039/C5CC00814J
10.1021/ja407581w
10.1002/anie.201509381
10.1038/ncomms14723
10.1002/adma.201802751
10.1021/jp8090914
10.1038/s41467-018-02819-7
10.1021/acs.accounts.8b00065
10.1021/acscatal.8b00365
10.1021/acscatal.6b03509
10.1021/ja303259q
10.1021/acs.accounts.8b00364
10.1021/ja073580+
10.1021/acs.inorgchem.6b02067
10.1039/C5NR05131B
10.1039/c3ta11592e
10.1002/cctc.201700895
10.1002/cssc.201802069
10.1039/C8TA10789K
10.1021/jacs.5b07088
10.1126/science.1148624
10.1038/nature12523
10.1021/acs.jpcc.6b11102
10.1038/s41467-018-04837-x
10.1002/adfm.201700886
10.1002/anie.201814156
10.1021/ac2012653
10.1038/238037a0
10.1021/acs.accounts.8b00573
10.1039/C8TA00461G
10.1039/C8TA03249A
10.1021/acs.jpcc.6b10360
10.1021/ja511635g
10.1021/cm500260z
10.1039/c3ta11785e
10.1002/anie.201813331
10.1002/advs.201801829
10.1021/acsami.8b16178
10.1002/anie.201502667
10.1021/jp805786p
10.1039/c2nr31066j
10.1039/C6CC00857G
10.1016/j.jcat.2017.03.011
10.1073/pnas.1704699114
10.1021/acs.accounts.8b00495
10.1021/acs.jpcc.8b07962
10.1039/C4NR05794E
10.1021/acs.accounts.8b00150
10.1039/C7TA09443D
10.1038/ncomms3221
10.1002/adma.201606200
10.1039/C6CC04433F
10.1021/nn302984x
10.1021/jp407150t
10.1002/smll.201701519
10.1021/ja053119m
10.1021/jp306885u
10.1021/acs.chemrev.7b00776
10.1021/acsami.6b15725
10.1039/C5TA04326C
10.1039/C5CE02494C
10.1039/C6TA10385E
10.1021/ja400569u
10.1021/ja407887d
10.1039/C8TA06306K
10.1021/acs.accounts.8b00379
10.1021/nn400772s
10.1021/acsnano.9b01189
10.1126/science.aaw9545
10.1039/C8EE00402A
10.1016/j.electacta.2019.03.175
10.1039/c2nr31080e
10.1039/c0cc01021a
10.1021/acsami.7b18671
10.1038/s41557-019-0246-5
10.1021/jacs.7b05591
10.1021/jacs.5b07574
10.1016/j.comptc.2017.10.001
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/c9nr07272a
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 2448
ExternalDocumentID 10_1039_C9NR07272A
c9nr07272a
GroupedDBID ---
-JG
0-7
0R~
29M
4.4
53G
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
OK1
P2P
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
RVUXY
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c351t-b2ec82022b37ba7eb239903840a3dd124b76c843361cb10a7a20b79161074f713
ISSN 2040-3364
2040-3372
IngestDate Fri Jul 11 01:38:43 EDT 2025
Sun Jun 29 16:34:27 EDT 2025
Thu Apr 24 22:59:46 EDT 2025
Tue Jul 01 01:13:46 EDT 2025
Tue Dec 17 20:59:08 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 43
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c351t-b2ec82022b37ba7eb239903840a3dd124b76c843361cb10a7a20b79161074f713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0730-3373
0000-0002-3254-5799
PQID 2312483290
PQPubID 2047485
PageCount 12
ParticipantIDs crossref_citationtrail_10_1039_C9NR07272A
crossref_primary_10_1039_C9NR07272A
rsc_primary_c9nr07272a
proquest_journals_2312483290
proquest_miscellaneous_2309809354
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-21
PublicationDateYYYYMMDD 2019-11-21
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-21
  day: 21
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Nanoscale
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Hoffmann (C9NR07272A-(cit3)/*[position()=1]) 1995; 95
Li (C9NR07272A-(cit57)/*[position()=1]) 2018; 11
Bootharaju (C9NR07272A-(cit38)/*[position()=1]) 2016; 55
Yan (C9NR07272A-(cit83)/*[position()=1]) 2019; 7
Chen (C9NR07272A-(cit10)/*[position()=1]) 2016; 52
Jin (C9NR07272A-(cit15)/*[position()=1]) 2016; 18
Liu (C9NR07272A-(cit54)/*[position()=1]) 2019; 6
Chen (C9NR07272A-(cit90)/*[position()=1]) 2019; 58
Kacprzak (C9NR07272A-(cit25)/*[position()=1]) 2009; 11
Aikens (C9NR07272A-(cit6)/*[position()=1]) 2008; 112
Grubb (C9NR07272A-(cit1)/*[position()=1]) 1963; 198
Liu (C9NR07272A-(cit55)/*[position()=1]) 2018; 10
Xiang (C9NR07272A-(cit16)/*[position()=1]) 2015; 7
Wang (C9NR07272A-(cit39)/*[position()=1]) 2015; 137
Munir (C9NR07272A-(cit52)/*[position()=1]) 2019; 12
Sakthivel (C9NR07272A-(cit33)/*[position()=1]) 2018; 51
Joshi (C9NR07272A-(cit12)/*[position()=1]) 2015; 137
Yang (C9NR07272A-(cit79)/*[position()=1]) 2018; 6
Fujishima (C9NR07272A-(cit2)/*[position()=1]) 1972; 238
Wu (C9NR07272A-(cit91)/*[position()=1]) 2019; 1
Li (C9NR07272A-(cit37)/*[position()=1]) 2017; 7
Mao (C9NR07272A-(cit80)/*[position()=1]) 2018; 10
Wu (C9NR07272A-(cit96)/*[position()=1]) 2010; 10
Zheng (C9NR07272A-(cit78)/*[position()=1]) 2019; 306
Negishi (C9NR07272A-(cit40)/*[position()=1]) 2010; 46
AbdulHalim (C9NR07272A-(cit50)/*[position()=1]) 2016; 55
AbdulHalim (C9NR07272A-(cit13)/*[position()=1]) 2013; 1
Nguyen (C9NR07272A-(cit17)/*[position()=1]) 2015; 3
Zhu (C9NR07272A-(cit26)/*[position()=1]) 2008; 112
Liu (C9NR07272A-(cit34)/*[position()=1]) 2015; 54
Sumner (C9NR07272A-(cit69)/*[position()=1]) 2018; 122
Kwak (C9NR07272A-(cit56)/*[position()=1]) 2017; 8
Zhou (C9NR07272A-(cit35)/*[position()=1]) 2017; 121
Agrachev (C9NR07272A-(cit27)/*[position()=1]) 2019; 52
Guidez (C9NR07272A-(cit41)/*[position()=1]) 2012; 116
Narouz (C9NR07272A-(cit99)/*[position()=1]) 2019; 11
Wang (C9NR07272A-(cit93)/*[position()=1]) 2015; 48
Zhao (C9NR07272A-(cit62)/*[position()=1]) 2018; 8
Pi (C9NR07272A-(cit61)/*[position()=1]) 2017; 27
Senanayake (C9NR07272A-(cit98)/*[position()=1]) 2018; 122
Andolina (C9NR07272A-(cit45)/*[position()=1]) 2013; 135
Wang (C9NR07272A-(cit72)/*[position()=1]) 2018; 57
Higaki (C9NR07272A-(cit53)/*[position()=1]) 2019; 58
Zhao (C9NR07272A-(cit86)/*[position()=1]) 2017; 13
Antonello (C9NR07272A-(cit23)/*[position()=1]) 2012; 4
Yu (C9NR07272A-(cit5)/*[position()=1]) 2013; 4
Jin (C9NR07272A-(cit74)/*[position()=1]) 2017; 9
Antonello (C9NR07272A-(cit24)/*[position()=1]) 2013; 135
Liu (C9NR07272A-(cit20)/*[position()=1]) 2016; 8
Zhu (C9NR07272A-(cit18)/*[position()=1]) 2018; 6
Yang (C9NR07272A-(cit14)/*[position()=1]) 2013; 4
Yin (C9NR07272A-(cit60)/*[position()=1]) 2013; 1
Chen (C9NR07272A-(cit70)/*[position()=1]) 2009; 48
Crawford (C9NR07272A-(cit44)/*[position()=1]) 2019; 52
Cao (C9NR07272A-(cit95)/*[position()=1]) 2018; 9
Khatun (C9NR07272A-(cit92)/*[position()=1]) 2019; 13
Shin (C9NR07272A-(cit66)/*[position()=1]) 2017; 1120
Guo (C9NR07272A-(cit46)/*[position()=1]) 2005; 127
Pezzato (C9NR07272A-(cit8)/*[position()=1]) 2015; 51
Liu (C9NR07272A-(cit82)/*[position()=1]) 2017; 29
Kwon (C9NR07272A-(cit71)/*[position()=1]) 2013; 7
Green (C9NR07272A-(cit29)/*[position()=1]) 2012; 4
Rawat (C9NR07272A-(cit65)/*[position()=1]) 2017; 349
Kauffman (C9NR07272A-(cit73)/*[position()=1]) 2014; 5
Yin (C9NR07272A-(cit76)/*[position()=1]) 2012; 6
Venzo (C9NR07272A-(cit22)/*[position()=1]) 2011; 83
Gorlin (C9NR07272A-(cit85)/*[position()=1]) 2014; 136
Yuan (C9NR07272A-(cit49)/*[position()=1]) 2016; 52
Yao (C9NR07272A-(cit94)/*[position()=1]) 2018; 51
Kwak (C9NR07272A-(cit68)/*[position()=1]) 2018; 6
Chen (C9NR07272A-(cit4)/*[position()=1]) 2019; 6
Hu (C9NR07272A-(cit58)/*[position()=1]) 2018; 6
Chen (C9NR07272A-(cit21)/*[position()=1]) 2017; 75
Zhou (C9NR07272A-(cit36)/*[position()=1]) 2019; 364
Yao (C9NR07272A-(cit89)/*[position()=1]) 2018; 30
Desireddy (C9NR07272A-(cit11)/*[position()=1]) 2013; 501
Tang (C9NR07272A-(cit63)/*[position()=1]) 2017; 139
Ye (C9NR07272A-(cit77)/*[position()=1]) 2017; 9
Tiwari (C9NR07272A-(cit81)/*[position()=1]) 2013; 4
Liu (C9NR07272A-(cit7)/*[position()=1]) 2018; 118
Kawasaki (C9NR07272A-(cit28)/*[position()=1]) 2014; 26
Jin (C9NR07272A-(cit32)/*[position()=1]) 2015; 7
Zhao (C9NR07272A-(cit88)/*[position()=1]) 2017; 139
Kwak (C9NR07272A-(cit51)/*[position()=1]) 2019; 52
Jung (C9NR07272A-(cit47)/*[position()=1]) 2012; 4
Choi (C9NR07272A-(cit59)/*[position()=1]) 2018; 10
Jadzinsky (C9NR07272A-(cit9)/*[position()=1]) 2007; 318
Tlahuice-Flores (C9NR07272A-(cit48)/*[position()=1]) 2013; 117
Stamplecoskie (C9NR07272A-(cit31)/*[position()=1]) 2014; 136
Kauffman (C9NR07272A-(cit75)/*[position()=1]) 2012; 134
Zhou (C9NR07272A-(cit97)/*[position()=1]) 2017; 114
Aikens (C9NR07272A-(cit42)/*[position()=1]) 2018; 51
Han (C9NR07272A-(cit19)/*[position()=1]) 2016; 82
Weng (C9NR07272A-(cit67)/*[position()=1]) 2018; 9
Nguyen (C9NR07272A-(cit64)/*[position()=1]) 2015; 137
Zhou (C9NR07272A-(cit84)/*[position()=1]) 2016; 120
Hartmann (C9NR07272A-(cit43)/*[position()=1]) 2015; 119
Zhang (C9NR07272A-(cit87)/*[position()=1]) 2017; 5
Negishi (C9NR07272A-(cit30)/*[position()=1]) 2007; 129
References_xml – volume: 48
  start-page: 4386
  year: 2009
  ident: C9NR07272A-(cit70)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200901185
– volume: 11
  start-page: 7123
  year: 2009
  ident: C9NR07272A-(cit25)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b904491d
– volume: 136
  start-page: 11093
  year: 2014
  ident: C9NR07272A-(cit31)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja505361n
– volume: 5
  start-page: 3151
  year: 2014
  ident: C9NR07272A-(cit73)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/c4sc00997e
– volume: 95
  start-page: 69
  issue: 1
  year: 1995
  ident: C9NR07272A-(cit3)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr00033a004
– volume: 139
  start-page: 1077
  year: 2017
  ident: C9NR07272A-(cit88)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12529
– volume: 48
  start-page: 1570
  year: 2015
  ident: C9NR07272A-(cit93)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.5b00007
– volume: 198
  start-page: 883
  year: 1963
  ident: C9NR07272A-(cit1)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/198883b0
– volume: 1
  start-page: 237
  year: 2019
  ident: C9NR07272A-(cit91)/*[position()=1]
  publication-title: ACS Mater. Lett.
  doi: 10.1021/acsmaterialslett.9b00136
– volume: 82
  start-page: 1067
  year: 2016
  ident: C9NR07272A-(cit19)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b09987
– volume: 10
  start-page: 2568
  year: 2010
  ident: C9NR07272A-(cit96)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl101225f
– volume: 4
  start-page: 4206
  year: 2012
  ident: C9NR07272A-(cit47)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c2nr30501a
– volume: 8
  start-page: 10145
  year: 2016
  ident: C9NR07272A-(cit20)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C6NR01702A
– volume: 119
  start-page: 8290
  year: 2015
  ident: C9NR07272A-(cit43)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp5125475
– volume: 122
  start-page: 16380
  issue: 28
  year: 2018
  ident: C9NR07272A-(cit98)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b03595
– volume: 9
  start-page: 19183
  year: 2017
  ident: C9NR07272A-(cit74)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C7NR05871C
– volume: 4
  start-page: 2422
  year: 2013
  ident: C9NR07272A-(cit14)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3422
– volume: 4
  start-page: 2847
  issue: 17
  year: 2013
  ident: C9NR07272A-(cit5)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz401447w
– volume: 7
  start-page: 3368
  year: 2017
  ident: C9NR07272A-(cit37)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b00239
– volume: 57
  start-page: 5848
  year: 2018
  ident: C9NR07272A-(cit72)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201801467
– volume: 51
  start-page: 9922
  year: 2015
  ident: C9NR07272A-(cit8)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC00814J
– volume: 136
  start-page: 4920
  year: 2014
  ident: C9NR07272A-(cit85)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja407581w
– volume: 55
  start-page: 922
  year: 2016
  ident: C9NR07272A-(cit38)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201509381
– volume: 8
  start-page: 14723
  year: 2017
  ident: C9NR07272A-(cit56)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14723
– volume: 30
  start-page: 1802751
  year: 2018
  ident: C9NR07272A-(cit89)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802751
– volume: 112
  start-page: 19797
  year: 2008
  ident: C9NR07272A-(cit6)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp8090914
– volume: 6
  start-page: 2332
  year: 2019
  ident: C9NR07272A-(cit4)/*[position()=1]
  publication-title: Environ. Sci.: Nano
– volume: 9
  start-page: 415
  year: 2018
  ident: C9NR07272A-(cit67)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-02819-7
– volume: 51
  start-page: 1338
  year: 2018
  ident: C9NR07272A-(cit94)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00065
– volume: 8
  start-page: 4996
  year: 2018
  ident: C9NR07272A-(cit62)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b00365
– volume: 75
  start-page: 3632
  year: 2017
  ident: C9NR07272A-(cit21)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b03509
– volume: 134
  start-page: 10237
  year: 2012
  ident: C9NR07272A-(cit75)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja303259q
– volume: 51
  start-page: 3065
  year: 2018
  ident: C9NR07272A-(cit42)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00364
– volume: 129
  start-page: 11322
  year: 2007
  ident: C9NR07272A-(cit30)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja073580+
– volume: 55
  start-page: 11522
  year: 2016
  ident: C9NR07272A-(cit50)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.6b02067
– volume: 7
  start-page: 18278
  year: 2015
  ident: C9NR07272A-(cit16)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C5NR05131B
– volume: 1
  start-page: 9157
  year: 2013
  ident: C9NR07272A-(cit60)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta11592e
– volume: 10
  start-page: 141
  year: 2018
  ident: C9NR07272A-(cit80)/*[position()=1]
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201700895
– volume: 12
  start-page: 1517
  year: 2019
  ident: C9NR07272A-(cit52)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201802069
– volume: 7
  start-page: 2831
  year: 2019
  ident: C9NR07272A-(cit83)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA10789K
– volume: 137
  start-page: 11578
  year: 2015
  ident: C9NR07272A-(cit12)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b07088
– volume: 318
  start-page: 430
  year: 2007
  ident: C9NR07272A-(cit9)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1148624
– volume: 501
  start-page: 399
  year: 2013
  ident: C9NR07272A-(cit11)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature12523
– volume: 120
  start-page: 29348
  year: 2016
  ident: C9NR07272A-(cit84)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b11102
– volume: 9
  start-page: 2379
  year: 2018
  ident: C9NR07272A-(cit95)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04837-x
– volume: 27
  start-page: 1700886
  year: 2017
  ident: C9NR07272A-(cit61)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201700886
– volume: 58
  start-page: 8291
  year: 2019
  ident: C9NR07272A-(cit53)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201814156
– volume: 83
  start-page: 6355
  year: 2011
  ident: C9NR07272A-(cit22)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac2012653
– volume: 238
  start-page: 37
  year: 1972
  ident: C9NR07272A-(cit2)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/238037a0
– volume: 52
  start-page: 695
  year: 2019
  ident: C9NR07272A-(cit44)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00573
– volume: 6
  start-page: 7532
  year: 2018
  ident: C9NR07272A-(cit58)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA00461G
– volume: 6
  start-page: 13859
  year: 2018
  ident: C9NR07272A-(cit79)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA03249A
– volume: 121
  start-page: 10686
  year: 2017
  ident: C9NR07272A-(cit35)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b10360
– volume: 137
  start-page: 4018
  year: 2015
  ident: C9NR07272A-(cit39)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja511635g
– volume: 26
  start-page: 2777
  year: 2014
  ident: C9NR07272A-(cit28)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm500260z
– volume: 1
  start-page: 10148
  year: 2013
  ident: C9NR07272A-(cit13)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta11785e
– volume: 58
  start-page: 2
  year: 2019
  ident: C9NR07272A-(cit90)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201813331
– volume: 6
  start-page: 1801829
  year: 2019
  ident: C9NR07272A-(cit54)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201801829
– volume: 10
  start-page: 44645
  year: 2018
  ident: C9NR07272A-(cit59)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b16178
– volume: 54
  start-page: 9826
  year: 2015
  ident: C9NR07272A-(cit34)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201502667
– volume: 112
  start-page: 14221
  year: 2008
  ident: C9NR07272A-(cit26)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp805786p
– volume: 4
  start-page: 5333
  year: 2012
  ident: C9NR07272A-(cit23)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c2nr31066j
– volume: 52
  start-page: 5234
  year: 2016
  ident: C9NR07272A-(cit49)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC00857G
– volume: 349
  start-page: 118
  year: 2017
  ident: C9NR07272A-(cit65)/*[position()=1]
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2017.03.011
– volume: 114
  start-page: E4697
  issue: 24
  year: 2017
  ident: C9NR07272A-(cit97)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1704699114
– volume: 52
  start-page: 44
  year: 2019
  ident: C9NR07272A-(cit27)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00495
– volume: 122
  start-page: 24809
  year: 2018
  ident: C9NR07272A-(cit69)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b07962
– volume: 7
  start-page: 1549
  year: 2015
  ident: C9NR07272A-(cit32)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C4NR05794E
– volume: 51
  start-page: 1774
  year: 2018
  ident: C9NR07272A-(cit33)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00150
– volume: 6
  start-page: 1102
  year: 2018
  ident: C9NR07272A-(cit18)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA09443D
– volume: 4
  start-page: 2221
  year: 2013
  ident: C9NR07272A-(cit81)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3221
– volume: 29
  start-page: 1606200
  year: 2017
  ident: C9NR07272A-(cit82)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606200
– volume: 52
  start-page: 9522
  year: 2016
  ident: C9NR07272A-(cit10)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC04433F
– volume: 6
  start-page: 8288
  year: 2012
  ident: C9NR07272A-(cit76)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn302984x
– volume: 117
  start-page: 20867
  year: 2013
  ident: C9NR07272A-(cit48)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp407150t
– volume: 13
  start-page: 1701519
  year: 2017
  ident: C9NR07272A-(cit86)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201701519
– volume: 127
  start-page: 12140
  year: 2005
  ident: C9NR07272A-(cit46)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja053119m
– volume: 116
  start-page: 20617
  year: 2012
  ident: C9NR07272A-(cit41)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp306885u
– volume: 118
  start-page: 4981
  year: 2018
  ident: C9NR07272A-(cit7)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00776
– volume: 9
  start-page: 3785
  year: 2017
  ident: C9NR07272A-(cit77)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b15725
– volume: 3
  start-page: 18345
  year: 2015
  ident: C9NR07272A-(cit17)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA04326C
– volume: 18
  start-page: 3996
  year: 2016
  ident: C9NR07272A-(cit15)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/C5CE02494C
– volume: 5
  start-page: 4122
  year: 2017
  ident: C9NR07272A-(cit87)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA10385E
– volume: 135
  start-page: 5266
  year: 2013
  ident: C9NR07272A-(cit45)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja400569u
– volume: 135
  start-page: 15585
  year: 2013
  ident: C9NR07272A-(cit24)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja407887d
– volume: 6
  start-page: 19495
  year: 2018
  ident: C9NR07272A-(cit68)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA06306K
– volume: 52
  start-page: 12
  year: 2019
  ident: C9NR07272A-(cit51)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00379
– volume: 7
  start-page: 5808
  year: 2013
  ident: C9NR07272A-(cit71)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn400772s
– volume: 13
  start-page: 5753
  year: 2019
  ident: C9NR07272A-(cit92)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b01189
– volume: 364
  start-page: 279
  year: 2019
  ident: C9NR07272A-(cit36)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aaw9545
– volume: 11
  start-page: 1232
  year: 2018
  ident: C9NR07272A-(cit57)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00402A
– volume: 306
  start-page: 627
  year: 2019
  ident: C9NR07272A-(cit78)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.03.175
– volume: 4
  start-page: 4111
  year: 2012
  ident: C9NR07272A-(cit29)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c2nr31080e
– volume: 46
  start-page: 4713
  year: 2010
  ident: C9NR07272A-(cit40)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc01021a
– volume: 10
  start-page: 3699
  year: 2018
  ident: C9NR07272A-(cit55)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b18671
– volume: 11
  start-page: 419
  year: 2019
  ident: C9NR07272A-(cit99)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-019-0246-5
– volume: 139
  start-page: 9728
  year: 2017
  ident: C9NR07272A-(cit63)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b05591
– volume: 137
  start-page: 13319
  year: 2015
  ident: C9NR07272A-(cit64)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b07574
– volume: 1120
  start-page: 84
  year: 2017
  ident: C9NR07272A-(cit66)/*[position()=1]
  publication-title: Comput. Theor. Chem.
  doi: 10.1016/j.comptc.2017.10.001
SSID ssj0069363
Score 2.525675
SecondaryResourceType review_article
Snippet In view of many of the fundamental properties of ultrasmall noble metal nanoclusters progressively being uncovered, it has become increasingly clear that this...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2437
SubjectTerms Electrocatalysts
Nanoclusters
Noble metals
Optical properties
Photocatalysis
Title Engineering ultrasmall metal nanoclusters for photocatalytic and electrocatalytic applications
URI https://www.proquest.com/docview/2312483290
https://www.proquest.com/docview/2309809354
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe67QUe0PiYKAxkBC-oykjsNKkfS7UxldFJKBV9IrJdV63WJVWbPLC_nrt8ujAh4CVqXNepfL_47nx3PxPyTgbaSE9zx2gfHBQZCkeAZe8waUCbIaEaw9rhL5PgcuqPZ_1Zp2NnLeWZOtN399aV_I9UoQ3kilWy_yDZZlBogM8gX7iChOH6VzK2yAR7-Trbyt0tRppvDVY4JjJJ9TpHIoSCc6G3WaZZWmzX_KhZWqtDcKxGK55t262wCKc7EGcDg-sdxmd6Y6TKyiXmDizlqsnuWeVF0GO5WjY_GFVlIBHg8abtOivjI2No3dRatNqE8ARW47F2E6Lc6qjzTIs8kuq0unY5Y5i7yHnJWX5m7LZwfz32LNz53F5dkYjJUtVwX9J0_qYHXI40qlokWxcjzZa2qyP8k-v4Ynp1FUfns-iAHDHwMmCZPBp-_vjpW63KA8GLo_iav17z23LxoR1736Jp3ZSDbX2GTGGrRMfkUeVk0GGJmMekY5In5KGFlqfku3VHW-zQAjvUxg4F7NB97FDADv0VO9TGzjMyvTiPRpdOddaGo3nfyxzFjAZjkDHFQyVDo7Dm2eXg_ks-n4MRqMJAD3yYBE8rz5WhZK4KwbfAhN5F6PETcpikiXlO6CCQC-XOF9IY5SvOlJhrsHMH2vTlQi9kl7yv5yvWFRE9noeyjouECC7ikZh8LeZ22CVvm76bkn7l3l6n9bTH1eu5i8FxYT7oK-F2yZvma0AlRsRkYtIc-7higKkAfpecgLiaZ7TSffHnsV-SB-37cEoOs21uXoGZmqnXFZh-Ah_vma4
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+ultrasmall+metal+nanoclusters+for+photocatalytic+and+electrocatalytic+applications&rft.jtitle=Nanoscale&rft.au=Osburg+Jin+Huang+Chai&rft.au=Liu%2C+Zhihe&rft.au=Chen%2C+Tiankai&rft.au=Xie%2C+Jianping&rft.date=2019-11-21&rft.pub=Royal+Society+of+Chemistry&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=11&rft.issue=43&rft.spage=20437&rft.epage=20448&rft_id=info:doi/10.1039%2Fc9nr07272a&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon