PsyPhy: A Psychophysics Driven Evaluation Framework for Visual Recognition
By providing substantial amounts of data and standardized evaluation protocols, datasets in computer vision have helped fuel advances across all areas of visual recognition. But even in light of breakthrough results on recent benchmarks, it is still fair to ask if our recognition algorithms are doin...
Saved in:
Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 41; no. 9; pp. 2280 - 2286 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.09.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | By providing substantial amounts of data and standardized evaluation protocols, datasets in computer vision have helped fuel advances across all areas of visual recognition. But even in light of breakthrough results on recent benchmarks, it is still fair to ask if our recognition algorithms are doing as well as we think they are. The vision sciences at large make use of a very different evaluation regime known as Visual Psychophysics to study visual perception. Psychophysics is the quantitative examination of the relationships between controlled stimuli and the behavioral responses they elicit in experimental test subjects. Instead of using summary statistics to gauge performance, psychophysics directs us to construct item-response curves made up of individual stimulus responses to find perceptual thresholds, thus allowing one to identify the exact point at which a subject can no longer reliably recognize the stimulus class. In this article, we introduce a comprehensive evaluation framework for visual recognition models that is underpinned by this methodology. Over millions of procedurally rendered 3D scenes and 2D images, we compare the performance of well-known convolutional neural networks. Our results bring into question recent claims of human-like performance, and provide a path forward for correcting newly surfaced algorithmic deficiencies. |
---|---|
AbstractList | By providing substantial amounts of data and standardized evaluation protocols, datasets in computer vision have helped fuel advances across all areas of visual recognition. But even in light of breakthrough results on recent benchmarks, it is still fair to ask if our recognition algorithms are doing as well as we think they are. The vision sciences at large make use of a very different evaluation regime known as Visual Psychophysics to study visual perception. Psychophysics is the quantitative examination of the relationships between controlled stimuli and the behavioral responses they elicit in experimental test subjects. Instead of using summary statistics to gauge performance, psychophysics directs us to construct item-response curves made up of individual stimulus responses to find perceptual thresholds, thus allowing one to identify the exact point at which a subject can no longer reliably recognize the stimulus class. In this article, we introduce a comprehensive evaluation framework for visual recognition models that is underpinned by this methodology. Over millions of procedurally rendered 3D scenes and 2D images, we compare the performance of well-known convolutional neural networks. Our results bring into question recent claims of human-like performance, and provide a path forward for correcting newly surfaced algorithmic deficiencies. By providing substantial amounts of data and standardized evaluation protocols, datasets in computer vision have helped fuel advances across all areas of visual recognition. But even in light of breakthrough results on recent benchmarks, it is still fair to ask if our recognition algorithms are doing as well as we think they are. The vision sciences at large make use of a very different evaluation regime known as Visual Psychophysics to study visual perception. Psychophysics is the quantitative examination of the relationships between controlled stimuli and the behavioral responses they elicit in experimental test subjects. Instead of using summary statistics to gauge performance, psychophysics directs us to construct item-response curves made up of individual stimulus responses to find perceptual thresholds, thus allowing one to identify the exact point at which a subject can no longer reliably recognize the stimulus class. In this article, we introduce a comprehensive evaluation framework for visual recognition models that is underpinned by this methodology. Over millions of procedurally rendered 3D scenes and 2D images, we compare the performance of well-known convolutional neural networks. Our results bring into question recent claims of human-like performance, and provide a path forward for correcting newly surfaced algorithmic deficiencies.By providing substantial amounts of data and standardized evaluation protocols, datasets in computer vision have helped fuel advances across all areas of visual recognition. But even in light of breakthrough results on recent benchmarks, it is still fair to ask if our recognition algorithms are doing as well as we think they are. The vision sciences at large make use of a very different evaluation regime known as Visual Psychophysics to study visual perception. Psychophysics is the quantitative examination of the relationships between controlled stimuli and the behavioral responses they elicit in experimental test subjects. Instead of using summary statistics to gauge performance, psychophysics directs us to construct item-response curves made up of individual stimulus responses to find perceptual thresholds, thus allowing one to identify the exact point at which a subject can no longer reliably recognize the stimulus class. In this article, we introduce a comprehensive evaluation framework for visual recognition models that is underpinned by this methodology. Over millions of procedurally rendered 3D scenes and 2D images, we compare the performance of well-known convolutional neural networks. Our results bring into question recent claims of human-like performance, and provide a path forward for correcting newly surfaced algorithmic deficiencies. |
Author | Anthony, Samuel E. RichardWebster, Brandon Scheirer, Walter J. |
Author_xml | – sequence: 1 givenname: Brandon orcidid: 0000-0003-4278-1282 surname: RichardWebster fullname: RichardWebster, Brandon email: brichar1@nd.edu organization: Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, USA – sequence: 2 givenname: Samuel E. surname: Anthony fullname: Anthony, Samuel E. email: santhony@wjh.harvard.edu organization: Department of Psychology, Harvard University, Cambridge, MA, USA – sequence: 3 givenname: Walter J. orcidid: 0000-0001-9649-8074 surname: Scheirer fullname: Scheirer, Walter J. email: walter.scheirer@nd.edu organization: Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29994469$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtvEzEUhS1URNOWPwASGolNNxPsa49js4v6gKIioqqwtTzuNXGZjIM9U5R_j9OELrpg5SvrO_dxzhE56GOPhLxhdMoY1R9uF_OvV1OgTE1BCa2VfkEmwCStNWg4IBPKJNRKgTokRznfU8pEQ_krcghaayGknpAvi7xZLDcfq3lVKreM6-UmB5er8xQesK8uHmw32iHEvrpMdoV_YvpV-ZiqHyGPtqtu0MWffdgCJ-Slt13G1_v3mHy_vLg9-1xff_t0dTa_rh1v2FBb6QDalrYK2juhvG0YzjyVs1YLJtH5gsnyJ51TXiGdUVGu4W3jGw-cIz8mp7u-6xR_j5gHswrZYdfZHuOYDVCpuKBUNAV9_wy9j2Pqy3YGYFaM4yBZod7tqbFd4Z1Zp7CyaWP-uVQA2AEuxZwT-ieEUbONwjxGYbZRmH0URaSeiVwYHp0ckg3d_6Vvd9KAiE-zFNcNBcX_AkqHlWc |
CODEN | ITPIDJ |
CitedBy_id | crossref_primary_10_1109_JPROC_2024_3380905 crossref_primary_10_1109_TPAMI_2020_3008107 crossref_primary_10_3390_s25061825 crossref_primary_10_1016_j_ijleo_2023_170729 crossref_primary_10_3390_jimaging5100078 crossref_primary_10_1109_JPROC_2020_2989782 crossref_primary_10_1109_ACCESS_2023_3348663 crossref_primary_10_1109_TPAMI_2021_3092688 crossref_primary_10_1523_JNEUROSCI_2002_22_2023 crossref_primary_10_1109_TIP_2021_3051462 crossref_primary_10_1016_j_measen_2023_100853 crossref_primary_10_3389_fcomp_2023_1178450 crossref_primary_10_1177_1071181320641092 crossref_primary_10_1109_TPAMI_2023_3270772 crossref_primary_10_1073_pnas_1905334117 crossref_primary_10_1109_TPAMI_2020_2996538 crossref_primary_10_1109_TBIOM_2023_3319837 crossref_primary_10_1038_s41583_023_00705_w crossref_primary_10_1016_j_neucom_2020_12_057 crossref_primary_10_1038_s41598_023_40899_8 crossref_primary_10_3758_s13423_020_01825_5 crossref_primary_10_3389_fcomp_2023_1275026 crossref_primary_10_1007_s00521_020_05521_2 crossref_primary_10_1016_j_infrared_2024_105618 crossref_primary_10_1523_JNEUROSCI_3104_20_2021 crossref_primary_10_1109_MPOT_2019_2939376 |
Cites_doi | 10.1145/2355598.2355599 10.1038/nn.4247 10.1109/CVPR.2016.173 10.1109/CVPR.2011.5995347 10.1109/WACV.2016.7477452 10.1068/p2897 10.7551/mitpress/9780262019453.001.0001 10.1016/j.imavis.2013.12.002 10.1017/S0140525X00005756 10.1126/science.1192788 10.1109/CVPR.2015.7299068 10.1109/CVPR.2016.177 10.3758/s13423-012-0296-9 10.1371/journal.pcbi.1002873 10.1109/CVPR.2015.7298594 10.1007/978-3-319-24947-6_42 10.1016/j.neuropsychologia.2005.07.001 10.1113/jphysiol.1980.sp013097 10.1007/s11263-015-0816-y 10.1038/14819 10.5244/C.28.6 10.1085/jgp.25.6.819 10.1073/pnas.1403112111 10.1109/TPAMI.2013.2297711 10.1109/TPAMI.2007.1107 10.1109/CVPR.2015.7298640 10.1016/j.jneumeth.2006.11.017 10.1145/2647868.2654889 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TPAMI.2018.2849989 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Psychology Computer Science |
EISSN | 2160-9292 1939-3539 |
EndPage | 2286 |
ExternalDocumentID | 29994469 10_1109_TPAMI_2018_2849989 8395028 |
Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Intelligence Advanced Research Projects Activity; IARPA grantid: #D16PC00002 funderid: 10.13039/100011039 – fundername: NSF SBIR grantid: #IIP-1621689 – fundername: Nvidia funderid: 10.13039/100007065 – fundername: NSF grantid: DGE #1313583 |
GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB ~02 AAYXX CITATION RIG 5VS 9M8 ABFSI ADRHT AETEA AETIX AGSQL AI. AIBXA ALLEH FA8 H~9 IBMZZ ICLAB IFJZH NPM RNI RZB VH1 XJT 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c351t-a6c22bb0b82bd48fa51e7f067b9416ecfc35651e6cc8f8e07042923b5f5f233e3 |
IEDL.DBID | RIE |
ISSN | 0162-8828 1939-3539 |
IngestDate | Fri Jul 11 07:40:56 EDT 2025 Mon Jun 30 07:07:48 EDT 2025 Mon Jul 21 06:07:14 EDT 2025 Thu Apr 24 22:57:30 EDT 2025 Tue Jul 01 03:18:24 EDT 2025 Wed Aug 27 05:07:55 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-a6c22bb0b82bd48fa51e7f067b9416ecfc35651e6cc8f8e07042923b5f5f233e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9649-8074 0000-0003-4278-1282 |
PMID | 29994469 |
PQID | 2270183261 |
PQPubID | 85458 |
PageCount | 7 |
ParticipantIDs | crossref_citationtrail_10_1109_TPAMI_2018_2849989 proquest_journals_2270183261 proquest_miscellaneous_2068340045 pubmed_primary_29994469 crossref_primary_10_1109_TPAMI_2018_2849989 ieee_primary_8395028 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-01 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
PublicationTitleAbbrev | TPAMI |
PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref34 ref12 ref15 wu (ref16) 2016 ref36 ref30 kingdom (ref2) 2016 ref33 ref11 ref32 ref10 (ref5) 2016 szegedy (ref37) 2014 eberhardt (ref22) 2016 ref1 ref39 ref17 ref38 yildirim (ref14) 2015 ref18 cadieu (ref31) 2013 riesenhuber (ref20) 2000 vondrick (ref27) 2015 ref46 ref24 (ref44) 2009 ref26 ref25 ref41 ref21 embretson (ref9) 2000 (ref45) 2016 simonyan (ref19) 2014; abs 1409 1556 ref28 ref29 krizhevsky (ref6) 2012; 1 ref8 ref7 ref4 ref3 hoiem (ref35) 2012 jakob (ref42) 2016 ref40 geirhos (ref23) 2017 gal (ref43) 2016 |
References_xml | – ident: ref29 doi: 10.1145/2355598.2355599 – ident: ref33 doi: 10.1038/nn.4247 – volume: abs 1409 1556 start-page: 1 year: 2014 ident: ref19 article-title: Very deep convolutional networks for large-scale image recognition publication-title: CoRR – year: 2000 ident: ref9 publication-title: Item Response Theory for Psychologists – ident: ref39 doi: 10.1109/CVPR.2016.173 – start-page: 1 year: 2017 ident: ref23 article-title: Comparing deep neural networks against humans: Object recognition when the signal gets weaker publication-title: arXiv 1706 06969 – ident: ref7 doi: 10.1109/CVPR.2011.5995347 – ident: ref36 doi: 10.1109/WACV.2016.7477452 – year: 2016 ident: ref2 publication-title: Psychophysics A Practical Introduction – volume: 1 start-page: 1097 year: 2012 ident: ref6 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc 25th Int Conf Neural Inf Process Syst – start-page: 82 year: 2016 ident: ref16 article-title: Learning a probabilistic latent space of object shapes via 3d generative-adversarial modeling publication-title: Proc 30th Int Conf Neural Inf Process Syst – ident: ref40 doi: 10.1068/p2897 – ident: ref1 doi: 10.7551/mitpress/9780262019453.001.0001 – ident: ref30 doi: 10.1016/j.imavis.2013.12.002 – ident: ref3 doi: 10.1017/S0140525X00005756 – ident: ref13 doi: 10.1126/science.1192788 – ident: ref15 doi: 10.1109/CVPR.2015.7299068 – ident: ref34 doi: 10.1109/CVPR.2016.177 – year: 2016 ident: ref5 – ident: ref26 doi: 10.3758/s13423-012-0296-9 – ident: ref24 doi: 10.1371/journal.pcbi.1002873 – year: 2016 ident: ref45 – ident: ref18 doi: 10.1109/CVPR.2015.7298594 – start-page: 289 year: 2015 ident: ref27 article-title: Learning visual biases from human imagination publication-title: Proc Adv Neural Inf Process Syst – ident: ref8 doi: 10.1007/978-3-319-24947-6_42 – ident: ref12 doi: 10.1016/j.neuropsychologia.2005.07.001 – start-page: 340 year: 2012 ident: ref35 article-title: Diagnosing error in object detectors publication-title: Proc Eur Conf Comput Vision – ident: ref11 doi: 10.1113/jphysiol.1980.sp013097 – ident: ref4 doi: 10.1007/s11263-015-0816-y – start-page: 1 year: 2013 ident: ref31 article-title: The neural representation benchmark and its evaluation on brain and machine publication-title: Proc Int Conf Learn Representations – year: 2000 ident: ref20 article-title: The individual is nothing, the class everything: Psychophysics and modeling of recognition in object classes – ident: ref21 doi: 10.1038/14819 – start-page: 1 year: 2014 ident: ref37 article-title: Intriguing properties of neural networks publication-title: Proc ICLR – ident: ref46 doi: 10.5244/C.28.6 – start-page: 1100 year: 2016 ident: ref22 article-title: How deep is the feature analysis underlying rapid visual categorization? publication-title: Proc Conf Neural Inf Process Syst – ident: ref10 doi: 10.1085/jgp.25.6.819 – start-page: 1 year: 2015 ident: ref14 article-title: Efficient and robust analysis-by-synthesis in vision: A computational framework, behavioral tests, and modeling neuronal representations publication-title: Proc Annu Conf Cogn Sci Soc – year: 2016 ident: ref42 article-title: Mitsuba – ident: ref32 doi: 10.1073/pnas.1403112111 – year: 2009 ident: ref44 – ident: ref25 doi: 10.1109/TPAMI.2013.2297711 – ident: ref28 doi: 10.1109/TPAMI.2007.1107 – ident: ref38 doi: 10.1109/CVPR.2015.7298640 – ident: ref41 doi: 10.1016/j.jneumeth.2006.11.017 – start-page: 1050 year: 2016 ident: ref43 article-title: Dropout as a bayesian approximation: Representing model uncertainty in deep learning publication-title: Proc Int Conf Mach Learn – ident: ref17 doi: 10.1145/2647868.2654889 |
SSID | ssj0014503 |
Score | 2.532222 |
Snippet | By providing substantial amounts of data and standardized evaluation protocols, datasets in computer vision have helped fuel advances across all areas of... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2280 |
SubjectTerms | Algorithms Artificial neural networks Computational modeling Computer vision deep learning evaluation Human performance Machine learning neuroscience Object recognition Observers Protocol (computers) Psychology Psychophysics Recognition Statistical tests Task analysis Visual perception visual psychophysics Visualization |
Title | PsyPhy: A Psychophysics Driven Evaluation Framework for Visual Recognition |
URI | https://ieeexplore.ieee.org/document/8395028 https://www.ncbi.nlm.nih.gov/pubmed/29994469 https://www.proquest.com/docview/2270183261 https://www.proquest.com/docview/2068340045 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT8IwEL8gT_jgB_iBoqmJbzrY1nZsvhGFIAmGGDC8LWvXRaMZRtgD_vVe9xU1anzbutva5drf3bX3AXAeBjqLlaUMKrkymCWEIUIRGdJliqFEkpTpQOHxnTOcsdGczytwWcbCKKVS5zPV1pfpWX64kIneKuugMOcoDzdgAw23LFarPDFgPK2CjBoMrnA0I4oAGdPrTCe98a324nLbCMZoX-hUoQjDHppC3hd5lBZY-V3XTGXOYBvGxWgzV5PndrISbfn-LZHjf39nB7Zy5ZP0stmyCxUV12G7KOxA8nVeh81PWQrrUCtBct2AEd5MHtdXpEey5mxrZElu3jRukn6ZPZwMCr8vgooxeXhaJtj3feGwtIj3YDboT6-HRl6PwZCUWysjcKRtC2EK1xYhc6MAedyNUNwJD9U6JSMkc7DNkdKNXIVgomthUcEjHtmUKroP1XgRq0MglnBcodE6MENmCi6kpN1AJ2eUiCGMN8EquOLLPFm5rpnx4qdGi-n5KVN9zVQ_Z2oTLsp3XrNUHX9SNzRHSsqcGU1oFcz389W89G27a2roc6wmnJWPcR3qw5UgVosEaUzHpRoQcewH2aQpv13MtaOf-zyGGo4s91xrQXX1lqgTVHVW4jSd4x8Ew_cE |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZgHIADg_EaDAgSN-jWNknXcpuAaQOGEBqIW9WkqUCgDm3rYfx6nL4ECBC3NnWbVE4-24kfAEdhoLNYWcqgkiuDWUIYIhSRIV2mGEokSZkOFB7cOL17dvnIH-fgpIyFUUqlzmeqqS_Ts_xwJBO9VdZCYc5RHs7DAsp9bmXRWuWZAeNpHWTUYXCNoyFRhMiYXmt42xn0tR-X20Q4RgtDJwtFIPbQGPK-SKS0xMrv2mYqdbpVGBTjzZxNXprJVDTl-7dUjv_9oVVYydVP0snmyxrMqbgG1aK0A8lXeg2WP-UprMFSCZOzdbjEm9un2SnpkKw52xyZkPOxRk5yUeYPJ93C84ugakwenicJ9n1XuCyN4g24714Mz3pGXpHBkJRbUyNwpG0LYQrXFiFzowC53I5Q4AkPFTslIyRzsM2R0o1chXCiq2FRwSMe2ZQqugmVeBSrbSCWcFyh8TowQ2YKLqSk7UCnZ5SIIozXwSq44ss8XbmumvHqp2aL6fkpU33NVD9nah2Oy3fesmQdf1Kva46UlDkz6tAomO_n63ni23bb1ODnWHU4LB_jStTHK0GsRgnSmI5LNSTi2LeySVN-u5hrOz_3eQCLveHg2r_u31ztwhKOMvdja0BlOk7UHio-U7GfzvcPDnz6TQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PsyPhy%3A+A+Psychophysics+Driven+Evaluation+Framework+for+Visual+Recognition&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=RichardWebster%2C+Brandon&rft.au=Anthony%2C+Samuel+E.&rft.au=Scheirer%2C+Walter+J.&rft.date=2019-09-01&rft.issn=0162-8828&rft.eissn=2160-9292&rft.volume=41&rft.issue=9&rft.spage=2280&rft.epage=2286&rft_id=info:doi/10.1109%2FTPAMI.2018.2849989&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPAMI_2018_2849989 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |