Configurable Graph Reasoning for Visual Relationship Detection

Visual commonsense knowledge has received growing attention in the reasoning of long-tailed visual relationships biased in terms of object and relation labels. Most current methods typically collect and utilize external knowledge for visual relationships by following the fixed reasoning path of {sub...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 33; no. 1; pp. 117 - 129
Main Authors Zhu, Yi, Liang, Xiwen, Lin, Bingqian, Ye, Qixiang, Jiao, Jianbin, Lin, Liang, Liang, Xiaodan
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Visual commonsense knowledge has received growing attention in the reasoning of long-tailed visual relationships biased in terms of object and relation labels. Most current methods typically collect and utilize external knowledge for visual relationships by following the fixed reasoning path of {subject, object <inline-formula> <tex-math notation="LaTeX">\to </tex-math></inline-formula> predicate} to facilitate the recognition of infrequent relationships. However, the knowledge incorporation for such fixed multidependent path suffers from the data set biased and exponentially grown combinations of object and relation labels and ignores the semantic gap between commonsense knowledge and real scenes. To alleviate this, we propose configurable graph reasoning (CGR) to decompose the reasoning path of visual relationships and the incorporation of external knowledge, achieving configurable knowledge selection and personalized graph reasoning for each relation type in each image. Given a commonsense knowledge graph, CGR learns to match and retrieve knowledge for different subpaths and selectively compose the knowledge routed path. CGR adaptively configures the reasoning path based on the knowledge graph, bridges the semantic gap between the commonsense knowledge, and the real-world scenes and achieves better knowledge generalization. Extensive experiments show that CGR consistently outperforms previous state-of-the-art methods on several popular benchmarks and works well with different knowledge graphs. Detailed analyses demonstrated that CGR learned explainable and compelling configurations of reasoning paths.
AbstractList Visual commonsense knowledge has received growing attention in the reasoning of long-tailed visual relationships biased in terms of object and relation labels. Most current methods typically collect and utilize external knowledge for visual relationships by following the fixed reasoning path of {subject, object <inline-formula> <tex-math notation="LaTeX">\to </tex-math></inline-formula> predicate} to facilitate the recognition of infrequent relationships. However, the knowledge incorporation for such fixed multidependent path suffers from the data set biased and exponentially grown combinations of object and relation labels and ignores the semantic gap between commonsense knowledge and real scenes. To alleviate this, we propose configurable graph reasoning (CGR) to decompose the reasoning path of visual relationships and the incorporation of external knowledge, achieving configurable knowledge selection and personalized graph reasoning for each relation type in each image. Given a commonsense knowledge graph, CGR learns to match and retrieve knowledge for different subpaths and selectively compose the knowledge routed path. CGR adaptively configures the reasoning path based on the knowledge graph, bridges the semantic gap between the commonsense knowledge, and the real-world scenes and achieves better knowledge generalization. Extensive experiments show that CGR consistently outperforms previous state-of-the-art methods on several popular benchmarks and works well with different knowledge graphs. Detailed analyses demonstrated that CGR learned explainable and compelling configurations of reasoning paths.
Visual commonsense knowledge has received growing attention in the reasoning of long-tailed visual relationships biased in terms of object and relation labels. Most current methods typically collect and utilize external knowledge for visual relationships by following the fixed reasoning path of {subject, object → predicate} to facilitate the recognition of infrequent relationships. However, the knowledge incorporation for such fixed multidependent path suffers from the data set biased and exponentially grown combinations of object and relation labels and ignores the semantic gap between commonsense knowledge and real scenes. To alleviate this, we propose configurable graph reasoning (CGR) to decompose the reasoning path of visual relationships and the incorporation of external knowledge, achieving configurable knowledge selection and personalized graph reasoning for each relation type in each image. Given a commonsense knowledge graph, CGR learns to match and retrieve knowledge for different subpaths and selectively compose the knowledge routed path. CGR adaptively configures the reasoning path based on the knowledge graph, bridges the semantic gap between the commonsense knowledge, and the real-world scenes and achieves better knowledge generalization. Extensive experiments show that CGR consistently outperforms previous state-of-the-art methods on several popular benchmarks and works well with different knowledge graphs. Detailed analyses demonstrated that CGR learned explainable and compelling configurations of reasoning paths.
Visual commonsense knowledge has received growing attention in the reasoning of long-tailed visual relationships biased in terms of object and relation labels. Most current methods typically collect and utilize external knowledge for visual relationships by following the fixed reasoning path of {subject, object → predicate} to facilitate the recognition of infrequent relationships. However, the knowledge incorporation for such fixed multidependent path suffers from the data set biased and exponentially grown combinations of object and relation labels and ignores the semantic gap between commonsense knowledge and real scenes. To alleviate this, we propose configurable graph reasoning (CGR) to decompose the reasoning path of visual relationships and the incorporation of external knowledge, achieving configurable knowledge selection and personalized graph reasoning for each relation type in each image. Given a commonsense knowledge graph, CGR learns to match and retrieve knowledge for different subpaths and selectively compose the knowledge routed path. CGR adaptively configures the reasoning path based on the knowledge graph, bridges the semantic gap between the commonsense knowledge, and the real-world scenes and achieves better knowledge generalization. Extensive experiments show that CGR consistently outperforms previous state-of-the-art methods on several popular benchmarks and works well with different knowledge graphs. Detailed analyses demonstrated that CGR learned explainable and compelling configurations of reasoning paths.Visual commonsense knowledge has received growing attention in the reasoning of long-tailed visual relationships biased in terms of object and relation labels. Most current methods typically collect and utilize external knowledge for visual relationships by following the fixed reasoning path of {subject, object → predicate} to facilitate the recognition of infrequent relationships. However, the knowledge incorporation for such fixed multidependent path suffers from the data set biased and exponentially grown combinations of object and relation labels and ignores the semantic gap between commonsense knowledge and real scenes. To alleviate this, we propose configurable graph reasoning (CGR) to decompose the reasoning path of visual relationships and the incorporation of external knowledge, achieving configurable knowledge selection and personalized graph reasoning for each relation type in each image. Given a commonsense knowledge graph, CGR learns to match and retrieve knowledge for different subpaths and selectively compose the knowledge routed path. CGR adaptively configures the reasoning path based on the knowledge graph, bridges the semantic gap between the commonsense knowledge, and the real-world scenes and achieves better knowledge generalization. Extensive experiments show that CGR consistently outperforms previous state-of-the-art methods on several popular benchmarks and works well with different knowledge graphs. Detailed analyses demonstrated that CGR learned explainable and compelling configurations of reasoning paths.
Visual commonsense knowledge has received growing attention in the reasoning of long-tailed visual relationships biased in terms of object and relation labels. Most current methods typically collect and utilize external knowledge for visual relationships by following the fixed reasoning path of {subject, object [Formula Omitted] predicate} to facilitate the recognition of infrequent relationships. However, the knowledge incorporation for such fixed multidependent path suffers from the data set biased and exponentially grown combinations of object and relation labels and ignores the semantic gap between commonsense knowledge and real scenes. To alleviate this, we propose configurable graph reasoning (CGR) to decompose the reasoning path of visual relationships and the incorporation of external knowledge, achieving configurable knowledge selection and personalized graph reasoning for each relation type in each image. Given a commonsense knowledge graph, CGR learns to match and retrieve knowledge for different subpaths and selectively compose the knowledge routed path. CGR adaptively configures the reasoning path based on the knowledge graph, bridges the semantic gap between the commonsense knowledge, and the real-world scenes and achieves better knowledge generalization. Extensive experiments show that CGR consistently outperforms previous state-of-the-art methods on several popular benchmarks and works well with different knowledge graphs. Detailed analyses demonstrated that CGR learned explainable and compelling configurations of reasoning paths.
Author Jiao, Jianbin
Zhu, Yi
Lin, Liang
Ye, Qixiang
Liang, Xiaodan
Liang, Xiwen
Lin, Bingqian
Author_xml – sequence: 1
  givenname: Yi
  orcidid: 0000-0002-5087-895X
  surname: Zhu
  fullname: Zhu, Yi
  email: zhuyi215@mails.ucas.ac.cn
  organization: University of Chinese Academy of Sciences (UCAS), Beijing, China
– sequence: 2
  givenname: Xiwen
  orcidid: 0000-0002-2484-6962
  surname: Liang
  fullname: Liang, Xiwen
  email: liangcici5@gmail.com
  organization: Sun Yat-sen University, Guangzhou, China
– sequence: 3
  givenname: Bingqian
  orcidid: 0000-0002-8763-9530
  surname: Lin
  fullname: Lin, Bingqian
  email: bingqianlin@126.com
  organization: Sun Yat-sen University, Guangzhou, China
– sequence: 4
  givenname: Qixiang
  orcidid: 0000-0003-1215-6259
  surname: Ye
  fullname: Ye, Qixiang
  email: qxye@ucas.ac.cn
  organization: University of Chinese Academy of Sciences (UCAS), Beijing, China
– sequence: 5
  givenname: Jianbin
  orcidid: 0000-0003-0454-3929
  surname: Jiao
  fullname: Jiao, Jianbin
  email: jiaojb@ucas.ac.cn
  organization: University of Chinese Academy of Sciences (UCAS), Beijing, China
– sequence: 6
  givenname: Liang
  orcidid: 0000-0003-2248-3755
  surname: Lin
  fullname: Lin, Liang
  email: linliang@ieee.org
  organization: Sun Yat-sen University, Guangzhou, China
– sequence: 7
  givenname: Xiaodan
  orcidid: 0000-0003-3213-3062
  surname: Liang
  fullname: Liang, Xiaodan
  email: xdliang328@gmail.com
  organization: Sun Yat-sen University, Guangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33119512$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1P4zAQhi3Eis_-AZBQpL1wadczTuL4goS6fEkVK7FdxM2ahikYpXGxkwP_HpcWDhzWB8_Yft6xPe--2G59y0IcgRwBSPNrens7-TtCiXKkJOpCF1tiD6HEIaqq2v7K9cOuGMT4ItMoZVHmZkfsKgVgCsA9cTb27dw99YFmDWdXgZbP2R1T9K1rn7K5D9m9iz01abOhzvk2Prtl9ps7rlerQ_FjTk3kwSYeiH-XF9Px9XDy5-pmfD4Z1qqAbkgF5VqjMrWsZvlMpttTJEVSp7kCYCyqyqST2ihAqfQjENeGCAiRtToQp-u6y-Bfe46dXbhYc9NQy76PFvP0M2nyAhP68xv64vvQptdZLKHUUOWlTNTJhupnC360y-AWFN7sZ2cSUK2BOvgYA89t7bqPDnSBXGNB2pUP9sMHu_LBbnxIUvwm_az-X9HxWuSY-UtgMM9BSfUOStOQcQ
CODEN ITNNAL
CitedBy_id crossref_primary_10_1016_j_neucom_2024_128422
crossref_primary_10_1109_TIP_2022_3199089
crossref_primary_10_1007_s00521_022_06975_2
crossref_primary_10_1016_j_patcog_2023_109634
crossref_primary_10_1109_ACCESS_2023_3239837
crossref_primary_10_1016_j_neucom_2024_127571
crossref_primary_10_1109_TCYB_2023_3339629
crossref_primary_10_1109_TNNLS_2024_3380851
crossref_primary_10_1109_ACCESS_2022_3187263
crossref_primary_10_1016_j_jvcir_2023_103923
Cites_doi 10.1109/ICCV.2017.121
10.1109/CVPR.2017.330
10.1109/CVPR.2019.00207
10.1109/CVPR.2017.129
10.1109/ICCV.2011.6126281
10.1109/CVPR.2019.01180
10.1109/CVPR.2019.00684
10.1109/ICCV.2019.00471
10.1007/978-3-030-01246-5_41
10.1609/aaai.v32i1.12271
10.1109/CVPR.2017.469
10.1162/neco.1997.9.8.1735
10.1109/ICCV.2017.142
10.1109/CVPR.2016.13
10.1109/CVPR.2017.331
10.1007/978-3-030-01219-9_20
10.1007/978-3-030-01246-5_21
10.3115/v1/D14-1179
10.1109/CVPR.2017.634
10.1109/CVPR.2019.00632
10.1109/CVPR.2019.00686
10.1109/CVPR.2017.106
10.3115/v1/D14-1162
10.1109/CVPR.2018.00756
10.1109/CVPR.2014.119
10.1007/978-3-319-46448-0_51
10.1109/CVPR.2017.352
10.1109/CVPR.2008.4587799
10.1109/CVPR.2018.00611
10.1109/CVPR.2019.00678
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2020.3027575
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL) - NZ
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 129
ExternalDocumentID 33119512
10_1109_TNNLS_2020_3027575
9244130
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2018AAA0100300
  funderid: 10.13039/501100012166
– fundername: Nature Science Foundation of Shenzhen
  grantid: 2019191361
– fundername: Guangdong Province Basic and Applied Basic Research (Regional Joint Fund-Key)
  grantid: 2019B1515120039
– fundername: National Natural Science Foundation of China
  grantid: 61836012; U19A2073; 61976233
  funderid: 10.13039/501100001809
– fundername: Zhijiang Laboratory’s Open Fund
  grantid: 2020AA3AB14
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-a5a477239c08b4b01198b4a3a074a3811e258894b0c9312037d1aec9aa1a22e73
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Fri Jul 11 04:56:03 EDT 2025
Mon Jun 30 06:49:38 EDT 2025
Thu Jan 02 22:55:21 EST 2025
Tue Jul 01 00:27:36 EDT 2025
Thu Apr 24 22:52:56 EDT 2025
Wed Aug 27 03:03:36 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-a5a477239c08b4b01198b4a3a074a3811e258894b0c9312037d1aec9aa1a22e73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2248-3755
0000-0002-2484-6962
0000-0002-8763-9530
0000-0002-5087-895X
0000-0003-1215-6259
0000-0003-3213-3062
0000-0003-0454-3929
PMID 33119512
PQID 2616718460
PQPubID 85436
PageCount 13
ParticipantIDs proquest_journals_2616718460
crossref_citationtrail_10_1109_TNNLS_2020_3027575
crossref_primary_10_1109_TNNLS_2020_3027575
ieee_primary_9244130
proquest_miscellaneous_2456409452
pubmed_primary_33119512
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-Jan.
2022-1-00
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-Jan.
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref11
ref10
Maddison (ref45)
ref17
ref16
ref19
ref18
Vaswani (ref36)
ref51
ref50
Gilmer (ref26) 2017
ref46
ref48
ref42
Veličković (ref27)
ref8
ref7
Newell (ref12)
ref9
Li (ref37)
ref4
ref3
ref6
ref5
Jiang (ref40)
Kampffmeyer (ref24) 2018
Atwood (ref25)
Simonyan (ref49)
ref35
Gumbel (ref43) 1948; 33
Krishna (ref47) 2016
ref34
ref31
ref30
ref33
Ren (ref41) 2015
Kipf (ref38)
ref2
ref39
Woo (ref14)
Niepert (ref21)
Jang (ref44) 2016
Frome (ref32)
Hudson (ref1)
ref20
Zhou (ref22) 2018
ref28
ref29
Hamilton (ref23)
References_xml – ident: ref8
  doi: 10.1109/ICCV.2017.121
– start-page: 1024
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref23
  article-title: Inductive representation learning on large graphs
– ident: ref10
  doi: 10.1109/CVPR.2017.330
– ident: ref9
  doi: 10.1109/CVPR.2019.00207
– volume-title: arXiv:1506.01497
  year: 2015
  ident: ref41
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
– ident: ref31
  doi: 10.1109/CVPR.2017.129
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref37
  article-title: Gated graph sequence neural networks
– ident: ref30
  doi: 10.1109/ICCV.2011.6126281
– start-page: 2121
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref32
  article-title: Devise: A deep visual-semantic embedding model
– ident: ref7
  doi: 10.1109/CVPR.2019.01180
– ident: ref46
  doi: 10.1109/CVPR.2019.00684
– ident: ref19
  doi: 10.1109/ICCV.2019.00471
– ident: ref17
  doi: 10.1007/978-3-030-01246-5_41
– ident: ref20
  doi: 10.1609/aaai.v32i1.12271
– start-page: 5903
  volume-title: Proc. 33rd Conf. Neural Inf. Process. Syst.
  ident: ref1
  article-title: Learning by abstraction: The neural state machine for visual reasoning
– volume-title: arXiv:1805.11724
  year: 2018
  ident: ref24
  article-title: Rethinking knowledge graph propagation for zero-shot learning
– volume-title: arXiv:1611.01144
  year: 2016
  ident: ref44
  article-title: Categorical reparameterization with gumbel-softmax
– ident: ref13
  doi: 10.1109/CVPR.2017.469
– start-page: 1552
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref40
  article-title: Hybrid knowledge routed modules for large-scale object detection
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref38
  article-title: Semi-supervised classification with graph convolutional networks
– volume-title: arXiv:1602.07332
  year: 2016
  ident: ref47
  article-title: Visual genome: Connecting language and vision using crowdsourced dense image annotations
– volume-title: arXiv:1812.08434
  year: 2018
  ident: ref22
  article-title: Graph neural networks: A review of methods and applications
– ident: ref29
  doi: 10.1162/neco.1997.9.8.1735
– start-page: 2014
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref21
  article-title: Learning convolutional neural networks for graphs
– ident: ref11
  doi: 10.1109/ICCV.2017.142
– start-page: 1993
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref25
  article-title: Diffusion-convolutional neural networks
– ident: ref33
  doi: 10.1109/CVPR.2016.13
– ident: ref2
  doi: 10.1109/CVPR.2017.331
– start-page: 2171
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref12
  article-title: Pixels to graphs by associative embedding
– ident: ref15
  doi: 10.1007/978-3-030-01219-9_20
– ident: ref16
  doi: 10.1007/978-3-030-01246-5_21
– start-page: 5998
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref36
  article-title: Attention is all you need
– ident: ref28
  doi: 10.3115/v1/D14-1179
– ident: ref50
  doi: 10.1109/CVPR.2017.634
– ident: ref5
  doi: 10.1109/CVPR.2019.00632
– volume-title: arXiv:1704.01212
  year: 2017
  ident: ref26
  article-title: Neural message passing for quantum chemistry
– volume: 33
  volume-title: Statistical Theory of Extreme Values and Some Practical Applications: A Series of Lectures
  year: 1948
  ident: ref43
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref27
  article-title: Graph attention networks
– ident: ref48
  doi: 10.1109/CVPR.2019.00686
– ident: ref51
  doi: 10.1109/CVPR.2017.106
– ident: ref42
  doi: 10.3115/v1/D14-1162
– ident: ref39
  doi: 10.1109/CVPR.2018.00756
– ident: ref34
  doi: 10.1109/CVPR.2014.119
– start-page: 560
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref14
  article-title: LinkNet: Relational embedding for scene graph
– ident: ref3
  doi: 10.1007/978-3-319-46448-0_51
– ident: ref4
  doi: 10.1109/CVPR.2017.352
– ident: ref35
  doi: 10.1109/CVPR.2008.4587799
– ident: ref6
  doi: 10.1109/CVPR.2018.00611
– ident: ref18
  doi: 10.1109/CVPR.2019.00678
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref45
  article-title: The concrete distribution: A continuous relaxation of discrete random variables
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref49
  article-title: Very deep convolutional networks for large-scale image recognition
SSID ssj0000605649
Score 2.4194005
Snippet Visual commonsense knowledge has received growing attention in the reasoning of long-tailed visual relationships biased in terms of object and relation labels....
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 117
SubjectTerms Algorithms
Benchmarks
Cognition
Correlation
Feature extraction
Graph learning
Knowledge
Knowledge engineering
Knowledge representation
Labels
Neural Networks, Computer
Object recognition
Proposals
Reasoning
Recognition, Psychology
scene graph generation
Semantics
visual reasoning
visual relationship detection (VRD)
Visualization
Title Configurable Graph Reasoning for Visual Relationship Detection
URI https://ieeexplore.ieee.org/document/9244130
https://www.ncbi.nlm.nih.gov/pubmed/33119512
https://www.proquest.com/docview/2616718460
https://www.proquest.com/docview/2456409452
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJy7l1cdSilKJW8kS20k2viChAkUI9sCj2ltkO7OwapVFbHLpr2fGeUggijglkh0n8Yw934znAbBXRAVmReTCaYo2pA1PhSQFbRjpIp46kk-JDxS-HKdnt_H5JJkswX4fC4OI3vkMh3zrz_KLuavZVHZAugLvucuwTIpbE6vV21MiwuWpR7tSpDKUajTpYmQifXAzHl9ckzYoSUnlg7oRV6xRivOdCflMJPkaK_-Hm17snK7BZffBjbfJn2Fd2aH79yKX43v_aB0-tPgzOGoYZgOWsNyEta62Q9Au9S045FDA2V39yKFVwS9Oax1coVl4621ASDf4PVvUNFLvTXc_ewiOsfKuXeVHuD09ufl5Fra1FkKnElGFJjExAW2lXZTZ2HImOLoaZQhiGJLqAmWSZZpanFZCRmpUCINOGyOMlDhSn2ClnJf4BYKUY2NTVI72gthm0ywWGl2spLZKT60agOimO3dtInKuh_E39wpJpHNPrZyplbfUGsCP_pmHJg3Hm723eKr7nu0sD2Cno2rertRFThpkSvI5Tqn5e99Ma4wPTkyJ85r6cM4d0oMTOYDPDTf0Y3dMtP36O7_CquSACW-02YGV6rHGbwRjKrvr-fcJvQjosQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB615dBeWqCvhQJB4gbZxnaSjS9ICCgL7O6hbKu9RbYzCytQtuomF349M85DAlHEKZHsOIln7Hl4vhmAF0VUYFZELlymaEPa8FRIUtCGkS7ipSP5lHig8HSWjq_iT4tksQWveiwMIvrgMxzyrT_LL9auZlfZOdkKvOduwz2S-4ls0Fq9RyUizTz1-q4UqQylGi06lEykz-ez2eQL2YOSzFQ-qhtxzRqlOOOZkL8JJV9l5W6F0wueiwOYdp_cxJt8H9aVHbqff2Rz_N9_ug_7rQYavGlY5gFsYfkQDrrqDkG72A_hNYMBV1_rWwZXBR84sXVwiWbj_bcB6brB9WpT00h9PN231U3wDisf3FUewdXF-_nbcdhWWwidSkQVmsTEpGor7aLMxpZzwdHVKENKhiG5LlAmWaapxWklZKRGhTDotDHCSIkjdQw75brEUwhSRsemqBztBrHNllksNLpYSW2VXlo1ANFNd-7aVORcEeNH7k2SSOeeWjlTK2-pNYCX_TM3TSKOf_Y-5Knue7azPICzjqp5u1Y3OdmQKUnoOKXm530zrTI-OjElrmvqw1l3yBJO5ABOGm7ox-6Y6NHf3_kMdsfz6SSffJx9fgx7kuET3oVzBjvVbY1PSKmp7FPPy78AECjr-w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Configurable+Graph+Reasoning+for+Visual+Relationship+Detection&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zhu%2C+Yi&rft.au=Liang%2C+Xiwen&rft.au=Lin%2C+Bingqian&rft.au=Ye%2C+Qixiang&rft.date=2022-01-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=33&rft.issue=1&rft.spage=117&rft.epage=129&rft_id=info:doi/10.1109%2FTNNLS.2020.3027575&rft_id=info%3Apmid%2F33119512&rft.externalDocID=9244130
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon