PsyPhy: A Psychophysics Driven Evaluation Framework for Visual Recognition

By providing substantial amounts of data and standardized evaluation protocols, datasets in computer vision have helped fuel advances across all areas of visual recognition. But even in light of breakthrough results on recent benchmarks, it is still fair to ask if our recognition algorithms are doin...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 41; no. 9; pp. 2280 - 2286
Main Authors RichardWebster, Brandon, Anthony, Samuel E., Scheirer, Walter J.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract By providing substantial amounts of data and standardized evaluation protocols, datasets in computer vision have helped fuel advances across all areas of visual recognition. But even in light of breakthrough results on recent benchmarks, it is still fair to ask if our recognition algorithms are doing as well as we think they are. The vision sciences at large make use of a very different evaluation regime known as Visual Psychophysics to study visual perception. Psychophysics is the quantitative examination of the relationships between controlled stimuli and the behavioral responses they elicit in experimental test subjects. Instead of using summary statistics to gauge performance, psychophysics directs us to construct item-response curves made up of individual stimulus responses to find perceptual thresholds, thus allowing one to identify the exact point at which a subject can no longer reliably recognize the stimulus class. In this article, we introduce a comprehensive evaluation framework for visual recognition models that is underpinned by this methodology. Over millions of procedurally rendered 3D scenes and 2D images, we compare the performance of well-known convolutional neural networks. Our results bring into question recent claims of human-like performance, and provide a path forward for correcting newly surfaced algorithmic deficiencies.
AbstractList By providing substantial amounts of data and standardized evaluation protocols, datasets in computer vision have helped fuel advances across all areas of visual recognition. But even in light of breakthrough results on recent benchmarks, it is still fair to ask if our recognition algorithms are doing as well as we think they are. The vision sciences at large make use of a very different evaluation regime known as Visual Psychophysics to study visual perception. Psychophysics is the quantitative examination of the relationships between controlled stimuli and the behavioral responses they elicit in experimental test subjects. Instead of using summary statistics to gauge performance, psychophysics directs us to construct item-response curves made up of individual stimulus responses to find perceptual thresholds, thus allowing one to identify the exact point at which a subject can no longer reliably recognize the stimulus class. In this article, we introduce a comprehensive evaluation framework for visual recognition models that is underpinned by this methodology. Over millions of procedurally rendered 3D scenes and 2D images, we compare the performance of well-known convolutional neural networks. Our results bring into question recent claims of human-like performance, and provide a path forward for correcting newly surfaced algorithmic deficiencies.
By providing substantial amounts of data and standardized evaluation protocols, datasets in computer vision have helped fuel advances across all areas of visual recognition. But even in light of breakthrough results on recent benchmarks, it is still fair to ask if our recognition algorithms are doing as well as we think they are. The vision sciences at large make use of a very different evaluation regime known as Visual Psychophysics to study visual perception. Psychophysics is the quantitative examination of the relationships between controlled stimuli and the behavioral responses they elicit in experimental test subjects. Instead of using summary statistics to gauge performance, psychophysics directs us to construct item-response curves made up of individual stimulus responses to find perceptual thresholds, thus allowing one to identify the exact point at which a subject can no longer reliably recognize the stimulus class. In this article, we introduce a comprehensive evaluation framework for visual recognition models that is underpinned by this methodology. Over millions of procedurally rendered 3D scenes and 2D images, we compare the performance of well-known convolutional neural networks. Our results bring into question recent claims of human-like performance, and provide a path forward for correcting newly surfaced algorithmic deficiencies.By providing substantial amounts of data and standardized evaluation protocols, datasets in computer vision have helped fuel advances across all areas of visual recognition. But even in light of breakthrough results on recent benchmarks, it is still fair to ask if our recognition algorithms are doing as well as we think they are. The vision sciences at large make use of a very different evaluation regime known as Visual Psychophysics to study visual perception. Psychophysics is the quantitative examination of the relationships between controlled stimuli and the behavioral responses they elicit in experimental test subjects. Instead of using summary statistics to gauge performance, psychophysics directs us to construct item-response curves made up of individual stimulus responses to find perceptual thresholds, thus allowing one to identify the exact point at which a subject can no longer reliably recognize the stimulus class. In this article, we introduce a comprehensive evaluation framework for visual recognition models that is underpinned by this methodology. Over millions of procedurally rendered 3D scenes and 2D images, we compare the performance of well-known convolutional neural networks. Our results bring into question recent claims of human-like performance, and provide a path forward for correcting newly surfaced algorithmic deficiencies.
Author Anthony, Samuel E.
RichardWebster, Brandon
Scheirer, Walter J.
Author_xml – sequence: 1
  givenname: Brandon
  orcidid: 0000-0003-4278-1282
  surname: RichardWebster
  fullname: RichardWebster, Brandon
  email: brichar1@nd.edu
  organization: Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, USA
– sequence: 2
  givenname: Samuel E.
  surname: Anthony
  fullname: Anthony, Samuel E.
  email: santhony@wjh.harvard.edu
  organization: Department of Psychology, Harvard University, Cambridge, MA, USA
– sequence: 3
  givenname: Walter J.
  orcidid: 0000-0001-9649-8074
  surname: Scheirer
  fullname: Scheirer, Walter J.
  email: walter.scheirer@nd.edu
  organization: Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29994469$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtvEzEUhS1URNOWPwASGolNNxPsa49js4v6gKIioqqwtTzuNXGZjIM9U5R_j9OELrpg5SvrO_dxzhE56GOPhLxhdMoY1R9uF_OvV1OgTE1BCa2VfkEmwCStNWg4IBPKJNRKgTokRznfU8pEQ_krcghaayGknpAvi7xZLDcfq3lVKreM6-UmB5er8xQesK8uHmw32iHEvrpMdoV_YvpV-ZiqHyGPtqtu0MWffdgCJ-Slt13G1_v3mHy_vLg9-1xff_t0dTa_rh1v2FBb6QDalrYK2juhvG0YzjyVs1YLJtH5gsnyJ51TXiGdUVGu4W3jGw-cIz8mp7u-6xR_j5gHswrZYdfZHuOYDVCpuKBUNAV9_wy9j2Pqy3YGYFaM4yBZod7tqbFd4Z1Zp7CyaWP-uVQA2AEuxZwT-ieEUbONwjxGYbZRmH0URaSeiVwYHp0ckg3d_6Vvd9KAiE-zFNcNBcX_AkqHlWc
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1109_JPROC_2024_3380905
crossref_primary_10_1109_TPAMI_2020_3008107
crossref_primary_10_3390_s25061825
crossref_primary_10_1016_j_ijleo_2023_170729
crossref_primary_10_3390_jimaging5100078
crossref_primary_10_1109_JPROC_2020_2989782
crossref_primary_10_1109_ACCESS_2023_3348663
crossref_primary_10_1109_TPAMI_2021_3092688
crossref_primary_10_1523_JNEUROSCI_2002_22_2023
crossref_primary_10_1109_TIP_2021_3051462
crossref_primary_10_1016_j_measen_2023_100853
crossref_primary_10_3389_fcomp_2023_1178450
crossref_primary_10_1177_1071181320641092
crossref_primary_10_1109_TPAMI_2023_3270772
crossref_primary_10_1073_pnas_1905334117
crossref_primary_10_1109_TPAMI_2020_2996538
crossref_primary_10_1109_TBIOM_2023_3319837
crossref_primary_10_1038_s41583_023_00705_w
crossref_primary_10_1016_j_neucom_2020_12_057
crossref_primary_10_1038_s41598_023_40899_8
crossref_primary_10_3758_s13423_020_01825_5
crossref_primary_10_3389_fcomp_2023_1275026
crossref_primary_10_1007_s00521_020_05521_2
crossref_primary_10_1016_j_infrared_2024_105618
crossref_primary_10_1523_JNEUROSCI_3104_20_2021
crossref_primary_10_1109_MPOT_2019_2939376
Cites_doi 10.1145/2355598.2355599
10.1038/nn.4247
10.1109/CVPR.2016.173
10.1109/CVPR.2011.5995347
10.1109/WACV.2016.7477452
10.1068/p2897
10.7551/mitpress/9780262019453.001.0001
10.1016/j.imavis.2013.12.002
10.1017/S0140525X00005756
10.1126/science.1192788
10.1109/CVPR.2015.7299068
10.1109/CVPR.2016.177
10.3758/s13423-012-0296-9
10.1371/journal.pcbi.1002873
10.1109/CVPR.2015.7298594
10.1007/978-3-319-24947-6_42
10.1016/j.neuropsychologia.2005.07.001
10.1113/jphysiol.1980.sp013097
10.1007/s11263-015-0816-y
10.1038/14819
10.5244/C.28.6
10.1085/jgp.25.6.819
10.1073/pnas.1403112111
10.1109/TPAMI.2013.2297711
10.1109/TPAMI.2007.1107
10.1109/CVPR.2015.7298640
10.1016/j.jneumeth.2006.11.017
10.1145/2647868.2654889
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2018.2849989
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Psychology
Computer Science
EISSN 2160-9292
1939-3539
EndPage 2286
ExternalDocumentID 29994469
10_1109_TPAMI_2018_2849989
8395028
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Intelligence Advanced Research Projects Activity; IARPA
  grantid: #D16PC00002
  funderid: 10.13039/100011039
– fundername: NSF SBIR
  grantid: #IIP-1621689
– fundername: Nvidia
  funderid: 10.13039/100007065
– fundername: NSF
  grantid: DGE #1313583
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
RIG
5VS
9M8
ABFSI
ADRHT
AETEA
AETIX
AGSQL
AI.
AIBXA
ALLEH
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
RNI
RZB
VH1
XJT
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c351t-a6c22bb0b82bd48fa51e7f067b9416ecfc35651e6cc8f8e07042923b5f5f233e3
IEDL.DBID RIE
ISSN 0162-8828
1939-3539
IngestDate Fri Jul 11 07:40:56 EDT 2025
Mon Jun 30 07:07:48 EDT 2025
Mon Jul 21 06:07:14 EDT 2025
Thu Apr 24 22:57:30 EDT 2025
Tue Jul 01 03:18:24 EDT 2025
Wed Aug 27 05:07:55 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-a6c22bb0b82bd48fa51e7f067b9416ecfc35651e6cc8f8e07042923b5f5f233e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9649-8074
0000-0003-4278-1282
PMID 29994469
PQID 2270183261
PQPubID 85458
PageCount 7
ParticipantIDs crossref_citationtrail_10_1109_TPAMI_2018_2849989
proquest_journals_2270183261
proquest_miscellaneous_2068340045
pubmed_primary_29994469
crossref_primary_10_1109_TPAMI_2018_2849989
ieee_primary_8395028
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref15
wu (ref16) 2016
ref36
ref30
kingdom (ref2) 2016
ref33
ref11
ref32
ref10
(ref5) 2016
szegedy (ref37) 2014
eberhardt (ref22) 2016
ref1
ref39
ref17
ref38
yildirim (ref14) 2015
ref18
cadieu (ref31) 2013
riesenhuber (ref20) 2000
vondrick (ref27) 2015
ref46
ref24
(ref44) 2009
ref26
ref25
ref41
ref21
embretson (ref9) 2000
(ref45) 2016
simonyan (ref19) 2014; abs 1409 1556
ref28
ref29
krizhevsky (ref6) 2012; 1
ref8
ref7
ref4
ref3
hoiem (ref35) 2012
jakob (ref42) 2016
ref40
geirhos (ref23) 2017
gal (ref43) 2016
References_xml – ident: ref29
  doi: 10.1145/2355598.2355599
– ident: ref33
  doi: 10.1038/nn.4247
– volume: abs 1409 1556
  start-page: 1
  year: 2014
  ident: ref19
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: CoRR
– year: 2000
  ident: ref9
  publication-title: Item Response Theory for Psychologists
– ident: ref39
  doi: 10.1109/CVPR.2016.173
– start-page: 1
  year: 2017
  ident: ref23
  article-title: Comparing deep neural networks against humans: Object recognition when the signal gets weaker
  publication-title: arXiv 1706 06969
– ident: ref7
  doi: 10.1109/CVPR.2011.5995347
– ident: ref36
  doi: 10.1109/WACV.2016.7477452
– year: 2016
  ident: ref2
  publication-title: Psychophysics A Practical Introduction
– volume: 1
  start-page: 1097
  year: 2012
  ident: ref6
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc 25th Int Conf Neural Inf Process Syst
– start-page: 82
  year: 2016
  ident: ref16
  article-title: Learning a probabilistic latent space of object shapes via 3d generative-adversarial modeling
  publication-title: Proc 30th Int Conf Neural Inf Process Syst
– ident: ref40
  doi: 10.1068/p2897
– ident: ref1
  doi: 10.7551/mitpress/9780262019453.001.0001
– ident: ref30
  doi: 10.1016/j.imavis.2013.12.002
– ident: ref3
  doi: 10.1017/S0140525X00005756
– ident: ref13
  doi: 10.1126/science.1192788
– ident: ref15
  doi: 10.1109/CVPR.2015.7299068
– ident: ref34
  doi: 10.1109/CVPR.2016.177
– year: 2016
  ident: ref5
– ident: ref26
  doi: 10.3758/s13423-012-0296-9
– ident: ref24
  doi: 10.1371/journal.pcbi.1002873
– year: 2016
  ident: ref45
– ident: ref18
  doi: 10.1109/CVPR.2015.7298594
– start-page: 289
  year: 2015
  ident: ref27
  article-title: Learning visual biases from human imagination
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref8
  doi: 10.1007/978-3-319-24947-6_42
– ident: ref12
  doi: 10.1016/j.neuropsychologia.2005.07.001
– start-page: 340
  year: 2012
  ident: ref35
  article-title: Diagnosing error in object detectors
  publication-title: Proc Eur Conf Comput Vision
– ident: ref11
  doi: 10.1113/jphysiol.1980.sp013097
– ident: ref4
  doi: 10.1007/s11263-015-0816-y
– start-page: 1
  year: 2013
  ident: ref31
  article-title: The neural representation benchmark and its evaluation on brain and machine
  publication-title: Proc Int Conf Learn Representations
– year: 2000
  ident: ref20
  article-title: The individual is nothing, the class everything: Psychophysics and modeling of recognition in object classes
– ident: ref21
  doi: 10.1038/14819
– start-page: 1
  year: 2014
  ident: ref37
  article-title: Intriguing properties of neural networks
  publication-title: Proc ICLR
– ident: ref46
  doi: 10.5244/C.28.6
– start-page: 1100
  year: 2016
  ident: ref22
  article-title: How deep is the feature analysis underlying rapid visual categorization?
  publication-title: Proc Conf Neural Inf Process Syst
– ident: ref10
  doi: 10.1085/jgp.25.6.819
– start-page: 1
  year: 2015
  ident: ref14
  article-title: Efficient and robust analysis-by-synthesis in vision: A computational framework, behavioral tests, and modeling neuronal representations
  publication-title: Proc Annu Conf Cogn Sci Soc
– year: 2016
  ident: ref42
  article-title: Mitsuba
– ident: ref32
  doi: 10.1073/pnas.1403112111
– year: 2009
  ident: ref44
– ident: ref25
  doi: 10.1109/TPAMI.2013.2297711
– ident: ref28
  doi: 10.1109/TPAMI.2007.1107
– ident: ref38
  doi: 10.1109/CVPR.2015.7298640
– ident: ref41
  doi: 10.1016/j.jneumeth.2006.11.017
– start-page: 1050
  year: 2016
  ident: ref43
  article-title: Dropout as a bayesian approximation: Representing model uncertainty in deep learning
  publication-title: Proc Int Conf Mach Learn
– ident: ref17
  doi: 10.1145/2647868.2654889
SSID ssj0014503
Score 2.532222
Snippet By providing substantial amounts of data and standardized evaluation protocols, datasets in computer vision have helped fuel advances across all areas of...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2280
SubjectTerms Algorithms
Artificial neural networks
Computational modeling
Computer vision
deep learning
evaluation
Human performance
Machine learning
neuroscience
Object recognition
Observers
Protocol (computers)
Psychology
Psychophysics
Recognition
Statistical tests
Task analysis
Visual perception
visual psychophysics
Visualization
Title PsyPhy: A Psychophysics Driven Evaluation Framework for Visual Recognition
URI https://ieeexplore.ieee.org/document/8395028
https://www.ncbi.nlm.nih.gov/pubmed/29994469
https://www.proquest.com/docview/2270183261
https://www.proquest.com/docview/2068340045
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT8IwEL8gT_jgB_iBoqmJbzrY1nZsvhGFIAmGGDC8LWvXRaMZRtgD_vVe9xU1anzbutva5drf3bX3AXAeBjqLlaUMKrkymCWEIUIRGdJliqFEkpTpQOHxnTOcsdGczytwWcbCKKVS5zPV1pfpWX64kIneKuugMOcoDzdgAw23LFarPDFgPK2CjBoMrnA0I4oAGdPrTCe98a324nLbCMZoX-hUoQjDHppC3hd5lBZY-V3XTGXOYBvGxWgzV5PndrISbfn-LZHjf39nB7Zy5ZP0stmyCxUV12G7KOxA8nVeh81PWQrrUCtBct2AEd5MHtdXpEey5mxrZElu3jRukn6ZPZwMCr8vgooxeXhaJtj3feGwtIj3YDboT6-HRl6PwZCUWysjcKRtC2EK1xYhc6MAedyNUNwJD9U6JSMkc7DNkdKNXIVgomthUcEjHtmUKroP1XgRq0MglnBcodE6MENmCi6kpN1AJ2eUiCGMN8EquOLLPFm5rpnx4qdGi-n5KVN9zVQ_Z2oTLsp3XrNUHX9SNzRHSsqcGU1oFcz389W89G27a2roc6wmnJWPcR3qw5UgVosEaUzHpRoQcewH2aQpv13MtaOf-zyGGo4s91xrQXX1lqgTVHVW4jSd4x8Ew_cE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZgHIADg_EaDAgSN-jWNknXcpuAaQOGEBqIW9WkqUCgDm3rYfx6nL4ECBC3NnWbVE4-24kfAEdhoLNYWcqgkiuDWUIYIhSRIV2mGEokSZkOFB7cOL17dvnIH-fgpIyFUUqlzmeqqS_Ts_xwJBO9VdZCYc5RHs7DAsp9bmXRWuWZAeNpHWTUYXCNoyFRhMiYXmt42xn0tR-X20Q4RgtDJwtFIPbQGPK-SKS0xMrv2mYqdbpVGBTjzZxNXprJVDTl-7dUjv_9oVVYydVP0snmyxrMqbgG1aK0A8lXeg2WP-UprMFSCZOzdbjEm9un2SnpkKw52xyZkPOxRk5yUeYPJ93C84ugakwenicJ9n1XuCyN4g24714Mz3pGXpHBkJRbUyNwpG0LYQrXFiFzowC53I5Q4AkPFTslIyRzsM2R0o1chXCiq2FRwSMe2ZQqugmVeBSrbSCWcFyh8TowQ2YKLqSk7UCnZ5SIIozXwSq44ss8XbmumvHqp2aL6fkpU33NVD9nah2Oy3fesmQdf1Kva46UlDkz6tAomO_n63ni23bb1ODnWHU4LB_jStTHK0GsRgnSmI5LNSTi2LeySVN-u5hrOz_3eQCLveHg2r_u31ztwhKOMvdja0BlOk7UHio-U7GfzvcPDnz6TQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PsyPhy%3A+A+Psychophysics+Driven+Evaluation+Framework+for+Visual+Recognition&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=RichardWebster%2C+Brandon&rft.au=Anthony%2C+Samuel+E.&rft.au=Scheirer%2C+Walter+J.&rft.date=2019-09-01&rft.issn=0162-8828&rft.eissn=2160-9292&rft.volume=41&rft.issue=9&rft.spage=2280&rft.epage=2286&rft_id=info:doi/10.1109%2FTPAMI.2018.2849989&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPAMI_2018_2849989
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon