Engineering ultrasmall metal nanoclusters for photocatalytic and electrocatalytic applications
In view of many of the fundamental properties of ultrasmall noble metal nanoclusters progressively being uncovered, it has become increasingly clear that this class of materials has enormous potential for photocatalytic and electrocatalytic applications due to their unique electronic and optical pro...
Saved in:
Published in | Nanoscale Vol. 11; no. 43; pp. 2437 - 2448 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
21.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In view of many of the fundamental properties of ultrasmall noble metal nanoclusters progressively being uncovered, it has become increasingly clear that this class of materials has enormous potential for photocatalytic and electrocatalytic applications due to their unique electronic and optical properties. In this Minireview, we highlight the key electronic and optical properties of metal nanoclusters which are essential to photocatalysis and electrocatalysis. We further use these properties as the basis for our discussion to map out directions or principles for the rational design of high performance photocatalysts and electrocatalysts, highlighting several successful attempts along this direction.
The many fundamental properties of ultrasmall noble metal nanoclusters have made it increasingly clear that they possess enormous potential for photo- and electro-catalytic applications due to their unique electronic and optical properties. |
---|---|
AbstractList | In view of many of the fundamental properties of ultrasmall noble metal nanoclusters progressively being uncovered, it has become increasingly clear that this class of materials has enormous potential for photocatalytic and electrocatalytic applications due to their unique electronic and optical properties. In this Minireview, we highlight the key electronic and optical properties of metal nanoclusters which are essential to photocatalysis and electrocatalysis. We further use these properties as the basis for our discussion to map out directions or principles for the rational design of high performance photocatalysts and electrocatalysts, highlighting several successful attempts along this direction. In view of many of the fundamental properties of ultrasmall noble metal nanoclusters progressively being uncovered, it has become increasingly clear that this class of materials has enormous potential for photocatalytic and electrocatalytic applications due to their unique electronic and optical properties. In this Minireview, we highlight the key electronic and optical properties of metal nanoclusters which are essential to photocatalysis and electrocatalysis. We further use these properties as the basis for our discussion to map out directions or principles for the rational design of high performance photocatalysts and electrocatalysts, highlighting several successful attempts along this direction.In view of many of the fundamental properties of ultrasmall noble metal nanoclusters progressively being uncovered, it has become increasingly clear that this class of materials has enormous potential for photocatalytic and electrocatalytic applications due to their unique electronic and optical properties. In this Minireview, we highlight the key electronic and optical properties of metal nanoclusters which are essential to photocatalysis and electrocatalysis. We further use these properties as the basis for our discussion to map out directions or principles for the rational design of high performance photocatalysts and electrocatalysts, highlighting several successful attempts along this direction. In view of many of the fundamental properties of ultrasmall noble metal nanoclusters progressively being uncovered, it has become increasingly clear that this class of materials has enormous potential for photocatalytic and electrocatalytic applications due to their unique electronic and optical properties. In this Minireview, we highlight the key electronic and optical properties of metal nanoclusters which are essential to photocatalysis and electrocatalysis. We further use these properties as the basis for our discussion to map out directions or principles for the rational design of high performance photocatalysts and electrocatalysts, highlighting several successful attempts along this direction. The many fundamental properties of ultrasmall noble metal nanoclusters have made it increasingly clear that they possess enormous potential for photo- and electro-catalytic applications due to their unique electronic and optical properties. |
Author | Xie, Jianping Chai, Osburg Jin Huang Chen, Tiankai Liu, Zhihe |
AuthorAffiliation | National University of Singapore Department of Chemical and Biomolecular Engineering Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University |
AuthorAffiliation_xml | – sequence: 0 name: National University of Singapore – sequence: 0 name: Department of Chemical and Biomolecular Engineering – sequence: 0 name: International Campus of Tianjin University – sequence: 0 name: Joint School of National University of Singapore and Tianjin University |
Author_xml | – sequence: 1 givenname: Osburg Jin Huang surname: Chai fullname: Chai, Osburg Jin Huang – sequence: 2 givenname: Zhihe surname: Liu fullname: Liu, Zhihe – sequence: 3 givenname: Tiankai surname: Chen fullname: Chen, Tiankai – sequence: 4 givenname: Jianping surname: Xie fullname: Xie, Jianping |
BookMark | eNptkUtLAzEQx4NUsK1evAsLXkRYnSTbzeZYSn1AURC9umTTtKakyZpkD_32xlaqFE_z-s2D_wxQzzqrEDrHcIOB8lvJrQdGGBFHqE-ggJxSRnp7vyxO0CCEFUDJaUn76H1ql9oq5bVdZp2JXoS1MCZbqyhMZoV10nQhKh-yhfNZ--GikyLVNlHLTNh5poyS0f9Ntq3RKdTOhlN0vBAmqLMfO0Rvd9PXyUM-e75_nIxnuaQjHPOGKFkRIKShrBFMNYRyDrQqQND5HJOiYaWsinQ_lg0GwQSBhnFcYmDFgmE6RFe7ua13n50KsV7rIJUxwirXhZpQ4BVwOioSenmArlznbbouUWlVRUlaPUTXO0p6F4JXi7r1ei38psZQf0tdT_jTy1bqcYLhAJY6bgVIemrzf8vFrsUHuR_9-z36BXQpjTg |
CitedBy_id | crossref_primary_10_1002_ange_202316649 crossref_primary_10_1021_acs_chemmater_3c01247 crossref_primary_10_1039_D4RA00931B crossref_primary_10_1038_s41598_020_64773_z crossref_primary_10_1039_D3TA04477G crossref_primary_10_1038_s41467_024_53377_0 crossref_primary_10_1039_D0NR07832H crossref_primary_10_1002_smll_202200812 crossref_primary_10_1021_acs_jpclett_3c00509 crossref_primary_10_1039_C9CS00633H crossref_primary_10_1007_s11426_020_9767_9 crossref_primary_10_1016_j_foodchem_2024_140341 crossref_primary_10_1021_acs_inorgchem_4c05541 crossref_primary_10_1021_acs_jpclett_0c03617 crossref_primary_10_1039_D3NR03537A crossref_primary_10_1039_D3NR03375A crossref_primary_10_1016_j_pmatsci_2023_101229 crossref_primary_10_1039_C9NR10451H crossref_primary_10_1021_acs_jpcc_1c07629 crossref_primary_10_1021_acsanm_1c04484 crossref_primary_10_1039_D4SC08408J crossref_primary_10_1177_00037028231192124 crossref_primary_10_1039_D2NR00878E crossref_primary_10_1016_j_ccr_2020_213752 crossref_primary_10_1039_D1NR02440J crossref_primary_10_1002_ppsc_202300031 crossref_primary_10_1039_D1NR05503H crossref_primary_10_1021_acsmaterialslett_4c00622 crossref_primary_10_1039_D3NH00235G crossref_primary_10_1021_acs_inorgchem_0c00592 crossref_primary_10_1039_D0SC00520G crossref_primary_10_1021_acs_jpcc_0c05867 crossref_primary_10_1038_s41467_023_38914_7 crossref_primary_10_1016_j_ijhydene_2025_03_106 crossref_primary_10_1016_j_nantod_2020_101053 crossref_primary_10_1021_acs_chemrev_1c00503 crossref_primary_10_1002_smll_202101638 crossref_primary_10_1021_acsnano_4c15366 crossref_primary_10_1002_smll_202004381 crossref_primary_10_1016_j_jddst_2024_106594 crossref_primary_10_1016_j_mcat_2023_113764 crossref_primary_10_1039_D1NA00514F crossref_primary_10_1002_cphc_202200035 crossref_primary_10_1021_acs_inorgchem_2c03634 crossref_primary_10_1016_j_molstruc_2023_134979 crossref_primary_10_1002_ppsc_202100202 crossref_primary_10_1016_j_jma_2024_11_002 crossref_primary_10_1021_acsami_3c17662 crossref_primary_10_1016_j_ijhydene_2023_12_015 crossref_primary_10_1016_j_saa_2023_123738 crossref_primary_10_1002_adsu_202000213 crossref_primary_10_3390_nano13121874 crossref_primary_10_1016_j_jcis_2022_06_015 crossref_primary_10_1002_anie_202316649 crossref_primary_10_1007_s43630_021_00153_4 crossref_primary_10_1021_acsnanoscienceau_1c00024 crossref_primary_10_1016_j_cej_2022_138320 crossref_primary_10_1039_D1CP02761A crossref_primary_10_1039_D0CC00713G crossref_primary_10_1039_D3QI00678F crossref_primary_10_1039_D2CP05591K crossref_primary_10_1002_adma_202103918 crossref_primary_10_1039_D4CS00962B |
Cites_doi | 10.1002/anie.200901185 10.1039/b904491d 10.1021/ja505361n 10.1039/c4sc00997e 10.1021/cr00033a004 10.1021/jacs.6b12529 10.1021/acs.accounts.5b00007 10.1038/198883b0 10.1021/acsmaterialslett.9b00136 10.1021/acsami.5b09987 10.1021/nl101225f 10.1039/c2nr30501a 10.1039/C6NR01702A 10.1021/jp5125475 10.1021/acs.jpcc.8b03595 10.1039/C7NR05871C 10.1038/ncomms3422 10.1021/jz401447w 10.1021/acscatal.7b00239 10.1002/anie.201801467 10.1039/C5CC00814J 10.1021/ja407581w 10.1002/anie.201509381 10.1038/ncomms14723 10.1002/adma.201802751 10.1021/jp8090914 10.1038/s41467-018-02819-7 10.1021/acs.accounts.8b00065 10.1021/acscatal.8b00365 10.1021/acscatal.6b03509 10.1021/ja303259q 10.1021/acs.accounts.8b00364 10.1021/ja073580+ 10.1021/acs.inorgchem.6b02067 10.1039/C5NR05131B 10.1039/c3ta11592e 10.1002/cctc.201700895 10.1002/cssc.201802069 10.1039/C8TA10789K 10.1021/jacs.5b07088 10.1126/science.1148624 10.1038/nature12523 10.1021/acs.jpcc.6b11102 10.1038/s41467-018-04837-x 10.1002/adfm.201700886 10.1002/anie.201814156 10.1021/ac2012653 10.1038/238037a0 10.1021/acs.accounts.8b00573 10.1039/C8TA00461G 10.1039/C8TA03249A 10.1021/acs.jpcc.6b10360 10.1021/ja511635g 10.1021/cm500260z 10.1039/c3ta11785e 10.1002/anie.201813331 10.1002/advs.201801829 10.1021/acsami.8b16178 10.1002/anie.201502667 10.1021/jp805786p 10.1039/c2nr31066j 10.1039/C6CC00857G 10.1016/j.jcat.2017.03.011 10.1073/pnas.1704699114 10.1021/acs.accounts.8b00495 10.1021/acs.jpcc.8b07962 10.1039/C4NR05794E 10.1021/acs.accounts.8b00150 10.1039/C7TA09443D 10.1038/ncomms3221 10.1002/adma.201606200 10.1039/C6CC04433F 10.1021/nn302984x 10.1021/jp407150t 10.1002/smll.201701519 10.1021/ja053119m 10.1021/jp306885u 10.1021/acs.chemrev.7b00776 10.1021/acsami.6b15725 10.1039/C5TA04326C 10.1039/C5CE02494C 10.1039/C6TA10385E 10.1021/ja400569u 10.1021/ja407887d 10.1039/C8TA06306K 10.1021/acs.accounts.8b00379 10.1021/nn400772s 10.1021/acsnano.9b01189 10.1126/science.aaw9545 10.1039/C8EE00402A 10.1016/j.electacta.2019.03.175 10.1039/c2nr31080e 10.1039/c0cc01021a 10.1021/acsami.7b18671 10.1038/s41557-019-0246-5 10.1021/jacs.7b05591 10.1021/jacs.5b07574 10.1016/j.comptc.2017.10.001 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2019 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
DOI | 10.1039/c9nr07272a |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 2448 |
ExternalDocumentID | 10_1039_C9NR07272A c9nr07272a |
GroupedDBID | --- -JG 0-7 0R~ 29M 4.4 53G 705 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K DU5 EBS ECGLT EE0 EF- EJD F5P GGIMP H13 HZ~ H~N J3I O-G O9- OK1 P2P RAOCF RCNCU RNS RPMJG RRC RSCEA RVUXY AAYXX AFRZK AKMSF ALUYA CITATION 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c351t-b2ec82022b37ba7eb239903840a3dd124b76c843361cb10a7a20b79161074f713 |
ISSN | 2040-3364 2040-3372 |
IngestDate | Fri Jul 11 01:38:43 EDT 2025 Sun Jun 29 16:34:27 EDT 2025 Thu Apr 24 22:59:46 EDT 2025 Tue Jul 01 01:13:46 EDT 2025 Tue Dec 17 20:59:08 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 43 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c351t-b2ec82022b37ba7eb239903840a3dd124b76c843361cb10a7a20b79161074f713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0730-3373 0000-0002-3254-5799 |
PQID | 2312483290 |
PQPubID | 2047485 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1039_C9NR07272A crossref_primary_10_1039_C9NR07272A rsc_primary_c9nr07272a proquest_journals_2312483290 proquest_miscellaneous_2309809354 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-21 |
PublicationDateYYYYMMDD | 2019-11-21 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Nanoscale |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Hoffmann (C9NR07272A-(cit3)/*[position()=1]) 1995; 95 Li (C9NR07272A-(cit57)/*[position()=1]) 2018; 11 Bootharaju (C9NR07272A-(cit38)/*[position()=1]) 2016; 55 Yan (C9NR07272A-(cit83)/*[position()=1]) 2019; 7 Chen (C9NR07272A-(cit10)/*[position()=1]) 2016; 52 Jin (C9NR07272A-(cit15)/*[position()=1]) 2016; 18 Liu (C9NR07272A-(cit54)/*[position()=1]) 2019; 6 Chen (C9NR07272A-(cit90)/*[position()=1]) 2019; 58 Kacprzak (C9NR07272A-(cit25)/*[position()=1]) 2009; 11 Aikens (C9NR07272A-(cit6)/*[position()=1]) 2008; 112 Grubb (C9NR07272A-(cit1)/*[position()=1]) 1963; 198 Liu (C9NR07272A-(cit55)/*[position()=1]) 2018; 10 Xiang (C9NR07272A-(cit16)/*[position()=1]) 2015; 7 Wang (C9NR07272A-(cit39)/*[position()=1]) 2015; 137 Munir (C9NR07272A-(cit52)/*[position()=1]) 2019; 12 Sakthivel (C9NR07272A-(cit33)/*[position()=1]) 2018; 51 Joshi (C9NR07272A-(cit12)/*[position()=1]) 2015; 137 Yang (C9NR07272A-(cit79)/*[position()=1]) 2018; 6 Fujishima (C9NR07272A-(cit2)/*[position()=1]) 1972; 238 Wu (C9NR07272A-(cit91)/*[position()=1]) 2019; 1 Li (C9NR07272A-(cit37)/*[position()=1]) 2017; 7 Mao (C9NR07272A-(cit80)/*[position()=1]) 2018; 10 Wu (C9NR07272A-(cit96)/*[position()=1]) 2010; 10 Zheng (C9NR07272A-(cit78)/*[position()=1]) 2019; 306 Negishi (C9NR07272A-(cit40)/*[position()=1]) 2010; 46 AbdulHalim (C9NR07272A-(cit50)/*[position()=1]) 2016; 55 AbdulHalim (C9NR07272A-(cit13)/*[position()=1]) 2013; 1 Nguyen (C9NR07272A-(cit17)/*[position()=1]) 2015; 3 Zhu (C9NR07272A-(cit26)/*[position()=1]) 2008; 112 Liu (C9NR07272A-(cit34)/*[position()=1]) 2015; 54 Sumner (C9NR07272A-(cit69)/*[position()=1]) 2018; 122 Kwak (C9NR07272A-(cit56)/*[position()=1]) 2017; 8 Zhou (C9NR07272A-(cit35)/*[position()=1]) 2017; 121 Agrachev (C9NR07272A-(cit27)/*[position()=1]) 2019; 52 Guidez (C9NR07272A-(cit41)/*[position()=1]) 2012; 116 Narouz (C9NR07272A-(cit99)/*[position()=1]) 2019; 11 Wang (C9NR07272A-(cit93)/*[position()=1]) 2015; 48 Zhao (C9NR07272A-(cit62)/*[position()=1]) 2018; 8 Pi (C9NR07272A-(cit61)/*[position()=1]) 2017; 27 Senanayake (C9NR07272A-(cit98)/*[position()=1]) 2018; 122 Andolina (C9NR07272A-(cit45)/*[position()=1]) 2013; 135 Wang (C9NR07272A-(cit72)/*[position()=1]) 2018; 57 Higaki (C9NR07272A-(cit53)/*[position()=1]) 2019; 58 Zhao (C9NR07272A-(cit86)/*[position()=1]) 2017; 13 Antonello (C9NR07272A-(cit23)/*[position()=1]) 2012; 4 Yu (C9NR07272A-(cit5)/*[position()=1]) 2013; 4 Jin (C9NR07272A-(cit74)/*[position()=1]) 2017; 9 Antonello (C9NR07272A-(cit24)/*[position()=1]) 2013; 135 Liu (C9NR07272A-(cit20)/*[position()=1]) 2016; 8 Zhu (C9NR07272A-(cit18)/*[position()=1]) 2018; 6 Yang (C9NR07272A-(cit14)/*[position()=1]) 2013; 4 Yin (C9NR07272A-(cit60)/*[position()=1]) 2013; 1 Chen (C9NR07272A-(cit70)/*[position()=1]) 2009; 48 Crawford (C9NR07272A-(cit44)/*[position()=1]) 2019; 52 Cao (C9NR07272A-(cit95)/*[position()=1]) 2018; 9 Khatun (C9NR07272A-(cit92)/*[position()=1]) 2019; 13 Shin (C9NR07272A-(cit66)/*[position()=1]) 2017; 1120 Guo (C9NR07272A-(cit46)/*[position()=1]) 2005; 127 Pezzato (C9NR07272A-(cit8)/*[position()=1]) 2015; 51 Liu (C9NR07272A-(cit82)/*[position()=1]) 2017; 29 Kwon (C9NR07272A-(cit71)/*[position()=1]) 2013; 7 Green (C9NR07272A-(cit29)/*[position()=1]) 2012; 4 Rawat (C9NR07272A-(cit65)/*[position()=1]) 2017; 349 Kauffman (C9NR07272A-(cit73)/*[position()=1]) 2014; 5 Yin (C9NR07272A-(cit76)/*[position()=1]) 2012; 6 Venzo (C9NR07272A-(cit22)/*[position()=1]) 2011; 83 Gorlin (C9NR07272A-(cit85)/*[position()=1]) 2014; 136 Yuan (C9NR07272A-(cit49)/*[position()=1]) 2016; 52 Yao (C9NR07272A-(cit94)/*[position()=1]) 2018; 51 Kwak (C9NR07272A-(cit68)/*[position()=1]) 2018; 6 Chen (C9NR07272A-(cit4)/*[position()=1]) 2019; 6 Hu (C9NR07272A-(cit58)/*[position()=1]) 2018; 6 Chen (C9NR07272A-(cit21)/*[position()=1]) 2017; 75 Zhou (C9NR07272A-(cit36)/*[position()=1]) 2019; 364 Yao (C9NR07272A-(cit89)/*[position()=1]) 2018; 30 Desireddy (C9NR07272A-(cit11)/*[position()=1]) 2013; 501 Tang (C9NR07272A-(cit63)/*[position()=1]) 2017; 139 Ye (C9NR07272A-(cit77)/*[position()=1]) 2017; 9 Tiwari (C9NR07272A-(cit81)/*[position()=1]) 2013; 4 Liu (C9NR07272A-(cit7)/*[position()=1]) 2018; 118 Kawasaki (C9NR07272A-(cit28)/*[position()=1]) 2014; 26 Jin (C9NR07272A-(cit32)/*[position()=1]) 2015; 7 Zhao (C9NR07272A-(cit88)/*[position()=1]) 2017; 139 Kwak (C9NR07272A-(cit51)/*[position()=1]) 2019; 52 Jung (C9NR07272A-(cit47)/*[position()=1]) 2012; 4 Choi (C9NR07272A-(cit59)/*[position()=1]) 2018; 10 Jadzinsky (C9NR07272A-(cit9)/*[position()=1]) 2007; 318 Tlahuice-Flores (C9NR07272A-(cit48)/*[position()=1]) 2013; 117 Stamplecoskie (C9NR07272A-(cit31)/*[position()=1]) 2014; 136 Kauffman (C9NR07272A-(cit75)/*[position()=1]) 2012; 134 Zhou (C9NR07272A-(cit97)/*[position()=1]) 2017; 114 Aikens (C9NR07272A-(cit42)/*[position()=1]) 2018; 51 Han (C9NR07272A-(cit19)/*[position()=1]) 2016; 82 Weng (C9NR07272A-(cit67)/*[position()=1]) 2018; 9 Nguyen (C9NR07272A-(cit64)/*[position()=1]) 2015; 137 Zhou (C9NR07272A-(cit84)/*[position()=1]) 2016; 120 Hartmann (C9NR07272A-(cit43)/*[position()=1]) 2015; 119 Zhang (C9NR07272A-(cit87)/*[position()=1]) 2017; 5 Negishi (C9NR07272A-(cit30)/*[position()=1]) 2007; 129 |
References_xml | – volume: 48 start-page: 4386 year: 2009 ident: C9NR07272A-(cit70)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200901185 – volume: 11 start-page: 7123 year: 2009 ident: C9NR07272A-(cit25)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b904491d – volume: 136 start-page: 11093 year: 2014 ident: C9NR07272A-(cit31)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja505361n – volume: 5 start-page: 3151 year: 2014 ident: C9NR07272A-(cit73)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/c4sc00997e – volume: 95 start-page: 69 issue: 1 year: 1995 ident: C9NR07272A-(cit3)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr00033a004 – volume: 139 start-page: 1077 year: 2017 ident: C9NR07272A-(cit88)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12529 – volume: 48 start-page: 1570 year: 2015 ident: C9NR07272A-(cit93)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00007 – volume: 198 start-page: 883 year: 1963 ident: C9NR07272A-(cit1)/*[position()=1] publication-title: Nature doi: 10.1038/198883b0 – volume: 1 start-page: 237 year: 2019 ident: C9NR07272A-(cit91)/*[position()=1] publication-title: ACS Mater. Lett. doi: 10.1021/acsmaterialslett.9b00136 – volume: 82 start-page: 1067 year: 2016 ident: C9NR07272A-(cit19)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b09987 – volume: 10 start-page: 2568 year: 2010 ident: C9NR07272A-(cit96)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl101225f – volume: 4 start-page: 4206 year: 2012 ident: C9NR07272A-(cit47)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c2nr30501a – volume: 8 start-page: 10145 year: 2016 ident: C9NR07272A-(cit20)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C6NR01702A – volume: 119 start-page: 8290 year: 2015 ident: C9NR07272A-(cit43)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp5125475 – volume: 122 start-page: 16380 issue: 28 year: 2018 ident: C9NR07272A-(cit98)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b03595 – volume: 9 start-page: 19183 year: 2017 ident: C9NR07272A-(cit74)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C7NR05871C – volume: 4 start-page: 2422 year: 2013 ident: C9NR07272A-(cit14)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms3422 – volume: 4 start-page: 2847 issue: 17 year: 2013 ident: C9NR07272A-(cit5)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz401447w – volume: 7 start-page: 3368 year: 2017 ident: C9NR07272A-(cit37)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.7b00239 – volume: 57 start-page: 5848 year: 2018 ident: C9NR07272A-(cit72)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201801467 – volume: 51 start-page: 9922 year: 2015 ident: C9NR07272A-(cit8)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C5CC00814J – volume: 136 start-page: 4920 year: 2014 ident: C9NR07272A-(cit85)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja407581w – volume: 55 start-page: 922 year: 2016 ident: C9NR07272A-(cit38)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201509381 – volume: 8 start-page: 14723 year: 2017 ident: C9NR07272A-(cit56)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms14723 – volume: 30 start-page: 1802751 year: 2018 ident: C9NR07272A-(cit89)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201802751 – volume: 112 start-page: 19797 year: 2008 ident: C9NR07272A-(cit6)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp8090914 – volume: 6 start-page: 2332 year: 2019 ident: C9NR07272A-(cit4)/*[position()=1] publication-title: Environ. Sci.: Nano – volume: 9 start-page: 415 year: 2018 ident: C9NR07272A-(cit67)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-02819-7 – volume: 51 start-page: 1338 year: 2018 ident: C9NR07272A-(cit94)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00065 – volume: 8 start-page: 4996 year: 2018 ident: C9NR07272A-(cit62)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.8b00365 – volume: 75 start-page: 3632 year: 2017 ident: C9NR07272A-(cit21)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.6b03509 – volume: 134 start-page: 10237 year: 2012 ident: C9NR07272A-(cit75)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja303259q – volume: 51 start-page: 3065 year: 2018 ident: C9NR07272A-(cit42)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00364 – volume: 129 start-page: 11322 year: 2007 ident: C9NR07272A-(cit30)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja073580+ – volume: 55 start-page: 11522 year: 2016 ident: C9NR07272A-(cit50)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.6b02067 – volume: 7 start-page: 18278 year: 2015 ident: C9NR07272A-(cit16)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C5NR05131B – volume: 1 start-page: 9157 year: 2013 ident: C9NR07272A-(cit60)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/c3ta11592e – volume: 10 start-page: 141 year: 2018 ident: C9NR07272A-(cit80)/*[position()=1] publication-title: ChemCatChem doi: 10.1002/cctc.201700895 – volume: 12 start-page: 1517 year: 2019 ident: C9NR07272A-(cit52)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201802069 – volume: 7 start-page: 2831 year: 2019 ident: C9NR07272A-(cit83)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA10789K – volume: 137 start-page: 11578 year: 2015 ident: C9NR07272A-(cit12)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b07088 – volume: 318 start-page: 430 year: 2007 ident: C9NR07272A-(cit9)/*[position()=1] publication-title: Science doi: 10.1126/science.1148624 – volume: 501 start-page: 399 year: 2013 ident: C9NR07272A-(cit11)/*[position()=1] publication-title: Nature doi: 10.1038/nature12523 – volume: 120 start-page: 29348 year: 2016 ident: C9NR07272A-(cit84)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b11102 – volume: 9 start-page: 2379 year: 2018 ident: C9NR07272A-(cit95)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-04837-x – volume: 27 start-page: 1700886 year: 2017 ident: C9NR07272A-(cit61)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201700886 – volume: 58 start-page: 8291 year: 2019 ident: C9NR07272A-(cit53)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201814156 – volume: 83 start-page: 6355 year: 2011 ident: C9NR07272A-(cit22)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac2012653 – volume: 238 start-page: 37 year: 1972 ident: C9NR07272A-(cit2)/*[position()=1] publication-title: Nature doi: 10.1038/238037a0 – volume: 52 start-page: 695 year: 2019 ident: C9NR07272A-(cit44)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00573 – volume: 6 start-page: 7532 year: 2018 ident: C9NR07272A-(cit58)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA00461G – volume: 6 start-page: 13859 year: 2018 ident: C9NR07272A-(cit79)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA03249A – volume: 121 start-page: 10686 year: 2017 ident: C9NR07272A-(cit35)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b10360 – volume: 137 start-page: 4018 year: 2015 ident: C9NR07272A-(cit39)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja511635g – volume: 26 start-page: 2777 year: 2014 ident: C9NR07272A-(cit28)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm500260z – volume: 1 start-page: 10148 year: 2013 ident: C9NR07272A-(cit13)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/c3ta11785e – volume: 58 start-page: 2 year: 2019 ident: C9NR07272A-(cit90)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201813331 – volume: 6 start-page: 1801829 year: 2019 ident: C9NR07272A-(cit54)/*[position()=1] publication-title: Adv. Sci. doi: 10.1002/advs.201801829 – volume: 10 start-page: 44645 year: 2018 ident: C9NR07272A-(cit59)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b16178 – volume: 54 start-page: 9826 year: 2015 ident: C9NR07272A-(cit34)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201502667 – volume: 112 start-page: 14221 year: 2008 ident: C9NR07272A-(cit26)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp805786p – volume: 4 start-page: 5333 year: 2012 ident: C9NR07272A-(cit23)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c2nr31066j – volume: 52 start-page: 5234 year: 2016 ident: C9NR07272A-(cit49)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C6CC00857G – volume: 349 start-page: 118 year: 2017 ident: C9NR07272A-(cit65)/*[position()=1] publication-title: J. Catal. doi: 10.1016/j.jcat.2017.03.011 – volume: 114 start-page: E4697 issue: 24 year: 2017 ident: C9NR07272A-(cit97)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1704699114 – volume: 52 start-page: 44 year: 2019 ident: C9NR07272A-(cit27)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00495 – volume: 122 start-page: 24809 year: 2018 ident: C9NR07272A-(cit69)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b07962 – volume: 7 start-page: 1549 year: 2015 ident: C9NR07272A-(cit32)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C4NR05794E – volume: 51 start-page: 1774 year: 2018 ident: C9NR07272A-(cit33)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00150 – volume: 6 start-page: 1102 year: 2018 ident: C9NR07272A-(cit18)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA09443D – volume: 4 start-page: 2221 year: 2013 ident: C9NR07272A-(cit81)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms3221 – volume: 29 start-page: 1606200 year: 2017 ident: C9NR07272A-(cit82)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201606200 – volume: 52 start-page: 9522 year: 2016 ident: C9NR07272A-(cit10)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C6CC04433F – volume: 6 start-page: 8288 year: 2012 ident: C9NR07272A-(cit76)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn302984x – volume: 117 start-page: 20867 year: 2013 ident: C9NR07272A-(cit48)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp407150t – volume: 13 start-page: 1701519 year: 2017 ident: C9NR07272A-(cit86)/*[position()=1] publication-title: Small doi: 10.1002/smll.201701519 – volume: 127 start-page: 12140 year: 2005 ident: C9NR07272A-(cit46)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja053119m – volume: 116 start-page: 20617 year: 2012 ident: C9NR07272A-(cit41)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp306885u – volume: 118 start-page: 4981 year: 2018 ident: C9NR07272A-(cit7)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00776 – volume: 9 start-page: 3785 year: 2017 ident: C9NR07272A-(cit77)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b15725 – volume: 3 start-page: 18345 year: 2015 ident: C9NR07272A-(cit17)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA04326C – volume: 18 start-page: 3996 year: 2016 ident: C9NR07272A-(cit15)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/C5CE02494C – volume: 5 start-page: 4122 year: 2017 ident: C9NR07272A-(cit87)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA10385E – volume: 135 start-page: 5266 year: 2013 ident: C9NR07272A-(cit45)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja400569u – volume: 135 start-page: 15585 year: 2013 ident: C9NR07272A-(cit24)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja407887d – volume: 6 start-page: 19495 year: 2018 ident: C9NR07272A-(cit68)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA06306K – volume: 52 start-page: 12 year: 2019 ident: C9NR07272A-(cit51)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00379 – volume: 7 start-page: 5808 year: 2013 ident: C9NR07272A-(cit71)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn400772s – volume: 13 start-page: 5753 year: 2019 ident: C9NR07272A-(cit92)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.9b01189 – volume: 364 start-page: 279 year: 2019 ident: C9NR07272A-(cit36)/*[position()=1] publication-title: Science doi: 10.1126/science.aaw9545 – volume: 11 start-page: 1232 year: 2018 ident: C9NR07272A-(cit57)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00402A – volume: 306 start-page: 627 year: 2019 ident: C9NR07272A-(cit78)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.03.175 – volume: 4 start-page: 4111 year: 2012 ident: C9NR07272A-(cit29)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c2nr31080e – volume: 46 start-page: 4713 year: 2010 ident: C9NR07272A-(cit40)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c0cc01021a – volume: 10 start-page: 3699 year: 2018 ident: C9NR07272A-(cit55)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b18671 – volume: 11 start-page: 419 year: 2019 ident: C9NR07272A-(cit99)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/s41557-019-0246-5 – volume: 139 start-page: 9728 year: 2017 ident: C9NR07272A-(cit63)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05591 – volume: 137 start-page: 13319 year: 2015 ident: C9NR07272A-(cit64)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b07574 – volume: 1120 start-page: 84 year: 2017 ident: C9NR07272A-(cit66)/*[position()=1] publication-title: Comput. Theor. Chem. doi: 10.1016/j.comptc.2017.10.001 |
SSID | ssj0069363 |
Score | 2.525675 |
SecondaryResourceType | review_article |
Snippet | In view of many of the fundamental properties of ultrasmall noble metal nanoclusters progressively being uncovered, it has become increasingly clear that this... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2437 |
SubjectTerms | Electrocatalysts Nanoclusters Noble metals Optical properties Photocatalysis |
Title | Engineering ultrasmall metal nanoclusters for photocatalytic and electrocatalytic applications |
URI | https://www.proquest.com/docview/2312483290 https://www.proquest.com/docview/2309809354 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe67QUe0PiYKAxkBC-oykjsNKkfS7UxldFJKBV9IrJdV63WJVWbPLC_nrt8ujAh4CVqXNepfL_47nx3PxPyTgbaSE9zx2gfHBQZCkeAZe8waUCbIaEaw9rhL5PgcuqPZ_1Zp2NnLeWZOtN399aV_I9UoQ3kilWy_yDZZlBogM8gX7iChOH6VzK2yAR7-Trbyt0tRppvDVY4JjJJ9TpHIoSCc6G3WaZZWmzX_KhZWqtDcKxGK55t262wCKc7EGcDg-sdxmd6Y6TKyiXmDizlqsnuWeVF0GO5WjY_GFVlIBHg8abtOivjI2No3dRatNqE8ARW47F2E6Lc6qjzTIs8kuq0unY5Y5i7yHnJWX5m7LZwfz32LNz53F5dkYjJUtVwX9J0_qYHXI40qlokWxcjzZa2qyP8k-v4Ynp1FUfns-iAHDHwMmCZPBp-_vjpW63KA8GLo_iav17z23LxoR1736Jp3ZSDbX2GTGGrRMfkUeVk0GGJmMekY5In5KGFlqfku3VHW-zQAjvUxg4F7NB97FDADv0VO9TGzjMyvTiPRpdOddaGo3nfyxzFjAZjkDHFQyVDo7Dm2eXg_ks-n4MRqMJAD3yYBE8rz5WhZK4KwbfAhN5F6PETcpikiXlO6CCQC-XOF9IY5SvOlJhrsHMH2vTlQi9kl7yv5yvWFRE9noeyjouECC7ikZh8LeZ22CVvm76bkn7l3l6n9bTH1eu5i8FxYT7oK-F2yZvma0AlRsRkYtIc-7higKkAfpecgLiaZ7TSffHnsV-SB-37cEoOs21uXoGZmqnXFZh-Ah_vma4 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+ultrasmall+metal+nanoclusters+for+photocatalytic+and+electrocatalytic+applications&rft.jtitle=Nanoscale&rft.au=Osburg+Jin+Huang+Chai&rft.au=Liu%2C+Zhihe&rft.au=Chen%2C+Tiankai&rft.au=Xie%2C+Jianping&rft.date=2019-11-21&rft.pub=Royal+Society+of+Chemistry&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=11&rft.issue=43&rft.spage=20437&rft.epage=20448&rft_id=info:doi/10.1039%2Fc9nr07272a&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |