Bacillus velezensis, a potential and efficient biocontrol agent in control of pepper gray mold caused by Botrytis cinerea

[Display omitted] •B. velezensis could be potential BCAs used to control pepper gray mold disease.•It could suppress the mycelium growth and spore formation of B. cinerea.•We also demonstrated B. velezensis could trigger ISR to B. cinerea on pepper.•The ISR triggered by B. velezensis depended on SA-...

Full description

Saved in:
Bibliographic Details
Published inBiological control Vol. 126; pp. 147 - 157
Main Authors Jiang, Chun-Hao, Liao, Meng-Jie, Wang, Hong-Kai, Zheng, Ming-Zi, Xu, Jian-Jun, Guo, Jian-Hua
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.11.2018
Subjects
Online AccessGet full text
ISSN1049-9644
1090-2112
DOI10.1016/j.biocontrol.2018.07.017

Cover

Loading…
Abstract [Display omitted] •B. velezensis could be potential BCAs used to control pepper gray mold disease.•It could suppress the mycelium growth and spore formation of B. cinerea.•We also demonstrated B. velezensis could trigger ISR to B. cinerea on pepper.•The ISR triggered by B. velezensis depended on SA-mediated signaling pathway. Plant gray mold disease caused by necrotrophic pathogen Botrytis cinerea, has been a serious threat to many important crops. It is urgent and necessary to seek an effective and environmentally friendly control strategy to control grey mold disease during the crop production. Moreover, it is also urgently needed to clear understand how the strategy works. To screening an efficient biocontrol agent in control of gray mold disease caused by B. cinerea, one hundred strains, which have the potential in controlling plant diseases, were selected from our laboratory’s strain library, and employed to our research. The results in the study indicated that Bacillus velezensis could act as a potential and efficient biocontrol agent (BCA), and two B. velezensis strains 5YN8 and DSN012 were screened out with high antagonistic and hydrolase activity, which could significantly control pepper gray mold disease and promote the pepper growth. Further deeply study on biocontrol mechanism indicated that B. velezensis could suppress the growth and spore formation of B. cinerea by secreting some secondary metabolites or releasing numbers of volatile organic compounds (VOCs). In the other hand, we also found that B. velezensis could trigger plant basal immunity. The BCA could increase the expression of SA signal markers and plant defense related genes. It was able to induce hydrogen peroxide accumulation and plant related enzyme activities in leaves of pepper as well. This study provides another high-efficiency, and potential strategies for the biological control of gray mold disease. It is the first report of B. velezensis strain which can control gray mold disease, In addition, it is also the first to comprehensively illustrate how the strains can efficiently protect pepper from B. cinerea attacking.
AbstractList Plant gray mold disease caused by necrotrophic pathogen Botrytis cinerea, has been a serious threat to many important crops. It is urgent and necessary to seek an effective and environmentally friendly control strategy to control grey mold disease during the crop production. Moreover, it is also urgently needed to clear understand how the strategy works. To screening an efficient biocontrol agent in control of gray mold disease caused by B. cinerea, one hundred strains, which have the potential in controlling plant diseases, were selected from our laboratory’s strain library, and employed to our research. The results in the study indicated that Bacillus velezensis could act as a potential and efficient biocontrol agent (BCA), and two B. velezensis strains 5YN8 and DSN012 were screened out with high antagonistic and hydrolase activity, which could significantly control pepper gray mold disease and promote the pepper growth. Further deeply study on biocontrol mechanism indicated that B. velezensis could suppress the growth and spore formation of B. cinerea by secreting some secondary metabolites or releasing numbers of volatile organic compounds (VOCs). In the other hand, we also found that B. velezensis could trigger plant basal immunity. The BCA could increase the expression of SA signal markers and plant defense related genes. It was able to induce hydrogen peroxide accumulation and plant related enzyme activities in leaves of pepper as well. This study provides another high-efficiency, and potential strategies for the biological control of gray mold disease. It is the first report of B. velezensis strain which can control gray mold disease, In addition, it is also the first to comprehensively illustrate how the strains can efficiently protect pepper from B. cinerea attacking.
[Display omitted] •B. velezensis could be potential BCAs used to control pepper gray mold disease.•It could suppress the mycelium growth and spore formation of B. cinerea.•We also demonstrated B. velezensis could trigger ISR to B. cinerea on pepper.•The ISR triggered by B. velezensis depended on SA-mediated signaling pathway. Plant gray mold disease caused by necrotrophic pathogen Botrytis cinerea, has been a serious threat to many important crops. It is urgent and necessary to seek an effective and environmentally friendly control strategy to control grey mold disease during the crop production. Moreover, it is also urgently needed to clear understand how the strategy works. To screening an efficient biocontrol agent in control of gray mold disease caused by B. cinerea, one hundred strains, which have the potential in controlling plant diseases, were selected from our laboratory’s strain library, and employed to our research. The results in the study indicated that Bacillus velezensis could act as a potential and efficient biocontrol agent (BCA), and two B. velezensis strains 5YN8 and DSN012 were screened out with high antagonistic and hydrolase activity, which could significantly control pepper gray mold disease and promote the pepper growth. Further deeply study on biocontrol mechanism indicated that B. velezensis could suppress the growth and spore formation of B. cinerea by secreting some secondary metabolites or releasing numbers of volatile organic compounds (VOCs). In the other hand, we also found that B. velezensis could trigger plant basal immunity. The BCA could increase the expression of SA signal markers and plant defense related genes. It was able to induce hydrogen peroxide accumulation and plant related enzyme activities in leaves of pepper as well. This study provides another high-efficiency, and potential strategies for the biological control of gray mold disease. It is the first report of B. velezensis strain which can control gray mold disease, In addition, it is also the first to comprehensively illustrate how the strains can efficiently protect pepper from B. cinerea attacking.
Author Xu, Jian-Jun
Liao, Meng-Jie
Wang, Hong-Kai
Guo, Jian-Hua
Zheng, Ming-Zi
Jiang, Chun-Hao
Author_xml – sequence: 1
  givenname: Chun-Hao
  surname: Jiang
  fullname: Jiang, Chun-Hao
  organization: Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
– sequence: 2
  givenname: Meng-Jie
  surname: Liao
  fullname: Liao, Meng-Jie
  organization: Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
– sequence: 3
  givenname: Hong-Kai
  surname: Wang
  fullname: Wang, Hong-Kai
  organization: Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
– sequence: 4
  givenname: Ming-Zi
  surname: Zheng
  fullname: Zheng, Ming-Zi
  organization: Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
– sequence: 5
  givenname: Jian-Jun
  surname: Xu
  fullname: Xu, Jian-Jun
  organization: Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, China
– sequence: 6
  givenname: Jian-Hua
  surname: Guo
  fullname: Guo, Jian-Hua
  email: jhguo@njau.edu.cn
  organization: Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
BookMark eNqNkEuLFTEQhYOM4Mzof8jShd2mOv3cCN7BFwy40XVI0pWhLrlJm-QOtL_ebq4y4EZXVRzOOUV9N-wqxICMcRA1COjfHmtD0cZQUvR1I2CsxVALGJ6xaxCTqBqA5mrf26ma-rZ9wW5yPgoB0A7imq0Hbcn7c-aP6PEnhkz5Ddd8iQVDIe25DjNH58jSJvCnY1w_7AIF_keIji-4LJj4Q9IrP0U_c6vPGWduVn6IJa2FMrcUMKF-yZ477TO--j1v2fePH77dfa7uv376cvf-vrKyg1Jp6KWRcnZi6IxpGontJK0dECcDjTSdA9EYMzvZmmkcOxCuc9O8vdsB6FHLW_b60ruk-OOMuagTZYve64DxnFUDEsYeehCb9d3FalPMOaFTlooutP-nySsQameujuoJg9qZKzGojflWMP5VsCQ66bT-T_RwieLG4pEwqbwTtzhTQlvUHOnfJb8AAeGneg
CitedBy_id crossref_primary_10_3390_microorganisms9091924
crossref_primary_10_3389_fmicb_2020_01114
crossref_primary_10_1016_j_biocontrol_2021_104766
crossref_primary_10_1016_j_biocontrol_2024_105616
crossref_primary_10_1016_j_micres_2022_127199
crossref_primary_10_1016_j_pestbp_2024_105995
crossref_primary_10_3389_fmicb_2019_00652
crossref_primary_10_1186_s12934_024_02456_4
crossref_primary_10_1002_jobm_202300038
crossref_primary_10_1007_s00253_019_10176_8
crossref_primary_10_3389_fpls_2022_1091030
crossref_primary_10_1038_s41598_021_84585_z
crossref_primary_10_3389_fmicb_2020_01196
crossref_primary_10_3390_plants12030668
crossref_primary_10_1094_PHP_01_21_0010_RS
crossref_primary_10_1016_j_cub_2024_09_019
crossref_primary_10_1080_07060661_2021_1880485
crossref_primary_10_3389_fpls_2020_572112
crossref_primary_10_3390_microorganisms8071037
crossref_primary_10_3390_su16177496
crossref_primary_10_1007_s10658_023_02732_w
crossref_primary_10_1016_j_micres_2021_126793
crossref_primary_10_12688_f1000research_160546_1
crossref_primary_10_1093_gbe_evz208
crossref_primary_10_3390_agronomy14020351
crossref_primary_10_1007_s12161_019_01466_y
crossref_primary_10_1590_1678_992x_2021_0062
crossref_primary_10_3390_biology11121763
crossref_primary_10_3390_biology12060856
crossref_primary_10_1016_j_biocontrol_2022_104901
crossref_primary_10_1021_acs_jafc_4c03323
crossref_primary_10_3390_jof7121045
crossref_primary_10_1016_j_biocontrol_2021_104621
crossref_primary_10_1094_PHP_11_22_0118_RS
crossref_primary_10_1111_1751_7915_14420
crossref_primary_10_3389_fmicb_2023_1116737
crossref_primary_10_1007_s10529_024_03498_9
crossref_primary_10_3389_fmicb_2022_1035748
crossref_primary_10_1016_j_biocontrol_2024_105514
crossref_primary_10_3390_microorganisms8070992
crossref_primary_10_1186_s12866_024_03475_2
crossref_primary_10_3390_biology11101390
crossref_primary_10_3390_microorganisms9071386
crossref_primary_10_1016_j_biocontrol_2024_105510
crossref_primary_10_1094_MPMI_02_24_0020_R
crossref_primary_10_1016_j_pestbp_2020_01_004
crossref_primary_10_1094_PDIS_01_22_0230_RE
crossref_primary_10_3389_fmicb_2022_951130
crossref_primary_10_1007_s44154_021_00025_y
crossref_primary_10_1016_j_postharvbio_2020_111389
crossref_primary_10_1007_s42161_024_01685_1
crossref_primary_10_31083_j_fbl2903105
crossref_primary_10_3389_fpls_2022_873621
crossref_primary_10_7717_peerj_14633
crossref_primary_10_3390_agronomy10091312
crossref_primary_10_3390_microorganisms12112189
crossref_primary_10_1007_s00203_021_02709_5
crossref_primary_10_1016_j_sjbs_2020_06_015
crossref_primary_10_3390_microorganisms13010068
crossref_primary_10_1155_2021_5171086
crossref_primary_10_1007_s00284_024_03962_9
crossref_primary_10_1007_s00284_023_03447_1
crossref_primary_10_1007_s00248_022_02044_2
crossref_primary_10_3389_fpls_2020_599904
crossref_primary_10_3390_cells11193051
crossref_primary_10_3389_fmars_2022_780055
crossref_primary_10_3390_horticulturae9030376
crossref_primary_10_3390_molecules25153360
crossref_primary_10_1007_s11104_024_07166_9
crossref_primary_10_17221_77_2023_PPS
crossref_primary_10_1007_s00253_019_09710_5
crossref_primary_10_1016_j_envres_2022_114924
crossref_primary_10_3390_microorganisms10112094
crossref_primary_10_1007_s12223_022_00996_z
crossref_primary_10_1016_j_fm_2024_104613
crossref_primary_10_3390_plants12030637
crossref_primary_10_3390_plants10061113
crossref_primary_10_1016_j_biocontrol_2021_104568
crossref_primary_10_3390_molecules27196570
crossref_primary_10_3390_agronomy13030840
crossref_primary_10_7717_peerj_16761
crossref_primary_10_1016_j_biocontrol_2023_105379
crossref_primary_10_1016_j_mcp_2021_101727
crossref_primary_10_1088_1755_1315_709_1_012079
crossref_primary_10_1186_s13568_023_01596_x
crossref_primary_10_3390_bacteria1040021
crossref_primary_10_1186_s41938_023_00748_2
crossref_primary_10_3390_microorganisms10091759
crossref_primary_10_1016_j_envres_2023_117907
crossref_primary_10_1007_s00344_019_09966_1
crossref_primary_10_1016_j_biocontrol_2022_105091
crossref_primary_10_3389_fpls_2023_1041413
crossref_primary_10_3390_antiox8120580
crossref_primary_10_3390_ijms20246271
crossref_primary_10_1016_j_rhisph_2025_101052
crossref_primary_10_3390_plants11192486
crossref_primary_10_1016_j_pestbp_2024_105956
crossref_primary_10_3389_fmicb_2019_01668
crossref_primary_10_3390_horticulturae9080922
crossref_primary_10_1016_j_cropro_2021_105635
crossref_primary_10_1016_j_pmpp_2024_102525
crossref_primary_10_3390_agronomy10111822
crossref_primary_10_1016_j_rhisph_2025_101056
crossref_primary_10_3389_fmicb_2022_1019800
crossref_primary_10_1016_j_biocontrol_2020_104458
crossref_primary_10_1016_j_biocontrol_2021_104834
crossref_primary_10_3390_genes13111984
crossref_primary_10_3390_ijms232113639
crossref_primary_10_3923_pjbs_2024_80_89
crossref_primary_10_1007_s41748_024_00552_4
crossref_primary_10_1038_s41429_020_0287_4
crossref_primary_10_3389_fmicb_2021_808337
crossref_primary_10_3389_fpls_2021_700446
crossref_primary_10_1021_acs_jafc_0c06106
crossref_primary_10_1093_jambio_lxae094
crossref_primary_10_3390_microorganisms8101463
crossref_primary_10_1094_PHYTO_03_21_0128_R
crossref_primary_10_3389_fmicb_2022_987844
crossref_primary_10_1016_j_biocontrol_2021_104785
crossref_primary_10_3389_fmicb_2024_1462992
crossref_primary_10_3390_microorganisms10010063
crossref_primary_10_1016_j_biocontrol_2023_105316
crossref_primary_10_3389_fmicb_2024_1324833
crossref_primary_10_3390_fishes9010007
crossref_primary_10_3390_foods11020140
crossref_primary_10_1016_j_biocontrol_2020_104220
crossref_primary_10_31545_intagr_200772
crossref_primary_10_1016_j_scienta_2024_113905
crossref_primary_10_1016_j_lwt_2023_115541
crossref_primary_10_1002_ps_6145
crossref_primary_10_1007_s40626_022_00249_x
crossref_primary_10_1007_s13205_021_03000_6
crossref_primary_10_1016_j_jia_2023_01_007
crossref_primary_10_3389_fmicb_2023_1064838
crossref_primary_10_3389_fpls_2023_1250020
crossref_primary_10_3389_fmicb_2022_980022
crossref_primary_10_5423_PPJ_NT_03_2021_0053
crossref_primary_10_1016_j_foodcont_2023_109977
crossref_primary_10_1016_j_biocontrol_2024_105447
crossref_primary_10_1007_s41348_024_01040_7
crossref_primary_10_3390_plants11233205
crossref_primary_10_1016_j_biocontrol_2022_105120
crossref_primary_10_1016_j_pmpp_2023_102048
crossref_primary_10_3390_pathogens11020273
crossref_primary_10_3390_antibiotics12030581
Cites_doi 10.1007/s12154-014-0113-1
10.30843/nzpp.2013.66.5556
10.1111/j.1364-3703.2011.00783.x
10.3389/fmicb.2016.00664
10.1093/jxb/erv445
10.1016/j.biocontrol.2016.03.010
10.5423/PPJ.OA.04.2017.0073
10.1094/MPMI.2003.16.12.1145
10.1111/j.1472-765X.2008.02373.x
10.1016/j.postharvbio.2007.11.006
10.1016/j.pbi.2008.05.005
10.1094/MPMI-09-10-0213
10.1080/09583157.2012.706595
10.4014/jmb.0805.333
10.1016/j.pestbp.2017.07.007
10.1111/j.1472-765X.2011.03165.x
10.1002/j.1460-2075.1989.tb03384.x
10.1016/j.postharvbio.2005.10.007
10.1016/j.micres.2016.12.007
10.1016/j.biocontrol.2010.11.010
10.1016/j.postharvbio.2004.05.022
10.1016/j.molp.2017.07.010
10.1146/annurev.phyto.36.1.453
10.1023/B:EJPP.0000003747.41051.9f
10.1094/PD-75-1098
10.1016/S0953-7562(89)80120-0
10.1017/S0953756297006023
10.1007/s10658-010-9628-7
10.1038/s41598-017-09409-5
10.3390/foods7020011
10.1007/s11274-008-9849-5
10.1111/j.1364-3703.2012.00836.x
10.1016/j.micres.2014.08.009
10.1016/S0261-2194(00)00056-9
10.1094/MPMI-18-0555
10.1055/s-2002-35441
10.1111/j.1364-3703.2007.00417.x
10.1016/j.tifs.2015.11.003
10.1016/j.postharvbio.2007.05.005
10.1155/2017/9486794
10.1139/W09-117
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright_xml – notice: 2018 Elsevier Inc.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.biocontrol.2018.07.017
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
EISSN 1090-2112
EndPage 157
ExternalDocumentID 10_1016_j_biocontrol_2018_07_017
S1049964418303062
GroupedDBID --K
--M
.~1
0R~
0SF
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
CBWCG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HVGLF
HZ~
IHE
J1W
KFR
KOM
LG5
LW8
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SDP
SES
SEW
SPCBC
SSA
SSZ
T5K
UHS
VH1
WUQ
XPP
Y6R
ZMT
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
GROUPED_DOAJ
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c351t-a163b33df075bb223e493cc7ee9b123b5f102bbdf34b988510f5f9d049511a8a3
IEDL.DBID .~1
ISSN 1049-9644
IngestDate Mon Jul 21 10:24:38 EDT 2025
Thu Apr 24 23:04:27 EDT 2025
Tue Jul 01 01:09:47 EDT 2025
Fri Feb 23 02:45:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Pepper seedlings
Botrytis cinerea
Biological control
Induced systemic resistance
Bacillus velezensis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-a163b33df075bb223e493cc7ee9b123b5f102bbdf34b988510f5f9d049511a8a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2131861610
PQPubID 24069
PageCount 11
ParticipantIDs proquest_miscellaneous_2131861610
crossref_citationtrail_10_1016_j_biocontrol_2018_07_017
crossref_primary_10_1016_j_biocontrol_2018_07_017
elsevier_sciencedirect_doi_10_1016_j_biocontrol_2018_07_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2018
2018-11-00
20181101
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: November 2018
PublicationDecade 2010
PublicationTitle Biological control
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Dean, van Kan, Pretorius, Hammond-Kosack, Di Pietro, Dukare, Spanu, Rudd, Dickman, Kahmann, Ellis, Foster (b0035) 2012; 13
Sun, Wang, Shi, Shangguan, Wang, Ma (b0180) 2017; 143
Pandey, Tripathi, Tripathi, Dixit (b0135) 1982; 89
Nam, Park, Kim, Yoo (b0120) 2009; 19
Tjamos, Flemetakis, Paplomatas, Katinakis (b0195) 2005; 18
Zhan, Xu, Yang, Yang, Liu, Wang, Guo (b0225) 2011; 54
Gao, Qin, Li, Zhou (b0045) 2018; 13
Lim, Yoon, Choi, Choi, Jang, Shin (b0095) 2017; 33
Kanjanamaneesathian, Wiwattanapatapee, Rotniam, Pengnoo, Wongpetkhiew, Tanmala (b0075) 2013; 66
Liu, Fang, Liu, Yu, Lou, Zheng (b0100) 2010; 51
Williamson, Tudzynski, Tudzynski, van Kan (b0220) 2007; 8
Taqarort, Echairi, Chaussod, Nouaim, Boubaker, Benaoumar (b0185) 2008; 24
Kapat, Zimand, Elad (b0080) 1998; 102
Ramamoorthy, Viswanathan, Raguchander, Prakasam, Samiyappan (b0150) 2001; 20
Van Wees, Van der, Pieterse (b0205) 2008; 11
Spadaro, Ciavorella, Dianpeng, Garibaldi, Gullino (b0175) 2010; 56
Cai, Liu, Wang, Xue (b0025) 2017; 196
Lian, Zhang, Gan, Ma, Zong, Wang (b0090) 2017; 1
Poppe, Vanhoutte, Höfte (b0145) 2003; 109
Tayal, Raj, Sharma, Kumar, Dayaman, Verma (b0190) 2017; 7
Dukare, Paul, Nambi, Gupta, Singh, Sharma (b0040) 2018; 2
Meziane, Gavriel, Ismailov, Chet, Chernin, Hofte (b0110) 2006; 39
Voisard, Keel, Haas, Defago (b0210) 1989; 8
Saravanakumar, Ciavorella, Spadaro, Garibaldi, Gullino (b0160) 2008; 49
Smirnova, Marquis, Poirier, Aubert, Zumsteg, Ménard (b0165) 2017; 10
Bencheqroun, Bajji, Massart, Labhilili, Jaafari, Jijakli (b0015) 2007; 46
Wang, Dang, Liu, Wang, Eulgem, Lai (b0215) 2013; 14
Bargabus, Zidack, Sherwood, Jacobsen (b0010) 2013; 16
Jarvis (b0055) 1979; 72
Hahn (b0050) 2014; 7
Meng, Jiang, Hao (b0105) 2016; 98
Pieterse, Van Wees, Ton, Van Pelt, Van Loon (b0140) 2002; 4
Mills, Platt, Hurta (b0115) 2004; 34
Banani, Olivieri, Santoro, Garibaldi, Gullino, Spadaro (b0005) 2018; 7
Spadaro, Droby (b0170) 2016; 47
Casals, Teixidó, Viñas, Silvera, Lamarca, Usall (b0030) 2010; 128
Lazar, Wills, Ho, Harris, Spohr (b0085) 2008; 46
Robinson, McKee, Thompson, Harper, Hamilton (b0155) 1989; 93
Jiang, Wu, Yu, Xie, Ke, Li, Yu, Guo (b0070) 2015; 170
Niu, Wang, Guo, Jiang, Zhang, Wang, Guo (b0130) 2012; 22
Van Loon, Bakker, Pieterse (b0200) 1998; 36
Jiang, Fan, Xie, Guo (b0060) 2016; 7
Zheng, Xue, Xu, Xu, Lu, Gu, Guo (b0230) 2011; 56
Bus, Bongers, Risse (b0020) 1991; 75
Jiang, Huang, Xie, Gu, Li, Wang, Yu, Fan, Wang, Wang, Guo, Guo (b0065) 2016; 67
Niu, Liu, Jiang, Wang, Wang, Jin (b0125) 2011; 24
Pieterse (10.1016/j.biocontrol.2018.07.017_b0140) 2002; 4
Zheng (10.1016/j.biocontrol.2018.07.017_b0230) 2011; 56
Smirnova (10.1016/j.biocontrol.2018.07.017_b0165) 2017; 10
Bencheqroun (10.1016/j.biocontrol.2018.07.017_b0015) 2007; 46
Ramamoorthy (10.1016/j.biocontrol.2018.07.017_b0150) 2001; 20
Casals (10.1016/j.biocontrol.2018.07.017_b0030) 2010; 128
Dean (10.1016/j.biocontrol.2018.07.017_b0035) 2012; 13
Lim (10.1016/j.biocontrol.2018.07.017_b0095) 2017; 33
Nam (10.1016/j.biocontrol.2018.07.017_b0120) 2009; 19
Poppe (10.1016/j.biocontrol.2018.07.017_b0145) 2003; 109
Sun (10.1016/j.biocontrol.2018.07.017_b0180) 2017; 143
Tayal (10.1016/j.biocontrol.2018.07.017_b0190) 2017; 7
Tjamos (10.1016/j.biocontrol.2018.07.017_b0195) 2005; 18
Wang (10.1016/j.biocontrol.2018.07.017_b0215) 2013; 14
Zhan (10.1016/j.biocontrol.2018.07.017_b0225) 2011; 54
Lian (10.1016/j.biocontrol.2018.07.017_b0090) 2017; 1
Liu (10.1016/j.biocontrol.2018.07.017_b0100) 2010; 51
Jiang (10.1016/j.biocontrol.2018.07.017_b0060) 2016; 7
Meziane (10.1016/j.biocontrol.2018.07.017_b0110) 2006; 39
Dukare (10.1016/j.biocontrol.2018.07.017_b0040) 2018; 2
Van Wees (10.1016/j.biocontrol.2018.07.017_b0205) 2008; 11
Gao (10.1016/j.biocontrol.2018.07.017_b0045) 2018; 13
Jarvis (10.1016/j.biocontrol.2018.07.017_b0055) 1979; 72
Taqarort (10.1016/j.biocontrol.2018.07.017_b0185) 2008; 24
Bargabus (10.1016/j.biocontrol.2018.07.017_b0010) 2013; 16
Niu (10.1016/j.biocontrol.2018.07.017_b0125) 2011; 24
Jiang (10.1016/j.biocontrol.2018.07.017_b0065) 2016; 67
Jiang (10.1016/j.biocontrol.2018.07.017_b0070) 2015; 170
Hahn (10.1016/j.biocontrol.2018.07.017_b0050) 2014; 7
Meng (10.1016/j.biocontrol.2018.07.017_b0105) 2016; 98
Williamson (10.1016/j.biocontrol.2018.07.017_b0220) 2007; 8
Kapat (10.1016/j.biocontrol.2018.07.017_b0080) 1998; 102
Kanjanamaneesathian (10.1016/j.biocontrol.2018.07.017_b0075) 2013; 66
Spadaro (10.1016/j.biocontrol.2018.07.017_b0175) 2010; 56
Niu (10.1016/j.biocontrol.2018.07.017_b0130) 2012; 22
Bus (10.1016/j.biocontrol.2018.07.017_b0020) 1991; 75
Spadaro (10.1016/j.biocontrol.2018.07.017_b0170) 2016; 47
Robinson (10.1016/j.biocontrol.2018.07.017_b0155) 1989; 93
Lazar (10.1016/j.biocontrol.2018.07.017_b0085) 2008; 46
Mills (10.1016/j.biocontrol.2018.07.017_b0115) 2004; 34
Van Loon (10.1016/j.biocontrol.2018.07.017_b0200) 1998; 36
Pandey (10.1016/j.biocontrol.2018.07.017_b0135) 1982; 89
Cai (10.1016/j.biocontrol.2018.07.017_b0025) 2017; 196
Saravanakumar (10.1016/j.biocontrol.2018.07.017_b0160) 2008; 49
Banani (10.1016/j.biocontrol.2018.07.017_b0005) 2018; 7
Voisard (10.1016/j.biocontrol.2018.07.017_b0210) 1989; 8
References_xml – volume: 75
  start-page: 1098
  year: 1991
  end-page: 1100
  ident: b0020
  article-title: Occurrence of
  publication-title: Plant Dis.
– volume: 51
  start-page: 30
  year: 2010
  end-page: 35
  ident: b0100
  article-title: Biological control of postharvest sour rot of citrus by two antagonistic yeasts
  publication-title: Lett. Appl. Mcrobiol.
– volume: 13
  year: 2018
  ident: b0045
  article-title: Inhibitory effect and possible mechanism of a
  publication-title: PLoS One
– volume: 34
  start-page: 341
  year: 2004
  end-page: 350
  ident: b0115
  article-title: Effect of salt compounds on mycelial growth, sporulation and spore germination of various potatoes pathogens
  publication-title: Postharvest Biol. Tec.
– volume: 89
  start-page: 344
  year: 1982
  end-page: 349
  ident: b0135
  article-title: Fungitoxic and phytotoxic properties of the essential oil of
  publication-title: J. Plant Dis. Protect.
– volume: 7
  start-page: 11
  year: 2018
  ident: b0005
  article-title: Thyme and savory essential oil efficacy and induction of resistance against
  publication-title: Foods
– volume: 20
  start-page: 1
  year: 2001
  end-page: 11
  ident: b0150
  article-title: Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases
  publication-title: Crop Protect.
– volume: 128
  start-page: 51
  year: 2010
  end-page: 63
  ident: b0030
  article-title: Combination of hot water,
  publication-title: Eur. J. Plant Pathol.
– volume: 18
  start-page: 555
  year: 2005
  end-page: 561
  ident: b0195
  article-title: Induction of resistance to
  publication-title: Mol. Plant Microbe In.
– volume: 196
  start-page: 89
  year: 2017
  end-page: 94
  ident: b0025
  article-title: Genomic and metabolic traits endow
  publication-title: Microbiol. Res.
– volume: 13
  start-page: 414
  year: 2012
  end-page: 430
  ident: b0035
  article-title: The Top 10 fungal pathogens in molecular plant pathology
  publication-title: Mol. Plant Pathol
– volume: 33
  start-page: 488
  year: 2017
  end-page: 498
  ident: b0095
  article-title: Diffusible and volatile antifungal compounds produced by an antagonistic
  publication-title: Plant Pathol. J.
– volume: 102
  start-page: 1017
  year: 1998
  end-page: 1024
  ident: b0080
  article-title: Biosynthesis of pathogenicity hydrolytic enzymes by
  publication-title: Mycol. Res.
– volume: 56
  start-page: 128
  year: 2010
  end-page: 137
  ident: b0175
  article-title: Effect of culture media and pH on the biomass production and biocontrol efficacy of a
  publication-title: Can. J. Microbiol.
– volume: 11
  start-page: 443
  year: 2008
  end-page: 448
  ident: b0205
  article-title: Plant immune responses triggered by beneficial microbes
  publication-title: Curr. Opin. Plant Biol.
– volume: 143
  start-page: 191
  year: 2017
  end-page: 198
  ident: b0180
  article-title: Control efficiency and expressions of resistance genes in tomato plants treated with ε-poly-l-lysine against
  publication-title: Pestic. Biochem. Phys.
– volume: 46
  start-page: 688
  year: 2008
  end-page: 692
  ident: b0085
  article-title: Antifungal effect of gaseous nitric oxide on mycelium growth, sporulation and spore germination of the postharvest horticulture pathogens,
  publication-title: Lett. Appl. Microbiol.
– volume: 98
  start-page: 18
  year: 2016
  end-page: 26
  ident: b0105
  article-title: Effects of
  publication-title: Biol. Control
– volume: 4
  start-page: 535
  year: 2002
  end-page: 544
  ident: b0140
  article-title: Signalling in rhizobacteria-induced systemic resistance in
  publication-title: Plant Biology
– volume: 7
  start-page: 133
  year: 2014
  end-page: 141
  ident: b0050
  article-title: The rising threat of fungicide resistance in plant pathogenic fungi:
  publication-title: J. Biol. Chem.
– volume: 39
  start-page: 125
  year: 2006
  end-page: 133
  ident: b0110
  article-title: Control of green and blue mould on orange fruit by
  publication-title: Postharvest Biol. Tec
– volume: 24
  start-page: 3031
  year: 2008
  end-page: 3038
  ident: b0185
  article-title: Screening and identification of epiphytic yeasts with potential for biological control of green mold of citrus fruits
  publication-title: World J. Microb. Biot.
– volume: 14
  start-page: 131
  year: 2013
  end-page: 144
  ident: b0215
  article-title: , encoding a group I WRKY transcription factor of
  publication-title: Mol. Plant Pathol.
– volume: 19
  start-page: 520
  year: 2009
  end-page: 524
  ident: b0120
  article-title: Biological control of strawberry
  publication-title: J. Microbiol. Biotechn.
– volume: 24
  start-page: 533
  year: 2011
  end-page: 542
  ident: b0125
  article-title: The plant growth-promoting rhizobacterium
  publication-title: Mol. Plant Microbe In.
– volume: 46
  start-page: 128
  year: 2007
  end-page: 135
  ident: b0015
  article-title: In vitro and in situ study of postharvest apple blue mold biocontrol by
  publication-title: Postharvest Biol. Technol.
– volume: 170
  start-page: 95
  year: 2015
  end-page: 104
  ident: b0070
  article-title: Study on screening and antagonistic mechanisms of
  publication-title: Microbio.l Res.
– volume: 72
  start-page: 525
  year: 1979
  ident: b0055
  article-title: and
  publication-title: Trans. British. Mycol. Soc.
– volume: 22
  start-page: 991
  year: 2012
  end-page: 1004
  ident: b0130
  article-title: The plant growth-promoting rhizobacterium
  publication-title: Biocontrol Sci. Techn.
– volume: 36
  start-page: 453
  year: 1998
  end-page: 483
  ident: b0200
  article-title: Systemic resistance induced by rhizosphere bacteria
  publication-title: Annu. Rev. Phytopathol.
– volume: 8
  start-page: 351
  year: 1989
  end-page: 358
  ident: b0210
  article-title: Cyanide production by
  publication-title: EMBO J.
– volume: 93
  start-page: 214
  year: 1989
  end-page: 222
  ident: b0155
  article-title: Autoinhibition of germination and growth in
  publication-title: Mycol. Res.
– volume: 56
  start-page: 209
  year: 2011
  end-page: 216
  ident: b0230
  article-title: A screening strategy of fungal biocontrol agents towards
  publication-title: Biol. Control
– volume: 10
  start-page: 1159
  year: 2017
  end-page: 1173
  ident: b0165
  article-title: Jasmonic acid oxidase 2 hydroxylates jasmonic acid and represses basal defense and resistance responses against
  publication-title: Mol. Plant
– volume: 49
  start-page: 121
  year: 2008
  end-page: 128
  ident: b0160
  article-title: strain MACH1 out competes
  publication-title: Postharvest Biol. Tec.
– volume: 16
  start-page: 1145
  year: 2013
  end-page: 1153
  ident: b0010
  article-title: Oxidative burst elicited by
  publication-title: Mol. Plant Microbe In.
– volume: 67
  start-page: 157
  year: 2016
  end-page: 174
  ident: b0065
  article-title: Transcription factors WRKY70 and WRKY11 served as key regulators in rhizobacterium
  publication-title: J. Exp. Bot.
– volume: 1
  start-page: 1
  year: 2017
  end-page: 11
  ident: b0090
  article-title: The Biocontrol Efficacy of
  publication-title: BioMed. Res. Int.
– volume: 109
  start-page: 963
  year: 2003
  end-page: 973
  ident: b0145
  article-title: Modes of action of
  publication-title: Eur. J. Plant Pathol.
– volume: 7
  start-page: 1201
  year: 2017
  ident: b0190
  article-title: A
  publication-title: Sci. Rep.
– volume: 7
  start-page: 1
  year: 2016
  end-page: 16
  ident: b0060
  article-title: AR156 extracellular polysaccharides served as a novel micro-associated molecular pattern to induced systemic immunity to
  publication-title: Front. Microbiol.
– volume: 54
  start-page: 10
  year: 2011
  end-page: 17
  ident: b0225
  article-title: Screening of freezedried protective agents for the formulation of biocontrol strains,
  publication-title: Lett. Appl. Microbiol.
– volume: 66
  start-page: 229
  year: 2013
  end-page: 234
  ident: b0075
  article-title: Application of a suspension concentrate formulation of
  publication-title: New Zealand Plant Protect.
– volume: 8
  start-page: 561
  year: 2007
  end-page: 580
  ident: b0220
  article-title: : the cause of grey mould disease
  publication-title: Mol. Plant Pathol.
– volume: 2
  start-page: 1
  year: 2018
  end-page: 16
  ident: b0040
  article-title: Exploitation of microbial antagonists for the control of postharvest diseases of fruits: a review
  publication-title: Crit. Rev. Food Sci.
– volume: 47
  start-page: 39
  year: 2016
  end-page: 49
  ident: b0170
  article-title: Development of biocontrol products for postharvest diseases of fruit: the importance of elucidating the mechanisms of action of yeast antagonists
  publication-title: Trends Food Sci. Tec.
– volume: 7
  start-page: 133
  year: 2014
  ident: 10.1016/j.biocontrol.2018.07.017_b0050
  article-title: The rising threat of fungicide resistance in plant pathogenic fungi: Botrytis as a case study
  publication-title: J. Biol. Chem.
  doi: 10.1007/s12154-014-0113-1
– volume: 66
  start-page: 229
  year: 2013
  ident: 10.1016/j.biocontrol.2018.07.017_b0075
  article-title: Application of a suspension concentrate formulation of Bacillus velezensis to control root rot of hydroponically-grown vegetables
  publication-title: New Zealand Plant Protect.
  doi: 10.30843/nzpp.2013.66.5556
– volume: 13
  start-page: 414
  year: 2012
  ident: 10.1016/j.biocontrol.2018.07.017_b0035
  article-title: The Top 10 fungal pathogens in molecular plant pathology
  publication-title: Mol. Plant Pathol.
  doi: 10.1111/j.1364-3703.2011.00783.x
– volume: 7
  start-page: 1
  year: 2016
  ident: 10.1016/j.biocontrol.2018.07.017_b0060
  article-title: Bacillus cereus AR156 extracellular polysaccharides served as a novel micro-associated molecular pattern to induced systemic immunity to Pst DC3000 in Arabidopsis
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2016.00664
– volume: 67
  start-page: 157
  year: 2016
  ident: 10.1016/j.biocontrol.2018.07.017_b0065
  article-title: Transcription factors WRKY70 and WRKY11 served as key regulators in rhizobacterium Bacillus cereus AR156-induced systemic resistance to Pseudomonas syringae pv. tomato DC3000 in Arabidopsis
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erv445
– volume: 98
  start-page: 18
  year: 2016
  ident: 10.1016/j.biocontrol.2018.07.017_b0105
  article-title: Effects of Bacillus velezensis strain BAC03 in promoting plant growth
  publication-title: Biol. Control
  doi: 10.1016/j.biocontrol.2016.03.010
– volume: 33
  start-page: 488
  year: 2017
  ident: 10.1016/j.biocontrol.2018.07.017_b0095
  article-title: Diffusible and volatile antifungal compounds produced by an antagonistic Bacillus velezensis g341 against various phytopathogenic fungi
  publication-title: Plant Pathol. J.
  doi: 10.5423/PPJ.OA.04.2017.0073
– volume: 16
  start-page: 1145
  year: 2013
  ident: 10.1016/j.biocontrol.2018.07.017_b0010
  article-title: Oxidative burst elicited by Bacillus mycoides isolate Bac J: a biological control agent, occurs independently of hypersensitive cell death in sugar beet
  publication-title: Mol. Plant Microbe In.
  doi: 10.1094/MPMI.2003.16.12.1145
– volume: 46
  start-page: 688
  year: 2008
  ident: 10.1016/j.biocontrol.2018.07.017_b0085
  article-title: Antifungal effect of gaseous nitric oxide on mycelium growth, sporulation and spore germination of the postharvest horticulture pathogens, Aspergillus niger, Monilinia fructicola and Penicillium italicum
  publication-title: Lett. Appl. Microbiol.
  doi: 10.1111/j.1472-765X.2008.02373.x
– volume: 49
  start-page: 121
  year: 2008
  ident: 10.1016/j.biocontrol.2018.07.017_b0160
  article-title: Metschnikowia pulcherrima strain MACH1 out competes Botrytis cinerea, Alternaria alternata and Penicillium expansum in apples through iron depletion
  publication-title: Postharvest Biol. Tec.
  doi: 10.1016/j.postharvbio.2007.11.006
– volume: 11
  start-page: 443
  year: 2008
  ident: 10.1016/j.biocontrol.2018.07.017_b0205
  article-title: Plant immune responses triggered by beneficial microbes
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2008.05.005
– volume: 24
  start-page: 533
  year: 2011
  ident: 10.1016/j.biocontrol.2018.07.017_b0125
  article-title: The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways
  publication-title: Mol. Plant Microbe In.
  doi: 10.1094/MPMI-09-10-0213
– volume: 22
  start-page: 991
  year: 2012
  ident: 10.1016/j.biocontrol.2018.07.017_b0130
  article-title: The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces resistance in tomato with induction and priming of defence response
  publication-title: Biocontrol Sci. Techn.
  doi: 10.1080/09583157.2012.706595
– volume: 19
  start-page: 520
  year: 2009
  ident: 10.1016/j.biocontrol.2018.07.017_b0120
  article-title: Biological control of strawberry Fusarium wilt caused by Fusarium oxysporum f. sp. fragariae using Bacillus velezensis BS87 and RK1 formulation
  publication-title: J. Microbiol. Biotechn.
  doi: 10.4014/jmb.0805.333
– volume: 143
  start-page: 191
  year: 2017
  ident: 10.1016/j.biocontrol.2018.07.017_b0180
  article-title: Control efficiency and expressions of resistance genes in tomato plants treated with ε-poly-l-lysine against Botrytis cinerea
  publication-title: Pestic. Biochem. Phys.
  doi: 10.1016/j.pestbp.2017.07.007
– volume: 54
  start-page: 10
  year: 2011
  ident: 10.1016/j.biocontrol.2018.07.017_b0225
  article-title: Screening of freezedried protective agents for the formulation of biocontrol strains, Bacillus cereus AR156, Burkholderia vietnamiensis B418 and Pantoea agglomerans 2Re40
  publication-title: Lett. Appl. Microbiol.
  doi: 10.1111/j.1472-765X.2011.03165.x
– volume: 8
  start-page: 351
  year: 1989
  ident: 10.1016/j.biocontrol.2018.07.017_b0210
  article-title: Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1989.tb03384.x
– volume: 51
  start-page: 30
  year: 2010
  ident: 10.1016/j.biocontrol.2018.07.017_b0100
  article-title: Biological control of postharvest sour rot of citrus by two antagonistic yeasts
  publication-title: Lett. Appl. Mcrobiol.
– volume: 2
  start-page: 1
  year: 2018
  ident: 10.1016/j.biocontrol.2018.07.017_b0040
  article-title: Exploitation of microbial antagonists for the control of postharvest diseases of fruits: a review
  publication-title: Crit. Rev. Food Sci.
– volume: 39
  start-page: 125
  year: 2006
  ident: 10.1016/j.biocontrol.2018.07.017_b0110
  article-title: Control of green and blue mould on orange fruit by Serratia plymuthica strains IC14 and IC1270 and putative modes of action
  publication-title: Postharvest Biol. Tec.
  doi: 10.1016/j.postharvbio.2005.10.007
– volume: 196
  start-page: 89
  year: 2017
  ident: 10.1016/j.biocontrol.2018.07.017_b0025
  article-title: Genomic and metabolic traits endow Bacillus velezensis CC09 with a potential biocontrol agent in control of wheat powdery mildew disease
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2016.12.007
– volume: 72
  start-page: 525
  year: 1979
  ident: 10.1016/j.biocontrol.2018.07.017_b0055
  article-title: Botryotinia and Botrytis species: taxonomy, physiology and pathogenicity
  publication-title: Trans. British. Mycol. Soc.
– volume: 56
  start-page: 209
  year: 2011
  ident: 10.1016/j.biocontrol.2018.07.017_b0230
  article-title: A screening strategy of fungal biocontrol agents towards Verticillium wilt of cotton
  publication-title: Biol. Control
  doi: 10.1016/j.biocontrol.2010.11.010
– volume: 34
  start-page: 341
  year: 2004
  ident: 10.1016/j.biocontrol.2018.07.017_b0115
  article-title: Effect of salt compounds on mycelial growth, sporulation and spore germination of various potatoes pathogens
  publication-title: Postharvest Biol. Tec.
  doi: 10.1016/j.postharvbio.2004.05.022
– volume: 10
  start-page: 1159
  year: 2017
  ident: 10.1016/j.biocontrol.2018.07.017_b0165
  article-title: Jasmonic acid oxidase 2 hydroxylates jasmonic acid and represses basal defense and resistance responses against Botrytis cinerea infection
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2017.07.010
– volume: 36
  start-page: 453
  year: 1998
  ident: 10.1016/j.biocontrol.2018.07.017_b0200
  article-title: Systemic resistance induced by rhizosphere bacteria
  publication-title: Annu. Rev. Phytopathol.
  doi: 10.1146/annurev.phyto.36.1.453
– volume: 109
  start-page: 963
  year: 2003
  ident: 10.1016/j.biocontrol.2018.07.017_b0145
  article-title: Modes of action of Pantoea agglomerans CPA-2, an antagonist of postharvest pathogens on fruits
  publication-title: Eur. J. Plant Pathol.
  doi: 10.1023/B:EJPP.0000003747.41051.9f
– volume: 75
  start-page: 1098
  year: 1991
  ident: 10.1016/j.biocontrol.2018.07.017_b0020
  article-title: Occurrence of Penicillium digitatum and P. italicum resistant to benomyl, thiabendazole, and imazalil on citrus fruit from different geographic origins
  publication-title: Plant Dis.
  doi: 10.1094/PD-75-1098
– volume: 89
  start-page: 344
  year: 1982
  ident: 10.1016/j.biocontrol.2018.07.017_b0135
  article-title: Fungitoxic and phytotoxic properties of the essential oil of Hyptis suaveolens
  publication-title: J. Plant Dis. Protect.
– volume: 93
  start-page: 214
  year: 1989
  ident: 10.1016/j.biocontrol.2018.07.017_b0155
  article-title: Autoinhibition of germination and growth in Geotrichum candidum
  publication-title: Mycol. Res.
  doi: 10.1016/S0953-7562(89)80120-0
– volume: 102
  start-page: 1017
  year: 1998
  ident: 10.1016/j.biocontrol.2018.07.017_b0080
  article-title: Biosynthesis of pathogenicity hydrolytic enzymes by Botrytis cinerea during infection of bean leaves and in vitro
  publication-title: Mycol. Res.
  doi: 10.1017/S0953756297006023
– volume: 128
  start-page: 51
  year: 2010
  ident: 10.1016/j.biocontrol.2018.07.017_b0030
  article-title: Combination of hot water, Bacillus subtilis CPA-8 and sodium bicarbonate treatments to control postharvest brown rot on peaches and nectarines
  publication-title: Eur. J. Plant Pathol.
  doi: 10.1007/s10658-010-9628-7
– volume: 7
  start-page: 1201
  year: 2017
  ident: 10.1016/j.biocontrol.2018.07.017_b0190
  article-title: A Botrytis cinerea KLP-7 kinesin acts as a virulence determinant during plant infection
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-09409-5
– volume: 7
  start-page: 11
  year: 2018
  ident: 10.1016/j.biocontrol.2018.07.017_b0005
  article-title: Thyme and savory essential oil efficacy and induction of resistance against botrytis cinerea through priming of defense responses in apple
  publication-title: Foods
  doi: 10.3390/foods7020011
– volume: 24
  start-page: 3031
  year: 2008
  ident: 10.1016/j.biocontrol.2018.07.017_b0185
  article-title: Screening and identification of epiphytic yeasts with potential for biological control of green mold of citrus fruits
  publication-title: World J. Microb. Biot.
  doi: 10.1007/s11274-008-9849-5
– volume: 14
  start-page: 131
  year: 2013
  ident: 10.1016/j.biocontrol.2018.07.017_b0215
  article-title: CaWRKY58, encoding a group I WRKY transcription factor of Capsicum annuum, negatively regulates resistance to Ralstonia solanacearum infection
  publication-title: Mol. Plant Pathol.
  doi: 10.1111/j.1364-3703.2012.00836.x
– volume: 170
  start-page: 95
  year: 2015
  ident: 10.1016/j.biocontrol.2018.07.017_b0070
  article-title: Study on screening and antagonistic mechanisms of Bacillus amyloliquefaciens, 54 against bacterial fruit blotch (BFB) caused by Acidovorax avenae, subsp. citrulli
  publication-title: Microbio.l Res.
  doi: 10.1016/j.micres.2014.08.009
– volume: 20
  start-page: 1
  year: 2001
  ident: 10.1016/j.biocontrol.2018.07.017_b0150
  article-title: Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases
  publication-title: Crop Protect.
  doi: 10.1016/S0261-2194(00)00056-9
– volume: 18
  start-page: 555
  year: 2005
  ident: 10.1016/j.biocontrol.2018.07.017_b0195
  article-title: Induction of resistance to Verticillium dahliae in Arabidopsis thaliana by the biocontrol agent K-165 and pathogenesis-related proteins gene expression
  publication-title: Mol. Plant Microbe In.
  doi: 10.1094/MPMI-18-0555
– volume: 13
  year: 2018
  ident: 10.1016/j.biocontrol.2018.07.017_b0045
  article-title: Inhibitory effect and possible mechanism of a Pseudomonas strain QBA5 against gray mold on tomato leaves and fruits caused by Botrytis cinerea
  publication-title: PLoS One
– volume: 4
  start-page: 535
  year: 2002
  ident: 10.1016/j.biocontrol.2018.07.017_b0140
  article-title: Signalling in rhizobacteria-induced systemic resistance in Arabidopsis thaliana
  publication-title: Plant Biology
  doi: 10.1055/s-2002-35441
– volume: 8
  start-page: 561
  year: 2007
  ident: 10.1016/j.biocontrol.2018.07.017_b0220
  article-title: Botrytis cinerea: the cause of grey mould disease
  publication-title: Mol. Plant Pathol.
  doi: 10.1111/j.1364-3703.2007.00417.x
– volume: 47
  start-page: 39
  year: 2016
  ident: 10.1016/j.biocontrol.2018.07.017_b0170
  article-title: Development of biocontrol products for postharvest diseases of fruit: the importance of elucidating the mechanisms of action of yeast antagonists
  publication-title: Trends Food Sci. Tec.
  doi: 10.1016/j.tifs.2015.11.003
– volume: 46
  start-page: 128
  year: 2007
  ident: 10.1016/j.biocontrol.2018.07.017_b0015
  article-title: In vitro and in situ study of postharvest apple blue mold biocontrol by Aureobasidium pullulans: evidence for the involvement of competition for nutrients
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2007.05.005
– volume: 1
  start-page: 1
  year: 2017
  ident: 10.1016/j.biocontrol.2018.07.017_b0090
  article-title: The Biocontrol Efficacy of Streptomyces pratensis LMM15 on Botrytis cinerea in Tomato
  publication-title: BioMed. Res. Int.
  doi: 10.1155/2017/9486794
– volume: 56
  start-page: 128
  year: 2010
  ident: 10.1016/j.biocontrol.2018.07.017_b0175
  article-title: Effect of culture media and pH on the biomass production and biocontrol efficacy of a Metschnikowia pulcherrima strain to be used as a biofungicide for postharvest disease control
  publication-title: Can. J. Microbiol.
  doi: 10.1139/W09-117
SSID ssj0011470
Score 2.5747354
Snippet [Display omitted] •B. velezensis could be potential BCAs used to control pepper gray mold disease.•It could suppress the mycelium growth and spore formation of...
Plant gray mold disease caused by necrotrophic pathogen Botrytis cinerea, has been a serious threat to many important crops. It is urgent and necessary to seek...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 147
SubjectTerms Bacillus velezensis
Biological control
biological control agents
Botrytis cinerea
crop production
crops
disease control
enzyme activity
gray mold
hydrogen peroxide
immunity
Induced systemic resistance
leaves
pathogenesis-related proteins
pathogens
pepper
Pepper seedlings
screening
secondary metabolites
spores
volatile organic compounds
Title Bacillus velezensis, a potential and efficient biocontrol agent in control of pepper gray mold caused by Botrytis cinerea
URI https://dx.doi.org/10.1016/j.biocontrol.2018.07.017
https://www.proquest.com/docview/2131861610
Volume 126
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9VAEF9KRdCDaFWsH2UFj8aXvN3XJHh6fVieX0XUQm_LfsyWlGcSkrxDeujf7kyyaVE8FDyFLEyy2dnM_GB_8xvG3kCcmcQmRGq3LpIwF1EmRI4OAeFBCx87qkb-enK4PpWfzhZnO2w11cIQrTLE_jGmD9E6jMzCas7qopj9SAitUzrPBAFfisNSprTL311d0zwQ7qdBkYCUKKUMbJ6R42WKKjDCieSVDTKeQ-uyf6aov4L1kIGOH7IHATry5Ti7R2wHyj12f3neBPkM2GN3x9aS_WPWH2lbbDbbllNniUuiqbdvueZ11RE_CJ-jS8dhEJDAAX4zR66p2ooXJZ8GKs9rqGto-Hmje_6r2jhu9bYFx03Pj6qu6bui5XREjxD0CTs9_vBztY5Cm4XIikXSRRohmRHCeUQPxiBcAJkLa1OA3GBeMwuPIMQY54U0eYYILfYLnztcUARrOtPiKdstqxKeMZ76zGqXCtA5yHlstMmFR4BobC7QEdk-S6eVVTZokFMrjI2ayGYX6uZ7FflExalCn-yz5NqyHnU4bmHzfnKe-mNPKUwXt7B-Pflb4S9H5yi6hGrbqnmCgfAQoXL8_L_e8ILdo7uxsvEl2-2aLbxCiNOZg2EPH7A7y9X3L9_o-vHz-uQ3VYsBOw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWqrRBwQFBAtHwZiSPRJuukScRpW1FtabsXWqk3yx_jKmhJoiR7SH89M4nTCsShEldHdpwZZ-ZJfvOGsc8QZjoyEZHajQ1iWIggEyJHh4BwoIQLLVUjX6wPV1fx9-vkeocdT7UwRKv0sX-M6UO09iNzb815XRTzHxGhdUrnmSDgi3F4l9SpkhnbXZ6erdZ3lwlRnHpRAhKjjGNP6BlpXrqoPCmceF7ZoOQ5dC_7Z5b6K14PSejkOXvm0SNfjht8wXag3GNPlzeNV9CAPfZo7C7Zv2T9kTLFZrNtOTWXuCWmevuFK15XHVGEcB1VWg6DhgQO8Ps9ckUFV7wo-TRQOV5DXUPDbxrV81_VxnKjti1Yrnt-VHVN3xUtp1t6RKGv2NXJt8vjVeA7LQRGJFEXKERlWgjrEEBojYgB4lwYkwLkGlObThziEK2tE7HOMwRpoUtcbtGgiNdUpsRrNiurEt4wnrrMKJsKUDnEi1ArnQuHGFGbXKAjsn2WTpaVxsuQUzeMjZz4Zj_l_fdK8okMU4k-2WfR3cx6lOJ4wJyvk_PkH8dKYsZ4wOxPk78l_nV0laJKqLatXEQYCw8RLYcH__WGj-zx6vLiXJ6frs_esif0ZCx0fMdmXbOF94h4Ov3Bn-jfBl8CVw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bacillus+velezensis%2C+a+potential+and+efficient+biocontrol+agent+in+control+of+pepper+gray+mold+caused+by+Botrytis+cinerea&rft.jtitle=Biological+control&rft.au=Jiang%2C+Chun-Hao&rft.au=Liao%2C+Meng-Jie&rft.au=Wang%2C+Hong-Kai&rft.au=Zheng%2C+Ming-Zi&rft.date=2018-11-01&rft.issn=1049-9644&rft.volume=126+p.147-157&rft.spage=147&rft.epage=157&rft_id=info:doi/10.1016%2Fj.biocontrol.2018.07.017&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1049-9644&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1049-9644&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1049-9644&client=summon