Safety Issues in Lithium Ion Batteries: Materials and Cell Design
As the most widely used energy storage device in consumer electronic and electric vehicle fields, lithium ion battery (LIB) is closely related to our daily lives, on which its safety is of paramount importance. LIB is a typical multidisciplinary product. A tiny single cell is composed of both organi...
Saved in:
Published in | Frontiers in energy research Vol. 7 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
17.07.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As the most widely used energy storage device in consumer electronic and electric vehicle fields, lithium ion battery (LIB) is closely related to our daily lives, on which its safety is of paramount importance. LIB is a typical multidisciplinary product. A tiny single cell is composed of both organic and inorganic materials in multi scale. In addition, its relatively closure property made it difficult to be studied on line, let alone in the battery pack or system level. Safety, often manifested by stability on abuse, including mechanical, electrical, and thermal abuses, is a quite complicated issue of LIB. Safety has to be guaranteed in large scale application. Here, safety issues related to key materials and cell design techniques will be reviewed. Key materials, including cathode, anode, electrolyte, and separator, are the fundamental of the battery. Cell design and fabrication techniques also have significant influence on the cell's electrochemical and safety performances. Here, we will summarize the thermal runaway process in single cell level, and some recent advances on battery materials and cell design. |
---|---|
AbstractList | As the most widely used energy storage device in consumer electronic and electric vehicle fields, lithium ion battery (LIB) is closely related to our daily lives, on which its safety is of paramount importance. LIB is a typical multidisciplinary product. A tiny single cell is composed of both organic and inorganic materials in multi scale. In addition, its relatively closure property made it difficult to be studied on line, let alone in the battery pack or system level. Safety, often manifested by stability on abuse, including mechanical, electrical, and thermal abuses, is a quite complicated issue of LIB. Safety has to be guaranteed in large scale application. Here, safety issues related to key materials and cell design techniques will be reviewed. Key materials, including cathode, anode, electrolyte, and separator, are the fundamental of the battery. Cell design and fabrication techniques also have significant influence on the cell's electrochemical and safety performances. Here, we will summarize the thermal runaway process in single cell level, and some recent advances on battery materials and cell design. |
Author | Wu, Xiangkun Song, Kaifang Zhang, Lan Li, Wenjie Hu, Naifang Zhang, Haitao Li, Liyuan Zhang, Xiaoyan |
Author_xml | – sequence: 1 givenname: Xiangkun surname: Wu fullname: Wu, Xiangkun – sequence: 2 givenname: Kaifang surname: Song fullname: Song, Kaifang – sequence: 3 givenname: Xiaoyan surname: Zhang fullname: Zhang, Xiaoyan – sequence: 4 givenname: Naifang surname: Hu fullname: Hu, Naifang – sequence: 5 givenname: Liyuan surname: Li fullname: Li, Liyuan – sequence: 6 givenname: Wenjie surname: Li fullname: Li, Wenjie – sequence: 7 givenname: Lan surname: Zhang fullname: Zhang, Lan – sequence: 8 givenname: Haitao surname: Zhang fullname: Zhang, Haitao |
BookMark | eNp1kD1PwzAURS1UJErpzug_kGI7jmOzlfIVqYgBkNisF8curtIE2e7Qf0_aIoSQmN7V1btnOOdo1PWdReiSklmeS3XlbBdWM0aomhFCRHGCxowpkRVKvo9-5TM0jXE9vNCcFZySMZq_gLNph6sYtzZi3-GlTx9-u8FV3-EbSMkGb-M1foJ9gjZi6Bq8sG2Lb230q-4CnbqhttPvO0Fv93evi8ds-fxQLebLzOQFTRk0hteES1nbxjBXSGo5CCsME84RRY0iigCltSGglKulpVwIXpQ5rQVzKp-g6shteljrz-A3EHa6B68PRR9WGkLyprXaKVfy3NTOGs5LMJBz2RDJSudKKCUdWOTIMqGPMVj3w6NE743qg1G9N6oPRoeJ-DMxPkHyfZcC-Pb_4Rd64n28 |
CitedBy_id | crossref_primary_10_1016_j_apsusc_2024_159824 crossref_primary_10_1016_j_egyr_2023_12_067 crossref_primary_10_1016_j_jclepro_2024_142468 crossref_primary_10_1016_j_jpowsour_2020_228898 crossref_primary_10_1016_j_ceramint_2021_01_047 crossref_primary_10_1016_j_rechem_2023_101041 crossref_primary_10_1039_D2NA00695B crossref_primary_10_3390_en13010031 crossref_primary_10_3390_en16186525 crossref_primary_10_1002_cplu_202300767 crossref_primary_10_1021_acsenergylett_1c00514 crossref_primary_10_1007_s11708_023_0900_x crossref_primary_10_1016_j_jpowsour_2024_235590 crossref_primary_10_1016_j_rechem_2023_101048 crossref_primary_10_1088_1742_6596_2798_1_012011 crossref_primary_10_1016_j_jiec_2024_01_065 crossref_primary_10_1149_1945_7111_ac15b7 crossref_primary_10_3390_batteries11010006 crossref_primary_10_1039_D1CP00593F crossref_primary_10_1002_ente_202100982 crossref_primary_10_1007_s40684_023_00541_4 crossref_primary_10_1016_j_enss_2024_11_005 crossref_primary_10_1007_s41918_024_00233_w crossref_primary_10_1002_cjoc_202000386 crossref_primary_10_1016_j_est_2022_105906 crossref_primary_10_1149_1945_7111_abe3a1 crossref_primary_10_1149_1945_7111_aba96e crossref_primary_10_1039_D1TA10896D crossref_primary_10_1002_bte2_20240022 crossref_primary_10_1016_j_apsusc_2023_158467 crossref_primary_10_1039_D2CP03022E crossref_primary_10_1002_aenm_202000974 crossref_primary_10_1016_j_mtener_2021_100838 crossref_primary_10_3390_app11167592 crossref_primary_10_1016_j_xcrp_2023_101331 crossref_primary_10_1149_1945_7111_ab9941 crossref_primary_10_1142_S1793604723400167 crossref_primary_10_1002_adfm_202305284 crossref_primary_10_1039_D3TA02549G crossref_primary_10_3390_en15030847 crossref_primary_10_1021_acsami_1c24468 crossref_primary_10_1021_acsami_1c20787 crossref_primary_10_1038_s41467_023_35933_2 crossref_primary_10_1007_s10669_023_09941_y crossref_primary_10_1016_j_jpowsour_2021_230189 crossref_primary_10_1149_2_0691916jes crossref_primary_10_3390_polym14245538 crossref_primary_10_1002_cssc_202002916 crossref_primary_10_1016_j_molliq_2022_119758 crossref_primary_10_1021_acsami_9b20030 crossref_primary_10_1016_j_jpowsour_2020_228250 crossref_primary_10_3389_fenrg_2024_1508980 crossref_primary_10_1016_j_ensm_2023_02_040 crossref_primary_10_1021_acssuschemeng_1c03179 crossref_primary_10_1021_acs_energyfuels_4c02728 crossref_primary_10_1021_acs_jpclett_3c01453 crossref_primary_10_1149_1945_7111_ac4e11 crossref_primary_10_3390_batteries10100340 crossref_primary_10_1038_s41467_021_24404_1 crossref_primary_10_1016_j_jallcom_2022_165117 crossref_primary_10_1016_j_mtsust_2022_100188 crossref_primary_10_1016_j_jiec_2025_02_059 crossref_primary_10_1016_j_cej_2024_152181 crossref_primary_10_1016_j_jcis_2020_10_044 crossref_primary_10_2174_2352096516666230901140600 crossref_primary_10_1016_j_electacta_2023_142850 crossref_primary_10_1002_bkcs_12593 crossref_primary_10_1016_j_apsusc_2022_153138 crossref_primary_10_1002_inf2_12190 crossref_primary_10_1021_acsaem_2c02885 crossref_primary_10_3390_en17174402 crossref_primary_10_1149_1945_7111_ab9406 crossref_primary_10_1007_s10800_024_02142_8 crossref_primary_10_3390_ma14226783 crossref_primary_10_1016_j_asems_2022_100037 crossref_primary_10_1002_batt_202400631 crossref_primary_10_1016_j_electacta_2022_141754 crossref_primary_10_3389_felec_2022_866527 crossref_primary_10_1021_acs_jpcb_2c04391 crossref_primary_10_1007_s10008_021_04974_2 crossref_primary_10_1007_s11431_020_1562_3 crossref_primary_10_1149_1945_7111_ac60f3 crossref_primary_10_1016_j_est_2023_106688 crossref_primary_10_1016_j_est_2023_107139 crossref_primary_10_1016_j_est_2021_103413 crossref_primary_10_1016_j_est_2021_103534 crossref_primary_10_1016_j_mtchem_2021_100632 crossref_primary_10_1021_acs_nanolett_2c03545 crossref_primary_10_1039_D3DT02883F crossref_primary_10_3390_en15010011 crossref_primary_10_3390_en14196100 crossref_primary_10_1016_j_mtchem_2022_101293 crossref_primary_10_1016_j_mtsust_2023_100443 crossref_primary_10_1016_j_ceramint_2022_01_121 crossref_primary_10_3390_batteries10060183 crossref_primary_10_1002_advs_202003694 crossref_primary_10_1021_acsapm_4c03379 crossref_primary_10_1149_1945_7111_abf0d8 crossref_primary_10_1002_cphc_202400983 crossref_primary_10_1360_SSC_2024_0011 crossref_primary_10_3390_electronics9010152 crossref_primary_10_1002_bte2_20230030 crossref_primary_10_1016_j_jallcom_2025_179596 crossref_primary_10_1016_j_polymer_2021_123466 crossref_primary_10_1016_j_jpowsour_2020_228566 crossref_primary_10_1016_j_matchemphys_2023_128179 crossref_primary_10_1016_j_materresbull_2023_112588 crossref_primary_10_1016_j_mattod_2021_11_020 crossref_primary_10_1088_1757_899X_1146_1_012027 crossref_primary_10_1002_slct_202204759 crossref_primary_10_1021_acsenergylett_4c00033 crossref_primary_10_1002_smtd_202301398 crossref_primary_10_12677_japc_2024_134064 crossref_primary_10_3390_en13061429 crossref_primary_10_1002_aenm_202102972 crossref_primary_10_20964_2022_05_42 crossref_primary_10_1016_j_est_2022_105959 crossref_primary_10_1016_j_resconrec_2021_105741 crossref_primary_10_3390_en15093323 crossref_primary_10_1002_batt_202200223 crossref_primary_10_1038_s41578_021_00345_5 crossref_primary_10_1039_D4EB00024B crossref_primary_10_3390_en16134845 crossref_primary_10_1016_j_est_2024_112818 crossref_primary_10_1088_1361_6528_ad690b crossref_primary_10_1016_j_jpowsour_2024_234287 crossref_primary_10_1002_adsu_201900113 crossref_primary_10_3389_fenrg_2021_754317 crossref_primary_10_1021_acs_chemmater_2c01976 crossref_primary_10_1007_s11814_022_1260_7 crossref_primary_10_1016_j_electacta_2024_144599 crossref_primary_10_1109_MPEL_2021_3075756 crossref_primary_10_3390_polym16223176 crossref_primary_10_1039_D0GC02745F crossref_primary_10_1016_j_ssi_2021_115590 crossref_primary_10_1557_jmr_2019_393 crossref_primary_10_1002_aenm_202203256 crossref_primary_10_1016_j_inoche_2023_111742 crossref_primary_10_3390_batteries10030076 crossref_primary_10_1016_j_jpowsour_2021_230593 crossref_primary_10_1063_5_0066268 crossref_primary_10_3390_en14185980 crossref_primary_10_1016_j_enss_2022_07_002 crossref_primary_10_1016_j_mrl_2023_11_002 crossref_primary_10_3389_fenrg_2019_00168 crossref_primary_10_1016_j_energy_2023_128027 crossref_primary_10_1088_2515_7655_acf958 crossref_primary_10_3390_ijms21134689 crossref_primary_10_1016_j_est_2023_108950 crossref_primary_10_3390_batteries9050275 crossref_primary_10_1039_D3NJ05936G crossref_primary_10_3390_en13020462 crossref_primary_10_1016_j_jechem_2022_10_025 crossref_primary_10_1016_j_matchemphys_2022_127286 crossref_primary_10_1021_acs_energyfuels_3c02548 crossref_primary_10_3390_electrochem1020011 crossref_primary_10_3389_fenrg_2022_928250 crossref_primary_10_1002_bkcs_12687 crossref_primary_10_3390_ijms21093113 crossref_primary_10_3389_fenrg_2023_1266653 crossref_primary_10_1016_j_carbon_2022_02_011 crossref_primary_10_1016_j_jpowsour_2024_235599 crossref_primary_10_1007_s11581_023_05131_7 crossref_primary_10_1016_j_egyr_2024_06_007 crossref_primary_10_1016_j_gee_2020_09_012 crossref_primary_10_1039_D3QM01171B crossref_primary_10_1007_s41918_023_00198_2 crossref_primary_10_1016_j_jechem_2024_05_020 |
Cites_doi | 10.1039/c6ta10210g 10.1063/1.4973585 10.1016/j.cej.2017.07.106 10.1016/j.nanoen.2018.10.035 10.1016/j.jpowsour.2017.07.009 10.1016/j.nanoen.2018.09.066 10.1016/j.electacta.2014.03.106 10.1039/c6ee00123h 10.1002/adma.201703028 10.1021/am4024884 10.1016/j.jpowsour.2010.05.040 10.1149/2.0351701jes 10.1002/aenm.201802398 10.1126/sciadv.1601978 10.1038/424635b 10.1016/j.elecom.2018.10.007 10.1016/j.jpowsour.2013.10.076 10.1016/j.joule.2018.01.017 10.1016/j.jpowsour.2017.03.004 10.1021/Cr020738u 10.1149/1.3023084 10.1021/I300013a021 10.1016/j.electacta.2015.07.003 10.1039/c2jm15677f 10.1039/c5ta05657h 10.1002/adma.201801993 10.1016/j.jpowsour.2010.08.003 10.1016/j.ensm.2017.05.013 10.1016/j.electacta.2014.12.005 10.1002/aenm.201301278 10.1038/nmat2418 10.1016/j.jpowsour.2018.09.037 10.1038/ncomms6193 10.1016/j.ensm.2018.04.016 10.1002/smll.201400003 10.1039/c6sm01683a 10.1016/j.est.2015.12.007 10.1016/j.jpowsour.2018.06.043 10.1016/j.est.2018.04.029 10.1016/j.jiec.2018.10.012 10.1016/j.jpowsour.2015.10.043 10.1038/ncomms2513 10.1021/acsami.7b05535 10.1016/j.jpowsour.2014.03.032 10.1016/j.electacta.2013.10.104 10.1007/s10008-007-0449-3 10.1016/j.jpowsour.2009.10.090 10.1016/j.joule.2018.02.020 10.1039/c7ta08703a 10.1016/j.electacta.2015.02.247 10.1016/j.eml.2016.03.013 10.1016/j.cplett.2014.11.018 10.1016/j.ijheatmasstransfer.2019.01.125 10.1016/j.electacta.2014.05.136 10.5796/electrochemistry.84.574 10.1126/sciadv.aas9820 10.1016/j.jpowsour.2016.04.052 10.1016/j.jpowsour.2007.04.018 10.1016/j.electacta.2016.12.126 10.1002/smll.201702737 10.1039/c9ta01876j 10.1016/j.jpowsour.2014.01.005 10.1021/nl502429m 10.1016/j.apenergy.2019.04.009 10.1016/j.jpowsour.2017.09.086 10.1002/adfm.201808825 10.1149/2.0161711jes 10.1007/s11581-018-2502-x 10.5012/bkcs.2011.32.1.145 10.1016/j.apenergy.2018.06.126 10.1016/j.jpowsour.2018.02.063 10.1016/j.jpowsour.2018.08.043 10.1016/j.electacta.2018.03.038 10.1016/j.jpowsour.2016.12.007 10.1016/j.electacta.2013.03.171 10.1021/acs.nanolett.6b02156 10.1016/j.jpowsour.2018.11.053 10.1016/j.est.2018.01.006 10.1038/nmat5029 10.1016/j.joule.2018.06.015 10.1002/adma.201204055 10.1149/2.0191411jes 10.1016/j.elecom.2017.02.008 10.1016/j.jpowsour.2007.06.149 10.1016/j.jpowsour.2012.11.018 10.1149/2.0961712jes 10.5796/electrochemistry.85.559 10.1016/j.jpowsour.2018.12.021 10.1021/ie203066x 10.1016/j.jpowsour.2016.07.039 10.1149/2.0801607jes 10.1021/acs.chemmater.8b03272 10.1016/j.jpowsour.2014.09.171 10.1021/acsnano.7b08489 10.1038/s41560-019-0338-x 10.1021/acs.nanolett.8b04906 10.1038/s41560-017-0033-8 10.1021/jacs.8b13798 10.1149/1.1394088 10.1039/c3ra45748f 10.1021/ja412807w 10.1016/0378-7753(94)02165-Y 10.1039/C7TA04354F 10.1016/j.jpowsour.2015.06.087 10.1016/j.electacta.2017.09.111 10.1016/j.jpowsour.2016.03.049 10.1021/acsenergylett.7b00511 10.1039/c7ee00385d 10.1021/ma901631x 10.1016/j.jpowsour.2013.12.132 10.1016/j.est.2015.12.008 10.1021/acs.nanolett.6b04766 10.1149/2.1021713jes 10.1016/j.jpowsour.2015.10.105 10.1002/aenm.201100683 10.1039/c4ee01432d 10.1016/j.electacta.2018.08.075 10.1016/j.jpowsour.2015.10.086 10.1016/j.jpowsour.2011.11.068 10.1021/nl304558t 10.1038/srep02485 10.1016/j.jpowsour.2013.01.063 10.1002/adfm.201200534 10.1016/j.applthermaleng.2018.06.075 10.1016/j.jpowsour.2018.05.073 10.1002/aenm.201601417 10.1021/acsami.7b19441 10.1002/adma.201802661 10.1021/acs.jpcc.7b08433 10.1149/2.F03122if 10.1016/j.jpowsour.2017.06.031 10.3390/ijms150814868 10.1016/j.electacta.2017.07.032 10.1149/2.0311410jes 10.1039/C7TA11346C 10.1038/s41560-018-0196-y 10.1021/nn500278q 10.1021/cr300205k 10.1016/j.jallcom.2018.02.067 10.1016/j.memsci.2016.06.035 10.1021/am506712c 10.1002/aenm.201700715 10.1149/2.0951805jes 10.1016/j.jpowsour.2012.08.028 10.1016/j.jpowsour.2018.04.102 10.1016/j.est.2018.07.012 10.3390/batteries5010021 10.1016/j.apenergy.2015.04.118 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3389/fenrg.2019.00065 |
DatabaseName | CrossRef Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2296-598X |
ExternalDocumentID | oai_doaj_org_article_f9f743cbfec447aca348d0827ff7a781 10_3389_fenrg_2019_00065 |
GroupedDBID | 5VS 9T4 AAFWJ AAYXX ACGFS ACXDI ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ KQ8 M~E OK1 |
ID | FETCH-LOGICAL-c351t-adc4b0488bedc2f581e4a6e6c26ff091c9090a11bc0a99fb8e146645731b62f93 |
IEDL.DBID | DOA |
ISSN | 2296-598X |
IngestDate | Wed Aug 27 01:30:22 EDT 2025 Tue Jul 01 03:00:17 EDT 2025 Thu Apr 24 23:06:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-adc4b0488bedc2f581e4a6e6c26ff091c9090a11bc0a99fb8e146645731b62f93 |
OpenAccessLink | https://doaj.org/article/f9f743cbfec447aca348d0827ff7a781 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f9f743cbfec447aca348d0827ff7a781 crossref_primary_10_3389_fenrg_2019_00065 crossref_citationtrail_10_3389_fenrg_2019_00065 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-17 |
PublicationDateYYYYMMDD | 2019-07-17 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-17 day: 17 |
PublicationDecade | 2010 |
PublicationTitle | Frontiers in energy research |
PublicationYear | 2019 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Kuang (B66) 2018; 8 Wang (B128) 2016; 9 Yoo (B141) 2015; 176 Pröll (B107) 2014; 255 Kim (B61) 2017; 225 Xu (B135) 2019; 7 Mohanty (B97) 2016; 12 Ebner (B27) 2014; 4 Khakani (B57) 2016; 163 Golubkov (B41) 2014; 4 Feng (B33); 14 Li (B75) 2019; 141 Keyser (B56) 2017; 367 Ren (B108) 2018; 228 Abu-Lebdeh (B2) 2009; 156 Welna (B131) 2011; 196 Hammami (B43) 2003; 424 Waldmann (B119) 2018; 384 Liu (B83); 4 Sendek (B111) 2018; 31 Yang (B140) 2018; 395 Liu (B85); 269 Mai (B92) 2015; 273 Wang (B127); 334 Inoue (B46) 2017; 77 Jayaraman (B47) 2009; 42 Fritsch (B39) 2018; 16 Park (B102) 2019; 70 Kim (B59) 2007; 170 Ahmed (B3) 2018; 403 Zheng (B146) 2019; 412 Waldmann (B118) 2016; 5 Bae (B6) 2013; 25 Wang (B130) 2014; 10 Lee (B69); 7 Lin (B77); 30 Feng (B35); 10 Kim (B63) 2018; 24 Zeng (B143) 2018; 3 Cao (B13) 2013; 5 Rong (B109) 2014; 261 Parhizi (B100) 2017; 370 Yoon (B142) 2018; 6 Kirchhofer (B64) 2014; 15 Farag (B30) 2017; 360 Kasnatscheew (B55) 2017; 164 Bak (B8) 2014; 6 Arora (B5) 2004; 104 Park (B105) 2014; 248 Cai (B11) 2017; 5 Liu (B81); 400 Baginska (B7) 2012; 2 Zhao (B144) 2016; 16 Wang (B123); 2018 Wu (B134) 2012; 22 Chen (B14); 164 Schipper (B110) 2016; 164 Park (B104) 2017; 247 Wu (B133) 2014; 5 Wang (B120); 12 Johnson (B53) 2018; 2 Ding (B24) 2013; 3 Feng (B36); 246 Kleiner (B65) 2016; 317 Lee (B70); 137 Noh (B98) 2013; 233 Appiah (B4) 2016; 319 Fan (B29) 2016; 84 Wang (B125); 349 Hassoun (B45) 2014; 14 Feng (B32) 2013; 114 Kim (B58) 2015; 155 Jezowski (B50) 2017; 17 Yang (B139) 2019; 29 Gao (B40) 2019; 135 Kafle (B54) 2018; 392 Wang (B129); 55 Li (B76); 744 Maleki (B93) 2000; 147 Wu (B132) 2013; 227 Cho (B20) 2013; 13 Dagger (B22) 2017; 342 Li (B74); 290 Lin (B78); 54 Yamada (B137) 2017; 85 Feng (B37) 2014; 255 Liu (B82); 3 Wang (B122); 254 Dahbi (B23) 2012; 51 Liu (B87); 29 Sun (B115) 2009; 8 Feng (B31); 5 Haregewoin (B44) 2016; 9 Liu (B79); 6 Zuo (B148) 2014; 130 Chen (B17); 306 Lu (B89) 2017; 17 Song (B114) 2016; 302 Mei (B96) 2018; 142 Doughty (B26) 2012; 21 Ma (B91) 2016; 327 Dagger (B21) 2018; 396 Yamada (B138) 2014; 136 Feng (B34) 2015; 154 Chen (B15) 2007; 174 Park (B103) 2015; 3 Bhatt (B10) 2015; 618 Liu (B84); 164 Jeong (B48) 2014; 8 Larsson (B68) 2014; 161 Jin (B52) 2017; 7 Liu (B86); 2 Cheng (B19) 2019; 413 Finegan (B38) 2017; 10 Cannarella (B12) 2014; 161 Jeong (B49) 2012; 22 Mangang (B94) 2016; 304 Lalia (B67) 2010; 195 Kim (B60) 2013; 113 Ouyang (B99) 2015; 294 Guo (B42) 2010; 195 Suo (B116) 2013; 4 Dong (B25) 2018; 2 Shi (B113) 2016; 517 Veith (B117) 2017; 2 Mao (B95) 2018; 97 Li (B73); 165 Xue (B136) 1995; 55 Belov (B9) 2007; 12 Liu (B88) 2013; 221 Wang (B126); 121 Zhu (B147) 2015; 165 Eshetu (B28) 2013; 102 Shen (B112) 2018; 10 Liu (B80) 2019; 4 Lewerenz (B71) 2018; 18 Chen (B18); 5 Jiang (B51) 2017; 9 Lhomme (B72) 1984; 23 Parimalam (B101) 2017; 121 Ma (B90) 2018; 14 Park (B106) 2011; 32 Kim (B62) 2016; 6 Abe (B1) 2018; 19 Chen (B16); 5 Zhao (B145) 2012; 203 Wang (B121); 19 Wang (B124); 3 |
References_xml | – volume: 5 start-page: 5142 ident: B18 article-title: Vinyltriethoxysilane as an electrolyte additive to improve the safety of lithium-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/c6ta10210g – volume: 121 start-page: 015303 ident: B126 article-title: Sigmoidal current collector for lithium-ion battery publication-title: J. Appl. Phys. doi: 10.1063/1.4973585 – volume: 334 start-page: 162 ident: B127 article-title: One dimensional and coaxial polyaniline@tin dioxide@multi-wall carbon nanotube as advanced conductive additive free anode for lithium ion battery publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.07.106 – volume: 55 start-page: 93 ident: B129 article-title: Progress of enhancing the safety of lithium ion battery from the electrolyte aspect publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.10.035 – volume: 367 start-page: 228 year: 2017 ident: B56 article-title: Enabling fast charging–Battery thermal considerations publication-title: J. Power Sourc. doi: 10.1016/j.jpowsour.2017.07.009 – volume: 54 start-page: 313 ident: B78 article-title: A new insight into continuous performance decay mechanism of Ni-rich layered oxide cathode for high energy lithium ion batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.09.066 – volume: 130 start-page: 778 year: 2014 ident: B148 article-title: Improvement of the thermal stability of LiMn2O4/graphite cells with methylene methanedisulfonate as electrolyte additive publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.03.106 – volume: 9 start-page: 1955 year: 2016 ident: B44 article-title: Electrolyte additives for lithium ion battery electrodes: progress and perspectives publication-title: Energy Environ. Sci. doi: 10.1039/c6ee00123h – volume: 29 start-page: 44 ident: B87 article-title: An all-integrated anode via interlinked chemical bonding between double-shelled-yolk-structured silicon and binder for lithium-ion batteries publication-title: Adv. Mater. doi: 10.1002/adma.201703028 – volume: 5 start-page: 11494 year: 2013 ident: B13 article-title: Novel phosphamide additive to improve thermal stability of solid electrolyte interphase on graphite anode in lithium-ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am4024884 – volume: 195 start-page: 7426 year: 2010 ident: B67 article-title: A mixture of triethylphosphate and ethylene carbonate as a safe additive for ionic liquid-based electrolytes of lithium ion batteries publication-title: J. Power Sourc. doi: 10.1016/j.jpowsour.2010.05.040 – volume: 164 start-page: A6220 year: 2016 ident: B110 article-title: Review—recent advances and remaining challenges for lithium ion battery cathodes publication-title: J. Electrochem. Soc. doi: 10.1149/2.0351701jes – volume: 8 start-page: 1802398 year: 2018 ident: B66 article-title: Conductive cellulose nanofiber enabled thick electrode for compact and flexible energy storage devices publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802398 – volume: 3 start-page: e1601978 ident: B82 article-title: Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries publication-title: Sci. Adv. doi: 10.1126/sciadv.1601978 – volume: 424 start-page: 635 year: 2003 ident: B43 article-title: Lithium-ion batteries: runaway risk of forming toxic compounds publication-title: Nature doi: 10.1038/424635b – volume: 97 start-page: 37 year: 2018 ident: B95 article-title: Identifying the limiting electrode in lithium ion batteries for extreme fast charging publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2018.10.007 – volume: 248 start-page: 1191 year: 2014 ident: B105 article-title: Effect of polymeric binder type on the thermal stability and tolerance to roll-pressing of spherical natural graphite anodes for Li-ion batteries publication-title: J. Power Sourc. doi: 10.1016/j.jpowsour.2013.10.076 – volume: 2 start-page: 902 year: 2018 ident: B25 article-title: Organic batteries operated at −70°C publication-title: Joule doi: 10.1016/j.joule.2018.01.017 – volume: 349 start-page: 84 ident: B125 article-title: Internal-short-mitigating current collector for lithium-ion battery publication-title: J. Power Sourc. doi: 10.1016/j.jpowsour.2017.03.004 – volume: 104 start-page: 4419 year: 2004 ident: B5 article-title: Battery separators publication-title: Chem. Rev. doi: 10.1021/Cr020738u – volume: 156 start-page: A60 year: 2009 ident: B2 article-title: High-voltage electrolytes based on adiponitrile for Li-ion batteries publication-title: J. Electrochem. Soc. doi: 10.1149/1.3023084 – volume: 23 start-page: 98 year: 1984 ident: B72 article-title: Thermal-behavior of some organic-phosphates publication-title: Ind. Eng. Chem. Prod. Rd. doi: 10.1021/I300013a021 – volume: 176 start-page: 301 year: 2015 ident: B141 article-title: Electrochemical model for ionic liquid electrolytes in lithium batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.07.003 – volume: 22 start-page: 7999 year: 2012 ident: B49 article-title: Multifunctional TiO2 coating for a SiO anode in Li-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/c2jm15677f – volume: 3 start-page: 22183 year: 2015 ident: B103 article-title: A high-capacity Li[Ni0.8Co0.06Mn0.14]O2 positive electrode with a dual concentration gradient for next-generation lithium-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/c5ta05657h – volume: 2018 start-page: e1801993 ident: B123 article-title: Design of hollow nanostructures for energy storage, conversion and production publication-title: Adv Mater doi: 10.1002/adma.201801993 – volume: 196 start-page: 1455 year: 2011 ident: B131 article-title: Vertically aligned carbon nanotube electrodes for lithium-ion batteries publication-title: J. Power Sourc. doi: 10.1016/j.jpowsour.2010.08.003 – volume: 10 start-page: 246 ident: B35 article-title: Thermal runaway mechanism of lithium ion battery for electric vehicles: a review publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2017.05.013 – volume: 155 start-page: 431 year: 2015 ident: B58 article-title: Effects of capacity ratios between anode and cathode on electrochemical properties for lithium polymer batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.12.005 – volume: 4 start-page: 1301278 year: 2014 ident: B27 article-title: Tortuosity anisotropy in lithium-ion battery electrodes publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201301278 – volume: 8 start-page: 320 year: 2009 ident: B115 article-title: High-energy cathode material for long-life and safe lithium batteries publication-title: Nat. Mater. doi: 10.1038/nmat2418 – volume: 403 start-page: 56 year: 2018 ident: B3 article-title: Cost of automotive lithium-ion batteries operating at high upper cutoff voltages publication-title: J. Power Sourc. doi: 10.1016/j.jpowsour.2018.09.037 – volume: 5 start-page: 5193 year: 2014 ident: B133 article-title: Improving battery safety by early detection of internal shorting with a bifunctional separator publication-title: Nat. Commun. doi: 10.1038/ncomms6193 – volume: 14 start-page: 258 year: 2018 ident: B90 article-title: Nanoporous and lyophilic battery separator from regenerated eggshell membrane with effective suppression of dendritic lithium growth publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.04.016 – volume: 10 start-page: 2826 year: 2014 ident: B130 article-title: Vertically aligned CNT-supported thick Ge films as high-performance 3D anodes for lithium ion batteries publication-title: Small doi: 10.1002/smll.201400003 – volume: 12 start-page: 9705 year: 2016 ident: B97 article-title: Dielectric spectroscopy of ionic microgel suspensions publication-title: Soft Matter doi: 10.1039/c6sm01683a – volume: 5 start-page: 163 year: 2016 ident: B118 article-title: Influence of current collecting tab design on thermal and electrochemical performance of cylindrical Lithium-ion cells during high current discharge publication-title: J. Energy Storage doi: 10.1016/j.est.2015.12.007 – volume: 396 start-page: 519 year: 2018 ident: B21 article-title: Performance tuning of lithium ion battery cells with area-oversized graphite based negative electrodes publication-title: J. Power Sourc. doi: 10.1016/j.jpowsour.2018.06.043 – volume: 18 start-page: 149 year: 2018 ident: B71 article-title: Irreversible calendar aging and quantification of the reversible capacity loss caused by anode overhang publication-title: J. Energy Storage doi: 10.1016/j.est.2018.04.029 – volume: 70 start-page: 178 year: 2019 ident: B102 article-title: Performance enhancement of Li-ion battery by laser structuring of thick electrode with low porosity publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2018.10.012 – volume: 302 start-page: 22 year: 2016 ident: B114 article-title: Exploiting chemically and electrochemically reactive phosphite derivatives for high-voltage spinel LiNi0.5Mn1.5O4 cathodes publication-title: J. Power Sourc. doi: 10.1016/j.jpowsour.2015.10.043 – volume: 4 start-page: 1481 year: 2013 ident: B116 article-title: A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries publication-title: Nat. Commun. doi: 10.1038/ncomms2513 – volume: 9 start-page: 25970 year: 2017 ident: B51 article-title: Novel ceramic-grafted separator with highly thermal stability for safe lithium-ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b05535 – volume: 261 start-page: 148 year: 2014 ident: B109 article-title: Enhanced cyclability of LiNi0.5Mn1.5O4 cathode in carbonate based electrolyte with incorporation of tris(trimethylsilyl)phosphate (TMSP) publication-title: J. Power Sourc. doi: 10.1016/j.jpowsour.2014.03.032 – volume: 114 start-page: 688 year: 2013 ident: B32 article-title: Understanding the interactions of phosphonate-based flame-retarding additives with graphitic anode for lithium ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.10.104 – volume: 12 start-page: 885 year: 2007 ident: B9 article-title: Failure mechanism of Li-ion battery at overcharge conditions publication-title: J. Solid State Electr. doi: 10.1007/s10008-007-0449-3 – volume: 195 start-page: 2393 year: 2010 ident: B42 article-title: Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application publication-title: J. Power Sourc. doi: 10.1016/j.jpowsour.2009.10.090 – volume: 2 start-page: 373 year: 2018 ident: B53 article-title: Charging up lithium-ion battery cathodes publication-title: Joule doi: 10.1016/j.joule.2018.02.020 – volume: 6 start-page: 65 ident: B79 article-title: Deterioration mechanism of LiNi0.8Co0.15Al0.05O2/graphite-SiOx power batteries under high temperature and discharge cycling conditions publication-title: J. Mater. Chem. A doi: 10.1039/c7ta08703a – volume: 165 start-page: 67 year: 2015 ident: B147 article-title: Bis(2,2,2-Trifluoroethyl) ethylphosphonate as novel high-efficient flame retardant additive for safer lithium-ion battery publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.02.247 – volume: 9 start-page: 459 year: 2016 ident: B128 article-title: Real-time monitoring of internal temperature evolution of the lithium-ion coin cell battery during the charge and discharge process publication-title: Extreme Mech. Lett. doi: 10.1016/j.eml.2016.03.013 – volume: 618 start-page: 208 year: 2015 ident: B10 article-title: Solid electrolyte interphases at Li-ion battery graphitic anodes in propylene carbonate (PC)-based electrolytes containing FEC, LiBOB, and LiDFOB as additives publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2014.11.018 – volume: 135 start-page: 93 year: 2019 ident: B40 article-title: An experimental and analytical study of thermal runaway propagation in a large format lithium ion battery module with NCM pouch-cells in parallel publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2019.01.125 – volume: 137 start-page: 1 ident: B70 article-title: A bi-functional lithium difluoro(oxalato)borate additive for lithium cobalt oxide/lithium nickel manganese cobalt oxide cathodes and silicon/graphite anodes in lithium-ion batteries at elevated temperatures publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.05.136 – volume: 84 start-page: 574 year: 2016 ident: B29 article-title: Electrochemical properties and thermal stability of silicon monoxide anode for rechargeable lithium-ion batteries publication-title: Electrochemistry doi: 10.5796/electrochemistry.84.574 – volume: 4 start-page: eaas9820 ident: B83 article-title: Materials for lithium-ion battery safety publication-title: Sci. Adv. doi: 10.1126/sciadv.aas9820 – volume: 319 start-page: 147 year: 2016 ident: B4 article-title: Design optimization of LiNi0.6Co0.2Mn0.2O2/graphite lithium-ion cells based on simulation and experimental data publication-title: J. Power Sourc. doi: 10.1016/j.jpowsour.2016.04.052 – volume: 170 start-page: 476 year: 2007 ident: B59 article-title: A three-dimensional thermal abuse model for lithium-ion cells publication-title: J. Power Sourc. doi: 10.1016/j.jpowsour.2007.04.018 – volume: 225 start-page: 358 year: 2017 ident: B61 article-title: Understanding the thermal instability of fluoroethylene carbonate in LiPF6-based electrolytes for lithium ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.12.126 – volume: 14 start-page: 1702737 ident: B33 article-title: Silicon-based anodes for lithium-ion batteries: from fundamentals to practical applications publication-title: Small doi: 10.1002/smll.201702737 – volume: 7 start-page: 9432 year: 2019 ident: B135 article-title: Electrolytes for advanced lithium ion batteries using silicon-based anodes publication-title: J. Mater. Chem. A doi: 10.1039/c9ta01876j – volume: 255 start-page: 294 year: 2014 ident: B37 article-title: Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry publication-title: J. Power Sourc. doi: 10.1016/j.jpowsour.2014.01.005 – volume: 14 start-page: 4901 year: 2014 ident: B45 article-title: An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode publication-title: Nano Lett. doi: 10.1021/nl502429m – volume: 246 start-page: 53 ident: B36 article-title: Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database publication-title: App. Energ. doi: 10.1016/j.apenergy.2019.04.009 – volume: 370 start-page: 27 year: 2017 ident: B100 article-title: Determination of the core temperature of a Li-ion cell during thermal runaway publication-title: J. Power Sourc. doi: 10.1016/j.jpowsour.2017.09.086 – volume: 29 start-page: 13 year: 2019 ident: B139 article-title: Simultaneously dual modification of Ni-rich layered oxide cathode for high-energy lithium-ion batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201808825 – volume: 164 start-page: E3146 ident: B14 article-title: Probing the role of electrode microstructure in the lithium-ion battery thermal behavior publication-title: J. Electrochem. Soc. doi: 10.1149/2.0161711jes – volume: 24 start-page: 2935 year: 2018 ident: B63 article-title: Improving Li-ion battery charge rate acceptance through highly ordered hierarchical electrode design publication-title: Ionics doi: 10.1007/s11581-018-2502-x – volume: 32 start-page: 145 year: 2011 ident: B106 article-title: Thermal stability of lithiated silicon anodes with electrolyte publication-title: B. Korean Chem. Soc. doi: 10.5012/bkcs.2011.32.1.145 – volume: 228 start-page: 633 year: 2018 ident: B108 article-title: Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components publication-title: App. Energ. doi: 10.1016/j.apenergy.2018.06.126 – volume: 384 start-page: 107 year: 2018 ident: B119 article-title: Li plating as unwanted side reaction in commercial Li-ion cells – A review publication-title: J. Power Sourc. doi: 10.1016/j.jpowsour.2018.02.063 – volume: 400 start-page: 502 ident: B81 article-title: Highly safe lithium-ion batteries: high strength separator from polyformaldehyde/cellulose nanofibers blend publication-title: J. Power Sourc. doi: 10.1016/j.jpowsour.2018.08.043 – volume: 269 start-page: 422 ident: B85 article-title: Analysis of the relationship between vertical imparity distribution of conductive additive and electrochemical behaviors in lithium ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.03.038 – volume: 342 start-page: 266 year: 2017 ident: B22 article-title: Electrochemical performance evaluations and safety investigations of pentafluoro(phenoxy)cyclotriphosphazene as a flame retardant electrolyte additive for application in lithium ion battery systems using a newly designed apparatus for improved self-extinguishing time measurements publication-title: J. Power Sourc. doi: 10.1016/j.jpowsour.2016.12.007 – volume: 102 start-page: 133 year: 2013 ident: B28 article-title: LiFSI vs. LiPF6 electrolytes in contact with lithiated graphite: comparing thermal stabilities and identification of specific SEI-reinforcing additives publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.03.171 – volume: 16 start-page: 4686 year: 2016 ident: B144 article-title: A convenient and versatile method to control the electrode microstructure toward high-energy lithium-ion batteries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b02156 – volume: 412 start-page: 336 year: 2019 ident: B146 article-title: Correlation between long range and local structural changes in Ni-rich layered materials during charge and discharge process publication-title: J. Power Sourc. doi: 10.1016/j.jpowsour.2018.11.053 – volume: 16 start-page: 125 year: 2018 ident: B39 article-title: 3D-cathode design with foam-like aluminum current collector for high energy density lithium-ion batteries publication-title: J. Energy Storage doi: 10.1016/j.est.2018.01.006 – volume: 17 start-page: 167 year: 2017 ident: B50 article-title: Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt publication-title: Nat. Mater. doi: 10.1038/nmat5029 – volume: 2 start-page: 2047 ident: B86 article-title: Thermal runaway of lithium-ion batteries without internal short circuit publication-title: Joule doi: 10.1016/j.joule.2018.06.015 – volume: 25 start-page: 1254 year: 2013 ident: B6 article-title: Design of battery electrodes with dual-scale porosity to minimize tortuosity and maximize performance publication-title: Adv. Mater. doi: 10.1002/adma.201204055 – volume: 161 start-page: F3117 year: 2014 ident: B12 article-title: Mechanical properties of a battery separator under compression and tension publication-title: J. Electrochem. Soc. doi: 10.1149/2.0191411jes – volume: 77 start-page: 28 year: 2017 ident: B46 article-title: Roles of positive or negative electrodes in the thermal runaway of lithium-ion batteries: accelerating rate calorimetry analyses with an all-inclusive microcell publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2017.02.008 – volume: 174 start-page: 538 year: 2007 ident: B15 article-title: Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries publication-title: J. Power Sourc. doi: 10.1016/j.jpowsour.2007.06.149 – volume: 227 start-page: 106 year: 2013 ident: B132 article-title: An electrochemically compatible and flame-retardant electrolyte additive for safe lithium ion batteries publication-title: J. Power Sourc. doi: 10.1016/j.jpowsour.2012.11.018 – volume: 164 start-page: A2479 year: 2017 ident: B55 article-title: A tutorial into practical capacity and mass balancing of lithium ion batteries publication-title: J. Electrochem. Soc. doi: 10.1149/2.0961712jes – volume: 85 start-page: 559 year: 2017 ident: B137 article-title: Developing new functionalities of superconcentrated electrolytes for lithium-ion batteries publication-title: Electrochemistry doi: 10.5796/electrochemistry.85.559 – volume: 413 start-page: 59 year: 2019 ident: B19 article-title: Micro-scale graded electrodes for improved dynamic and cycling performance of Li-ion batteries publication-title: J. Power Sourc. doi: 10.1016/j.jpowsour.2018.12.021 – volume: 51 start-page: 5240 year: 2012 ident: B23 article-title: Interfacial properties of LiTFSI and LiPF6-based electrolytes in binary and ternary mixtures of alkylcarbonates on graphite electrodes and celgard separator publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie203066x – volume: 327 start-page: 145 year: 2016 ident: B91 article-title: A systematic study on the reactivity of different grades of charged Li[NixMnyCoz]O2 with electrolyte at elevated temperatures using accelerating rate calorimetry publication-title: J. Power Sourc. doi: 10.1016/j.jpowsour.2016.07.039 – volume: 163 start-page: A1311 year: 2016 ident: B57 article-title: ARC study of LiFePO4 with different morphologies prepared via three synthetic routes publication-title: J. Electrochem. Soc. doi: 10.1149/2.0801607jes – volume: 31 start-page: 342 year: 2018 ident: B111 article-title: Machine learning-assisted discovery of solid li-ion conducting materials publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b03272 – volume: 273 start-page: 816 year: 2015 ident: B92 article-title: Improving cyclic stability of lithium nickel manganese oxide cathode at elevated temperature by using dimethyl phenylphosphonite as electrolyte additive publication-title: J. Power Sourc. doi: 10.1016/j.jpowsour.2014.09.171 – volume: 12 start-page: 1739 ident: B120 article-title: Folding graphene film yields high areal energy storage in lithium-ion batteries publication-title: ACS Nano doi: 10.1021/acsnano.7b08489 – volume: 4 start-page: 180 year: 2019 ident: B80 article-title: Pathways for practical high-energy long-cycling lithium metal batteries publication-title: Nat. Energy doi: 10.1038/s41560-019-0338-x – volume: 19 start-page: 1326 ident: B121 article-title: Wrinkled graphene cages as hosts for high-capacity li metal anodes shown by cryogenic electron microscopy publication-title: Nano Lett doi: 10.1021/acs.nanolett.8b04906 – volume: 3 start-page: 22 ident: B124 article-title: Fire-extinguishing organic electrolytes for safe batteries publication-title: Nat. Energy doi: 10.1038/s41560-017-0033-8 – volume: 141 start-page: 5097 year: 2019 ident: B75 article-title: Collapse of LiNi1−−x−−yCoxMnyO2 lattice at deep charge irrespective of nickel content in lithium-ion batteries publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b13798 – volume: 147 start-page: 4470 year: 2000 ident: B93 article-title: Thermal stability studies of binder materials in anodes for lithium-ion batteries publication-title: J. Electrochem. Soc. doi: 10.1149/1.1394088 – volume: 4 start-page: 3633 year: 2014 ident: B41 article-title: Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes publication-title: RSC Adv. doi: 10.1039/c3ra45748f – volume: 136 start-page: 5039 year: 2014 ident: B138 article-title: Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries publication-title: J. Am. Chem. Soc. doi: 10.1021/ja412807w – volume: 55 start-page: 111 year: 1995 ident: B136 article-title: Effect of cathode anode mass-ratio in lithium-ion secondary cells publication-title: J. Power Sourc. doi: 10.1016/0378-7753(94)02165-Y – volume: 5 start-page: 15423 year: 2017 ident: B11 article-title: Graphene and graphene-based composites as Li-ion battery electrode materials and their application in full cells publication-title: J. Mater. Chem. A doi: 10.1039/C7TA04354F – volume: 294 start-page: 272 year: 2015 ident: B99 article-title: Internal short circuit detection for battery pack using equivalent parameter and consistency method publication-title: J. Power Sourc. doi: 10.1016/j.jpowsour.2015.06.087 – volume: 254 start-page: 112 ident: B122 article-title: Alternative multifunctional cyclic organosilicon as an efficient electrolyte additive for high performance lithium-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.09.111 – volume: 317 start-page: 25 year: 2016 ident: B65 article-title: Changes of the balancing between anode and cathode due to fatigue in commercial lithium-ion cells publication-title: J. Power Sourc. doi: 10.1016/j.jpowsour.2016.03.049 – volume: 2 start-page: 2084 year: 2017 ident: B117 article-title: Shear thickening electrolytes for high impact resistant batteries publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00511 – volume: 10 start-page: 1377 year: 2017 ident: B38 article-title: Characterising thermal runaway within lithium-ion cells by inducing and monitoring internal short circuits publication-title: Energy Environ. Sci. doi: 10.1039/c7ee00385d – volume: 42 start-page: 8423 year: 2009 ident: B47 article-title: Effective interactions and self-assembly of hybrid polymer grafted nanoparticles in a homopolymer matrix publication-title: Macromolecules doi: 10.1021/ma901631x – volume: 255 start-page: 116 year: 2014 ident: B107 article-title: Laser-printing and femtosecond-laser structuring of LiMn2O4 composite cathodes for Li-ion microbatteries publication-title: J. Power Sourc. doi: 10.1016/j.jpowsour.2013.12.132 – volume: 5 start-page: 156 ident: B16 article-title: Improvement of lithium-ion battery performance using a two-layered cathode by simultaneous slot-die coating publication-title: J. Energy Storage doi: 10.1016/j.est.2015.12.008 – volume: 17 start-page: 1602 year: 2017 ident: B89 article-title: Formation of reversible solid electrolyte interface on graphite surface from concentrated electrolytes publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04766 – volume: 164 start-page: A3163 ident: B84 article-title: Experimental and simulation investigations of porosity graded cathodes in mitigating battery degradation of high voltage lithium-ion batteries publication-title: J. Electrochem. Soc. doi: 10.1149/2.1021713jes – volume: 306 start-page: 70 ident: B17 article-title: An investigation of functionalized electrolyte using succinonitrile additive for high voltage lithium-ion batteries publication-title: J. Power Sourc. doi: 10.1016/j.jpowsour.2015.10.105 – volume: 2 start-page: 583 year: 2012 ident: B7 article-title: Autonomic shutdown of lithium-ion batteries using thermoresponsive microspheres publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201100683 – volume: 7 start-page: 3857 ident: B69 article-title: A review of recent developments in membrane separators for rechargeable lithium-ion batteries publication-title: Energy Environ. Sci. doi: 10.1039/c4ee01432d – volume: 290 start-page: 150 ident: B74 article-title: Effects of an electrospun fluorinated poly(ether ether ketone) separator on the enhanced safety and electrochemical properties of lithium ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.08.075 – volume: 304 start-page: 24 year: 2016 ident: B94 article-title: Influence of laser pulse duration on the electrochemical performance of laser structured LiFePO4 composite electrodes publication-title: J. Power Sourc. doi: 10.1016/j.jpowsour.2015.10.086 – volume: 203 start-page: 78 year: 2012 ident: B145 article-title: Thermal stability of silicon negative electrode for Li-ion batteries publication-title: J. Power Sourc. doi: 10.1016/j.jpowsour.2011.11.068 – volume: 13 start-page: 1145 year: 2013 ident: B20 article-title: A new type of protective surface layer for high-capacity Ni-based cathode materials: nanoscaled surface pillaring layer publication-title: Nano Lett. doi: 10.1021/nl304558t – volume: 3 start-page: 2485 year: 2013 ident: B24 article-title: Smart multifunctional fluids for lithium ion batteries: enhanced rate performance and intrinsic mechanical protection publication-title: Sci. Rep. doi: 10.1038/srep02485 – volume: 233 start-page: 121 year: 2013 ident: B98 article-title: Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries publication-title: J. Power Sourc. doi: 10.1016/j.jpowsour.2013.01.063 – volume: 22 start-page: 3290 year: 2012 ident: B134 article-title: A LiF nanoparticle-modified graphene electrode for high-power and high-energy lithium ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/adfm.201200534 – volume: 142 start-page: 148 year: 2018 ident: B96 article-title: Numerical study on tab dimension optimization of lithium-ion battery from the thermal safety perspective publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.06.075 – volume: 395 start-page: 251 year: 2018 ident: B140 article-title: A look into the voltage plateau signal for detection and quantification of lithium plating in lithium-ion cells publication-title: J. Power Sourc. doi: 10.1016/j.jpowsour.2018.05.073 – volume: 6 start-page: 22 year: 2016 ident: B62 article-title: Compositionally graded cathode material with long-term cycling stability for electric vehicles application publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601417 – volume: 10 start-page: 9424 year: 2018 ident: B112 article-title: Shear thickening electrolyte built from sterically stabilized colloidal particles publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b19441 – volume: 30 start-page: e1802661 ident: B77 article-title: A silica-aerogel-reinforced composite polymer electrolyte with high ionic conductivity and high modulus publication-title: Adv. Mater doi: 10.1002/adma.201802661 – volume: 121 start-page: 22733 year: 2017 ident: B101 article-title: Decomposition reactions of anode solid electrolyte interphase (SEI) components with LiPF6 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b08433 – volume: 21 start-page: 37 year: 2012 ident: B26 article-title: A general discussion of li ion battery safety publication-title: Electrochem. Soc. Interface doi: 10.1149/2.F03122if – volume: 360 start-page: 618 year: 2017 ident: B30 article-title: Combined electrochemical, heat generation, and thermal model for large prismatic lithium-ion batteries in real-time applications publication-title: J. Power Sourc. doi: 10.1016/j.jpowsour.2017.06.031 – volume: 15 start-page: 14868 year: 2014 ident: B64 article-title: Separators for Li-ion and Li-metal battery including ionic liquid based electrolytes based on the TFSI- and FSI- anions publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms150814868 – volume: 247 start-page: 371 year: 2017 ident: B104 article-title: Robust free-standing electrodes for flexible lithium-ion batteries prepared by a conventional electrode fabrication process publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.07.032 – volume: 161 start-page: A1611 year: 2014 ident: B68 article-title: Abuse by external heating, overcharge and short circuiting of commercial lithium-ion battery cells publication-title: J. Electrochem. Soc. doi: 10.1149/2.0311410jes – volume: 6 start-page: 4126 year: 2018 ident: B142 article-title: Extracting maximum capacity from Ni-rich Li[Ni0.95Co0.025Mn0.025]O2 cathodes for high-energy-density lithium-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C7TA11346C – volume: 3 start-page: 674 year: 2018 ident: B143 article-title: Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries publication-title: Nat. Energy doi: 10.1038/s41560-018-0196-y – volume: 8 start-page: 2977 year: 2014 ident: B48 article-title: Core–shell structured silicon nanoparticles@TiO2−−x/carbon mesoporous microfiber composite as a safe and high-performance lithium-ion battery anode publication-title: ACS Nano doi: 10.1021/nn500278q – volume: 113 start-page: 2075 year: 2013 ident: B60 article-title: Liquid metal batteries: past, present, and future publication-title: Chem. Rev. doi: 10.1021/cr300205k – volume: 744 start-page: 41 ident: B76 article-title: Multiply depolarized composite cathode of Li1.2Mn0.54Ni0.13Co0.13O2 embedded in a combinatory conductive network for lithium-ion battery with superior overall performances publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2018.02.067 – volume: 517 start-page: 91 year: 2016 ident: B113 article-title: A high-temperature stable ceramic-coated separator prepared with polyimide binder/Al2O3 particles for lithium-ion batteries publication-title: J. Membrane. Sci. doi: 10.1016/j.memsci.2016.06.035 – volume: 6 start-page: 22594 year: 2014 ident: B8 article-title: Structural changes and thermal stability of charged LiNixMnyCozO2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am506712c – volume: 7 start-page: 17 year: 2017 ident: B52 article-title: Challenges and recent progress in the development of Si anodes for lithium-ion battery publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700715 – volume: 165 start-page: A1038 ident: B73 article-title: Synthesis of single crystal LiNi0.6Mn0.2Co0.2O2with enhanced electrochemical performance for lithium ion batteries publication-title: J. Electrochem. Soc. doi: 10.1149/2.0951805jes – volume: 221 start-page: 90 year: 2013 ident: B88 article-title: Tris(trimethylsilyl) borate as an electrolyte additive to improve the cyclability of LiMn2O4 cathode for lithium-ion battery publication-title: J. Power Sourc. doi: 10.1016/j.jpowsour.2012.08.028 – volume: 392 start-page: 60 year: 2018 ident: B54 article-title: Development of wide temperature electrolyte for graphite/ LiNiMnCoO2 Li-ion cells: high throughput screening publication-title: J. Power Sourc. doi: 10.1016/j.jpowsour.2018.04.102 – volume: 19 start-page: 96 year: 2018 ident: B1 article-title: Effect of negative/positive capacity ratio on the rate and cycling performances of LiFePO4/graphite lithium-ion batteries publication-title: J. Energy Storage doi: 10.1016/j.est.2018.07.012 – volume: 5 start-page: 21 ident: B31 article-title: Electrochemical performance of a lithium ion battery with different nanoporous current collectors publication-title: Batteries doi: 10.3390/batteries5010021 – volume: 154 start-page: 74 year: 2015 ident: B34 article-title: Thermal runaway propagation model for designing a safer battery pack with 25 Ah LiNixCoyMnzO2 large format lithium ion battery publication-title: App. Energ. doi: 10.1016/j.apenergy.2015.04.118 |
SSID | ssj0001325410 |
Score | 2.5204308 |
SecondaryResourceType | review_article |
Snippet | As the most widely used energy storage device in consumer electronic and electric vehicle fields, lithium ion battery (LIB) is closely related to our daily... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
SubjectTerms | abuse internal short circuit lithium ion battery safety thermal runaway |
Title | Safety Issues in Lithium Ion Batteries: Materials and Cell Design |
URI | https://doaj.org/article/f9f743cbfec447aca348d0827ff7a781 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sDCENVJ7CRmg0JVEGWiUjfLT6hU0gqlA_-esx2qTLCwRdE5cr6z8_ni83cIXRFZEZPJEiaSqxKqMpZwxjO4MpVXW89tOC42eSnGU_o0Y7NOqS-fExblgSNwA8cdkJxWzmpKS6llTisDvFU6V8oyHLrOgPM6wVT4u5JD4JOSuC8JURgfOHDHm0_l8vqUxHNJh4c6cv2BV0Z7aLddEOLb2JF9tGXrA7TTkQk8hE-fdLb5wrFSHp7X-HnevM_XH_hxWeOokAkB7w2eyCYOKCxrg4d2scD3IUPjCE1HD6_DcdKWPkh0ztImkUZT5SeXskZnjlWppbKwhc4K5-B1NSecyDRVmkjOnaps6nXiWZmnqsgcz49Rr17W9gRhC06Qxu9uWgU2ikMDiCmAuDjJqWZ9NPgBQuhWF9yXp1gIiA88dCJAJzx0IkDXR9ebFquoifGL7Z3HdmPn1azDDfCxaH0s_vLx6X885Axt-24lQRTzHPWaz7W9gAVFoy7D2PkGa_LH2Q |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Safety+Issues+in+Lithium+Ion+Batteries%3A+Materials+and+Cell+Design&rft.jtitle=Frontiers+in+energy+research&rft.au=Wu%2C+Xiangkun&rft.au=Song%2C+Kaifang&rft.au=Zhang%2C+Xiaoyan&rft.au=Hu%2C+Naifang&rft.date=2019-07-17&rft.issn=2296-598X&rft.eissn=2296-598X&rft.volume=7&rft_id=info:doi/10.3389%2Ffenrg.2019.00065&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fenrg_2019_00065 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-598X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-598X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-598X&client=summon |