Unveiling localized Pt-P-N bonding states constructed on covalent triazine-based frameworks for boosting photocatalytic hydrogen evolution
Developing highly efficient and stable photocatalysts for hydrogen (H 2 ) evolution is a great challenge. Herein, a novel strategy using ultrathin black phosphorus (BP) as a bridge joint was proposed for controllable construction of a sandwich-type Pt-containing covalent triazine-based framework pho...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 8; no. 47; pp. 25425 - 2543 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
15.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Developing highly efficient and stable photocatalysts for hydrogen (H
2
) evolution is a great challenge. Herein, a novel strategy using ultrathin black phosphorus (BP) as a bridge joint was proposed for controllable construction of a sandwich-type Pt-containing covalent triazine-based framework photocatalyst, CTF-BP-Pt. The as-prepared CTF-BP-Pt not only significantly enhances the stability of Pt nanoparticles but also dramatically improves the charge separation efficiency of the photocatalyst. For the first time, this work reveals that the unique Pt(
δ
+
)-P(
δ
−
)-N(
δ
+
) surface bonding states in CTF-BP-Pt lead to a greatly improved H
2
evolution rate (614.6 μmol g
−1
h
−1
) compared with that of CTF directly doped with Pt (CTF/Pt, 167.5 μmol g
−1
h
−1
). In addition, the Pt(
δ
+
)-P(
δ
−
)-N(
δ
+
) configurations enabled the reduction of loading amount of Pt from the normal 2 wt% to 0.05 wt% but did not remarkably decrease the H
2
evolution rate. It is noteworthy that the H
2
evolution rate and its turnover frequency (TOF) obtained over the CTF-BP-Pt with 0.05 wt% Pt are much higher than those of other Pt loaded carbonaceous materials. Finally, the improvement of photocatalytic performance of CTF-BP-Pt was well explained based on many characterization experiments. The present work marks a critical step toward developing high-performance and low-cost photocatalytic H
2
evolution materials.
Unique Pt(
δ
+
)-P(
δ
−
)-N(
δ
+
) bonding states were constructed on CTF-1 for efficient photocatalytic performance
via
using BP as a bridge joint. |
---|---|
AbstractList | Developing highly efficient and stable photocatalysts for hydrogen (H₂) evolution is a great challenge. Herein, a novel strategy using ultrathin black phosphorus (BP) as a bridge joint was proposed for controllable construction of a sandwich-type Pt-containing covalent triazine-based framework photocatalyst, CTF-BP-Pt. The as-prepared CTF-BP-Pt not only significantly enhances the stability of Pt nanoparticles but also dramatically improves the charge separation efficiency of the photocatalyst. For the first time, this work reveals that the unique Pt(δ⁺)–P(δ⁻)–N(δ⁺) surface bonding states in CTF-BP-Pt lead to a greatly improved H₂ evolution rate (614.6 μmol g⁻¹ h⁻¹) compared with that of CTF directly doped with Pt (CTF/Pt, 167.5 μmol g⁻¹ h⁻¹). In addition, the Pt(δ⁺)–P(δ⁻)–N(δ⁺) configurations enabled the reduction of loading amount of Pt from the normal 2 wt% to 0.05 wt% but did not remarkably decrease the H₂ evolution rate. It is noteworthy that the H₂ evolution rate and its turnover frequency (TOF) obtained over the CTF-BP-Pt with 0.05 wt% Pt are much higher than those of other Pt loaded carbonaceous materials. Finally, the improvement of photocatalytic performance of CTF-BP-Pt was well explained based on many characterization experiments. The present work marks a critical step toward developing high-performance and low-cost photocatalytic H₂ evolution materials. Developing highly efficient and stable photocatalysts for hydrogen (H2) evolution is a great challenge. Herein, a novel strategy using ultrathin black phosphorus (BP) as a bridge joint was proposed for controllable construction of a sandwich-type Pt-containing covalent triazine-based framework photocatalyst, CTF-BP-Pt. The as-prepared CTF-BP-Pt not only significantly enhances the stability of Pt nanoparticles but also dramatically improves the charge separation efficiency of the photocatalyst. For the first time, this work reveals that the unique Pt(δ+)–P(δ−)–N(δ+) surface bonding states in CTF-BP-Pt lead to a greatly improved H2 evolution rate (614.6 μmol g−1 h−1) compared with that of CTF directly doped with Pt (CTF/Pt, 167.5 μmol g−1 h−1). In addition, the Pt(δ+)–P(δ−)–N(δ+) configurations enabled the reduction of loading amount of Pt from the normal 2 wt% to 0.05 wt% but did not remarkably decrease the H2 evolution rate. It is noteworthy that the H2 evolution rate and its turnover frequency (TOF) obtained over the CTF-BP-Pt with 0.05 wt% Pt are much higher than those of other Pt loaded carbonaceous materials. Finally, the improvement of photocatalytic performance of CTF-BP-Pt was well explained based on many characterization experiments. The present work marks a critical step toward developing high-performance and low-cost photocatalytic H2 evolution materials. Developing highly efficient and stable photocatalysts for hydrogen (H 2 ) evolution is a great challenge. Herein, a novel strategy using ultrathin black phosphorus (BP) as a bridge joint was proposed for controllable construction of a sandwich-type Pt-containing covalent triazine-based framework photocatalyst, CTF-BP-Pt. The as-prepared CTF-BP-Pt not only significantly enhances the stability of Pt nanoparticles but also dramatically improves the charge separation efficiency of the photocatalyst. For the first time, this work reveals that the unique Pt( δ + )–P( δ − )–N( δ + ) surface bonding states in CTF-BP-Pt lead to a greatly improved H 2 evolution rate (614.6 μmol g −1 h −1 ) compared with that of CTF directly doped with Pt (CTF/Pt, 167.5 μmol g −1 h −1 ). In addition, the Pt( δ + )–P( δ − )–N( δ + ) configurations enabled the reduction of loading amount of Pt from the normal 2 wt% to 0.05 wt% but did not remarkably decrease the H 2 evolution rate. It is noteworthy that the H 2 evolution rate and its turnover frequency (TOF) obtained over the CTF-BP-Pt with 0.05 wt% Pt are much higher than those of other Pt loaded carbonaceous materials. Finally, the improvement of photocatalytic performance of CTF-BP-Pt was well explained based on many characterization experiments. The present work marks a critical step toward developing high-performance and low-cost photocatalytic H 2 evolution materials. Developing highly efficient and stable photocatalysts for hydrogen (H 2 ) evolution is a great challenge. Herein, a novel strategy using ultrathin black phosphorus (BP) as a bridge joint was proposed for controllable construction of a sandwich-type Pt-containing covalent triazine-based framework photocatalyst, CTF-BP-Pt. The as-prepared CTF-BP-Pt not only significantly enhances the stability of Pt nanoparticles but also dramatically improves the charge separation efficiency of the photocatalyst. For the first time, this work reveals that the unique Pt( δ + )-P( δ − )-N( δ + ) surface bonding states in CTF-BP-Pt lead to a greatly improved H 2 evolution rate (614.6 μmol g −1 h −1 ) compared with that of CTF directly doped with Pt (CTF/Pt, 167.5 μmol g −1 h −1 ). In addition, the Pt( δ + )-P( δ − )-N( δ + ) configurations enabled the reduction of loading amount of Pt from the normal 2 wt% to 0.05 wt% but did not remarkably decrease the H 2 evolution rate. It is noteworthy that the H 2 evolution rate and its turnover frequency (TOF) obtained over the CTF-BP-Pt with 0.05 wt% Pt are much higher than those of other Pt loaded carbonaceous materials. Finally, the improvement of photocatalytic performance of CTF-BP-Pt was well explained based on many characterization experiments. The present work marks a critical step toward developing high-performance and low-cost photocatalytic H 2 evolution materials. Unique Pt( δ + )-P( δ − )-N( δ + ) bonding states were constructed on CTF-1 for efficient photocatalytic performance via using BP as a bridge joint. |
Author | Zheng, Ling-Ling Jiang, Xun-Heng Zou, Jian-Ping Luo, Sheng-Lian Wu, Shao-Lin Wang, Dengke Zhang, Jun Xing, Qiu-Ju |
AuthorAffiliation | Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization Nanchang Hangkong University |
AuthorAffiliation_xml | – name: National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization – name: Nanchang Hangkong University – name: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle |
Author_xml | – sequence: 1 givenname: Ling-Ling surname: Zheng fullname: Zheng, Ling-Ling – sequence: 2 givenname: Dengke surname: Wang fullname: Wang, Dengke – sequence: 3 givenname: Shao-Lin surname: Wu fullname: Wu, Shao-Lin – sequence: 4 givenname: Xun-Heng surname: Jiang fullname: Jiang, Xun-Heng – sequence: 5 givenname: Jun surname: Zhang fullname: Zhang, Jun – sequence: 6 givenname: Qiu-Ju surname: Xing fullname: Xing, Qiu-Ju – sequence: 7 givenname: Jian-Ping surname: Zou fullname: Zou, Jian-Ping – sequence: 8 givenname: Sheng-Lian surname: Luo fullname: Luo, Sheng-Lian |
BookMark | eNptkcFOGzEQhi0EEinlwh1pJS5VpW1n7fXGe4xoaSsh4JCcV17vGEwdO9jeVOEReGocgqiEsA8ea7757Zn_E9l33iEhJxV8q4C13wdIsoKq4XqPTChwKKd12-y_xUIckuMY7yEvAdC07YQ8LdwajTXutrBeSWsecShuUnlTXhW9d8M2EZNMGAvlXUxhVCkT3uXrWlp0qUjByEfjsOxlzCkd5BL_-fA3FtqHLOJj2qqs7nzKLyRpN8mo4m4zBH-LrsC1t2My3n0mB1raiMev5xFZXPycn_8uL69__TmfXZaK8SqVsh-YFj0XDcgeFJct61WLUw4UxaAZ55TDgJpS0TBGa07rRou6Fr2oJW84OyJfdrqr4B9GjKlbmqjQWunQj7GjWQHybrfo2Tv03o_B5d91tJ4C1FSwKlNfd5QKPsaAulsFs5Rh01XQbZ3pfsB89uLMRYbhHaxMnm_uPwVp7Mclp7uSENWb9H-z2TOPqp4- |
CitedBy_id | crossref_primary_10_1038_s41467_022_30035_x crossref_primary_10_1039_D1TA04493A crossref_primary_10_1039_D4NR00289J crossref_primary_10_1016_j_cej_2021_131613 crossref_primary_10_1166_mex_2022_2059 crossref_primary_10_1016_j_cclet_2021_12_076 crossref_primary_10_1016_S1872_2067_21_63892_5 crossref_primary_10_1016_j_surfin_2021_101527 crossref_primary_10_3390_polym14071363 crossref_primary_10_1002_smll_202107840 crossref_primary_10_1016_j_seppur_2022_120829 crossref_primary_10_1016_j_apcatb_2022_121710 crossref_primary_10_1039_D1CY01437D crossref_primary_10_1140_epjb_s10051_022_00450_6 crossref_primary_10_2139_ssrn_4127684 crossref_primary_10_1039_D3TA04472F crossref_primary_10_1016_j_jece_2023_109331 crossref_primary_10_1016_j_jcis_2021_12_024 crossref_primary_10_1016_j_pmatsci_2024_101352 crossref_primary_10_1016_j_cej_2021_129829 crossref_primary_10_1002_smll_202105376 crossref_primary_10_1002_smll_202409735 crossref_primary_10_1016_j_jcis_2022_04_032 crossref_primary_10_1021_acs_chemmater_1c02697 crossref_primary_10_1016_j_inoche_2021_108993 crossref_primary_10_1016_j_jcat_2023_03_038 crossref_primary_10_1021_acsaem_2c03322 crossref_primary_10_1039_D2NR05076E crossref_primary_10_1021_acsami_1c10748 crossref_primary_10_1039_D3TA02189K crossref_primary_10_1039_D2CY02013K crossref_primary_10_1007_s12274_024_6483_y crossref_primary_10_1016_j_apcatb_2021_120574 crossref_primary_10_1016_j_seppur_2022_122833 |
Cites_doi | 10.1002/anie.201901267 10.1039/C8CS00997J 10.1007/s12274-019-2538-x 10.1038/238037a0 10.1016/j.watres.2018.11.077 10.1002/cctc.201902070 10.1039/C7CC01827D 10.1038/s41586-018-0129-8 10.1002/anie.201510990 10.1016/j.apcatb.2020.118661 10.1002/anie.201908640 10.1016/j.cej.2020.124751 10.1002/adma.201605776 10.1002/aenm.201700706 10.1016/j.jcat.2009.06.005 10.1021/acs.chemrev.7b00286 10.1021/acscatal.9b02274 10.1021/acscatal.6b02207 10.1021/jacs.5b06025 10.1002/advs.201800575 10.1039/C9TA01734H 10.1016/j.scib.2019.10.015 10.1002/aenm.201600932 10.1002/anie.201913660 10.1016/j.cclet.2020.01.017 10.1039/C9CC01161G 10.1002/smll.201700632 10.1039/C9TA03090E 10.1021/jacs.0c04491 10.1038/s41570-018-0024-8 10.1016/j.nanoen.2017.01.046 10.1016/j.apcatb.2019.04.035 10.1039/C7CC03859C 10.1002/adma.201803641 10.1016/j.nanoen.2018.09.013 10.1021/ja513292k 10.1016/j.cclet.2019.08.020 10.1021/jacs.7b08416 10.1016/j.apcatb.2018.10.043 10.1002/anie.201813417 10.1002/adfm.201604328 10.1038/s41467-018-03666-2 10.1002/adfm.201705407 10.1038/nenergy.2016.151 10.1021/acsami.9b05572 10.1002/anie.201911696 10.1016/j.apcatb.2018.07.040 10.1002/adfm.201703455 10.1002/adfm.201800668 10.1021/ic3011663 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
DOI | 10.1039/d0ta10165f |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 2543 |
ExternalDocumentID | 10_1039_D0TA10165F d0ta10165f |
GroupedDBID | 0-7 0R 705 AAEMU AAGNR AAIWI AANOJ ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFRAH AFVBQ AGSTE ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV BLAPV BSQNT C6K CKLOX EBS ECGLT EE0 EF- GNO HZ H~N J3I JG O-G O9- R7C RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ 0R~ AAJAE AAWGC AAXHV AAYXX ABASK ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKMSF ALUYA ANUXI APEMP CITATION GGIMP H13 HZ~ RAOCF 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c351t-abd3f8b5860ab0c5a93bc9e7502e8df355250def228633245246f8448b84a5653 |
ISSN | 2050-7488 2050-7496 |
IngestDate | Fri Jul 11 07:27:41 EDT 2025 Mon Jun 30 12:05:17 EDT 2025 Thu Apr 24 23:03:39 EDT 2025 Tue Jul 01 01:13:00 EDT 2025 Sat Jan 08 03:48:08 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 47 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c351t-abd3f8b5860ab0c5a93bc9e7502e8df355250def228633245246f8448b84a5653 |
Notes | 10.1039/d0ta10165f Electronic supplementary information (ESI) available. See DOI Dedicated to Prof. Jin-Shun Huang on the occasion of his 80th birthday. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3585-6541 0000-0002-3749-605X |
PQID | 2470042831 |
PQPubID | 2047523 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2552020295 proquest_journals_2470042831 crossref_primary_10_1039_D0TA10165F rsc_primary_d0ta10165f crossref_citationtrail_10_1039_D0TA10165F |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201215 |
PublicationDateYYYYMMDD | 2020-12-15 |
PublicationDate_xml | – month: 12 year: 2020 text: 20201215 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Coffer (D0TA10165F-(cit45)/*[position()=1]) 2012; 51 Zhu (D0TA10165F-(cit37)/*[position()=1]) 2017; 29 Yang (D0TA10165F-(cit31)/*[position()=1]) 2015; 137 Lan (D0TA10165F-(cit13)/*[position()=1]) 2017; 33 Gong (D0TA10165F-(cit18)/*[position()=1]) 2018; 238 Tao (D0TA10165F-(cit24)/*[position()=1]) 2018; 53 Wang (D0TA10165F-(cit42)/*[position()=1]) 2020; 65 Li (D0TA10165F-(cit51)/*[position()=1]) 2017; 27 Fujishima (D0TA10165F-(cit4)/*[position()=1]) 1972; 238 Zou (D0TA10165F-(cit6)/*[position()=1]) 2019; 150 Xu (D0TA10165F-(cit38)/*[position()=1]) 2020; 267 Kuecken (D0TA10165F-(cit41)/*[position()=1]) 2017; 53 Xiao (D0TA10165F-(cit8)/*[position()=1]) 2017; 13 Calvo (D0TA10165F-(cit16)/*[position()=1]) 2019; 7 Liu (D0TA10165F-(cit23)/*[position()=1]) 2018; 557 Wu (D0TA10165F-(cit15)/*[position()=1]) 2020; 142 Dong (D0TA10165F-(cit27)/*[position()=1]) 2018; 9 Hatanaka (D0TA10165F-(cit30)/*[position()=1]) 2009; 206 Shi (D0TA10165F-(cit50)/*[position()=1]) 2018; 5 Wang (D0TA10165F-(cit48)/*[position()=1]) 2019; 58 Li (D0TA10165F-(cit3)/*[position()=1]) 2018; 2 Zhang (D0TA10165F-(cit21)/*[position()=1]) 2017; 7 Concina (D0TA10165F-(cit5)/*[position()=1]) 2017; 7 Li (D0TA10165F-(cit9)/*[position()=1]) 2019; 243 Li (D0TA10165F-(cit22)/*[position()=1]) 2019; 58 Zhu (D0TA10165F-(cit44)/*[position()=1]) 2017; 139 Zhou (D0TA10165F-(cit47)/*[position()=1]) 2019; 55 Shi (D0TA10165F-(cit7)/*[position()=1]) 2020; 393 Yang (D0TA10165F-(cit2)/*[position()=1]) 2019; 48 Zheng (D0TA10165F-(cit35)/*[position()=1]) 2018; 28 Wang (D0TA10165F-(cit40)/*[position()=1]) 2019; 58 Yan (D0TA10165F-(cit11)/*[position()=1]) 2017; 27 Liu (D0TA10165F-(cit17)/*[position()=1]) 2019; 252 Qu (D0TA10165F-(cit12)/*[position()=1]) 2019; 12 Guo (D0TA10165F-(cit32)/*[position()=1]) 2020; 59 Wang (D0TA10165F-(cit34)/*[position()=1]) 2015; 137 Wang (D0TA10165F-(cit1)/*[position()=1]) 2019; 118 Yuan (D0TA10165F-(cit46)/*[position()=1]) 2019; 9 Hu (D0TA10165F-(cit39)/*[position()=1]) 2019; 58 Patra (D0TA10165F-(cit33)/*[position()=1]) 2020; 12 Kong (D0TA10165F-(cit36)/*[position()=1]) 2018; 28 Deng (D0TA10165F-(cit29)/*[position()=1]) 2017; 53 Zhang (D0TA10165F-(cit25)/*[position()=1]) 2016; 55 Wang (D0TA10165F-(cit49)/*[position()=1]) 2019; 58 Yu (D0TA10165F-(cit10)/*[position()=1]) 2020; 31 Yao (D0TA10165F-(cit14)/*[position()=1]) 2019; 29 Zhu (D0TA10165F-(cit20)/*[position()=1]) 2020; 31 Han (D0TA10165F-(cit26)/*[position()=1]) 2019; 7 Bai (D0TA10165F-(cit43)/*[position()=1]) 2018; 30 Liu (D0TA10165F-(cit19)/*[position()=1]) 2016; 1 Shi (D0TA10165F-(cit28)/*[position()=1]) 2016; 6 |
References_xml | – volume: 58 start-page: 10804 year: 2019 ident: D0TA10165F-(cit22)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201901267 – volume: 48 start-page: 4979 year: 2019 ident: D0TA10165F-(cit2)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00997J – volume: 12 start-page: 2960 year: 2019 ident: D0TA10165F-(cit12)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-019-2538-x – volume: 238 start-page: 37 year: 1972 ident: D0TA10165F-(cit4)/*[position()=1] publication-title: Nature doi: 10.1038/238037a0 – volume: 150 start-page: 330 year: 2019 ident: D0TA10165F-(cit6)/*[position()=1] publication-title: Water Res. doi: 10.1016/j.watres.2018.11.077 – volume: 12 start-page: 2315 year: 2020 ident: D0TA10165F-(cit33)/*[position()=1] publication-title: ChemCatChem doi: 10.1002/cctc.201902070 – volume: 53 start-page: 5854 year: 2017 ident: D0TA10165F-(cit41)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C7CC01827D – volume: 557 start-page: 696 year: 2018 ident: D0TA10165F-(cit23)/*[position()=1] publication-title: Nature doi: 10.1038/s41586-018-0129-8 – volume: 55 start-page: 1 year: 2016 ident: D0TA10165F-(cit25)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201510990 – volume: 267 start-page: 118661 year: 2020 ident: D0TA10165F-(cit38)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2020.118661 – volume: 58 start-page: 16644 year: 2019 ident: D0TA10165F-(cit48)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201908640 – volume: 393 start-page: 124751 year: 2020 ident: D0TA10165F-(cit7)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124751 – volume: 29 start-page: 1605776 year: 2017 ident: D0TA10165F-(cit37)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201605776 – volume: 7 start-page: 1700706 year: 2017 ident: D0TA10165F-(cit5)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700706 – volume: 206 start-page: 182 year: 2009 ident: D0TA10165F-(cit30)/*[position()=1] publication-title: J. Catal. doi: 10.1016/j.jcat.2009.06.005 – volume: 118 start-page: 5201 year: 2019 ident: D0TA10165F-(cit1)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00286 – volume: 9 start-page: 7801 year: 2019 ident: D0TA10165F-(cit46)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.9b02274 – volume: 6 start-page: 7844 year: 2016 ident: D0TA10165F-(cit28)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.6b02207 – volume: 137 start-page: 11376 year: 2015 ident: D0TA10165F-(cit34)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b06025 – volume: 5 start-page: 1800575 year: 2018 ident: D0TA10165F-(cit50)/*[position()=1] publication-title: Adv. Sci. doi: 10.1002/advs.201800575 – volume: 7 start-page: 14849 year: 2019 ident: D0TA10165F-(cit16)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C9TA01734H – volume: 65 start-page: 113 year: 2020 ident: D0TA10165F-(cit42)/*[position()=1] publication-title: Sci. Bull. doi: 10.1016/j.scib.2019.10.015 – volume: 7 start-page: 1600932 year: 2017 ident: D0TA10165F-(cit21)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600932 – volume: 59 start-page: 1548 year: 2020 ident: D0TA10165F-(cit32)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201913660 – volume: 31 start-page: 1961 year: 2020 ident: D0TA10165F-(cit20)/*[position()=1] publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2020.01.017 – volume: 55 start-page: 4150 year: 2019 ident: D0TA10165F-(cit47)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C9CC01161G – volume: 13 start-page: 1700632 year: 2017 ident: D0TA10165F-(cit8)/*[position()=1] publication-title: Small doi: 10.1002/smll.201700632 – volume: 7 start-page: 15607 year: 2019 ident: D0TA10165F-(cit26)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C9TA03090E – volume: 142 start-page: 13090 year: 2020 ident: D0TA10165F-(cit15)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c04491 – volume: 2 start-page: 160 year: 2018 ident: D0TA10165F-(cit3)/*[position()=1] publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-018-0024-8 – volume: 33 start-page: 238 year: 2017 ident: D0TA10165F-(cit13)/*[position()=1] publication-title: Nano energy doi: 10.1016/j.nanoen.2017.01.046 – volume: 252 start-page: 164 year: 2019 ident: D0TA10165F-(cit17)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.04.035 – volume: 58 start-page: 10804 year: 2019 ident: D0TA10165F-(cit49)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201901267 – volume: 53 start-page: 6937 year: 2017 ident: D0TA10165F-(cit29)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C7CC03859C – volume: 30 start-page: 1803641 year: 2018 ident: D0TA10165F-(cit43)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201803641 – volume: 53 start-page: 604 year: 2018 ident: D0TA10165F-(cit24)/*[position()=1] publication-title: Nano energy doi: 10.1016/j.nanoen.2018.09.013 – volume: 137 start-page: 3470 year: 2015 ident: D0TA10165F-(cit31)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja513292k – volume: 31 start-page: 1648 year: 2020 ident: D0TA10165F-(cit10)/*[position()=1] publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2019.08.020 – volume: 139 start-page: 13234 year: 2017 ident: D0TA10165F-(cit44)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b08416 – volume: 243 start-page: 621 year: 2019 ident: D0TA10165F-(cit9)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2018.10.043 – volume: 58 start-page: 2073 year: 2019 ident: D0TA10165F-(cit39)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201813417 – volume: 27 start-page: 1604328 year: 2017 ident: D0TA10165F-(cit51)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201604328 – volume: 9 start-page: 1252 year: 2018 ident: D0TA10165F-(cit27)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-03666-2 – volume: 28 start-page: 1705407 year: 2018 ident: D0TA10165F-(cit35)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201705407 – volume: 1 start-page: 16151 year: 2016 ident: D0TA10165F-(cit19)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/nenergy.2016.151 – volume: 29 start-page: 25844 year: 2019 ident: D0TA10165F-(cit14)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b05572 – volume: 58 start-page: 19060 year: 2019 ident: D0TA10165F-(cit40)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201911696 – volume: 238 start-page: 318 year: 2018 ident: D0TA10165F-(cit18)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2018.07.040 – volume: 27 start-page: 1703455 year: 2017 ident: D0TA10165F-(cit11)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201703455 – volume: 28 start-page: 1800668 year: 2018 ident: D0TA10165F-(cit36)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201800668 – volume: 51 start-page: 9799 issue: 18 year: 2012 ident: D0TA10165F-(cit45)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic3011663 |
SSID | ssj0000800699 |
Score | 2.4802313 |
Snippet | Developing highly efficient and stable photocatalysts for hydrogen (H
2
) evolution is a great challenge. Herein, a novel strategy using ultrathin black... Developing highly efficient and stable photocatalysts for hydrogen (H2) evolution is a great challenge. Herein, a novel strategy using ultrathin black... Developing highly efficient and stable photocatalysts for hydrogen (H₂) evolution is a great challenge. Herein, a novel strategy using ultrathin black... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 25425 |
SubjectTerms | Bonding Carbonaceous materials Charge efficiency Evolution hydrogen Hydrogen evolution hydrogen production Nanoparticles Phosphorus Photocatalysis Photocatalysts Platinum Sandwich structures Triazine |
Title | Unveiling localized Pt-P-N bonding states constructed on covalent triazine-based frameworks for boosting photocatalytic hydrogen evolution |
URI | https://www.proquest.com/docview/2470042831 https://www.proquest.com/docview/2552020295 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l6QUOiFdFoKBFcEGRi-1dO_Yxoq0CKlEOiRRxibz2uolA3qpxKrUnfgEX_iE_gjOzTzsQpMIhlrUeb2zPt7Ozs_NA6HWWp0wOG68o-cCjAZNyEMZjMchCEsc0GiiD28dxPJrRD_No3un8bHktbWp2lN_sjCv5H65CG_BVRsn-A2ddp9AA58BfOAKH4XgrHs-qK75S8eRqSlrdgPY4qa3_Apm4s3GfCR2-ogKI1tLZXGeOhTuE9ESHx5JeAbKIh8w37cnZreiX1nVrrd06hVgrN-mLpaiFsvxcy4Svy-viUpzLegFX5n3_ovOCeqy_Sz-3heaO-kMdM2SvqBzkOiJRGfVthJd04nX2_09LroUUrKXPvTM7_6qdAX3hGAg-NxtPG2XmXWZCEju3oZUhnm8qb8RNJ8YGEip_Eh0FqkVl6Ee-zIqqJTlvt-l6uVbWJy1I60yfVnBHVAdgGy1A5gjwd04xPpEZWo_96VCFgp02E6l1HvhtfnVej2q_n6SL5t49tB_C8ibsov3hyfT9mbMOSj0-VsVP3avZ3Lokfdt0sK1NNUukvUtbv0bpSdP76J5hNh5qtD5AHV49RHdbaS8foW8Ot9jhFk_qH1-_T-A3xgarWGMVt7CKRYUtVvE2VnGDVQwQwhareBur2GIVO6w-RrPTk-m7kWfqgng5iYLay1hByoRFSexnzM-jLCUsTznoviFPihI0aNDrC16GYRITIl0LaFwmlCYsoRksYMgB6lai4k8Q5jxIYibz-hFKc6CKSEEiWPSQlFMWxD30xn7fRW6S5svaLV8WfzKzh1452gudKmYn1aFl08KIkvUipANlvCBBD710l2EYyt27rOJiAzTwWgD9MI166ADY6_6j8OtM9V0-vdUTPEN3mjF0iLrAQf4cNOuavTAw_AUZVNRy |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unveiling+localized+Pt%E2%80%93P%E2%80%93N+bonding+states+constructed+on+covalent+triazine-based+frameworks+for+boosting+photocatalytic+hydrogen+evolution&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Zheng%2C+Ling-Ling&rft.au=Wang%2C+Dengke&rft.au=Wu%2C+Shao-Lin&rft.au=Jiang%2C+Xun-Heng&rft.date=2020-12-15&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=8&rft.issue=47&rft.spage=25425&rft.epage=25430&rft_id=info:doi/10.1039%2FD0TA10165F&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D0TA10165F |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |