Unveiling localized Pt-P-N bonding states constructed on covalent triazine-based frameworks for boosting photocatalytic hydrogen evolution

Developing highly efficient and stable photocatalysts for hydrogen (H 2 ) evolution is a great challenge. Herein, a novel strategy using ultrathin black phosphorus (BP) as a bridge joint was proposed for controllable construction of a sandwich-type Pt-containing covalent triazine-based framework pho...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 8; no. 47; pp. 25425 - 2543
Main Authors Zheng, Ling-Ling, Wang, Dengke, Wu, Shao-Lin, Jiang, Xun-Heng, Zhang, Jun, Xing, Qiu-Ju, Zou, Jian-Ping, Luo, Sheng-Lian
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 15.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Developing highly efficient and stable photocatalysts for hydrogen (H 2 ) evolution is a great challenge. Herein, a novel strategy using ultrathin black phosphorus (BP) as a bridge joint was proposed for controllable construction of a sandwich-type Pt-containing covalent triazine-based framework photocatalyst, CTF-BP-Pt. The as-prepared CTF-BP-Pt not only significantly enhances the stability of Pt nanoparticles but also dramatically improves the charge separation efficiency of the photocatalyst. For the first time, this work reveals that the unique Pt( δ + )-P( δ − )-N( δ + ) surface bonding states in CTF-BP-Pt lead to a greatly improved H 2 evolution rate (614.6 μmol g −1 h −1 ) compared with that of CTF directly doped with Pt (CTF/Pt, 167.5 μmol g −1 h −1 ). In addition, the Pt( δ + )-P( δ − )-N( δ + ) configurations enabled the reduction of loading amount of Pt from the normal 2 wt% to 0.05 wt% but did not remarkably decrease the H 2 evolution rate. It is noteworthy that the H 2 evolution rate and its turnover frequency (TOF) obtained over the CTF-BP-Pt with 0.05 wt% Pt are much higher than those of other Pt loaded carbonaceous materials. Finally, the improvement of photocatalytic performance of CTF-BP-Pt was well explained based on many characterization experiments. The present work marks a critical step toward developing high-performance and low-cost photocatalytic H 2 evolution materials. Unique Pt( δ + )-P( δ − )-N( δ + ) bonding states were constructed on CTF-1 for efficient photocatalytic performance via using BP as a bridge joint.
AbstractList Developing highly efficient and stable photocatalysts for hydrogen (H₂) evolution is a great challenge. Herein, a novel strategy using ultrathin black phosphorus (BP) as a bridge joint was proposed for controllable construction of a sandwich-type Pt-containing covalent triazine-based framework photocatalyst, CTF-BP-Pt. The as-prepared CTF-BP-Pt not only significantly enhances the stability of Pt nanoparticles but also dramatically improves the charge separation efficiency of the photocatalyst. For the first time, this work reveals that the unique Pt(δ⁺)–P(δ⁻)–N(δ⁺) surface bonding states in CTF-BP-Pt lead to a greatly improved H₂ evolution rate (614.6 μmol g⁻¹ h⁻¹) compared with that of CTF directly doped with Pt (CTF/Pt, 167.5 μmol g⁻¹ h⁻¹). In addition, the Pt(δ⁺)–P(δ⁻)–N(δ⁺) configurations enabled the reduction of loading amount of Pt from the normal 2 wt% to 0.05 wt% but did not remarkably decrease the H₂ evolution rate. It is noteworthy that the H₂ evolution rate and its turnover frequency (TOF) obtained over the CTF-BP-Pt with 0.05 wt% Pt are much higher than those of other Pt loaded carbonaceous materials. Finally, the improvement of photocatalytic performance of CTF-BP-Pt was well explained based on many characterization experiments. The present work marks a critical step toward developing high-performance and low-cost photocatalytic H₂ evolution materials.
Developing highly efficient and stable photocatalysts for hydrogen (H2) evolution is a great challenge. Herein, a novel strategy using ultrathin black phosphorus (BP) as a bridge joint was proposed for controllable construction of a sandwich-type Pt-containing covalent triazine-based framework photocatalyst, CTF-BP-Pt. The as-prepared CTF-BP-Pt not only significantly enhances the stability of Pt nanoparticles but also dramatically improves the charge separation efficiency of the photocatalyst. For the first time, this work reveals that the unique Pt(δ+)–P(δ−)–N(δ+) surface bonding states in CTF-BP-Pt lead to a greatly improved H2 evolution rate (614.6 μmol g−1 h−1) compared with that of CTF directly doped with Pt (CTF/Pt, 167.5 μmol g−1 h−1). In addition, the Pt(δ+)–P(δ−)–N(δ+) configurations enabled the reduction of loading amount of Pt from the normal 2 wt% to 0.05 wt% but did not remarkably decrease the H2 evolution rate. It is noteworthy that the H2 evolution rate and its turnover frequency (TOF) obtained over the CTF-BP-Pt with 0.05 wt% Pt are much higher than those of other Pt loaded carbonaceous materials. Finally, the improvement of photocatalytic performance of CTF-BP-Pt was well explained based on many characterization experiments. The present work marks a critical step toward developing high-performance and low-cost photocatalytic H2 evolution materials.
Developing highly efficient and stable photocatalysts for hydrogen (H 2 ) evolution is a great challenge. Herein, a novel strategy using ultrathin black phosphorus (BP) as a bridge joint was proposed for controllable construction of a sandwich-type Pt-containing covalent triazine-based framework photocatalyst, CTF-BP-Pt. The as-prepared CTF-BP-Pt not only significantly enhances the stability of Pt nanoparticles but also dramatically improves the charge separation efficiency of the photocatalyst. For the first time, this work reveals that the unique Pt( δ + )–P( δ − )–N( δ + ) surface bonding states in CTF-BP-Pt lead to a greatly improved H 2 evolution rate (614.6 μmol g −1 h −1 ) compared with that of CTF directly doped with Pt (CTF/Pt, 167.5 μmol g −1 h −1 ). In addition, the Pt( δ + )–P( δ − )–N( δ + ) configurations enabled the reduction of loading amount of Pt from the normal 2 wt% to 0.05 wt% but did not remarkably decrease the H 2 evolution rate. It is noteworthy that the H 2 evolution rate and its turnover frequency (TOF) obtained over the CTF-BP-Pt with 0.05 wt% Pt are much higher than those of other Pt loaded carbonaceous materials. Finally, the improvement of photocatalytic performance of CTF-BP-Pt was well explained based on many characterization experiments. The present work marks a critical step toward developing high-performance and low-cost photocatalytic H 2 evolution materials.
Developing highly efficient and stable photocatalysts for hydrogen (H 2 ) evolution is a great challenge. Herein, a novel strategy using ultrathin black phosphorus (BP) as a bridge joint was proposed for controllable construction of a sandwich-type Pt-containing covalent triazine-based framework photocatalyst, CTF-BP-Pt. The as-prepared CTF-BP-Pt not only significantly enhances the stability of Pt nanoparticles but also dramatically improves the charge separation efficiency of the photocatalyst. For the first time, this work reveals that the unique Pt( δ + )-P( δ − )-N( δ + ) surface bonding states in CTF-BP-Pt lead to a greatly improved H 2 evolution rate (614.6 μmol g −1 h −1 ) compared with that of CTF directly doped with Pt (CTF/Pt, 167.5 μmol g −1 h −1 ). In addition, the Pt( δ + )-P( δ − )-N( δ + ) configurations enabled the reduction of loading amount of Pt from the normal 2 wt% to 0.05 wt% but did not remarkably decrease the H 2 evolution rate. It is noteworthy that the H 2 evolution rate and its turnover frequency (TOF) obtained over the CTF-BP-Pt with 0.05 wt% Pt are much higher than those of other Pt loaded carbonaceous materials. Finally, the improvement of photocatalytic performance of CTF-BP-Pt was well explained based on many characterization experiments. The present work marks a critical step toward developing high-performance and low-cost photocatalytic H 2 evolution materials. Unique Pt( δ + )-P( δ − )-N( δ + ) bonding states were constructed on CTF-1 for efficient photocatalytic performance via using BP as a bridge joint.
Author Zheng, Ling-Ling
Jiang, Xun-Heng
Zou, Jian-Ping
Luo, Sheng-Lian
Wu, Shao-Lin
Wang, Dengke
Zhang, Jun
Xing, Qiu-Ju
AuthorAffiliation Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization
Nanchang Hangkong University
AuthorAffiliation_xml – name: National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization
– name: Nanchang Hangkong University
– name: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
Author_xml – sequence: 1
  givenname: Ling-Ling
  surname: Zheng
  fullname: Zheng, Ling-Ling
– sequence: 2
  givenname: Dengke
  surname: Wang
  fullname: Wang, Dengke
– sequence: 3
  givenname: Shao-Lin
  surname: Wu
  fullname: Wu, Shao-Lin
– sequence: 4
  givenname: Xun-Heng
  surname: Jiang
  fullname: Jiang, Xun-Heng
– sequence: 5
  givenname: Jun
  surname: Zhang
  fullname: Zhang, Jun
– sequence: 6
  givenname: Qiu-Ju
  surname: Xing
  fullname: Xing, Qiu-Ju
– sequence: 7
  givenname: Jian-Ping
  surname: Zou
  fullname: Zou, Jian-Ping
– sequence: 8
  givenname: Sheng-Lian
  surname: Luo
  fullname: Luo, Sheng-Lian
BookMark eNptkcFOGzEQhi0EEinlwh1pJS5VpW1n7fXGe4xoaSsh4JCcV17vGEwdO9jeVOEReGocgqiEsA8ea7757Zn_E9l33iEhJxV8q4C13wdIsoKq4XqPTChwKKd12-y_xUIckuMY7yEvAdC07YQ8LdwajTXutrBeSWsecShuUnlTXhW9d8M2EZNMGAvlXUxhVCkT3uXrWlp0qUjByEfjsOxlzCkd5BL_-fA3FtqHLOJj2qqs7nzKLyRpN8mo4m4zBH-LrsC1t2My3n0mB1raiMev5xFZXPycn_8uL69__TmfXZaK8SqVsh-YFj0XDcgeFJct61WLUw4UxaAZ55TDgJpS0TBGa07rRou6Fr2oJW84OyJfdrqr4B9GjKlbmqjQWunQj7GjWQHybrfo2Tv03o_B5d91tJ4C1FSwKlNfd5QKPsaAulsFs5Rh01XQbZ3pfsB89uLMRYbhHaxMnm_uPwVp7Mclp7uSENWb9H-z2TOPqp4-
CitedBy_id crossref_primary_10_1038_s41467_022_30035_x
crossref_primary_10_1039_D1TA04493A
crossref_primary_10_1039_D4NR00289J
crossref_primary_10_1016_j_cej_2021_131613
crossref_primary_10_1166_mex_2022_2059
crossref_primary_10_1016_j_cclet_2021_12_076
crossref_primary_10_1016_S1872_2067_21_63892_5
crossref_primary_10_1016_j_surfin_2021_101527
crossref_primary_10_3390_polym14071363
crossref_primary_10_1002_smll_202107840
crossref_primary_10_1016_j_seppur_2022_120829
crossref_primary_10_1016_j_apcatb_2022_121710
crossref_primary_10_1039_D1CY01437D
crossref_primary_10_1140_epjb_s10051_022_00450_6
crossref_primary_10_2139_ssrn_4127684
crossref_primary_10_1039_D3TA04472F
crossref_primary_10_1016_j_jece_2023_109331
crossref_primary_10_1016_j_jcis_2021_12_024
crossref_primary_10_1016_j_pmatsci_2024_101352
crossref_primary_10_1016_j_cej_2021_129829
crossref_primary_10_1002_smll_202105376
crossref_primary_10_1002_smll_202409735
crossref_primary_10_1016_j_jcis_2022_04_032
crossref_primary_10_1021_acs_chemmater_1c02697
crossref_primary_10_1016_j_inoche_2021_108993
crossref_primary_10_1016_j_jcat_2023_03_038
crossref_primary_10_1021_acsaem_2c03322
crossref_primary_10_1039_D2NR05076E
crossref_primary_10_1021_acsami_1c10748
crossref_primary_10_1039_D3TA02189K
crossref_primary_10_1039_D2CY02013K
crossref_primary_10_1007_s12274_024_6483_y
crossref_primary_10_1016_j_apcatb_2021_120574
crossref_primary_10_1016_j_seppur_2022_122833
Cites_doi 10.1002/anie.201901267
10.1039/C8CS00997J
10.1007/s12274-019-2538-x
10.1038/238037a0
10.1016/j.watres.2018.11.077
10.1002/cctc.201902070
10.1039/C7CC01827D
10.1038/s41586-018-0129-8
10.1002/anie.201510990
10.1016/j.apcatb.2020.118661
10.1002/anie.201908640
10.1016/j.cej.2020.124751
10.1002/adma.201605776
10.1002/aenm.201700706
10.1016/j.jcat.2009.06.005
10.1021/acs.chemrev.7b00286
10.1021/acscatal.9b02274
10.1021/acscatal.6b02207
10.1021/jacs.5b06025
10.1002/advs.201800575
10.1039/C9TA01734H
10.1016/j.scib.2019.10.015
10.1002/aenm.201600932
10.1002/anie.201913660
10.1016/j.cclet.2020.01.017
10.1039/C9CC01161G
10.1002/smll.201700632
10.1039/C9TA03090E
10.1021/jacs.0c04491
10.1038/s41570-018-0024-8
10.1016/j.nanoen.2017.01.046
10.1016/j.apcatb.2019.04.035
10.1039/C7CC03859C
10.1002/adma.201803641
10.1016/j.nanoen.2018.09.013
10.1021/ja513292k
10.1016/j.cclet.2019.08.020
10.1021/jacs.7b08416
10.1016/j.apcatb.2018.10.043
10.1002/anie.201813417
10.1002/adfm.201604328
10.1038/s41467-018-03666-2
10.1002/adfm.201705407
10.1038/nenergy.2016.151
10.1021/acsami.9b05572
10.1002/anie.201911696
10.1016/j.apcatb.2018.07.040
10.1002/adfm.201703455
10.1002/adfm.201800668
10.1021/ic3011663
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
DOI 10.1039/d0ta10165f
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 2543
ExternalDocumentID 10_1039_D0TA10165F
d0ta10165f
GroupedDBID 0-7
0R
705
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFRAH
AFVBQ
AGSTE
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CKLOX
EBS
ECGLT
EE0
EF-
GNO
HZ
H~N
J3I
JG
O-G
O9-
R7C
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
0R~
AAJAE
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c351t-abd3f8b5860ab0c5a93bc9e7502e8df355250def228633245246f8448b84a5653
ISSN 2050-7488
2050-7496
IngestDate Fri Jul 11 07:27:41 EDT 2025
Mon Jun 30 12:05:17 EDT 2025
Thu Apr 24 23:03:39 EDT 2025
Tue Jul 01 01:13:00 EDT 2025
Sat Jan 08 03:48:08 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 47
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c351t-abd3f8b5860ab0c5a93bc9e7502e8df355250def228633245246f8448b84a5653
Notes 10.1039/d0ta10165f
Electronic supplementary information (ESI) available. See DOI
Dedicated to Prof. Jin-Shun Huang on the occasion of his 80th birthday.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3585-6541
0000-0002-3749-605X
PQID 2470042831
PQPubID 2047523
PageCount 6
ParticipantIDs proquest_miscellaneous_2552020295
proquest_journals_2470042831
crossref_primary_10_1039_D0TA10165F
rsc_primary_d0ta10165f
crossref_citationtrail_10_1039_D0TA10165F
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201215
PublicationDateYYYYMMDD 2020-12-15
PublicationDate_xml – month: 12
  year: 2020
  text: 20201215
  day: 15
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Coffer (D0TA10165F-(cit45)/*[position()=1]) 2012; 51
Zhu (D0TA10165F-(cit37)/*[position()=1]) 2017; 29
Yang (D0TA10165F-(cit31)/*[position()=1]) 2015; 137
Lan (D0TA10165F-(cit13)/*[position()=1]) 2017; 33
Gong (D0TA10165F-(cit18)/*[position()=1]) 2018; 238
Tao (D0TA10165F-(cit24)/*[position()=1]) 2018; 53
Wang (D0TA10165F-(cit42)/*[position()=1]) 2020; 65
Li (D0TA10165F-(cit51)/*[position()=1]) 2017; 27
Fujishima (D0TA10165F-(cit4)/*[position()=1]) 1972; 238
Zou (D0TA10165F-(cit6)/*[position()=1]) 2019; 150
Xu (D0TA10165F-(cit38)/*[position()=1]) 2020; 267
Kuecken (D0TA10165F-(cit41)/*[position()=1]) 2017; 53
Xiao (D0TA10165F-(cit8)/*[position()=1]) 2017; 13
Calvo (D0TA10165F-(cit16)/*[position()=1]) 2019; 7
Liu (D0TA10165F-(cit23)/*[position()=1]) 2018; 557
Wu (D0TA10165F-(cit15)/*[position()=1]) 2020; 142
Dong (D0TA10165F-(cit27)/*[position()=1]) 2018; 9
Hatanaka (D0TA10165F-(cit30)/*[position()=1]) 2009; 206
Shi (D0TA10165F-(cit50)/*[position()=1]) 2018; 5
Wang (D0TA10165F-(cit48)/*[position()=1]) 2019; 58
Li (D0TA10165F-(cit3)/*[position()=1]) 2018; 2
Zhang (D0TA10165F-(cit21)/*[position()=1]) 2017; 7
Concina (D0TA10165F-(cit5)/*[position()=1]) 2017; 7
Li (D0TA10165F-(cit9)/*[position()=1]) 2019; 243
Li (D0TA10165F-(cit22)/*[position()=1]) 2019; 58
Zhu (D0TA10165F-(cit44)/*[position()=1]) 2017; 139
Zhou (D0TA10165F-(cit47)/*[position()=1]) 2019; 55
Shi (D0TA10165F-(cit7)/*[position()=1]) 2020; 393
Yang (D0TA10165F-(cit2)/*[position()=1]) 2019; 48
Zheng (D0TA10165F-(cit35)/*[position()=1]) 2018; 28
Wang (D0TA10165F-(cit40)/*[position()=1]) 2019; 58
Yan (D0TA10165F-(cit11)/*[position()=1]) 2017; 27
Liu (D0TA10165F-(cit17)/*[position()=1]) 2019; 252
Qu (D0TA10165F-(cit12)/*[position()=1]) 2019; 12
Guo (D0TA10165F-(cit32)/*[position()=1]) 2020; 59
Wang (D0TA10165F-(cit34)/*[position()=1]) 2015; 137
Wang (D0TA10165F-(cit1)/*[position()=1]) 2019; 118
Yuan (D0TA10165F-(cit46)/*[position()=1]) 2019; 9
Hu (D0TA10165F-(cit39)/*[position()=1]) 2019; 58
Patra (D0TA10165F-(cit33)/*[position()=1]) 2020; 12
Kong (D0TA10165F-(cit36)/*[position()=1]) 2018; 28
Deng (D0TA10165F-(cit29)/*[position()=1]) 2017; 53
Zhang (D0TA10165F-(cit25)/*[position()=1]) 2016; 55
Wang (D0TA10165F-(cit49)/*[position()=1]) 2019; 58
Yu (D0TA10165F-(cit10)/*[position()=1]) 2020; 31
Yao (D0TA10165F-(cit14)/*[position()=1]) 2019; 29
Zhu (D0TA10165F-(cit20)/*[position()=1]) 2020; 31
Han (D0TA10165F-(cit26)/*[position()=1]) 2019; 7
Bai (D0TA10165F-(cit43)/*[position()=1]) 2018; 30
Liu (D0TA10165F-(cit19)/*[position()=1]) 2016; 1
Shi (D0TA10165F-(cit28)/*[position()=1]) 2016; 6
References_xml – volume: 58
  start-page: 10804
  year: 2019
  ident: D0TA10165F-(cit22)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201901267
– volume: 48
  start-page: 4979
  year: 2019
  ident: D0TA10165F-(cit2)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00997J
– volume: 12
  start-page: 2960
  year: 2019
  ident: D0TA10165F-(cit12)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-019-2538-x
– volume: 238
  start-page: 37
  year: 1972
  ident: D0TA10165F-(cit4)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/238037a0
– volume: 150
  start-page: 330
  year: 2019
  ident: D0TA10165F-(cit6)/*[position()=1]
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.11.077
– volume: 12
  start-page: 2315
  year: 2020
  ident: D0TA10165F-(cit33)/*[position()=1]
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201902070
– volume: 53
  start-page: 5854
  year: 2017
  ident: D0TA10165F-(cit41)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC01827D
– volume: 557
  start-page: 696
  year: 2018
  ident: D0TA10165F-(cit23)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/s41586-018-0129-8
– volume: 55
  start-page: 1
  year: 2016
  ident: D0TA10165F-(cit25)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201510990
– volume: 267
  start-page: 118661
  year: 2020
  ident: D0TA10165F-(cit38)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2020.118661
– volume: 58
  start-page: 16644
  year: 2019
  ident: D0TA10165F-(cit48)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201908640
– volume: 393
  start-page: 124751
  year: 2020
  ident: D0TA10165F-(cit7)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124751
– volume: 29
  start-page: 1605776
  year: 2017
  ident: D0TA10165F-(cit37)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605776
– volume: 7
  start-page: 1700706
  year: 2017
  ident: D0TA10165F-(cit5)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700706
– volume: 206
  start-page: 182
  year: 2009
  ident: D0TA10165F-(cit30)/*[position()=1]
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2009.06.005
– volume: 118
  start-page: 5201
  year: 2019
  ident: D0TA10165F-(cit1)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00286
– volume: 9
  start-page: 7801
  year: 2019
  ident: D0TA10165F-(cit46)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b02274
– volume: 6
  start-page: 7844
  year: 2016
  ident: D0TA10165F-(cit28)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02207
– volume: 137
  start-page: 11376
  year: 2015
  ident: D0TA10165F-(cit34)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b06025
– volume: 5
  start-page: 1800575
  year: 2018
  ident: D0TA10165F-(cit50)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201800575
– volume: 7
  start-page: 14849
  year: 2019
  ident: D0TA10165F-(cit16)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA01734H
– volume: 65
  start-page: 113
  year: 2020
  ident: D0TA10165F-(cit42)/*[position()=1]
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2019.10.015
– volume: 7
  start-page: 1600932
  year: 2017
  ident: D0TA10165F-(cit21)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600932
– volume: 59
  start-page: 1548
  year: 2020
  ident: D0TA10165F-(cit32)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201913660
– volume: 31
  start-page: 1961
  year: 2020
  ident: D0TA10165F-(cit20)/*[position()=1]
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2020.01.017
– volume: 55
  start-page: 4150
  year: 2019
  ident: D0TA10165F-(cit47)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC01161G
– volume: 13
  start-page: 1700632
  year: 2017
  ident: D0TA10165F-(cit8)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201700632
– volume: 7
  start-page: 15607
  year: 2019
  ident: D0TA10165F-(cit26)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA03090E
– volume: 142
  start-page: 13090
  year: 2020
  ident: D0TA10165F-(cit15)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c04491
– volume: 2
  start-page: 160
  year: 2018
  ident: D0TA10165F-(cit3)/*[position()=1]
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-018-0024-8
– volume: 33
  start-page: 238
  year: 2017
  ident: D0TA10165F-(cit13)/*[position()=1]
  publication-title: Nano energy
  doi: 10.1016/j.nanoen.2017.01.046
– volume: 252
  start-page: 164
  year: 2019
  ident: D0TA10165F-(cit17)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.04.035
– volume: 58
  start-page: 10804
  year: 2019
  ident: D0TA10165F-(cit49)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201901267
– volume: 53
  start-page: 6937
  year: 2017
  ident: D0TA10165F-(cit29)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC03859C
– volume: 30
  start-page: 1803641
  year: 2018
  ident: D0TA10165F-(cit43)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803641
– volume: 53
  start-page: 604
  year: 2018
  ident: D0TA10165F-(cit24)/*[position()=1]
  publication-title: Nano energy
  doi: 10.1016/j.nanoen.2018.09.013
– volume: 137
  start-page: 3470
  year: 2015
  ident: D0TA10165F-(cit31)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja513292k
– volume: 31
  start-page: 1648
  year: 2020
  ident: D0TA10165F-(cit10)/*[position()=1]
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2019.08.020
– volume: 139
  start-page: 13234
  year: 2017
  ident: D0TA10165F-(cit44)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b08416
– volume: 243
  start-page: 621
  year: 2019
  ident: D0TA10165F-(cit9)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2018.10.043
– volume: 58
  start-page: 2073
  year: 2019
  ident: D0TA10165F-(cit39)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201813417
– volume: 27
  start-page: 1604328
  year: 2017
  ident: D0TA10165F-(cit51)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201604328
– volume: 9
  start-page: 1252
  year: 2018
  ident: D0TA10165F-(cit27)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03666-2
– volume: 28
  start-page: 1705407
  year: 2018
  ident: D0TA10165F-(cit35)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201705407
– volume: 1
  start-page: 16151
  year: 2016
  ident: D0TA10165F-(cit19)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.151
– volume: 29
  start-page: 25844
  year: 2019
  ident: D0TA10165F-(cit14)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b05572
– volume: 58
  start-page: 19060
  year: 2019
  ident: D0TA10165F-(cit40)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201911696
– volume: 238
  start-page: 318
  year: 2018
  ident: D0TA10165F-(cit18)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2018.07.040
– volume: 27
  start-page: 1703455
  year: 2017
  ident: D0TA10165F-(cit11)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201703455
– volume: 28
  start-page: 1800668
  year: 2018
  ident: D0TA10165F-(cit36)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201800668
– volume: 51
  start-page: 9799
  issue: 18
  year: 2012
  ident: D0TA10165F-(cit45)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic3011663
SSID ssj0000800699
Score 2.4802313
Snippet Developing highly efficient and stable photocatalysts for hydrogen (H 2 ) evolution is a great challenge. Herein, a novel strategy using ultrathin black...
Developing highly efficient and stable photocatalysts for hydrogen (H2) evolution is a great challenge. Herein, a novel strategy using ultrathin black...
Developing highly efficient and stable photocatalysts for hydrogen (H₂) evolution is a great challenge. Herein, a novel strategy using ultrathin black...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 25425
SubjectTerms Bonding
Carbonaceous materials
Charge efficiency
Evolution
hydrogen
Hydrogen evolution
hydrogen production
Nanoparticles
Phosphorus
Photocatalysis
Photocatalysts
Platinum
Sandwich structures
Triazine
Title Unveiling localized Pt-P-N bonding states constructed on covalent triazine-based frameworks for boosting photocatalytic hydrogen evolution
URI https://www.proquest.com/docview/2470042831
https://www.proquest.com/docview/2552020295
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l6QUOiFdFoKBFcEGRi-1dO_Yxoq0CKlEOiRRxibz2uolA3qpxKrUnfgEX_iE_gjOzTzsQpMIhlrUeb2zPt7Ozs_NA6HWWp0wOG68o-cCjAZNyEMZjMchCEsc0GiiD28dxPJrRD_No3un8bHktbWp2lN_sjCv5H65CG_BVRsn-A2ddp9AA58BfOAKH4XgrHs-qK75S8eRqSlrdgPY4qa3_Apm4s3GfCR2-ogKI1tLZXGeOhTuE9ESHx5JeAbKIh8w37cnZreiX1nVrrd06hVgrN-mLpaiFsvxcy4Svy-viUpzLegFX5n3_ovOCeqy_Sz-3heaO-kMdM2SvqBzkOiJRGfVthJd04nX2_09LroUUrKXPvTM7_6qdAX3hGAg-NxtPG2XmXWZCEju3oZUhnm8qb8RNJ8YGEip_Eh0FqkVl6Ee-zIqqJTlvt-l6uVbWJy1I60yfVnBHVAdgGy1A5gjwd04xPpEZWo_96VCFgp02E6l1HvhtfnVej2q_n6SL5t49tB_C8ibsov3hyfT9mbMOSj0-VsVP3avZ3Lokfdt0sK1NNUukvUtbv0bpSdP76J5hNh5qtD5AHV49RHdbaS8foW8Ot9jhFk_qH1-_T-A3xgarWGMVt7CKRYUtVvE2VnGDVQwQwhareBur2GIVO6w-RrPTk-m7kWfqgng5iYLay1hByoRFSexnzM-jLCUsTznoviFPihI0aNDrC16GYRITIl0LaFwmlCYsoRksYMgB6lai4k8Q5jxIYibz-hFKc6CKSEEiWPSQlFMWxD30xn7fRW6S5svaLV8WfzKzh1452gudKmYn1aFl08KIkvUipANlvCBBD710l2EYyt27rOJiAzTwWgD9MI166ADY6_6j8OtM9V0-vdUTPEN3mjF0iLrAQf4cNOuavTAw_AUZVNRy
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unveiling+localized+Pt%E2%80%93P%E2%80%93N+bonding+states+constructed+on+covalent+triazine-based+frameworks+for+boosting+photocatalytic+hydrogen+evolution&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Zheng%2C+Ling-Ling&rft.au=Wang%2C+Dengke&rft.au=Wu%2C+Shao-Lin&rft.au=Jiang%2C+Xun-Heng&rft.date=2020-12-15&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=8&rft.issue=47&rft.spage=25425&rft.epage=25430&rft_id=info:doi/10.1039%2FD0TA10165F&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D0TA10165F
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon