Safety Issues in Lithium Ion Batteries: Materials and Cell Design

As the most widely used energy storage device in consumer electronic and electric vehicle fields, lithium ion battery (LIB) is closely related to our daily lives, on which its safety is of paramount importance. LIB is a typical multidisciplinary product. A tiny single cell is composed of both organi...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in energy research Vol. 7
Main Authors Wu, Xiangkun, Song, Kaifang, Zhang, Xiaoyan, Hu, Naifang, Li, Liyuan, Li, Wenjie, Zhang, Lan, Zhang, Haitao
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 17.07.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As the most widely used energy storage device in consumer electronic and electric vehicle fields, lithium ion battery (LIB) is closely related to our daily lives, on which its safety is of paramount importance. LIB is a typical multidisciplinary product. A tiny single cell is composed of both organic and inorganic materials in multi scale. In addition, its relatively closure property made it difficult to be studied on line, let alone in the battery pack or system level. Safety, often manifested by stability on abuse, including mechanical, electrical, and thermal abuses, is a quite complicated issue of LIB. Safety has to be guaranteed in large scale application. Here, safety issues related to key materials and cell design techniques will be reviewed. Key materials, including cathode, anode, electrolyte, and separator, are the fundamental of the battery. Cell design and fabrication techniques also have significant influence on the cell's electrochemical and safety performances. Here, we will summarize the thermal runaway process in single cell level, and some recent advances on battery materials and cell design.
AbstractList As the most widely used energy storage device in consumer electronic and electric vehicle fields, lithium ion battery (LIB) is closely related to our daily lives, on which its safety is of paramount importance. LIB is a typical multidisciplinary product. A tiny single cell is composed of both organic and inorganic materials in multi scale. In addition, its relatively closure property made it difficult to be studied on line, let alone in the battery pack or system level. Safety, often manifested by stability on abuse, including mechanical, electrical, and thermal abuses, is a quite complicated issue of LIB. Safety has to be guaranteed in large scale application. Here, safety issues related to key materials and cell design techniques will be reviewed. Key materials, including cathode, anode, electrolyte, and separator, are the fundamental of the battery. Cell design and fabrication techniques also have significant influence on the cell's electrochemical and safety performances. Here, we will summarize the thermal runaway process in single cell level, and some recent advances on battery materials and cell design.
Author Wu, Xiangkun
Song, Kaifang
Zhang, Lan
Li, Wenjie
Hu, Naifang
Zhang, Haitao
Li, Liyuan
Zhang, Xiaoyan
Author_xml – sequence: 1
  givenname: Xiangkun
  surname: Wu
  fullname: Wu, Xiangkun
– sequence: 2
  givenname: Kaifang
  surname: Song
  fullname: Song, Kaifang
– sequence: 3
  givenname: Xiaoyan
  surname: Zhang
  fullname: Zhang, Xiaoyan
– sequence: 4
  givenname: Naifang
  surname: Hu
  fullname: Hu, Naifang
– sequence: 5
  givenname: Liyuan
  surname: Li
  fullname: Li, Liyuan
– sequence: 6
  givenname: Wenjie
  surname: Li
  fullname: Li, Wenjie
– sequence: 7
  givenname: Lan
  surname: Zhang
  fullname: Zhang, Lan
– sequence: 8
  givenname: Haitao
  surname: Zhang
  fullname: Zhang, Haitao
BookMark eNp1kD1PwzAURS1UJErpzug_kGI7jmOzlfIVqYgBkNisF8curtIE2e7Qf0_aIoSQmN7V1btnOOdo1PWdReiSklmeS3XlbBdWM0aomhFCRHGCxowpkRVKvo9-5TM0jXE9vNCcFZySMZq_gLNph6sYtzZi3-GlTx9-u8FV3-EbSMkGb-M1foJ9gjZi6Bq8sG2Lb230q-4CnbqhttPvO0Fv93evi8ds-fxQLebLzOQFTRk0hteES1nbxjBXSGo5CCsME84RRY0iigCltSGglKulpVwIXpQ5rQVzKp-g6shteljrz-A3EHa6B68PRR9WGkLyprXaKVfy3NTOGs5LMJBz2RDJSudKKCUdWOTIMqGPMVj3w6NE743qg1G9N6oPRoeJ-DMxPkHyfZcC-Pb_4Rd64n28
CitedBy_id crossref_primary_10_1016_j_apsusc_2024_159824
crossref_primary_10_1016_j_egyr_2023_12_067
crossref_primary_10_1016_j_jclepro_2024_142468
crossref_primary_10_1016_j_jpowsour_2020_228898
crossref_primary_10_1016_j_ceramint_2021_01_047
crossref_primary_10_1016_j_rechem_2023_101041
crossref_primary_10_1039_D2NA00695B
crossref_primary_10_3390_en13010031
crossref_primary_10_3390_en16186525
crossref_primary_10_1002_cplu_202300767
crossref_primary_10_1021_acsenergylett_1c00514
crossref_primary_10_1007_s11708_023_0900_x
crossref_primary_10_1016_j_jpowsour_2024_235590
crossref_primary_10_1016_j_rechem_2023_101048
crossref_primary_10_1088_1742_6596_2798_1_012011
crossref_primary_10_1016_j_jiec_2024_01_065
crossref_primary_10_1149_1945_7111_ac15b7
crossref_primary_10_3390_batteries11010006
crossref_primary_10_1039_D1CP00593F
crossref_primary_10_1002_ente_202100982
crossref_primary_10_1007_s40684_023_00541_4
crossref_primary_10_1016_j_enss_2024_11_005
crossref_primary_10_1007_s41918_024_00233_w
crossref_primary_10_1002_cjoc_202000386
crossref_primary_10_1016_j_est_2022_105906
crossref_primary_10_1149_1945_7111_abe3a1
crossref_primary_10_1149_1945_7111_aba96e
crossref_primary_10_1039_D1TA10896D
crossref_primary_10_1002_bte2_20240022
crossref_primary_10_1016_j_apsusc_2023_158467
crossref_primary_10_1039_D2CP03022E
crossref_primary_10_1002_aenm_202000974
crossref_primary_10_1016_j_mtener_2021_100838
crossref_primary_10_3390_app11167592
crossref_primary_10_1016_j_xcrp_2023_101331
crossref_primary_10_1149_1945_7111_ab9941
crossref_primary_10_1142_S1793604723400167
crossref_primary_10_1002_adfm_202305284
crossref_primary_10_1039_D3TA02549G
crossref_primary_10_3390_en15030847
crossref_primary_10_1021_acsami_1c24468
crossref_primary_10_1021_acsami_1c20787
crossref_primary_10_1038_s41467_023_35933_2
crossref_primary_10_1007_s10669_023_09941_y
crossref_primary_10_1016_j_jpowsour_2021_230189
crossref_primary_10_1149_2_0691916jes
crossref_primary_10_3390_polym14245538
crossref_primary_10_1002_cssc_202002916
crossref_primary_10_1016_j_molliq_2022_119758
crossref_primary_10_1021_acsami_9b20030
crossref_primary_10_1016_j_jpowsour_2020_228250
crossref_primary_10_3389_fenrg_2024_1508980
crossref_primary_10_1016_j_ensm_2023_02_040
crossref_primary_10_1021_acssuschemeng_1c03179
crossref_primary_10_1021_acs_energyfuels_4c02728
crossref_primary_10_1021_acs_jpclett_3c01453
crossref_primary_10_1149_1945_7111_ac4e11
crossref_primary_10_3390_batteries10100340
crossref_primary_10_1038_s41467_021_24404_1
crossref_primary_10_1016_j_jallcom_2022_165117
crossref_primary_10_1016_j_mtsust_2022_100188
crossref_primary_10_1016_j_jiec_2025_02_059
crossref_primary_10_1016_j_cej_2024_152181
crossref_primary_10_1016_j_jcis_2020_10_044
crossref_primary_10_2174_2352096516666230901140600
crossref_primary_10_1016_j_electacta_2023_142850
crossref_primary_10_1002_bkcs_12593
crossref_primary_10_1016_j_apsusc_2022_153138
crossref_primary_10_1002_inf2_12190
crossref_primary_10_1021_acsaem_2c02885
crossref_primary_10_3390_en17174402
crossref_primary_10_1149_1945_7111_ab9406
crossref_primary_10_1007_s10800_024_02142_8
crossref_primary_10_3390_ma14226783
crossref_primary_10_1016_j_asems_2022_100037
crossref_primary_10_1002_batt_202400631
crossref_primary_10_1016_j_electacta_2022_141754
crossref_primary_10_3389_felec_2022_866527
crossref_primary_10_1021_acs_jpcb_2c04391
crossref_primary_10_1007_s10008_021_04974_2
crossref_primary_10_1007_s11431_020_1562_3
crossref_primary_10_1149_1945_7111_ac60f3
crossref_primary_10_1016_j_est_2023_106688
crossref_primary_10_1016_j_est_2023_107139
crossref_primary_10_1016_j_est_2021_103413
crossref_primary_10_1016_j_est_2021_103534
crossref_primary_10_1016_j_mtchem_2021_100632
crossref_primary_10_1021_acs_nanolett_2c03545
crossref_primary_10_1039_D3DT02883F
crossref_primary_10_3390_en15010011
crossref_primary_10_3390_en14196100
crossref_primary_10_1016_j_mtchem_2022_101293
crossref_primary_10_1016_j_mtsust_2023_100443
crossref_primary_10_1016_j_ceramint_2022_01_121
crossref_primary_10_3390_batteries10060183
crossref_primary_10_1002_advs_202003694
crossref_primary_10_1021_acsapm_4c03379
crossref_primary_10_1149_1945_7111_abf0d8
crossref_primary_10_1002_cphc_202400983
crossref_primary_10_1360_SSC_2024_0011
crossref_primary_10_3390_electronics9010152
crossref_primary_10_1002_bte2_20230030
crossref_primary_10_1016_j_jallcom_2025_179596
crossref_primary_10_1016_j_polymer_2021_123466
crossref_primary_10_1016_j_jpowsour_2020_228566
crossref_primary_10_1016_j_matchemphys_2023_128179
crossref_primary_10_1016_j_materresbull_2023_112588
crossref_primary_10_1016_j_mattod_2021_11_020
crossref_primary_10_1088_1757_899X_1146_1_012027
crossref_primary_10_1002_slct_202204759
crossref_primary_10_1021_acsenergylett_4c00033
crossref_primary_10_1002_smtd_202301398
crossref_primary_10_12677_japc_2024_134064
crossref_primary_10_3390_en13061429
crossref_primary_10_1002_aenm_202102972
crossref_primary_10_20964_2022_05_42
crossref_primary_10_1016_j_est_2022_105959
crossref_primary_10_1016_j_resconrec_2021_105741
crossref_primary_10_3390_en15093323
crossref_primary_10_1002_batt_202200223
crossref_primary_10_1038_s41578_021_00345_5
crossref_primary_10_1039_D4EB00024B
crossref_primary_10_3390_en16134845
crossref_primary_10_1016_j_est_2024_112818
crossref_primary_10_1088_1361_6528_ad690b
crossref_primary_10_1016_j_jpowsour_2024_234287
crossref_primary_10_1002_adsu_201900113
crossref_primary_10_3389_fenrg_2021_754317
crossref_primary_10_1021_acs_chemmater_2c01976
crossref_primary_10_1007_s11814_022_1260_7
crossref_primary_10_1016_j_electacta_2024_144599
crossref_primary_10_1109_MPEL_2021_3075756
crossref_primary_10_3390_polym16223176
crossref_primary_10_1039_D0GC02745F
crossref_primary_10_1016_j_ssi_2021_115590
crossref_primary_10_1557_jmr_2019_393
crossref_primary_10_1002_aenm_202203256
crossref_primary_10_1016_j_inoche_2023_111742
crossref_primary_10_3390_batteries10030076
crossref_primary_10_1016_j_jpowsour_2021_230593
crossref_primary_10_1063_5_0066268
crossref_primary_10_3390_en14185980
crossref_primary_10_1016_j_enss_2022_07_002
crossref_primary_10_1016_j_mrl_2023_11_002
crossref_primary_10_3389_fenrg_2019_00168
crossref_primary_10_1016_j_energy_2023_128027
crossref_primary_10_1088_2515_7655_acf958
crossref_primary_10_3390_ijms21134689
crossref_primary_10_1016_j_est_2023_108950
crossref_primary_10_3390_batteries9050275
crossref_primary_10_1039_D3NJ05936G
crossref_primary_10_3390_en13020462
crossref_primary_10_1016_j_jechem_2022_10_025
crossref_primary_10_1016_j_matchemphys_2022_127286
crossref_primary_10_1021_acs_energyfuels_3c02548
crossref_primary_10_3390_electrochem1020011
crossref_primary_10_3389_fenrg_2022_928250
crossref_primary_10_1002_bkcs_12687
crossref_primary_10_3390_ijms21093113
crossref_primary_10_3389_fenrg_2023_1266653
crossref_primary_10_1016_j_carbon_2022_02_011
crossref_primary_10_1016_j_jpowsour_2024_235599
crossref_primary_10_1007_s11581_023_05131_7
crossref_primary_10_1016_j_egyr_2024_06_007
crossref_primary_10_1016_j_gee_2020_09_012
crossref_primary_10_1039_D3QM01171B
crossref_primary_10_1007_s41918_023_00198_2
crossref_primary_10_1016_j_jechem_2024_05_020
Cites_doi 10.1039/c6ta10210g
10.1063/1.4973585
10.1016/j.cej.2017.07.106
10.1016/j.nanoen.2018.10.035
10.1016/j.jpowsour.2017.07.009
10.1016/j.nanoen.2018.09.066
10.1016/j.electacta.2014.03.106
10.1039/c6ee00123h
10.1002/adma.201703028
10.1021/am4024884
10.1016/j.jpowsour.2010.05.040
10.1149/2.0351701jes
10.1002/aenm.201802398
10.1126/sciadv.1601978
10.1038/424635b
10.1016/j.elecom.2018.10.007
10.1016/j.jpowsour.2013.10.076
10.1016/j.joule.2018.01.017
10.1016/j.jpowsour.2017.03.004
10.1021/Cr020738u
10.1149/1.3023084
10.1021/I300013a021
10.1016/j.electacta.2015.07.003
10.1039/c2jm15677f
10.1039/c5ta05657h
10.1002/adma.201801993
10.1016/j.jpowsour.2010.08.003
10.1016/j.ensm.2017.05.013
10.1016/j.electacta.2014.12.005
10.1002/aenm.201301278
10.1038/nmat2418
10.1016/j.jpowsour.2018.09.037
10.1038/ncomms6193
10.1016/j.ensm.2018.04.016
10.1002/smll.201400003
10.1039/c6sm01683a
10.1016/j.est.2015.12.007
10.1016/j.jpowsour.2018.06.043
10.1016/j.est.2018.04.029
10.1016/j.jiec.2018.10.012
10.1016/j.jpowsour.2015.10.043
10.1038/ncomms2513
10.1021/acsami.7b05535
10.1016/j.jpowsour.2014.03.032
10.1016/j.electacta.2013.10.104
10.1007/s10008-007-0449-3
10.1016/j.jpowsour.2009.10.090
10.1016/j.joule.2018.02.020
10.1039/c7ta08703a
10.1016/j.electacta.2015.02.247
10.1016/j.eml.2016.03.013
10.1016/j.cplett.2014.11.018
10.1016/j.ijheatmasstransfer.2019.01.125
10.1016/j.electacta.2014.05.136
10.5796/electrochemistry.84.574
10.1126/sciadv.aas9820
10.1016/j.jpowsour.2016.04.052
10.1016/j.jpowsour.2007.04.018
10.1016/j.electacta.2016.12.126
10.1002/smll.201702737
10.1039/c9ta01876j
10.1016/j.jpowsour.2014.01.005
10.1021/nl502429m
10.1016/j.apenergy.2019.04.009
10.1016/j.jpowsour.2017.09.086
10.1002/adfm.201808825
10.1149/2.0161711jes
10.1007/s11581-018-2502-x
10.5012/bkcs.2011.32.1.145
10.1016/j.apenergy.2018.06.126
10.1016/j.jpowsour.2018.02.063
10.1016/j.jpowsour.2018.08.043
10.1016/j.electacta.2018.03.038
10.1016/j.jpowsour.2016.12.007
10.1016/j.electacta.2013.03.171
10.1021/acs.nanolett.6b02156
10.1016/j.jpowsour.2018.11.053
10.1016/j.est.2018.01.006
10.1038/nmat5029
10.1016/j.joule.2018.06.015
10.1002/adma.201204055
10.1149/2.0191411jes
10.1016/j.elecom.2017.02.008
10.1016/j.jpowsour.2007.06.149
10.1016/j.jpowsour.2012.11.018
10.1149/2.0961712jes
10.5796/electrochemistry.85.559
10.1016/j.jpowsour.2018.12.021
10.1021/ie203066x
10.1016/j.jpowsour.2016.07.039
10.1149/2.0801607jes
10.1021/acs.chemmater.8b03272
10.1016/j.jpowsour.2014.09.171
10.1021/acsnano.7b08489
10.1038/s41560-019-0338-x
10.1021/acs.nanolett.8b04906
10.1038/s41560-017-0033-8
10.1021/jacs.8b13798
10.1149/1.1394088
10.1039/c3ra45748f
10.1021/ja412807w
10.1016/0378-7753(94)02165-Y
10.1039/C7TA04354F
10.1016/j.jpowsour.2015.06.087
10.1016/j.electacta.2017.09.111
10.1016/j.jpowsour.2016.03.049
10.1021/acsenergylett.7b00511
10.1039/c7ee00385d
10.1021/ma901631x
10.1016/j.jpowsour.2013.12.132
10.1016/j.est.2015.12.008
10.1021/acs.nanolett.6b04766
10.1149/2.1021713jes
10.1016/j.jpowsour.2015.10.105
10.1002/aenm.201100683
10.1039/c4ee01432d
10.1016/j.electacta.2018.08.075
10.1016/j.jpowsour.2015.10.086
10.1016/j.jpowsour.2011.11.068
10.1021/nl304558t
10.1038/srep02485
10.1016/j.jpowsour.2013.01.063
10.1002/adfm.201200534
10.1016/j.applthermaleng.2018.06.075
10.1016/j.jpowsour.2018.05.073
10.1002/aenm.201601417
10.1021/acsami.7b19441
10.1002/adma.201802661
10.1021/acs.jpcc.7b08433
10.1149/2.F03122if
10.1016/j.jpowsour.2017.06.031
10.3390/ijms150814868
10.1016/j.electacta.2017.07.032
10.1149/2.0311410jes
10.1039/C7TA11346C
10.1038/s41560-018-0196-y
10.1021/nn500278q
10.1021/cr300205k
10.1016/j.jallcom.2018.02.067
10.1016/j.memsci.2016.06.035
10.1021/am506712c
10.1002/aenm.201700715
10.1149/2.0951805jes
10.1016/j.jpowsour.2012.08.028
10.1016/j.jpowsour.2018.04.102
10.1016/j.est.2018.07.012
10.3390/batteries5010021
10.1016/j.apenergy.2015.04.118
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/fenrg.2019.00065
DatabaseName CrossRef
Open Access Journals (DOAJ)
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2296-598X
ExternalDocumentID oai_doaj_org_article_f9f743cbfec447aca348d0827ff7a781
10_3389_fenrg_2019_00065
GroupedDBID 5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
M~E
OK1
ID FETCH-LOGICAL-c351t-adc4b0488bedc2f581e4a6e6c26ff091c9090a11bc0a99fb8e146645731b62f93
IEDL.DBID DOA
ISSN 2296-598X
IngestDate Wed Aug 27 01:30:22 EDT 2025
Tue Jul 01 03:00:17 EDT 2025
Thu Apr 24 23:06:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-adc4b0488bedc2f581e4a6e6c26ff091c9090a11bc0a99fb8e146645731b62f93
OpenAccessLink https://doaj.org/article/f9f743cbfec447aca348d0827ff7a781
ParticipantIDs doaj_primary_oai_doaj_org_article_f9f743cbfec447aca348d0827ff7a781
crossref_primary_10_3389_fenrg_2019_00065
crossref_citationtrail_10_3389_fenrg_2019_00065
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-17
PublicationDateYYYYMMDD 2019-07-17
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-17
  day: 17
PublicationDecade 2010
PublicationTitle Frontiers in energy research
PublicationYear 2019
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Kuang (B66) 2018; 8
Wang (B128) 2016; 9
Yoo (B141) 2015; 176
Pröll (B107) 2014; 255
Kim (B61) 2017; 225
Xu (B135) 2019; 7
Mohanty (B97) 2016; 12
Ebner (B27) 2014; 4
Khakani (B57) 2016; 163
Golubkov (B41) 2014; 4
Feng (B33); 14
Li (B75) 2019; 141
Keyser (B56) 2017; 367
Ren (B108) 2018; 228
Abu-Lebdeh (B2) 2009; 156
Welna (B131) 2011; 196
Hammami (B43) 2003; 424
Waldmann (B119) 2018; 384
Liu (B83); 4
Sendek (B111) 2018; 31
Yang (B140) 2018; 395
Liu (B85); 269
Mai (B92) 2015; 273
Wang (B127); 334
Inoue (B46) 2017; 77
Jayaraman (B47) 2009; 42
Fritsch (B39) 2018; 16
Park (B102) 2019; 70
Kim (B59) 2007; 170
Ahmed (B3) 2018; 403
Zheng (B146) 2019; 412
Waldmann (B118) 2016; 5
Bae (B6) 2013; 25
Wang (B130) 2014; 10
Lee (B69); 7
Lin (B77); 30
Feng (B35); 10
Kim (B63) 2018; 24
Zeng (B143) 2018; 3
Cao (B13) 2013; 5
Rong (B109) 2014; 261
Parhizi (B100) 2017; 370
Yoon (B142) 2018; 6
Kirchhofer (B64) 2014; 15
Farag (B30) 2017; 360
Kasnatscheew (B55) 2017; 164
Bak (B8) 2014; 6
Arora (B5) 2004; 104
Park (B105) 2014; 248
Cai (B11) 2017; 5
Liu (B81); 400
Baginska (B7) 2012; 2
Zhao (B144) 2016; 16
Wang (B123); 2018
Wu (B134) 2012; 22
Chen (B14); 164
Schipper (B110) 2016; 164
Park (B104) 2017; 247
Wu (B133) 2014; 5
Wang (B120); 12
Johnson (B53) 2018; 2
Ding (B24) 2013; 3
Feng (B36); 246
Kleiner (B65) 2016; 317
Lee (B70); 137
Noh (B98) 2013; 233
Appiah (B4) 2016; 319
Fan (B29) 2016; 84
Wang (B125); 349
Hassoun (B45) 2014; 14
Feng (B32) 2013; 114
Kim (B58) 2015; 155
Jezowski (B50) 2017; 17
Yang (B139) 2019; 29
Gao (B40) 2019; 135
Kafle (B54) 2018; 392
Wang (B129); 55
Li (B76); 744
Maleki (B93) 2000; 147
Wu (B132) 2013; 227
Cho (B20) 2013; 13
Dagger (B22) 2017; 342
Li (B74); 290
Lin (B78); 54
Yamada (B137) 2017; 85
Feng (B37) 2014; 255
Liu (B82); 3
Wang (B122); 254
Dahbi (B23) 2012; 51
Liu (B87); 29
Sun (B115) 2009; 8
Feng (B31); 5
Haregewoin (B44) 2016; 9
Liu (B79); 6
Zuo (B148) 2014; 130
Chen (B17); 306
Lu (B89) 2017; 17
Song (B114) 2016; 302
Mei (B96) 2018; 142
Doughty (B26) 2012; 21
Ma (B91) 2016; 327
Dagger (B21) 2018; 396
Yamada (B138) 2014; 136
Feng (B34) 2015; 154
Chen (B15) 2007; 174
Park (B103) 2015; 3
Bhatt (B10) 2015; 618
Liu (B84); 164
Jeong (B48) 2014; 8
Larsson (B68) 2014; 161
Jin (B52) 2017; 7
Liu (B86); 2
Cheng (B19) 2019; 413
Finegan (B38) 2017; 10
Cannarella (B12) 2014; 161
Jeong (B49) 2012; 22
Mangang (B94) 2016; 304
Lalia (B67) 2010; 195
Kim (B60) 2013; 113
Ouyang (B99) 2015; 294
Guo (B42) 2010; 195
Suo (B116) 2013; 4
Dong (B25) 2018; 2
Shi (B113) 2016; 517
Veith (B117) 2017; 2
Mao (B95) 2018; 97
Li (B73); 165
Xue (B136) 1995; 55
Belov (B9) 2007; 12
Liu (B88) 2013; 221
Wang (B126); 121
Zhu (B147) 2015; 165
Eshetu (B28) 2013; 102
Shen (B112) 2018; 10
Liu (B80) 2019; 4
Lewerenz (B71) 2018; 18
Chen (B18); 5
Jiang (B51) 2017; 9
Lhomme (B72) 1984; 23
Parimalam (B101) 2017; 121
Ma (B90) 2018; 14
Park (B106) 2011; 32
Kim (B62) 2016; 6
Abe (B1) 2018; 19
Chen (B16); 5
Zhao (B145) 2012; 203
Wang (B121); 19
Wang (B124); 3
References_xml – volume: 5
  start-page: 5142
  ident: B18
  article-title: Vinyltriethoxysilane as an electrolyte additive to improve the safety of lithium-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c6ta10210g
– volume: 121
  start-page: 015303
  ident: B126
  article-title: Sigmoidal current collector for lithium-ion battery
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4973585
– volume: 334
  start-page: 162
  ident: B127
  article-title: One dimensional and coaxial polyaniline@tin dioxide@multi-wall carbon nanotube as advanced conductive additive free anode for lithium ion battery
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.07.106
– volume: 55
  start-page: 93
  ident: B129
  article-title: Progress of enhancing the safety of lithium ion battery from the electrolyte aspect
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.10.035
– volume: 367
  start-page: 228
  year: 2017
  ident: B56
  article-title: Enabling fast charging–Battery thermal considerations
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2017.07.009
– volume: 54
  start-page: 313
  ident: B78
  article-title: A new insight into continuous performance decay mechanism of Ni-rich layered oxide cathode for high energy lithium ion batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.09.066
– volume: 130
  start-page: 778
  year: 2014
  ident: B148
  article-title: Improvement of the thermal stability of LiMn2O4/graphite cells with methylene methanedisulfonate as electrolyte additive
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.03.106
– volume: 9
  start-page: 1955
  year: 2016
  ident: B44
  article-title: Electrolyte additives for lithium ion battery electrodes: progress and perspectives
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c6ee00123h
– volume: 29
  start-page: 44
  ident: B87
  article-title: An all-integrated anode via interlinked chemical bonding between double-shelled-yolk-structured silicon and binder for lithium-ion batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703028
– volume: 5
  start-page: 11494
  year: 2013
  ident: B13
  article-title: Novel phosphamide additive to improve thermal stability of solid electrolyte interphase on graphite anode in lithium-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am4024884
– volume: 195
  start-page: 7426
  year: 2010
  ident: B67
  article-title: A mixture of triethylphosphate and ethylene carbonate as a safe additive for ionic liquid-based electrolytes of lithium ion batteries
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2010.05.040
– volume: 164
  start-page: A6220
  year: 2016
  ident: B110
  article-title: Review—recent advances and remaining challenges for lithium ion battery cathodes
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0351701jes
– volume: 8
  start-page: 1802398
  year: 2018
  ident: B66
  article-title: Conductive cellulose nanofiber enabled thick electrode for compact and flexible energy storage devices
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802398
– volume: 3
  start-page: e1601978
  ident: B82
  article-title: Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1601978
– volume: 424
  start-page: 635
  year: 2003
  ident: B43
  article-title: Lithium-ion batteries: runaway risk of forming toxic compounds
  publication-title: Nature
  doi: 10.1038/424635b
– volume: 97
  start-page: 37
  year: 2018
  ident: B95
  article-title: Identifying the limiting electrode in lithium ion batteries for extreme fast charging
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2018.10.007
– volume: 248
  start-page: 1191
  year: 2014
  ident: B105
  article-title: Effect of polymeric binder type on the thermal stability and tolerance to roll-pressing of spherical natural graphite anodes for Li-ion batteries
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2013.10.076
– volume: 2
  start-page: 902
  year: 2018
  ident: B25
  article-title: Organic batteries operated at −70°C
  publication-title: Joule
  doi: 10.1016/j.joule.2018.01.017
– volume: 349
  start-page: 84
  ident: B125
  article-title: Internal-short-mitigating current collector for lithium-ion battery
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2017.03.004
– volume: 104
  start-page: 4419
  year: 2004
  ident: B5
  article-title: Battery separators
  publication-title: Chem. Rev.
  doi: 10.1021/Cr020738u
– volume: 156
  start-page: A60
  year: 2009
  ident: B2
  article-title: High-voltage electrolytes based on adiponitrile for Li-ion batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3023084
– volume: 23
  start-page: 98
  year: 1984
  ident: B72
  article-title: Thermal-behavior of some organic-phosphates
  publication-title: Ind. Eng. Chem. Prod. Rd.
  doi: 10.1021/I300013a021
– volume: 176
  start-page: 301
  year: 2015
  ident: B141
  article-title: Electrochemical model for ionic liquid electrolytes in lithium batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.07.003
– volume: 22
  start-page: 7999
  year: 2012
  ident: B49
  article-title: Multifunctional TiO2 coating for a SiO anode in Li-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c2jm15677f
– volume: 3
  start-page: 22183
  year: 2015
  ident: B103
  article-title: A high-capacity Li[Ni0.8Co0.06Mn0.14]O2 positive electrode with a dual concentration gradient for next-generation lithium-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c5ta05657h
– volume: 2018
  start-page: e1801993
  ident: B123
  article-title: Design of hollow nanostructures for energy storage, conversion and production
  publication-title: Adv Mater
  doi: 10.1002/adma.201801993
– volume: 196
  start-page: 1455
  year: 2011
  ident: B131
  article-title: Vertically aligned carbon nanotube electrodes for lithium-ion batteries
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2010.08.003
– volume: 10
  start-page: 246
  ident: B35
  article-title: Thermal runaway mechanism of lithium ion battery for electric vehicles: a review
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2017.05.013
– volume: 155
  start-page: 431
  year: 2015
  ident: B58
  article-title: Effects of capacity ratios between anode and cathode on electrochemical properties for lithium polymer batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.12.005
– volume: 4
  start-page: 1301278
  year: 2014
  ident: B27
  article-title: Tortuosity anisotropy in lithium-ion battery electrodes
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201301278
– volume: 8
  start-page: 320
  year: 2009
  ident: B115
  article-title: High-energy cathode material for long-life and safe lithium batteries
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2418
– volume: 403
  start-page: 56
  year: 2018
  ident: B3
  article-title: Cost of automotive lithium-ion batteries operating at high upper cutoff voltages
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2018.09.037
– volume: 5
  start-page: 5193
  year: 2014
  ident: B133
  article-title: Improving battery safety by early detection of internal shorting with a bifunctional separator
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6193
– volume: 14
  start-page: 258
  year: 2018
  ident: B90
  article-title: Nanoporous and lyophilic battery separator from regenerated eggshell membrane with effective suppression of dendritic lithium growth
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.04.016
– volume: 10
  start-page: 2826
  year: 2014
  ident: B130
  article-title: Vertically aligned CNT-supported thick Ge films as high-performance 3D anodes for lithium ion batteries
  publication-title: Small
  doi: 10.1002/smll.201400003
– volume: 12
  start-page: 9705
  year: 2016
  ident: B97
  article-title: Dielectric spectroscopy of ionic microgel suspensions
  publication-title: Soft Matter
  doi: 10.1039/c6sm01683a
– volume: 5
  start-page: 163
  year: 2016
  ident: B118
  article-title: Influence of current collecting tab design on thermal and electrochemical performance of cylindrical Lithium-ion cells during high current discharge
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2015.12.007
– volume: 396
  start-page: 519
  year: 2018
  ident: B21
  article-title: Performance tuning of lithium ion battery cells with area-oversized graphite based negative electrodes
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2018.06.043
– volume: 18
  start-page: 149
  year: 2018
  ident: B71
  article-title: Irreversible calendar aging and quantification of the reversible capacity loss caused by anode overhang
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2018.04.029
– volume: 70
  start-page: 178
  year: 2019
  ident: B102
  article-title: Performance enhancement of Li-ion battery by laser structuring of thick electrode with low porosity
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2018.10.012
– volume: 302
  start-page: 22
  year: 2016
  ident: B114
  article-title: Exploiting chemically and electrochemically reactive phosphite derivatives for high-voltage spinel LiNi0.5Mn1.5O4 cathodes
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2015.10.043
– volume: 4
  start-page: 1481
  year: 2013
  ident: B116
  article-title: A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2513
– volume: 9
  start-page: 25970
  year: 2017
  ident: B51
  article-title: Novel ceramic-grafted separator with highly thermal stability for safe lithium-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b05535
– volume: 261
  start-page: 148
  year: 2014
  ident: B109
  article-title: Enhanced cyclability of LiNi0.5Mn1.5O4 cathode in carbonate based electrolyte with incorporation of tris(trimethylsilyl)phosphate (TMSP)
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2014.03.032
– volume: 114
  start-page: 688
  year: 2013
  ident: B32
  article-title: Understanding the interactions of phosphonate-based flame-retarding additives with graphitic anode for lithium ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.10.104
– volume: 12
  start-page: 885
  year: 2007
  ident: B9
  article-title: Failure mechanism of Li-ion battery at overcharge conditions
  publication-title: J. Solid State Electr.
  doi: 10.1007/s10008-007-0449-3
– volume: 195
  start-page: 2393
  year: 2010
  ident: B42
  article-title: Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2009.10.090
– volume: 2
  start-page: 373
  year: 2018
  ident: B53
  article-title: Charging up lithium-ion battery cathodes
  publication-title: Joule
  doi: 10.1016/j.joule.2018.02.020
– volume: 6
  start-page: 65
  ident: B79
  article-title: Deterioration mechanism of LiNi0.8Co0.15Al0.05O2/graphite-SiOx power batteries under high temperature and discharge cycling conditions
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c7ta08703a
– volume: 165
  start-page: 67
  year: 2015
  ident: B147
  article-title: Bis(2,2,2-Trifluoroethyl) ethylphosphonate as novel high-efficient flame retardant additive for safer lithium-ion battery
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.02.247
– volume: 9
  start-page: 459
  year: 2016
  ident: B128
  article-title: Real-time monitoring of internal temperature evolution of the lithium-ion coin cell battery during the charge and discharge process
  publication-title: Extreme Mech. Lett.
  doi: 10.1016/j.eml.2016.03.013
– volume: 618
  start-page: 208
  year: 2015
  ident: B10
  article-title: Solid electrolyte interphases at Li-ion battery graphitic anodes in propylene carbonate (PC)-based electrolytes containing FEC, LiBOB, and LiDFOB as additives
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2014.11.018
– volume: 135
  start-page: 93
  year: 2019
  ident: B40
  article-title: An experimental and analytical study of thermal runaway propagation in a large format lithium ion battery module with NCM pouch-cells in parallel
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2019.01.125
– volume: 137
  start-page: 1
  ident: B70
  article-title: A bi-functional lithium difluoro(oxalato)borate additive for lithium cobalt oxide/lithium nickel manganese cobalt oxide cathodes and silicon/graphite anodes in lithium-ion batteries at elevated temperatures
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.05.136
– volume: 84
  start-page: 574
  year: 2016
  ident: B29
  article-title: Electrochemical properties and thermal stability of silicon monoxide anode for rechargeable lithium-ion batteries
  publication-title: Electrochemistry
  doi: 10.5796/electrochemistry.84.574
– volume: 4
  start-page: eaas9820
  ident: B83
  article-title: Materials for lithium-ion battery safety
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aas9820
– volume: 319
  start-page: 147
  year: 2016
  ident: B4
  article-title: Design optimization of LiNi0.6Co0.2Mn0.2O2/graphite lithium-ion cells based on simulation and experimental data
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2016.04.052
– volume: 170
  start-page: 476
  year: 2007
  ident: B59
  article-title: A three-dimensional thermal abuse model for lithium-ion cells
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2007.04.018
– volume: 225
  start-page: 358
  year: 2017
  ident: B61
  article-title: Understanding the thermal instability of fluoroethylene carbonate in LiPF6-based electrolytes for lithium ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.12.126
– volume: 14
  start-page: 1702737
  ident: B33
  article-title: Silicon-based anodes for lithium-ion batteries: from fundamentals to practical applications
  publication-title: Small
  doi: 10.1002/smll.201702737
– volume: 7
  start-page: 9432
  year: 2019
  ident: B135
  article-title: Electrolytes for advanced lithium ion batteries using silicon-based anodes
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c9ta01876j
– volume: 255
  start-page: 294
  year: 2014
  ident: B37
  article-title: Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2014.01.005
– volume: 14
  start-page: 4901
  year: 2014
  ident: B45
  article-title: An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode
  publication-title: Nano Lett.
  doi: 10.1021/nl502429m
– volume: 246
  start-page: 53
  ident: B36
  article-title: Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database
  publication-title: App. Energ.
  doi: 10.1016/j.apenergy.2019.04.009
– volume: 370
  start-page: 27
  year: 2017
  ident: B100
  article-title: Determination of the core temperature of a Li-ion cell during thermal runaway
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2017.09.086
– volume: 29
  start-page: 13
  year: 2019
  ident: B139
  article-title: Simultaneously dual modification of Ni-rich layered oxide cathode for high-energy lithium-ion batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201808825
– volume: 164
  start-page: E3146
  ident: B14
  article-title: Probing the role of electrode microstructure in the lithium-ion battery thermal behavior
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0161711jes
– volume: 24
  start-page: 2935
  year: 2018
  ident: B63
  article-title: Improving Li-ion battery charge rate acceptance through highly ordered hierarchical electrode design
  publication-title: Ionics
  doi: 10.1007/s11581-018-2502-x
– volume: 32
  start-page: 145
  year: 2011
  ident: B106
  article-title: Thermal stability of lithiated silicon anodes with electrolyte
  publication-title: B. Korean Chem. Soc.
  doi: 10.5012/bkcs.2011.32.1.145
– volume: 228
  start-page: 633
  year: 2018
  ident: B108
  article-title: Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components
  publication-title: App. Energ.
  doi: 10.1016/j.apenergy.2018.06.126
– volume: 384
  start-page: 107
  year: 2018
  ident: B119
  article-title: Li plating as unwanted side reaction in commercial Li-ion cells – A review
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2018.02.063
– volume: 400
  start-page: 502
  ident: B81
  article-title: Highly safe lithium-ion batteries: high strength separator from polyformaldehyde/cellulose nanofibers blend
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2018.08.043
– volume: 269
  start-page: 422
  ident: B85
  article-title: Analysis of the relationship between vertical imparity distribution of conductive additive and electrochemical behaviors in lithium ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.03.038
– volume: 342
  start-page: 266
  year: 2017
  ident: B22
  article-title: Electrochemical performance evaluations and safety investigations of pentafluoro(phenoxy)cyclotriphosphazene as a flame retardant electrolyte additive for application in lithium ion battery systems using a newly designed apparatus for improved self-extinguishing time measurements
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2016.12.007
– volume: 102
  start-page: 133
  year: 2013
  ident: B28
  article-title: LiFSI vs. LiPF6 electrolytes in contact with lithiated graphite: comparing thermal stabilities and identification of specific SEI-reinforcing additives
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.03.171
– volume: 16
  start-page: 4686
  year: 2016
  ident: B144
  article-title: A convenient and versatile method to control the electrode microstructure toward high-energy lithium-ion batteries
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b02156
– volume: 412
  start-page: 336
  year: 2019
  ident: B146
  article-title: Correlation between long range and local structural changes in Ni-rich layered materials during charge and discharge process
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2018.11.053
– volume: 16
  start-page: 125
  year: 2018
  ident: B39
  article-title: 3D-cathode design with foam-like aluminum current collector for high energy density lithium-ion batteries
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2018.01.006
– volume: 17
  start-page: 167
  year: 2017
  ident: B50
  article-title: Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt
  publication-title: Nat. Mater.
  doi: 10.1038/nmat5029
– volume: 2
  start-page: 2047
  ident: B86
  article-title: Thermal runaway of lithium-ion batteries without internal short circuit
  publication-title: Joule
  doi: 10.1016/j.joule.2018.06.015
– volume: 25
  start-page: 1254
  year: 2013
  ident: B6
  article-title: Design of battery electrodes with dual-scale porosity to minimize tortuosity and maximize performance
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201204055
– volume: 161
  start-page: F3117
  year: 2014
  ident: B12
  article-title: Mechanical properties of a battery separator under compression and tension
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0191411jes
– volume: 77
  start-page: 28
  year: 2017
  ident: B46
  article-title: Roles of positive or negative electrodes in the thermal runaway of lithium-ion batteries: accelerating rate calorimetry analyses with an all-inclusive microcell
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2017.02.008
– volume: 174
  start-page: 538
  year: 2007
  ident: B15
  article-title: Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2007.06.149
– volume: 227
  start-page: 106
  year: 2013
  ident: B132
  article-title: An electrochemically compatible and flame-retardant electrolyte additive for safe lithium ion batteries
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2012.11.018
– volume: 164
  start-page: A2479
  year: 2017
  ident: B55
  article-title: A tutorial into practical capacity and mass balancing of lithium ion batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0961712jes
– volume: 85
  start-page: 559
  year: 2017
  ident: B137
  article-title: Developing new functionalities of superconcentrated electrolytes for lithium-ion batteries
  publication-title: Electrochemistry
  doi: 10.5796/electrochemistry.85.559
– volume: 413
  start-page: 59
  year: 2019
  ident: B19
  article-title: Micro-scale graded electrodes for improved dynamic and cycling performance of Li-ion batteries
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2018.12.021
– volume: 51
  start-page: 5240
  year: 2012
  ident: B23
  article-title: Interfacial properties of LiTFSI and LiPF6-based electrolytes in binary and ternary mixtures of alkylcarbonates on graphite electrodes and celgard separator
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie203066x
– volume: 327
  start-page: 145
  year: 2016
  ident: B91
  article-title: A systematic study on the reactivity of different grades of charged Li[NixMnyCoz]O2 with electrolyte at elevated temperatures using accelerating rate calorimetry
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2016.07.039
– volume: 163
  start-page: A1311
  year: 2016
  ident: B57
  article-title: ARC study of LiFePO4 with different morphologies prepared via three synthetic routes
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0801607jes
– volume: 31
  start-page: 342
  year: 2018
  ident: B111
  article-title: Machine learning-assisted discovery of solid li-ion conducting materials
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b03272
– volume: 273
  start-page: 816
  year: 2015
  ident: B92
  article-title: Improving cyclic stability of lithium nickel manganese oxide cathode at elevated temperature by using dimethyl phenylphosphonite as electrolyte additive
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2014.09.171
– volume: 12
  start-page: 1739
  ident: B120
  article-title: Folding graphene film yields high areal energy storage in lithium-ion batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b08489
– volume: 4
  start-page: 180
  year: 2019
  ident: B80
  article-title: Pathways for practical high-energy long-cycling lithium metal batteries
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0338-x
– volume: 19
  start-page: 1326
  ident: B121
  article-title: Wrinkled graphene cages as hosts for high-capacity li metal anodes shown by cryogenic electron microscopy
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.8b04906
– volume: 3
  start-page: 22
  ident: B124
  article-title: Fire-extinguishing organic electrolytes for safe batteries
  publication-title: Nat. Energy
  doi: 10.1038/s41560-017-0033-8
– volume: 141
  start-page: 5097
  year: 2019
  ident: B75
  article-title: Collapse of LiNi1−−x−−yCoxMnyO2 lattice at deep charge irrespective of nickel content in lithium-ion batteries
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b13798
– volume: 147
  start-page: 4470
  year: 2000
  ident: B93
  article-title: Thermal stability studies of binder materials in anodes for lithium-ion batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1394088
– volume: 4
  start-page: 3633
  year: 2014
  ident: B41
  article-title: Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes
  publication-title: RSC Adv.
  doi: 10.1039/c3ra45748f
– volume: 136
  start-page: 5039
  year: 2014
  ident: B138
  article-title: Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja412807w
– volume: 55
  start-page: 111
  year: 1995
  ident: B136
  article-title: Effect of cathode anode mass-ratio in lithium-ion secondary cells
  publication-title: J. Power Sourc.
  doi: 10.1016/0378-7753(94)02165-Y
– volume: 5
  start-page: 15423
  year: 2017
  ident: B11
  article-title: Graphene and graphene-based composites as Li-ion battery electrode materials and their application in full cells
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA04354F
– volume: 294
  start-page: 272
  year: 2015
  ident: B99
  article-title: Internal short circuit detection for battery pack using equivalent parameter and consistency method
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2015.06.087
– volume: 254
  start-page: 112
  ident: B122
  article-title: Alternative multifunctional cyclic organosilicon as an efficient electrolyte additive for high performance lithium-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.09.111
– volume: 317
  start-page: 25
  year: 2016
  ident: B65
  article-title: Changes of the balancing between anode and cathode due to fatigue in commercial lithium-ion cells
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2016.03.049
– volume: 2
  start-page: 2084
  year: 2017
  ident: B117
  article-title: Shear thickening electrolytes for high impact resistant batteries
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00511
– volume: 10
  start-page: 1377
  year: 2017
  ident: B38
  article-title: Characterising thermal runaway within lithium-ion cells by inducing and monitoring internal short circuits
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c7ee00385d
– volume: 42
  start-page: 8423
  year: 2009
  ident: B47
  article-title: Effective interactions and self-assembly of hybrid polymer grafted nanoparticles in a homopolymer matrix
  publication-title: Macromolecules
  doi: 10.1021/ma901631x
– volume: 255
  start-page: 116
  year: 2014
  ident: B107
  article-title: Laser-printing and femtosecond-laser structuring of LiMn2O4 composite cathodes for Li-ion microbatteries
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2013.12.132
– volume: 5
  start-page: 156
  ident: B16
  article-title: Improvement of lithium-ion battery performance using a two-layered cathode by simultaneous slot-die coating
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2015.12.008
– volume: 17
  start-page: 1602
  year: 2017
  ident: B89
  article-title: Formation of reversible solid electrolyte interface on graphite surface from concentrated electrolytes
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04766
– volume: 164
  start-page: A3163
  ident: B84
  article-title: Experimental and simulation investigations of porosity graded cathodes in mitigating battery degradation of high voltage lithium-ion batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1021713jes
– volume: 306
  start-page: 70
  ident: B17
  article-title: An investigation of functionalized electrolyte using succinonitrile additive for high voltage lithium-ion batteries
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2015.10.105
– volume: 2
  start-page: 583
  year: 2012
  ident: B7
  article-title: Autonomic shutdown of lithium-ion batteries using thermoresponsive microspheres
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201100683
– volume: 7
  start-page: 3857
  ident: B69
  article-title: A review of recent developments in membrane separators for rechargeable lithium-ion batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c4ee01432d
– volume: 290
  start-page: 150
  ident: B74
  article-title: Effects of an electrospun fluorinated poly(ether ether ketone) separator on the enhanced safety and electrochemical properties of lithium ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.08.075
– volume: 304
  start-page: 24
  year: 2016
  ident: B94
  article-title: Influence of laser pulse duration on the electrochemical performance of laser structured LiFePO4 composite electrodes
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2015.10.086
– volume: 203
  start-page: 78
  year: 2012
  ident: B145
  article-title: Thermal stability of silicon negative electrode for Li-ion batteries
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2011.11.068
– volume: 13
  start-page: 1145
  year: 2013
  ident: B20
  article-title: A new type of protective surface layer for high-capacity Ni-based cathode materials: nanoscaled surface pillaring layer
  publication-title: Nano Lett.
  doi: 10.1021/nl304558t
– volume: 3
  start-page: 2485
  year: 2013
  ident: B24
  article-title: Smart multifunctional fluids for lithium ion batteries: enhanced rate performance and intrinsic mechanical protection
  publication-title: Sci. Rep.
  doi: 10.1038/srep02485
– volume: 233
  start-page: 121
  year: 2013
  ident: B98
  article-title: Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2013.01.063
– volume: 22
  start-page: 3290
  year: 2012
  ident: B134
  article-title: A LiF nanoparticle-modified graphene electrode for high-power and high-energy lithium ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/adfm.201200534
– volume: 142
  start-page: 148
  year: 2018
  ident: B96
  article-title: Numerical study on tab dimension optimization of lithium-ion battery from the thermal safety perspective
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.06.075
– volume: 395
  start-page: 251
  year: 2018
  ident: B140
  article-title: A look into the voltage plateau signal for detection and quantification of lithium plating in lithium-ion cells
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2018.05.073
– volume: 6
  start-page: 22
  year: 2016
  ident: B62
  article-title: Compositionally graded cathode material with long-term cycling stability for electric vehicles application
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601417
– volume: 10
  start-page: 9424
  year: 2018
  ident: B112
  article-title: Shear thickening electrolyte built from sterically stabilized colloidal particles
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b19441
– volume: 30
  start-page: e1802661
  ident: B77
  article-title: A silica-aerogel-reinforced composite polymer electrolyte with high ionic conductivity and high modulus
  publication-title: Adv. Mater
  doi: 10.1002/adma.201802661
– volume: 121
  start-page: 22733
  year: 2017
  ident: B101
  article-title: Decomposition reactions of anode solid electrolyte interphase (SEI) components with LiPF6
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b08433
– volume: 21
  start-page: 37
  year: 2012
  ident: B26
  article-title: A general discussion of li ion battery safety
  publication-title: Electrochem. Soc. Interface
  doi: 10.1149/2.F03122if
– volume: 360
  start-page: 618
  year: 2017
  ident: B30
  article-title: Combined electrochemical, heat generation, and thermal model for large prismatic lithium-ion batteries in real-time applications
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2017.06.031
– volume: 15
  start-page: 14868
  year: 2014
  ident: B64
  article-title: Separators for Li-ion and Li-metal battery including ionic liquid based electrolytes based on the TFSI- and FSI- anions
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms150814868
– volume: 247
  start-page: 371
  year: 2017
  ident: B104
  article-title: Robust free-standing electrodes for flexible lithium-ion batteries prepared by a conventional electrode fabrication process
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.07.032
– volume: 161
  start-page: A1611
  year: 2014
  ident: B68
  article-title: Abuse by external heating, overcharge and short circuiting of commercial lithium-ion battery cells
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0311410jes
– volume: 6
  start-page: 4126
  year: 2018
  ident: B142
  article-title: Extracting maximum capacity from Ni-rich Li[Ni0.95Co0.025Mn0.025]O2 cathodes for high-energy-density lithium-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA11346C
– volume: 3
  start-page: 674
  year: 2018
  ident: B143
  article-title: Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0196-y
– volume: 8
  start-page: 2977
  year: 2014
  ident: B48
  article-title: Core–shell structured silicon nanoparticles@TiO2−−x/carbon mesoporous microfiber composite as a safe and high-performance lithium-ion battery anode
  publication-title: ACS Nano
  doi: 10.1021/nn500278q
– volume: 113
  start-page: 2075
  year: 2013
  ident: B60
  article-title: Liquid metal batteries: past, present, and future
  publication-title: Chem. Rev.
  doi: 10.1021/cr300205k
– volume: 744
  start-page: 41
  ident: B76
  article-title: Multiply depolarized composite cathode of Li1.2Mn0.54Ni0.13Co0.13O2 embedded in a combinatory conductive network for lithium-ion battery with superior overall performances
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2018.02.067
– volume: 517
  start-page: 91
  year: 2016
  ident: B113
  article-title: A high-temperature stable ceramic-coated separator prepared with polyimide binder/Al2O3 particles for lithium-ion batteries
  publication-title: J. Membrane. Sci.
  doi: 10.1016/j.memsci.2016.06.035
– volume: 6
  start-page: 22594
  year: 2014
  ident: B8
  article-title: Structural changes and thermal stability of charged LiNixMnyCozO2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am506712c
– volume: 7
  start-page: 17
  year: 2017
  ident: B52
  article-title: Challenges and recent progress in the development of Si anodes for lithium-ion battery
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700715
– volume: 165
  start-page: A1038
  ident: B73
  article-title: Synthesis of single crystal LiNi0.6Mn0.2Co0.2O2with enhanced electrochemical performance for lithium ion batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0951805jes
– volume: 221
  start-page: 90
  year: 2013
  ident: B88
  article-title: Tris(trimethylsilyl) borate as an electrolyte additive to improve the cyclability of LiMn2O4 cathode for lithium-ion battery
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2012.08.028
– volume: 392
  start-page: 60
  year: 2018
  ident: B54
  article-title: Development of wide temperature electrolyte for graphite/ LiNiMnCoO2 Li-ion cells: high throughput screening
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2018.04.102
– volume: 19
  start-page: 96
  year: 2018
  ident: B1
  article-title: Effect of negative/positive capacity ratio on the rate and cycling performances of LiFePO4/graphite lithium-ion batteries
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2018.07.012
– volume: 5
  start-page: 21
  ident: B31
  article-title: Electrochemical performance of a lithium ion battery with different nanoporous current collectors
  publication-title: Batteries
  doi: 10.3390/batteries5010021
– volume: 154
  start-page: 74
  year: 2015
  ident: B34
  article-title: Thermal runaway propagation model for designing a safer battery pack with 25 Ah LiNixCoyMnzO2 large format lithium ion battery
  publication-title: App. Energ.
  doi: 10.1016/j.apenergy.2015.04.118
SSID ssj0001325410
Score 2.5204308
SecondaryResourceType review_article
Snippet As the most widely used energy storage device in consumer electronic and electric vehicle fields, lithium ion battery (LIB) is closely related to our daily...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
SubjectTerms abuse
internal short circuit
lithium ion battery
safety
thermal runaway
Title Safety Issues in Lithium Ion Batteries: Materials and Cell Design
URI https://doaj.org/article/f9f743cbfec447aca348d0827ff7a781
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sDCENVJ7CRmg0JVEGWiUjfLT6hU0gqlA_-esx2qTLCwRdE5cr6z8_ni83cIXRFZEZPJEiaSqxKqMpZwxjO4MpVXW89tOC42eSnGU_o0Y7NOqS-fExblgSNwA8cdkJxWzmpKS6llTisDvFU6V8oyHLrOgPM6wVT4u5JD4JOSuC8JURgfOHDHm0_l8vqUxHNJh4c6cv2BV0Z7aLddEOLb2JF9tGXrA7TTkQk8hE-fdLb5wrFSHp7X-HnevM_XH_hxWeOokAkB7w2eyCYOKCxrg4d2scD3IUPjCE1HD6_DcdKWPkh0ztImkUZT5SeXskZnjlWppbKwhc4K5-B1NSecyDRVmkjOnaps6nXiWZmnqsgcz49Rr17W9gRhC06Qxu9uWgU2ikMDiCmAuDjJqWZ9NPgBQuhWF9yXp1gIiA88dCJAJzx0IkDXR9ebFquoifGL7Z3HdmPn1azDDfCxaH0s_vLx6X885Axt-24lQRTzHPWaz7W9gAVFoy7D2PkGa_LH2Q
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Safety+Issues+in+Lithium+Ion+Batteries%3A+Materials+and+Cell+Design&rft.jtitle=Frontiers+in+energy+research&rft.au=Wu%2C+Xiangkun&rft.au=Song%2C+Kaifang&rft.au=Zhang%2C+Xiaoyan&rft.au=Hu%2C+Naifang&rft.date=2019-07-17&rft.issn=2296-598X&rft.eissn=2296-598X&rft.volume=7&rft_id=info:doi/10.3389%2Ffenrg.2019.00065&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fenrg_2019_00065
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-598X&client=summon