Emergence of 2D high-temperature nodal-line half-metal in monolayer AgN

Nodal-line half-metals (NLHMs) are highly desirable for future spintronic devices due to their exotic quantum properties. However, the experimental realization in spin-polarized materials is nontrivial to date. Herein we perform first-principles calculations to demonstrate a 2D honeycomb, AgN, as a...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 22; no. 46; pp. 2724 - 273
Main Authors Li, Xin-Yang, Zhang, Meng-Han, Ren, Miao-Juan, Zhang, Chang-Wen
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 07.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nodal-line half-metals (NLHMs) are highly desirable for future spintronic devices due to their exotic quantum properties. However, the experimental realization in spin-polarized materials is nontrivial to date. Herein we perform first-principles calculations to demonstrate a 2D honeycomb, AgN, as a promising candidate of NLHMs, which is thermodynamically and dynamically stable. Band structure analysis reveals that two concentric NLs coexist centered at a Γ point near E F , accompanied by the electron and hole pockets that touch each other linearly with single-spin components. Inclusion of SOC can enrich the electronic structures of AgN, sensitive to the protection of mirror reflection symmetry: the NLHM survives if the spin is perpendicular to the M z mirror plane, while it tunes into Wyle nodal-points by rotating spins from the out-of-plane to the in-plane direction. The characteristics of HM and NL can be well maintained on semiconducting h-BN and is immune to mechanical strains. These tunable magnetic properties render 2D AgN suitable for exotic quantum transports in nodal fermions as well as related spintronic devices. Nodal-line half-metals (NLHMs) are highly desirable for future spintronic devices due to their exotic quantum properties.
AbstractList Nodal-line half-metals (NLHMs) are highly desirable for future spintronic devices due to their exotic quantum properties. However, the experimental realization in spin-polarized materials is nontrivial to date. Herein we perform first-principles calculations to demonstrate a 2D honeycomb, AgN, as a promising candidate of NLHMs, which is thermodynamically and dynamically stable. Band structure analysis reveals that two concentric NLs coexist centered at a Γ point near EF, accompanied by the electron and hole pockets that touch each other linearly with single-spin components. Inclusion of SOC can enrich the electronic structures of AgN, sensitive to the protection of mirror reflection symmetry: the NLHM survives if the spin is perpendicular to the Mz mirror plane, while it tunes into Wyle nodal-points by rotating spins from the out-of-plane to the in-plane direction. The characteristics of HM and NL can be well maintained on semiconducting h-BN and is immune to mechanical strains. These tunable magnetic properties render 2D AgN suitable for exotic quantum transports in nodal fermions as well as related spintronic devices.
Nodal-line half-metals (NLHMs) are highly desirable for future spintronic devices due to their exotic quantum properties. However, the experimental realization in spin-polarized materials is nontrivial to date. Herein we perform first-principles calculations to demonstrate a 2D honeycomb, AgN, as a promising candidate of NLHMs, which is thermodynamically and dynamically stable. Band structure analysis reveals that two concentric NLs coexist centered at a Γ point near E F , accompanied by the electron and hole pockets that touch each other linearly with single-spin components. Inclusion of SOC can enrich the electronic structures of AgN, sensitive to the protection of mirror reflection symmetry: the NLHM survives if the spin is perpendicular to the M z mirror plane, while it tunes into Wyle nodal-points by rotating spins from the out-of-plane to the in-plane direction. The characteristics of HM and NL can be well maintained on semiconducting h-BN and is immune to mechanical strains. These tunable magnetic properties render 2D AgN suitable for exotic quantum transports in nodal fermions as well as related spintronic devices.
Nodal-line half-metals (NLHMs) are highly desirable for future spintronic devices due to their exotic quantum properties. However, the experimental realization in spin-polarized materials is nontrivial to date. Herein we perform first-principles calculations to demonstrate a 2D honeycomb, AgN, as a promising candidate of NLHMs, which is thermodynamically and dynamically stable. Band structure analysis reveals that two concentric NLs coexist centered at a Γ point near E F , accompanied by the electron and hole pockets that touch each other linearly with single-spin components. Inclusion of SOC can enrich the electronic structures of AgN, sensitive to the protection of mirror reflection symmetry: the NLHM survives if the spin is perpendicular to the M z mirror plane, while it tunes into Wyle nodal-points by rotating spins from the out-of-plane to the in-plane direction. The characteristics of HM and NL can be well maintained on semiconducting h-BN and is immune to mechanical strains. These tunable magnetic properties render 2D AgN suitable for exotic quantum transports in nodal fermions as well as related spintronic devices. Nodal-line half-metals (NLHMs) are highly desirable for future spintronic devices due to their exotic quantum properties.
Nodal-line half-metals (NLHMs) are highly desirable for future spintronic devices due to their exotic quantum properties. However, the experimental realization in spin-polarized materials is nontrivial to date. Herein we perform first-principles calculations to demonstrate a 2D honeycomb, AgN, as a promising candidate of NLHMs, which is thermodynamically and dynamically stable. Band structure analysis reveals that two concentric NLs coexist centered at a Γ point near EF, accompanied by the electron and hole pockets that touch each other linearly with single-spin components. Inclusion of SOC can enrich the electronic structures of AgN, sensitive to the protection of mirror reflection symmetry: the NLHM survives if the spin is perpendicular to the Mz mirror plane, while it tunes into Wyle nodal-points by rotating spins from the out-of-plane to the in-plane direction. The characteristics of HM and NL can be well maintained on semiconducting h-BN and is immune to mechanical strains. These tunable magnetic properties render 2D AgN suitable for exotic quantum transports in nodal fermions as well as related spintronic devices.Nodal-line half-metals (NLHMs) are highly desirable for future spintronic devices due to their exotic quantum properties. However, the experimental realization in spin-polarized materials is nontrivial to date. Herein we perform first-principles calculations to demonstrate a 2D honeycomb, AgN, as a promising candidate of NLHMs, which is thermodynamically and dynamically stable. Band structure analysis reveals that two concentric NLs coexist centered at a Γ point near EF, accompanied by the electron and hole pockets that touch each other linearly with single-spin components. Inclusion of SOC can enrich the electronic structures of AgN, sensitive to the protection of mirror reflection symmetry: the NLHM survives if the spin is perpendicular to the Mz mirror plane, while it tunes into Wyle nodal-points by rotating spins from the out-of-plane to the in-plane direction. The characteristics of HM and NL can be well maintained on semiconducting h-BN and is immune to mechanical strains. These tunable magnetic properties render 2D AgN suitable for exotic quantum transports in nodal fermions as well as related spintronic devices.
Author Li, Xin-Yang
Zhang, Chang-Wen
Ren, Miao-Juan
Zhang, Meng-Han
AuthorAffiliation Institute of Spintronics
School of Physics and Technology
University of Jinan
AuthorAffiliation_xml – name: Institute of Spintronics
– name: University of Jinan
– name: School of Physics and Technology
Author_xml – sequence: 1
  givenname: Xin-Yang
  surname: Li
  fullname: Li, Xin-Yang
– sequence: 2
  givenname: Meng-Han
  surname: Zhang
  fullname: Zhang, Meng-Han
– sequence: 3
  givenname: Miao-Juan
  surname: Ren
  fullname: Ren, Miao-Juan
– sequence: 4
  givenname: Chang-Wen
  surname: Zhang
  fullname: Zhang, Chang-Wen
BookMark eNptkcFLwzAYxYMouE0v3oWCFxGqSdMmzXFscwpDPei5xPTL1pEmM0kP--_tnEwYnr7v8HuPx3tDdGqdBYSuCL4nmIqHGqsNzgUj8gQNSM5oKnCZnx5-zs7RMIQ1xpgUhA7QfNaCX4JVkDidZNNk1SxXaYR2A17GzkNiXS1NahoLyUoanbYQpUkam7TOOiO34JPx8uUCnWlpAlz-3hH6eJy9T57Sxev8eTJepIoWJKaSaeCElIXUGJjI6oJ_ciJyULhUNVe5kExJVme0JqLWBATnXBV9bi01xUBH6Hbvu_Huq4MQq7YJCoyRFlwXqixnWU4yUvIevTlC167ztk-3o0paYsFwT93tKeVdCB50tfFNK_22IrjadVpN8eTtp9NxD-MjWDVRxsbZ6GVj_pdc7yU-qIP130z0G3i3gy4
CitedBy_id crossref_primary_10_1103_PhysRevB_105_075414
crossref_primary_10_1063_5_0105605
crossref_primary_10_1088_1361_648X_acc8b2
crossref_primary_10_1016_j_chemphys_2021_111199
crossref_primary_10_1016_j_scib_2023_09_004
crossref_primary_10_1063_5_0175382
crossref_primary_10_1088_1674_1056_ac921c
crossref_primary_10_1088_2515_7639_ac5dcd
crossref_primary_10_1039_D3CP05940E
crossref_primary_10_1063_5_0107680
crossref_primary_10_1039_D1NR06033C
crossref_primary_10_1103_PhysRevB_105_024407
Cites_doi 10.1103/PhysRevB.54.11169
10.1016/j.carbon.2019.10.038
10.1016/0370-2693(83)91529-0
10.1103/PhysRevB.96.205433
10.1103/PhysRevLett.77.3865
10.1002/ange.201403853
10.1039/C8NR07503D
10.1063/1.5097264
10.1063/1.1984590
10.1103/PhysRevLett.115.036806
10.1103/PhysRevB.92.045126
10.1103/PhysRevLett.108.140405
10.1103/PhysRevB.84.235126
10.1038/nature22391
10.1016/j.carbon.2020.06.082
10.1103/PhysRevLett.84.979
10.1016/j.commatsci.2015.07.019
10.1016/j.physe.2019.113850
10.1103/PhysRev.115.2
10.1021/nn303198w
10.1039/D0TA02847A
10.1103/PhysRevLett.121.106403
10.1103/PhysRevB.50.17953
10.1103/PhysRevB.93.035138
10.1021/acs.nanolett.5b01791
10.1063/1.4985144
10.1103/PhysRevB.92.045108
10.1063/1.5144842
10.1103/PhysRevB.92.201403
10.1039/C8NR05383A
10.1038/nphys2007
10.1103/PhysRevLett.115.036807
10.1039/C7TC02664A
10.1103/PhysRevB.83.220503
10.1038/nature04233
10.1021/acs.nanolett.5b02978
10.1103/PhysRevB.88.125427
10.1103/PhysRevLett.109.237207
10.1103/PhysRevB.92.081201
10.1038/nature22060
10.1038/s41467-017-01108-z
10.1103/PhysRevB.76.073103
10.1103/PhysRevB.85.115105
10.1039/C7TC05095J
10.1016/j.chemphys.2019.110442
10.1103/PhysRevLett.100.156404
10.1038/ncomms10556
10.1039/C9NR10322H
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d0cp04961a
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef

MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 273
ExternalDocumentID 10_1039_D0CP04961A
d0cp04961a
GroupedDBID -
0-7
0R
123
1TJ
29O
4.4
53G
70
705
70J
7~J
87K
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABFLS
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AENEX
AFVBQ
AGKEF
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
CS3
D0L
DU5
DZ
EBS
ECGLT
EE0
EF-
F5P
GNO
HZ
H~N
IDZ
J3G
J3I
JG
M4U
N9A
NHB
O9-
OK1
P2P
R7B
R7C
RCNCU
RIG
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
UHB
VH6
WH7
X
YNT
---
-DZ
-~X
0R~
2WC
70~
AAJAE
AAMEH
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
R56
RAOCF
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c351t-a6fe71185af0e692d57b7194ec08cd7c49a6ca6d23d19df1e9777c5076faf30e3
ISSN 1463-9076
1463-9084
IngestDate Fri Jul 11 00:49:07 EDT 2025
Sun Jun 29 15:32:56 EDT 2025
Tue Jul 01 00:53:50 EDT 2025
Thu Apr 24 23:09:50 EDT 2025
Sat Jan 08 03:48:10 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 46
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c351t-a6fe71185af0e692d57b7194ec08cd7c49a6ca6d23d19df1e9777c5076faf30e3
Notes 10.1039/d0cp04961a
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8402-4952
0000-0002-9667-8785
PQID 2468380960
PQPubID 2047499
PageCount 7
ParticipantIDs crossref_primary_10_1039_D0CP04961A
rsc_primary_d0cp04961a
proquest_miscellaneous_2462412187
crossref_citationtrail_10_1039_D0CP04961A
proquest_journals_2468380960
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201207
PublicationDateYYYYMMDD 2020-12-07
PublicationDate_xml – month: 12
  year: 2020
  text: 20201207
  day: 7
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Launay (D0CP04961A-(cit49)/*[position()=1]) 2014; 126
Zhang (D0CP04961A-(cit55)/*[position()=1]) 2018; 10
Nielsen (D0CP04961A-(cit5)/*[position()=1]) 1983; 130
Giovannetti (D0CP04961A-(cit52)/*[position()=1]) 2007; 76
Carter (D0CP04961A-(cit18)/*[position()=1]) 2012; 85
Perdew (D0CP04961A-(cit36)/*[position()=1]) 1996; 77
Bafekry (D0CP04961A-(cit21)/*[position()=1]) 2020; 8
Bafekry (D0CP04961A-(cit39)/*[position()=1]) 2019; 562
Blöchl (D0CP04961A-(cit33)/*[position()=1]) 1994; 50
Kanamori (D0CP04961A-(cit47)/*[position()=1]) 1960; 31
Novoselov (D0CP04961A-(cit53)/*[position()=1]) 2005; 438
Ma (D0CP04961A-(cit46)/*[position()=1]) 2020; 12
Kresse (D0CP04961A-(cit34)/*[position()=1]) 1996; 54
Weng (D0CP04961A-(cit13)/*[position()=1]) 2015; 92
Zhang (D0CP04961A-(cit30)/*[position()=1]) 2017; 96
Bzdušek (D0CP04961A-(cit9)/*[position()=1]) 2016; 538
Cai (D0CP04961A-(cit28)/*[position()=1]) 2015; 15
Bian (D0CP04961A-(cit17)/*[position()=1]) 2016; 7
Burkov (D0CP04961A-(cit1)/*[position()=1]) 2011; 84
Dean (D0CP04961A-(cit54)/*[position()=1]) 2005; 7
Huang (D0CP04961A-(cit24)/*[position()=1]) 2017; 546
Fang (D0CP04961A-(cit19)/*[position()=1]) 2015; 92
Gong (D0CP04961A-(cit25)/*[position()=1]) 2017; 546
Bafekry (D0CP04961A-(cit41)/*[position()=1]) 2020; 157
Chen (D0CP04961A-(cit8)/*[position()=1]) 2015; 15
Young (D0CP04961A-(cit3)/*[position()=1]) 2012; 108
Ventra (D0CP04961A-(cit20)/*[position()=1]) 2000; 84
Li (D0CP04961A-(cit29)/*[position()=1]) 2015; 92
Zhou (D0CP04961A-(cit22)/*[position()=1]) 2018; 6
Huang (D0CP04961A-(cit6)/*[position()=1]) 2017; 546
Kopnin (D0CP04961A-(cit10)/*[position()=1]) 2011; 83
Yu (D0CP04961A-(cit15)/*[position()=1]) 2015; 115
Zhou (D0CP04961A-(cit51)/*[position()=1]) 2012; 6
Kulish (D0CP04961A-(cit50)/*[position()=1]) 2017; 5
Gong (D0CP04961A-(cit7)/*[position()=1]) 2017; 546
Zhang (D0CP04961A-(cit45)/*[position()=1]) 2020; 116
Heyd (D0CP04961A-(cit44)/*[position()=1]) 2005; 123
Feng (D0CP04961A-(cit23)/*[position()=1]) 2017; 8
Wang (D0CP04961A-(cit4)/*[position()=1]) 2013; 88
Kresse (D0CP04961A-(cit37)/*[position()=1]) 1996; 54
Wang (D0CP04961A-(cit26)/*[position()=1]) 2008; 100
Ishizuka (D0CP04961A-(cit27)/*[position()=1]) 2012; 109
Zhang (D0CP04961A-(cit31)/*[position()=1]) 2018; 10
Bafekry (D0CP04961A-(cit43)/*[position()=1]) 2020; 118
Bafekry (D0CP04961A-(cit40)/*[position()=1]) 2020; 168
Rhim (D0CP04961A-(cit11)/*[position()=1]) 2015; 92
Wang (D0CP04961A-(cit32)/*[position()=1]) 2017; 110
Bafekry (D0CP04961A-(cit42)/*[position()=1]) 2019; 126
Fang (D0CP04961A-(cit2)/*[position()=1]) 2015; 92
Calderon (D0CP04961A-(cit35)/*[position()=1]) 2015; 108
Anderson (D0CP04961A-(cit48)/*[position()=1]) 1959; 115
Heyd (D0CP04961A-(cit38)/*[position()=1]) 2004; 121
Kim (D0CP04961A-(cit14)/*[position()=1]) 2015; 115
Huh (D0CP04961A-(cit12)/*[position()=1]) 2016; 93
Ahn (D0CP04961A-(cit16)/*[position()=1]) 2018; 121
References_xml – volume: 54
  start-page: 11169
  issue: 16
  year: 1996
  ident: D0CP04961A-(cit34)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.54.11169
– volume: 157
  start-page: 371
  year: 2020
  ident: D0CP04961A-(cit41)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.10.038
– volume: 130
  start-page: 389
  year: 1983
  ident: D0CP04961A-(cit5)/*[position()=1]
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(83)91529-0
– volume: 96
  start-page: 205433
  year: 2017
  ident: D0CP04961A-(cit30)/*[position()=1]
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.205433
– volume: 77
  start-page: 3865
  year: 1996
  ident: D0CP04961A-(cit36)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 126
  start-page: 6423
  year: 2014
  ident: D0CP04961A-(cit49)/*[position()=1]
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201403853
– volume: 121
  start-page: 1187
  year: 2004
  ident: D0CP04961A-(cit38)/*[position()=1]
  publication-title: Physics
– volume: 10
  start-page: 20226
  year: 2018
  ident: D0CP04961A-(cit55)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C8NR07503D
– volume: 126
  start-page: 144304
  year: 2019
  ident: D0CP04961A-(cit42)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5097264
– volume: 31
  start-page: S14
  year: 1960
  ident: D0CP04961A-(cit47)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1984590
– volume: 115
  start-page: 036806
  year: 2015
  ident: D0CP04961A-(cit14)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.036806
– volume: 92
  start-page: 045126
  year: 2015
  ident: D0CP04961A-(cit11)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.92.045126
– volume: 108
  start-page: 140405
  year: 2012
  ident: D0CP04961A-(cit3)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.140405
– volume: 84
  start-page: 235126
  year: 2011
  ident: D0CP04961A-(cit1)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.84.235126
– volume: 546
  start-page: 270
  year: 2017
  ident: D0CP04961A-(cit6)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature22391
– volume: 168
  start-page: 220
  year: 2020
  ident: D0CP04961A-(cit40)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.06.082
– volume: 84
  start-page: 979
  issue: 5
  year: 2000
  ident: D0CP04961A-(cit20)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.84.979
– volume: 108
  start-page: 233
  year: 2015
  ident: D0CP04961A-(cit35)/*[position()=1]
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2015.07.019
– volume: 118
  start-page: 113850
  year: 2020
  ident: D0CP04961A-(cit43)/*[position()=1]
  publication-title: Phys. E
  doi: 10.1016/j.physe.2019.113850
– volume: 115
  start-page: 2
  year: 1959
  ident: D0CP04961A-(cit48)/*[position()=1]
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.115.2
– volume: 6
  start-page: 9727
  year: 2012
  ident: D0CP04961A-(cit51)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn303198w
– volume: 8
  start-page: 13248
  year: 2020
  ident: D0CP04961A-(cit21)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA02847A
– volume: 121
  start-page: 106403
  year: 2018
  ident: D0CP04961A-(cit16)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.106403
– volume: 50
  start-page: 17953
  issue: 24
  year: 1994
  ident: D0CP04961A-(cit33)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.50.17953
– volume: 93
  start-page: 035138
  year: 2016
  ident: D0CP04961A-(cit12)/*[position()=1]
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.035138
– volume: 15
  start-page: 6434
  issue: 10
  year: 2015
  ident: D0CP04961A-(cit28)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b01791
– volume: 538
  start-page: 75
  year: 2016
  ident: D0CP04961A-(cit9)/*[position()=1]
  publication-title: Nodal-chain metals
– volume: 110
  start-page: 233107
  year: 2017
  ident: D0CP04961A-(cit32)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4985144
– volume: 92
  start-page: 045108
  issue: 4
  year: 2015
  ident: D0CP04961A-(cit13)/*[position()=1]
  publication-title: Phys. Rev. B.
  doi: 10.1103/PhysRevB.92.045108
– volume: 116
  start-page: 172105
  year: 2020
  ident: D0CP04961A-(cit45)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5144842
– volume: 92
  start-page: 201403(R)
  year: 2015
  ident: D0CP04961A-(cit29)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.92.201403
– volume: 10
  start-page: 20748
  year: 2018
  ident: D0CP04961A-(cit31)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C8NR05383A
– volume: 546
  start-page: 270
  year: 2017
  ident: D0CP04961A-(cit24)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature22391
– volume: 7
  start-page: 693
  year: 2005
  ident: D0CP04961A-(cit54)/*[position()=1]
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2007
– volume: 115
  start-page: 036807
  year: 2015
  ident: D0CP04961A-(cit15)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.036807
– volume: 5
  start-page: 8734
  year: 2017
  ident: D0CP04961A-(cit50)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC02664A
– volume: 83
  start-page: 220503
  year: 2011
  ident: D0CP04961A-(cit10)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.83.220503
– volume: 438
  start-page: 197
  year: 2005
  ident: D0CP04961A-(cit53)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature04233
– volume: 15
  start-page: 6974
  year: 2015
  ident: D0CP04961A-(cit8)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b02978
– volume: 88
  start-page: 125427
  year: 2013
  ident: D0CP04961A-(cit4)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.88.125427
– volume: 109
  start-page: 237207
  issue: 23
  year: 2012
  ident: D0CP04961A-(cit27)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.237207
– volume: 92
  start-page: 081201
  year: 2015
  ident: D0CP04961A-(cit2)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.92.081201
– volume: 546
  start-page: 265
  year: 2017
  ident: D0CP04961A-(cit25)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature22060
– volume: 8
  start-page: 1007
  year: 2017
  ident: D0CP04961A-(cit23)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01108-z
– volume: 92
  start-page: 081201(R)
  year: 2015
  ident: D0CP04961A-(cit19)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.92.081201
– volume: 76
  start-page: 073103
  year: 2007
  ident: D0CP04961A-(cit52)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.76.073103
– volume: 54
  start-page: 11169
  year: 1996
  ident: D0CP04961A-(cit37)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.54.11169
– volume: 85
  start-page: 115105
  year: 2012
  ident: D0CP04961A-(cit18)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.85.115105
– volume: 6
  start-page: 1206
  year: 2018
  ident: D0CP04961A-(cit22)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC05095J
– volume: 562
  start-page: 110442
  year: 2019
  ident: D0CP04961A-(cit39)/*[position()=1]
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2019.110442
– volume: 546
  start-page: 265
  year: 2017
  ident: D0CP04961A-(cit7)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature22060
– volume: 123
  start-page: 174101
  year: 2005
  ident: D0CP04961A-(cit44)/*[position()=1]
  publication-title: Phys. Rev. Lett.
– volume: 100
  start-page: 156404
  issue: 15
  year: 2008
  ident: D0CP04961A-(cit26)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.156404
– volume: 7
  start-page: 10556
  year: 2016
  ident: D0CP04961A-(cit17)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10556
– volume: 12
  start-page: 5464
  year: 2020
  ident: D0CP04961A-(cit46)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C9NR10322H
SSID ssj0001513
Score 2.4276226
Snippet Nodal-line half-metals (NLHMs) are highly desirable for future spintronic devices due to their exotic quantum properties. However, the experimental realization...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2724
SubjectTerms Electrons
Fermions
First principles
High temperature
Magnetic properties
Structural analysis
Title Emergence of 2D high-temperature nodal-line half-metal in monolayer AgN
URI https://www.proquest.com/docview/2468380960
https://www.proquest.com/docview/2462412187
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe67gAXxNdEYaAguKDK4NiOkxyrtqNMpfTQinKKXMfZKpVk2toD_AX82bw4jpNNFQIuVuRYjvXeL_Z7z-8DobdEhZSsCccR1RHmGefwSwmJhdaUKT9l0piyP8_EZMnPV8Gq0_nV8lra79bv1c-DcSX_w1XoA76WUbL_wFk3KXTAM_AXWuAwtH_F47GNnTR6Px31y9zDuEw2ZTMl9_MilVtsJMlLuc3wd70zSTb6sETQaX-UDvIXs7aAOq_5pupKcNVT2VVZQW6MFWE-HLrIsNUmx9-s3Xm6cSzU-QWeVPZVY5Z2LzaywOd7c3fgoGmiHPBXfWe4tUfQyrcjdAiqrB61y6lxKbHLbe2yXDAMWrnNgd3uq-rF1VszpS0I8lsbbUiq2Gt7atNy5zp4JBBWZlRNiboCZUj4rYOvvuyffUnOltNpshivFkfomILCQbvoeDBefJq6Ux0kI1ZFqlVLr1PdsvhDM_dt4abRWI6u63IyRmxZPEQPrL7hDSrwPEIdnT9G9xy1nqCPDkRekXl05N0FkdeAyGtA5G1yz4HIAxA9Rcuz8WI4wba6BlYs8HdYikyHoF4GMiNaxDQNwnXox1wrEqk0VDyWQkmRUpb6cZr5GjSFUIH6IDKZMaLZCermRa6fIU_SgCnm-2IdEa6IL2Md6BCIBk0Gw3voXU2WRNnU82UFlG1iXCBYnIzIcG5IOOihN27sVZVw5eCo05q6if0hbxLKRcSiUifvodfuNZCzvAOTuS72ZgzIrCDXhj10Alxx32iY-PzPc79A9xvYn6Lu7nqvX4Jgulu_spj5DSrBjPY
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emergence+of+2D+high-temperature+nodal-line+half-metal+in+monolayer+AgN&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Xin-Yang%2C+Li&rft.au=Meng-Han%2C+Zhang&rft.au=Miao-Juan+Ren&rft.au=Chang-Wen%2C+Zhang&rft.date=2020-12-07&rft.pub=Royal+Society+of+Chemistry&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=22&rft.issue=46&rft.spage=27024&rft.epage=27030&rft_id=info:doi/10.1039%2Fd0cp04961a&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon