Emergence of 2D high-temperature nodal-line half-metal in monolayer AgN
Nodal-line half-metals (NLHMs) are highly desirable for future spintronic devices due to their exotic quantum properties. However, the experimental realization in spin-polarized materials is nontrivial to date. Herein we perform first-principles calculations to demonstrate a 2D honeycomb, AgN, as a...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 22; no. 46; pp. 2724 - 273 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
07.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nodal-line half-metals (NLHMs) are highly desirable for future spintronic devices due to their exotic quantum properties. However, the experimental realization in spin-polarized materials is nontrivial to date. Herein we perform first-principles calculations to demonstrate a 2D honeycomb, AgN, as a promising candidate of NLHMs, which is thermodynamically and dynamically stable. Band structure analysis reveals that two concentric NLs coexist centered at a
Γ
point near
E
F
, accompanied by the electron and hole pockets that touch each other linearly with single-spin components. Inclusion of SOC can enrich the electronic structures of AgN, sensitive to the protection of mirror reflection symmetry: the NLHM survives if the spin is perpendicular to the
M
z
mirror plane, while it tunes into Wyle nodal-points by rotating spins from the out-of-plane to the in-plane direction. The characteristics of HM and NL can be well maintained on semiconducting h-BN and is immune to mechanical strains. These tunable magnetic properties render 2D AgN suitable for exotic quantum transports in nodal fermions as well as related spintronic devices.
Nodal-line half-metals (NLHMs) are highly desirable for future spintronic devices due to their exotic quantum properties. |
---|---|
AbstractList | Nodal-line half-metals (NLHMs) are highly desirable for future spintronic devices due to their exotic quantum properties. However, the experimental realization in spin-polarized materials is nontrivial to date. Herein we perform first-principles calculations to demonstrate a 2D honeycomb, AgN, as a promising candidate of NLHMs, which is thermodynamically and dynamically stable. Band structure analysis reveals that two concentric NLs coexist centered at a Γ point near EF, accompanied by the electron and hole pockets that touch each other linearly with single-spin components. Inclusion of SOC can enrich the electronic structures of AgN, sensitive to the protection of mirror reflection symmetry: the NLHM survives if the spin is perpendicular to the Mz mirror plane, while it tunes into Wyle nodal-points by rotating spins from the out-of-plane to the in-plane direction. The characteristics of HM and NL can be well maintained on semiconducting h-BN and is immune to mechanical strains. These tunable magnetic properties render 2D AgN suitable for exotic quantum transports in nodal fermions as well as related spintronic devices. Nodal-line half-metals (NLHMs) are highly desirable for future spintronic devices due to their exotic quantum properties. However, the experimental realization in spin-polarized materials is nontrivial to date. Herein we perform first-principles calculations to demonstrate a 2D honeycomb, AgN, as a promising candidate of NLHMs, which is thermodynamically and dynamically stable. Band structure analysis reveals that two concentric NLs coexist centered at a Γ point near E F , accompanied by the electron and hole pockets that touch each other linearly with single-spin components. Inclusion of SOC can enrich the electronic structures of AgN, sensitive to the protection of mirror reflection symmetry: the NLHM survives if the spin is perpendicular to the M z mirror plane, while it tunes into Wyle nodal-points by rotating spins from the out-of-plane to the in-plane direction. The characteristics of HM and NL can be well maintained on semiconducting h-BN and is immune to mechanical strains. These tunable magnetic properties render 2D AgN suitable for exotic quantum transports in nodal fermions as well as related spintronic devices. Nodal-line half-metals (NLHMs) are highly desirable for future spintronic devices due to their exotic quantum properties. However, the experimental realization in spin-polarized materials is nontrivial to date. Herein we perform first-principles calculations to demonstrate a 2D honeycomb, AgN, as a promising candidate of NLHMs, which is thermodynamically and dynamically stable. Band structure analysis reveals that two concentric NLs coexist centered at a Γ point near E F , accompanied by the electron and hole pockets that touch each other linearly with single-spin components. Inclusion of SOC can enrich the electronic structures of AgN, sensitive to the protection of mirror reflection symmetry: the NLHM survives if the spin is perpendicular to the M z mirror plane, while it tunes into Wyle nodal-points by rotating spins from the out-of-plane to the in-plane direction. The characteristics of HM and NL can be well maintained on semiconducting h-BN and is immune to mechanical strains. These tunable magnetic properties render 2D AgN suitable for exotic quantum transports in nodal fermions as well as related spintronic devices. Nodal-line half-metals (NLHMs) are highly desirable for future spintronic devices due to their exotic quantum properties. Nodal-line half-metals (NLHMs) are highly desirable for future spintronic devices due to their exotic quantum properties. However, the experimental realization in spin-polarized materials is nontrivial to date. Herein we perform first-principles calculations to demonstrate a 2D honeycomb, AgN, as a promising candidate of NLHMs, which is thermodynamically and dynamically stable. Band structure analysis reveals that two concentric NLs coexist centered at a Γ point near EF, accompanied by the electron and hole pockets that touch each other linearly with single-spin components. Inclusion of SOC can enrich the electronic structures of AgN, sensitive to the protection of mirror reflection symmetry: the NLHM survives if the spin is perpendicular to the Mz mirror plane, while it tunes into Wyle nodal-points by rotating spins from the out-of-plane to the in-plane direction. The characteristics of HM and NL can be well maintained on semiconducting h-BN and is immune to mechanical strains. These tunable magnetic properties render 2D AgN suitable for exotic quantum transports in nodal fermions as well as related spintronic devices.Nodal-line half-metals (NLHMs) are highly desirable for future spintronic devices due to their exotic quantum properties. However, the experimental realization in spin-polarized materials is nontrivial to date. Herein we perform first-principles calculations to demonstrate a 2D honeycomb, AgN, as a promising candidate of NLHMs, which is thermodynamically and dynamically stable. Band structure analysis reveals that two concentric NLs coexist centered at a Γ point near EF, accompanied by the electron and hole pockets that touch each other linearly with single-spin components. Inclusion of SOC can enrich the electronic structures of AgN, sensitive to the protection of mirror reflection symmetry: the NLHM survives if the spin is perpendicular to the Mz mirror plane, while it tunes into Wyle nodal-points by rotating spins from the out-of-plane to the in-plane direction. The characteristics of HM and NL can be well maintained on semiconducting h-BN and is immune to mechanical strains. These tunable magnetic properties render 2D AgN suitable for exotic quantum transports in nodal fermions as well as related spintronic devices. |
Author | Li, Xin-Yang Zhang, Chang-Wen Ren, Miao-Juan Zhang, Meng-Han |
AuthorAffiliation | Institute of Spintronics School of Physics and Technology University of Jinan |
AuthorAffiliation_xml | – name: Institute of Spintronics – name: University of Jinan – name: School of Physics and Technology |
Author_xml | – sequence: 1 givenname: Xin-Yang surname: Li fullname: Li, Xin-Yang – sequence: 2 givenname: Meng-Han surname: Zhang fullname: Zhang, Meng-Han – sequence: 3 givenname: Miao-Juan surname: Ren fullname: Ren, Miao-Juan – sequence: 4 givenname: Chang-Wen surname: Zhang fullname: Zhang, Chang-Wen |
BookMark | eNptkcFLwzAYxYMouE0v3oWCFxGqSdMmzXFscwpDPei5xPTL1pEmM0kP--_tnEwYnr7v8HuPx3tDdGqdBYSuCL4nmIqHGqsNzgUj8gQNSM5oKnCZnx5-zs7RMIQ1xpgUhA7QfNaCX4JVkDidZNNk1SxXaYR2A17GzkNiXS1NahoLyUoanbYQpUkam7TOOiO34JPx8uUCnWlpAlz-3hH6eJy9T57Sxev8eTJepIoWJKaSaeCElIXUGJjI6oJ_ciJyULhUNVe5kExJVme0JqLWBATnXBV9bi01xUBH6Hbvu_Huq4MQq7YJCoyRFlwXqixnWU4yUvIevTlC167ztk-3o0paYsFwT93tKeVdCB50tfFNK_22IrjadVpN8eTtp9NxD-MjWDVRxsbZ6GVj_pdc7yU-qIP130z0G3i3gy4 |
CitedBy_id | crossref_primary_10_1103_PhysRevB_105_075414 crossref_primary_10_1063_5_0105605 crossref_primary_10_1088_1361_648X_acc8b2 crossref_primary_10_1016_j_chemphys_2021_111199 crossref_primary_10_1016_j_scib_2023_09_004 crossref_primary_10_1063_5_0175382 crossref_primary_10_1088_1674_1056_ac921c crossref_primary_10_1088_2515_7639_ac5dcd crossref_primary_10_1039_D3CP05940E crossref_primary_10_1063_5_0107680 crossref_primary_10_1039_D1NR06033C crossref_primary_10_1103_PhysRevB_105_024407 |
Cites_doi | 10.1103/PhysRevB.54.11169 10.1016/j.carbon.2019.10.038 10.1016/0370-2693(83)91529-0 10.1103/PhysRevB.96.205433 10.1103/PhysRevLett.77.3865 10.1002/ange.201403853 10.1039/C8NR07503D 10.1063/1.5097264 10.1063/1.1984590 10.1103/PhysRevLett.115.036806 10.1103/PhysRevB.92.045126 10.1103/PhysRevLett.108.140405 10.1103/PhysRevB.84.235126 10.1038/nature22391 10.1016/j.carbon.2020.06.082 10.1103/PhysRevLett.84.979 10.1016/j.commatsci.2015.07.019 10.1016/j.physe.2019.113850 10.1103/PhysRev.115.2 10.1021/nn303198w 10.1039/D0TA02847A 10.1103/PhysRevLett.121.106403 10.1103/PhysRevB.50.17953 10.1103/PhysRevB.93.035138 10.1021/acs.nanolett.5b01791 10.1063/1.4985144 10.1103/PhysRevB.92.045108 10.1063/1.5144842 10.1103/PhysRevB.92.201403 10.1039/C8NR05383A 10.1038/nphys2007 10.1103/PhysRevLett.115.036807 10.1039/C7TC02664A 10.1103/PhysRevB.83.220503 10.1038/nature04233 10.1021/acs.nanolett.5b02978 10.1103/PhysRevB.88.125427 10.1103/PhysRevLett.109.237207 10.1103/PhysRevB.92.081201 10.1038/nature22060 10.1038/s41467-017-01108-z 10.1103/PhysRevB.76.073103 10.1103/PhysRevB.85.115105 10.1039/C7TC05095J 10.1016/j.chemphys.2019.110442 10.1103/PhysRevLett.100.156404 10.1038/ncomms10556 10.1039/C9NR10322H |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/d0cp04961a |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1463-9084 |
EndPage | 273 |
ExternalDocumentID | 10_1039_D0CP04961A d0cp04961a |
GroupedDBID | - 0-7 0R 123 1TJ 29O 4.4 53G 70 705 70J 7~J 87K AAEMU AAGNR AAIWI AANOJ ABDVN ABFLS ABGFH ABRYZ ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AENEX AFVBQ AGKEF AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX CS3 D0L DU5 DZ EBS ECGLT EE0 EF- F5P GNO HZ H~N IDZ J3G J3I JG M4U N9A NHB O9- OK1 P2P R7B R7C RCNCU RIG RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UCJ UHB VH6 WH7 X YNT --- -DZ -~X 0R~ 2WC 70~ AAJAE AAMEH AAWGC AAXHV AAXPP AAYXX ABASK ABEMK ABJNI ABPDG ABXOH ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKMSF ALUYA ANUXI APEMP CITATION GGIMP H13 HZ~ R56 RAOCF 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c351t-a6fe71185af0e692d57b7194ec08cd7c49a6ca6d23d19df1e9777c5076faf30e3 |
ISSN | 1463-9076 1463-9084 |
IngestDate | Fri Jul 11 00:49:07 EDT 2025 Sun Jun 29 15:32:56 EDT 2025 Tue Jul 01 00:53:50 EDT 2025 Thu Apr 24 23:09:50 EDT 2025 Sat Jan 08 03:48:10 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 46 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c351t-a6fe71185af0e692d57b7194ec08cd7c49a6ca6d23d19df1e9777c5076faf30e3 |
Notes | 10.1039/d0cp04961a Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8402-4952 0000-0002-9667-8785 |
PQID | 2468380960 |
PQPubID | 2047499 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1039_D0CP04961A rsc_primary_d0cp04961a proquest_miscellaneous_2462412187 crossref_citationtrail_10_1039_D0CP04961A proquest_journals_2468380960 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201207 |
PublicationDateYYYYMMDD | 2020-12-07 |
PublicationDate_xml | – month: 12 year: 2020 text: 20201207 day: 7 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Launay (D0CP04961A-(cit49)/*[position()=1]) 2014; 126 Zhang (D0CP04961A-(cit55)/*[position()=1]) 2018; 10 Nielsen (D0CP04961A-(cit5)/*[position()=1]) 1983; 130 Giovannetti (D0CP04961A-(cit52)/*[position()=1]) 2007; 76 Carter (D0CP04961A-(cit18)/*[position()=1]) 2012; 85 Perdew (D0CP04961A-(cit36)/*[position()=1]) 1996; 77 Bafekry (D0CP04961A-(cit21)/*[position()=1]) 2020; 8 Bafekry (D0CP04961A-(cit39)/*[position()=1]) 2019; 562 Blöchl (D0CP04961A-(cit33)/*[position()=1]) 1994; 50 Kanamori (D0CP04961A-(cit47)/*[position()=1]) 1960; 31 Novoselov (D0CP04961A-(cit53)/*[position()=1]) 2005; 438 Ma (D0CP04961A-(cit46)/*[position()=1]) 2020; 12 Kresse (D0CP04961A-(cit34)/*[position()=1]) 1996; 54 Weng (D0CP04961A-(cit13)/*[position()=1]) 2015; 92 Zhang (D0CP04961A-(cit30)/*[position()=1]) 2017; 96 Bzdušek (D0CP04961A-(cit9)/*[position()=1]) 2016; 538 Cai (D0CP04961A-(cit28)/*[position()=1]) 2015; 15 Bian (D0CP04961A-(cit17)/*[position()=1]) 2016; 7 Burkov (D0CP04961A-(cit1)/*[position()=1]) 2011; 84 Dean (D0CP04961A-(cit54)/*[position()=1]) 2005; 7 Huang (D0CP04961A-(cit24)/*[position()=1]) 2017; 546 Fang (D0CP04961A-(cit19)/*[position()=1]) 2015; 92 Gong (D0CP04961A-(cit25)/*[position()=1]) 2017; 546 Bafekry (D0CP04961A-(cit41)/*[position()=1]) 2020; 157 Chen (D0CP04961A-(cit8)/*[position()=1]) 2015; 15 Young (D0CP04961A-(cit3)/*[position()=1]) 2012; 108 Ventra (D0CP04961A-(cit20)/*[position()=1]) 2000; 84 Li (D0CP04961A-(cit29)/*[position()=1]) 2015; 92 Zhou (D0CP04961A-(cit22)/*[position()=1]) 2018; 6 Huang (D0CP04961A-(cit6)/*[position()=1]) 2017; 546 Kopnin (D0CP04961A-(cit10)/*[position()=1]) 2011; 83 Yu (D0CP04961A-(cit15)/*[position()=1]) 2015; 115 Zhou (D0CP04961A-(cit51)/*[position()=1]) 2012; 6 Kulish (D0CP04961A-(cit50)/*[position()=1]) 2017; 5 Gong (D0CP04961A-(cit7)/*[position()=1]) 2017; 546 Zhang (D0CP04961A-(cit45)/*[position()=1]) 2020; 116 Heyd (D0CP04961A-(cit44)/*[position()=1]) 2005; 123 Feng (D0CP04961A-(cit23)/*[position()=1]) 2017; 8 Wang (D0CP04961A-(cit4)/*[position()=1]) 2013; 88 Kresse (D0CP04961A-(cit37)/*[position()=1]) 1996; 54 Wang (D0CP04961A-(cit26)/*[position()=1]) 2008; 100 Ishizuka (D0CP04961A-(cit27)/*[position()=1]) 2012; 109 Zhang (D0CP04961A-(cit31)/*[position()=1]) 2018; 10 Bafekry (D0CP04961A-(cit43)/*[position()=1]) 2020; 118 Bafekry (D0CP04961A-(cit40)/*[position()=1]) 2020; 168 Rhim (D0CP04961A-(cit11)/*[position()=1]) 2015; 92 Wang (D0CP04961A-(cit32)/*[position()=1]) 2017; 110 Bafekry (D0CP04961A-(cit42)/*[position()=1]) 2019; 126 Fang (D0CP04961A-(cit2)/*[position()=1]) 2015; 92 Calderon (D0CP04961A-(cit35)/*[position()=1]) 2015; 108 Anderson (D0CP04961A-(cit48)/*[position()=1]) 1959; 115 Heyd (D0CP04961A-(cit38)/*[position()=1]) 2004; 121 Kim (D0CP04961A-(cit14)/*[position()=1]) 2015; 115 Huh (D0CP04961A-(cit12)/*[position()=1]) 2016; 93 Ahn (D0CP04961A-(cit16)/*[position()=1]) 2018; 121 |
References_xml | – volume: 54 start-page: 11169 issue: 16 year: 1996 ident: D0CP04961A-(cit34)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.54.11169 – volume: 157 start-page: 371 year: 2020 ident: D0CP04961A-(cit41)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2019.10.038 – volume: 130 start-page: 389 year: 1983 ident: D0CP04961A-(cit5)/*[position()=1] publication-title: Phys. Lett. B doi: 10.1016/0370-2693(83)91529-0 – volume: 96 start-page: 205433 year: 2017 ident: D0CP04961A-(cit30)/*[position()=1] publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.205433 – volume: 77 start-page: 3865 year: 1996 ident: D0CP04961A-(cit36)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 126 start-page: 6423 year: 2014 ident: D0CP04961A-(cit49)/*[position()=1] publication-title: Angew. Chem. doi: 10.1002/ange.201403853 – volume: 121 start-page: 1187 year: 2004 ident: D0CP04961A-(cit38)/*[position()=1] publication-title: Physics – volume: 10 start-page: 20226 year: 2018 ident: D0CP04961A-(cit55)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C8NR07503D – volume: 126 start-page: 144304 year: 2019 ident: D0CP04961A-(cit42)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.5097264 – volume: 31 start-page: S14 year: 1960 ident: D0CP04961A-(cit47)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.1984590 – volume: 115 start-page: 036806 year: 2015 ident: D0CP04961A-(cit14)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.036806 – volume: 92 start-page: 045126 year: 2015 ident: D0CP04961A-(cit11)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.92.045126 – volume: 108 start-page: 140405 year: 2012 ident: D0CP04961A-(cit3)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.140405 – volume: 84 start-page: 235126 year: 2011 ident: D0CP04961A-(cit1)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.84.235126 – volume: 546 start-page: 270 year: 2017 ident: D0CP04961A-(cit6)/*[position()=1] publication-title: Nature doi: 10.1038/nature22391 – volume: 168 start-page: 220 year: 2020 ident: D0CP04961A-(cit40)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2020.06.082 – volume: 84 start-page: 979 issue: 5 year: 2000 ident: D0CP04961A-(cit20)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.84.979 – volume: 108 start-page: 233 year: 2015 ident: D0CP04961A-(cit35)/*[position()=1] publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2015.07.019 – volume: 118 start-page: 113850 year: 2020 ident: D0CP04961A-(cit43)/*[position()=1] publication-title: Phys. E doi: 10.1016/j.physe.2019.113850 – volume: 115 start-page: 2 year: 1959 ident: D0CP04961A-(cit48)/*[position()=1] publication-title: Phys. Rev. doi: 10.1103/PhysRev.115.2 – volume: 6 start-page: 9727 year: 2012 ident: D0CP04961A-(cit51)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn303198w – volume: 8 start-page: 13248 year: 2020 ident: D0CP04961A-(cit21)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/D0TA02847A – volume: 121 start-page: 106403 year: 2018 ident: D0CP04961A-(cit16)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.106403 – volume: 50 start-page: 17953 issue: 24 year: 1994 ident: D0CP04961A-(cit33)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.50.17953 – volume: 93 start-page: 035138 year: 2016 ident: D0CP04961A-(cit12)/*[position()=1] publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.035138 – volume: 15 start-page: 6434 issue: 10 year: 2015 ident: D0CP04961A-(cit28)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b01791 – volume: 538 start-page: 75 year: 2016 ident: D0CP04961A-(cit9)/*[position()=1] publication-title: Nodal-chain metals – volume: 110 start-page: 233107 year: 2017 ident: D0CP04961A-(cit32)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.4985144 – volume: 92 start-page: 045108 issue: 4 year: 2015 ident: D0CP04961A-(cit13)/*[position()=1] publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.92.045108 – volume: 116 start-page: 172105 year: 2020 ident: D0CP04961A-(cit45)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.5144842 – volume: 92 start-page: 201403(R) year: 2015 ident: D0CP04961A-(cit29)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.92.201403 – volume: 10 start-page: 20748 year: 2018 ident: D0CP04961A-(cit31)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C8NR05383A – volume: 546 start-page: 270 year: 2017 ident: D0CP04961A-(cit24)/*[position()=1] publication-title: Nature doi: 10.1038/nature22391 – volume: 7 start-page: 693 year: 2005 ident: D0CP04961A-(cit54)/*[position()=1] publication-title: Nat. Phys. doi: 10.1038/nphys2007 – volume: 115 start-page: 036807 year: 2015 ident: D0CP04961A-(cit15)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.036807 – volume: 5 start-page: 8734 year: 2017 ident: D0CP04961A-(cit50)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C7TC02664A – volume: 83 start-page: 220503 year: 2011 ident: D0CP04961A-(cit10)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.83.220503 – volume: 438 start-page: 197 year: 2005 ident: D0CP04961A-(cit53)/*[position()=1] publication-title: Nature doi: 10.1038/nature04233 – volume: 15 start-page: 6974 year: 2015 ident: D0CP04961A-(cit8)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b02978 – volume: 88 start-page: 125427 year: 2013 ident: D0CP04961A-(cit4)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.88.125427 – volume: 109 start-page: 237207 issue: 23 year: 2012 ident: D0CP04961A-(cit27)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.237207 – volume: 92 start-page: 081201 year: 2015 ident: D0CP04961A-(cit2)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.92.081201 – volume: 546 start-page: 265 year: 2017 ident: D0CP04961A-(cit25)/*[position()=1] publication-title: Nature doi: 10.1038/nature22060 – volume: 8 start-page: 1007 year: 2017 ident: D0CP04961A-(cit23)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-017-01108-z – volume: 92 start-page: 081201(R) year: 2015 ident: D0CP04961A-(cit19)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.92.081201 – volume: 76 start-page: 073103 year: 2007 ident: D0CP04961A-(cit52)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.76.073103 – volume: 54 start-page: 11169 year: 1996 ident: D0CP04961A-(cit37)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.54.11169 – volume: 85 start-page: 115105 year: 2012 ident: D0CP04961A-(cit18)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.85.115105 – volume: 6 start-page: 1206 year: 2018 ident: D0CP04961A-(cit22)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C7TC05095J – volume: 562 start-page: 110442 year: 2019 ident: D0CP04961A-(cit39)/*[position()=1] publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2019.110442 – volume: 546 start-page: 265 year: 2017 ident: D0CP04961A-(cit7)/*[position()=1] publication-title: Nature doi: 10.1038/nature22060 – volume: 123 start-page: 174101 year: 2005 ident: D0CP04961A-(cit44)/*[position()=1] publication-title: Phys. Rev. Lett. – volume: 100 start-page: 156404 issue: 15 year: 2008 ident: D0CP04961A-(cit26)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.156404 – volume: 7 start-page: 10556 year: 2016 ident: D0CP04961A-(cit17)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms10556 – volume: 12 start-page: 5464 year: 2020 ident: D0CP04961A-(cit46)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C9NR10322H |
SSID | ssj0001513 |
Score | 2.4276226 |
Snippet | Nodal-line half-metals (NLHMs) are highly desirable for future spintronic devices due to their exotic quantum properties. However, the experimental realization... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2724 |
SubjectTerms | Electrons Fermions First principles High temperature Magnetic properties Structural analysis |
Title | Emergence of 2D high-temperature nodal-line half-metal in monolayer AgN |
URI | https://www.proquest.com/docview/2468380960 https://www.proquest.com/docview/2462412187 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe67gAXxNdEYaAguKDK4NiOkxyrtqNMpfTQinKKXMfZKpVk2toD_AX82bw4jpNNFQIuVuRYjvXeL_Z7z-8DobdEhZSsCccR1RHmGefwSwmJhdaUKT9l0piyP8_EZMnPV8Gq0_nV8lra79bv1c-DcSX_w1XoA76WUbL_wFk3KXTAM_AXWuAwtH_F47GNnTR6Px31y9zDuEw2ZTMl9_MilVtsJMlLuc3wd70zSTb6sETQaX-UDvIXs7aAOq_5pupKcNVT2VVZQW6MFWE-HLrIsNUmx9-s3Xm6cSzU-QWeVPZVY5Z2LzaywOd7c3fgoGmiHPBXfWe4tUfQyrcjdAiqrB61y6lxKbHLbe2yXDAMWrnNgd3uq-rF1VszpS0I8lsbbUiq2Gt7atNy5zp4JBBWZlRNiboCZUj4rYOvvuyffUnOltNpshivFkfomILCQbvoeDBefJq6Ux0kI1ZFqlVLr1PdsvhDM_dt4abRWI6u63IyRmxZPEQPrL7hDSrwPEIdnT9G9xy1nqCPDkRekXl05N0FkdeAyGtA5G1yz4HIAxA9Rcuz8WI4wba6BlYs8HdYikyHoF4GMiNaxDQNwnXox1wrEqk0VDyWQkmRUpb6cZr5GjSFUIH6IDKZMaLZCermRa6fIU_SgCnm-2IdEa6IL2Md6BCIBk0Gw3voXU2WRNnU82UFlG1iXCBYnIzIcG5IOOihN27sVZVw5eCo05q6if0hbxLKRcSiUifvodfuNZCzvAOTuS72ZgzIrCDXhj10Alxx32iY-PzPc79A9xvYn6Lu7nqvX4Jgulu_spj5DSrBjPY |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emergence+of+2D+high-temperature+nodal-line+half-metal+in+monolayer+AgN&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Xin-Yang%2C+Li&rft.au=Meng-Han%2C+Zhang&rft.au=Miao-Juan+Ren&rft.au=Chang-Wen%2C+Zhang&rft.date=2020-12-07&rft.pub=Royal+Society+of+Chemistry&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=22&rft.issue=46&rft.spage=27024&rft.epage=27030&rft_id=info:doi/10.1039%2Fd0cp04961a&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |