Bacillus velezensis, a potential and efficient biocontrol agent in control of pepper gray mold caused by Botrytis cinerea
[Display omitted] •B. velezensis could be potential BCAs used to control pepper gray mold disease.•It could suppress the mycelium growth and spore formation of B. cinerea.•We also demonstrated B. velezensis could trigger ISR to B. cinerea on pepper.•The ISR triggered by B. velezensis depended on SA-...
Saved in:
Published in | Biological control Vol. 126; pp. 147 - 157 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.11.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1049-9644 1090-2112 |
DOI | 10.1016/j.biocontrol.2018.07.017 |
Cover
Loading…
Abstract | [Display omitted]
•B. velezensis could be potential BCAs used to control pepper gray mold disease.•It could suppress the mycelium growth and spore formation of B. cinerea.•We also demonstrated B. velezensis could trigger ISR to B. cinerea on pepper.•The ISR triggered by B. velezensis depended on SA-mediated signaling pathway.
Plant gray mold disease caused by necrotrophic pathogen Botrytis cinerea, has been a serious threat to many important crops. It is urgent and necessary to seek an effective and environmentally friendly control strategy to control grey mold disease during the crop production. Moreover, it is also urgently needed to clear understand how the strategy works. To screening an efficient biocontrol agent in control of gray mold disease caused by B. cinerea, one hundred strains, which have the potential in controlling plant diseases, were selected from our laboratory’s strain library, and employed to our research. The results in the study indicated that Bacillus velezensis could act as a potential and efficient biocontrol agent (BCA), and two B. velezensis strains 5YN8 and DSN012 were screened out with high antagonistic and hydrolase activity, which could significantly control pepper gray mold disease and promote the pepper growth. Further deeply study on biocontrol mechanism indicated that B. velezensis could suppress the growth and spore formation of B. cinerea by secreting some secondary metabolites or releasing numbers of volatile organic compounds (VOCs). In the other hand, we also found that B. velezensis could trigger plant basal immunity. The BCA could increase the expression of SA signal markers and plant defense related genes. It was able to induce hydrogen peroxide accumulation and plant related enzyme activities in leaves of pepper as well. This study provides another high-efficiency, and potential strategies for the biological control of gray mold disease. It is the first report of B. velezensis strain which can control gray mold disease, In addition, it is also the first to comprehensively illustrate how the strains can efficiently protect pepper from B. cinerea attacking. |
---|---|
AbstractList | Plant gray mold disease caused by necrotrophic pathogen Botrytis cinerea, has been a serious threat to many important crops. It is urgent and necessary to seek an effective and environmentally friendly control strategy to control grey mold disease during the crop production. Moreover, it is also urgently needed to clear understand how the strategy works. To screening an efficient biocontrol agent in control of gray mold disease caused by B. cinerea, one hundred strains, which have the potential in controlling plant diseases, were selected from our laboratory’s strain library, and employed to our research. The results in the study indicated that Bacillus velezensis could act as a potential and efficient biocontrol agent (BCA), and two B. velezensis strains 5YN8 and DSN012 were screened out with high antagonistic and hydrolase activity, which could significantly control pepper gray mold disease and promote the pepper growth. Further deeply study on biocontrol mechanism indicated that B. velezensis could suppress the growth and spore formation of B. cinerea by secreting some secondary metabolites or releasing numbers of volatile organic compounds (VOCs). In the other hand, we also found that B. velezensis could trigger plant basal immunity. The BCA could increase the expression of SA signal markers and plant defense related genes. It was able to induce hydrogen peroxide accumulation and plant related enzyme activities in leaves of pepper as well. This study provides another high-efficiency, and potential strategies for the biological control of gray mold disease. It is the first report of B. velezensis strain which can control gray mold disease, In addition, it is also the first to comprehensively illustrate how the strains can efficiently protect pepper from B. cinerea attacking. [Display omitted] •B. velezensis could be potential BCAs used to control pepper gray mold disease.•It could suppress the mycelium growth and spore formation of B. cinerea.•We also demonstrated B. velezensis could trigger ISR to B. cinerea on pepper.•The ISR triggered by B. velezensis depended on SA-mediated signaling pathway. Plant gray mold disease caused by necrotrophic pathogen Botrytis cinerea, has been a serious threat to many important crops. It is urgent and necessary to seek an effective and environmentally friendly control strategy to control grey mold disease during the crop production. Moreover, it is also urgently needed to clear understand how the strategy works. To screening an efficient biocontrol agent in control of gray mold disease caused by B. cinerea, one hundred strains, which have the potential in controlling plant diseases, were selected from our laboratory’s strain library, and employed to our research. The results in the study indicated that Bacillus velezensis could act as a potential and efficient biocontrol agent (BCA), and two B. velezensis strains 5YN8 and DSN012 were screened out with high antagonistic and hydrolase activity, which could significantly control pepper gray mold disease and promote the pepper growth. Further deeply study on biocontrol mechanism indicated that B. velezensis could suppress the growth and spore formation of B. cinerea by secreting some secondary metabolites or releasing numbers of volatile organic compounds (VOCs). In the other hand, we also found that B. velezensis could trigger plant basal immunity. The BCA could increase the expression of SA signal markers and plant defense related genes. It was able to induce hydrogen peroxide accumulation and plant related enzyme activities in leaves of pepper as well. This study provides another high-efficiency, and potential strategies for the biological control of gray mold disease. It is the first report of B. velezensis strain which can control gray mold disease, In addition, it is also the first to comprehensively illustrate how the strains can efficiently protect pepper from B. cinerea attacking. |
Author | Xu, Jian-Jun Liao, Meng-Jie Wang, Hong-Kai Guo, Jian-Hua Zheng, Ming-Zi Jiang, Chun-Hao |
Author_xml | – sequence: 1 givenname: Chun-Hao surname: Jiang fullname: Jiang, Chun-Hao organization: Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China – sequence: 2 givenname: Meng-Jie surname: Liao fullname: Liao, Meng-Jie organization: Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China – sequence: 3 givenname: Hong-Kai surname: Wang fullname: Wang, Hong-Kai organization: Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China – sequence: 4 givenname: Ming-Zi surname: Zheng fullname: Zheng, Ming-Zi organization: Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China – sequence: 5 givenname: Jian-Jun surname: Xu fullname: Xu, Jian-Jun organization: Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, China – sequence: 6 givenname: Jian-Hua surname: Guo fullname: Guo, Jian-Hua email: jhguo@njau.edu.cn organization: Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China |
BookMark | eNqNkEuLFTEQhYOM4Mzof8jShd2mOv3cCN7BFwy40XVI0pWhLrlJm-QOtL_ebq4y4EZXVRzOOUV9N-wqxICMcRA1COjfHmtD0cZQUvR1I2CsxVALGJ6xaxCTqBqA5mrf26ma-rZ9wW5yPgoB0A7imq0Hbcn7c-aP6PEnhkz5Ddd8iQVDIe25DjNH58jSJvCnY1w_7AIF_keIji-4LJj4Q9IrP0U_c6vPGWduVn6IJa2FMrcUMKF-yZ477TO--j1v2fePH77dfa7uv376cvf-vrKyg1Jp6KWRcnZi6IxpGontJK0dECcDjTSdA9EYMzvZmmkcOxCuc9O8vdsB6FHLW_b60ruk-OOMuagTZYve64DxnFUDEsYeehCb9d3FalPMOaFTlooutP-nySsQameujuoJg9qZKzGojflWMP5VsCQ66bT-T_RwieLG4pEwqbwTtzhTQlvUHOnfJb8AAeGneg |
CitedBy_id | crossref_primary_10_3390_microorganisms9091924 crossref_primary_10_3389_fmicb_2020_01114 crossref_primary_10_1016_j_biocontrol_2021_104766 crossref_primary_10_1016_j_biocontrol_2024_105616 crossref_primary_10_1016_j_micres_2022_127199 crossref_primary_10_1016_j_pestbp_2024_105995 crossref_primary_10_3389_fmicb_2019_00652 crossref_primary_10_1186_s12934_024_02456_4 crossref_primary_10_1002_jobm_202300038 crossref_primary_10_1007_s00253_019_10176_8 crossref_primary_10_3389_fpls_2022_1091030 crossref_primary_10_1038_s41598_021_84585_z crossref_primary_10_3389_fmicb_2020_01196 crossref_primary_10_3390_plants12030668 crossref_primary_10_1094_PHP_01_21_0010_RS crossref_primary_10_1016_j_cub_2024_09_019 crossref_primary_10_1080_07060661_2021_1880485 crossref_primary_10_3389_fpls_2020_572112 crossref_primary_10_3390_microorganisms8071037 crossref_primary_10_3390_su16177496 crossref_primary_10_1007_s10658_023_02732_w crossref_primary_10_1016_j_micres_2021_126793 crossref_primary_10_12688_f1000research_160546_1 crossref_primary_10_1093_gbe_evz208 crossref_primary_10_3390_agronomy14020351 crossref_primary_10_1007_s12161_019_01466_y crossref_primary_10_1590_1678_992x_2021_0062 crossref_primary_10_3390_biology11121763 crossref_primary_10_3390_biology12060856 crossref_primary_10_1016_j_biocontrol_2022_104901 crossref_primary_10_1021_acs_jafc_4c03323 crossref_primary_10_3390_jof7121045 crossref_primary_10_1016_j_biocontrol_2021_104621 crossref_primary_10_1094_PHP_11_22_0118_RS crossref_primary_10_1111_1751_7915_14420 crossref_primary_10_3389_fmicb_2023_1116737 crossref_primary_10_1007_s10529_024_03498_9 crossref_primary_10_3389_fmicb_2022_1035748 crossref_primary_10_1016_j_biocontrol_2024_105514 crossref_primary_10_3390_microorganisms8070992 crossref_primary_10_1186_s12866_024_03475_2 crossref_primary_10_3390_biology11101390 crossref_primary_10_3390_microorganisms9071386 crossref_primary_10_1016_j_biocontrol_2024_105510 crossref_primary_10_1094_MPMI_02_24_0020_R crossref_primary_10_1016_j_pestbp_2020_01_004 crossref_primary_10_1094_PDIS_01_22_0230_RE crossref_primary_10_3389_fmicb_2022_951130 crossref_primary_10_1007_s44154_021_00025_y crossref_primary_10_1016_j_postharvbio_2020_111389 crossref_primary_10_1007_s42161_024_01685_1 crossref_primary_10_31083_j_fbl2903105 crossref_primary_10_3389_fpls_2022_873621 crossref_primary_10_7717_peerj_14633 crossref_primary_10_3390_agronomy10091312 crossref_primary_10_3390_microorganisms12112189 crossref_primary_10_1007_s00203_021_02709_5 crossref_primary_10_1016_j_sjbs_2020_06_015 crossref_primary_10_3390_microorganisms13010068 crossref_primary_10_1155_2021_5171086 crossref_primary_10_1007_s00284_024_03962_9 crossref_primary_10_1007_s00284_023_03447_1 crossref_primary_10_1007_s00248_022_02044_2 crossref_primary_10_3389_fpls_2020_599904 crossref_primary_10_3390_cells11193051 crossref_primary_10_3389_fmars_2022_780055 crossref_primary_10_3390_horticulturae9030376 crossref_primary_10_3390_molecules25153360 crossref_primary_10_1007_s11104_024_07166_9 crossref_primary_10_17221_77_2023_PPS crossref_primary_10_1007_s00253_019_09710_5 crossref_primary_10_1016_j_envres_2022_114924 crossref_primary_10_3390_microorganisms10112094 crossref_primary_10_1007_s12223_022_00996_z crossref_primary_10_1016_j_fm_2024_104613 crossref_primary_10_3390_plants12030637 crossref_primary_10_3390_plants10061113 crossref_primary_10_1016_j_biocontrol_2021_104568 crossref_primary_10_3390_molecules27196570 crossref_primary_10_3390_agronomy13030840 crossref_primary_10_7717_peerj_16761 crossref_primary_10_1016_j_biocontrol_2023_105379 crossref_primary_10_1016_j_mcp_2021_101727 crossref_primary_10_1088_1755_1315_709_1_012079 crossref_primary_10_1186_s13568_023_01596_x crossref_primary_10_3390_bacteria1040021 crossref_primary_10_1186_s41938_023_00748_2 crossref_primary_10_3390_microorganisms10091759 crossref_primary_10_1016_j_envres_2023_117907 crossref_primary_10_1007_s00344_019_09966_1 crossref_primary_10_1016_j_biocontrol_2022_105091 crossref_primary_10_3389_fpls_2023_1041413 crossref_primary_10_3390_antiox8120580 crossref_primary_10_3390_ijms20246271 crossref_primary_10_1016_j_rhisph_2025_101052 crossref_primary_10_3390_plants11192486 crossref_primary_10_1016_j_pestbp_2024_105956 crossref_primary_10_3389_fmicb_2019_01668 crossref_primary_10_3390_horticulturae9080922 crossref_primary_10_1016_j_cropro_2021_105635 crossref_primary_10_1016_j_pmpp_2024_102525 crossref_primary_10_3390_agronomy10111822 crossref_primary_10_1016_j_rhisph_2025_101056 crossref_primary_10_3389_fmicb_2022_1019800 crossref_primary_10_1016_j_biocontrol_2020_104458 crossref_primary_10_1016_j_biocontrol_2021_104834 crossref_primary_10_3390_genes13111984 crossref_primary_10_3390_ijms232113639 crossref_primary_10_3923_pjbs_2024_80_89 crossref_primary_10_1007_s41748_024_00552_4 crossref_primary_10_1038_s41429_020_0287_4 crossref_primary_10_3389_fmicb_2021_808337 crossref_primary_10_3389_fpls_2021_700446 crossref_primary_10_1021_acs_jafc_0c06106 crossref_primary_10_1093_jambio_lxae094 crossref_primary_10_3390_microorganisms8101463 crossref_primary_10_1094_PHYTO_03_21_0128_R crossref_primary_10_3389_fmicb_2022_987844 crossref_primary_10_1016_j_biocontrol_2021_104785 crossref_primary_10_3389_fmicb_2024_1462992 crossref_primary_10_3390_microorganisms10010063 crossref_primary_10_1016_j_biocontrol_2023_105316 crossref_primary_10_3389_fmicb_2024_1324833 crossref_primary_10_3390_fishes9010007 crossref_primary_10_3390_foods11020140 crossref_primary_10_1016_j_biocontrol_2020_104220 crossref_primary_10_31545_intagr_200772 crossref_primary_10_1016_j_scienta_2024_113905 crossref_primary_10_1016_j_lwt_2023_115541 crossref_primary_10_1002_ps_6145 crossref_primary_10_1007_s40626_022_00249_x crossref_primary_10_1007_s13205_021_03000_6 crossref_primary_10_1016_j_jia_2023_01_007 crossref_primary_10_3389_fmicb_2023_1064838 crossref_primary_10_3389_fpls_2023_1250020 crossref_primary_10_3389_fmicb_2022_980022 crossref_primary_10_5423_PPJ_NT_03_2021_0053 crossref_primary_10_1016_j_foodcont_2023_109977 crossref_primary_10_1016_j_biocontrol_2024_105447 crossref_primary_10_1007_s41348_024_01040_7 crossref_primary_10_3390_plants11233205 crossref_primary_10_1016_j_biocontrol_2022_105120 crossref_primary_10_1016_j_pmpp_2023_102048 crossref_primary_10_3390_pathogens11020273 crossref_primary_10_3390_antibiotics12030581 |
Cites_doi | 10.1007/s12154-014-0113-1 10.30843/nzpp.2013.66.5556 10.1111/j.1364-3703.2011.00783.x 10.3389/fmicb.2016.00664 10.1093/jxb/erv445 10.1016/j.biocontrol.2016.03.010 10.5423/PPJ.OA.04.2017.0073 10.1094/MPMI.2003.16.12.1145 10.1111/j.1472-765X.2008.02373.x 10.1016/j.postharvbio.2007.11.006 10.1016/j.pbi.2008.05.005 10.1094/MPMI-09-10-0213 10.1080/09583157.2012.706595 10.4014/jmb.0805.333 10.1016/j.pestbp.2017.07.007 10.1111/j.1472-765X.2011.03165.x 10.1002/j.1460-2075.1989.tb03384.x 10.1016/j.postharvbio.2005.10.007 10.1016/j.micres.2016.12.007 10.1016/j.biocontrol.2010.11.010 10.1016/j.postharvbio.2004.05.022 10.1016/j.molp.2017.07.010 10.1146/annurev.phyto.36.1.453 10.1023/B:EJPP.0000003747.41051.9f 10.1094/PD-75-1098 10.1016/S0953-7562(89)80120-0 10.1017/S0953756297006023 10.1007/s10658-010-9628-7 10.1038/s41598-017-09409-5 10.3390/foods7020011 10.1007/s11274-008-9849-5 10.1111/j.1364-3703.2012.00836.x 10.1016/j.micres.2014.08.009 10.1016/S0261-2194(00)00056-9 10.1094/MPMI-18-0555 10.1055/s-2002-35441 10.1111/j.1364-3703.2007.00417.x 10.1016/j.tifs.2015.11.003 10.1016/j.postharvbio.2007.05.005 10.1155/2017/9486794 10.1139/W09-117 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Inc. |
Copyright_xml | – notice: 2018 Elsevier Inc. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.biocontrol.2018.07.017 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Biology |
EISSN | 1090-2112 |
EndPage | 157 |
ExternalDocumentID | 10_1016_j_biocontrol_2018_07_017 S1049964418303062 |
GroupedDBID | --K --M .~1 0R~ 0SF 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADFGL ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG CBWCG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HVGLF HZ~ IHE J1W KFR KOM LG5 LW8 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SDP SES SEW SPCBC SSA SSZ T5K UHS VH1 WUQ XPP Y6R ZMT ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION GROUPED_DOAJ SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c351t-a163b33df075bb223e493cc7ee9b123b5f102bbdf34b988510f5f9d049511a8a3 |
IEDL.DBID | .~1 |
ISSN | 1049-9644 |
IngestDate | Mon Jul 21 10:24:38 EDT 2025 Thu Apr 24 23:04:27 EDT 2025 Tue Jul 01 01:09:47 EDT 2025 Fri Feb 23 02:45:23 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Pepper seedlings Botrytis cinerea Biological control Induced systemic resistance Bacillus velezensis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-a163b33df075bb223e493cc7ee9b123b5f102bbdf34b988510f5f9d049511a8a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2131861610 |
PQPubID | 24069 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2131861610 crossref_citationtrail_10_1016_j_biocontrol_2018_07_017 crossref_primary_10_1016_j_biocontrol_2018_07_017 elsevier_sciencedirect_doi_10_1016_j_biocontrol_2018_07_017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2018 2018-11-00 20181101 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: November 2018 |
PublicationDecade | 2010 |
PublicationTitle | Biological control |
PublicationYear | 2018 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Dean, van Kan, Pretorius, Hammond-Kosack, Di Pietro, Dukare, Spanu, Rudd, Dickman, Kahmann, Ellis, Foster (b0035) 2012; 13 Sun, Wang, Shi, Shangguan, Wang, Ma (b0180) 2017; 143 Pandey, Tripathi, Tripathi, Dixit (b0135) 1982; 89 Nam, Park, Kim, Yoo (b0120) 2009; 19 Tjamos, Flemetakis, Paplomatas, Katinakis (b0195) 2005; 18 Zhan, Xu, Yang, Yang, Liu, Wang, Guo (b0225) 2011; 54 Gao, Qin, Li, Zhou (b0045) 2018; 13 Lim, Yoon, Choi, Choi, Jang, Shin (b0095) 2017; 33 Kanjanamaneesathian, Wiwattanapatapee, Rotniam, Pengnoo, Wongpetkhiew, Tanmala (b0075) 2013; 66 Liu, Fang, Liu, Yu, Lou, Zheng (b0100) 2010; 51 Williamson, Tudzynski, Tudzynski, van Kan (b0220) 2007; 8 Taqarort, Echairi, Chaussod, Nouaim, Boubaker, Benaoumar (b0185) 2008; 24 Kapat, Zimand, Elad (b0080) 1998; 102 Ramamoorthy, Viswanathan, Raguchander, Prakasam, Samiyappan (b0150) 2001; 20 Van Wees, Van der, Pieterse (b0205) 2008; 11 Spadaro, Ciavorella, Dianpeng, Garibaldi, Gullino (b0175) 2010; 56 Cai, Liu, Wang, Xue (b0025) 2017; 196 Lian, Zhang, Gan, Ma, Zong, Wang (b0090) 2017; 1 Poppe, Vanhoutte, Höfte (b0145) 2003; 109 Tayal, Raj, Sharma, Kumar, Dayaman, Verma (b0190) 2017; 7 Dukare, Paul, Nambi, Gupta, Singh, Sharma (b0040) 2018; 2 Meziane, Gavriel, Ismailov, Chet, Chernin, Hofte (b0110) 2006; 39 Voisard, Keel, Haas, Defago (b0210) 1989; 8 Saravanakumar, Ciavorella, Spadaro, Garibaldi, Gullino (b0160) 2008; 49 Smirnova, Marquis, Poirier, Aubert, Zumsteg, Ménard (b0165) 2017; 10 Bencheqroun, Bajji, Massart, Labhilili, Jaafari, Jijakli (b0015) 2007; 46 Wang, Dang, Liu, Wang, Eulgem, Lai (b0215) 2013; 14 Bargabus, Zidack, Sherwood, Jacobsen (b0010) 2013; 16 Jarvis (b0055) 1979; 72 Hahn (b0050) 2014; 7 Meng, Jiang, Hao (b0105) 2016; 98 Pieterse, Van Wees, Ton, Van Pelt, Van Loon (b0140) 2002; 4 Mills, Platt, Hurta (b0115) 2004; 34 Banani, Olivieri, Santoro, Garibaldi, Gullino, Spadaro (b0005) 2018; 7 Spadaro, Droby (b0170) 2016; 47 Casals, Teixidó, Viñas, Silvera, Lamarca, Usall (b0030) 2010; 128 Lazar, Wills, Ho, Harris, Spohr (b0085) 2008; 46 Robinson, McKee, Thompson, Harper, Hamilton (b0155) 1989; 93 Jiang, Wu, Yu, Xie, Ke, Li, Yu, Guo (b0070) 2015; 170 Niu, Wang, Guo, Jiang, Zhang, Wang, Guo (b0130) 2012; 22 Van Loon, Bakker, Pieterse (b0200) 1998; 36 Jiang, Fan, Xie, Guo (b0060) 2016; 7 Zheng, Xue, Xu, Xu, Lu, Gu, Guo (b0230) 2011; 56 Bus, Bongers, Risse (b0020) 1991; 75 Jiang, Huang, Xie, Gu, Li, Wang, Yu, Fan, Wang, Wang, Guo, Guo (b0065) 2016; 67 Niu, Liu, Jiang, Wang, Wang, Jin (b0125) 2011; 24 Pieterse (10.1016/j.biocontrol.2018.07.017_b0140) 2002; 4 Zheng (10.1016/j.biocontrol.2018.07.017_b0230) 2011; 56 Smirnova (10.1016/j.biocontrol.2018.07.017_b0165) 2017; 10 Bencheqroun (10.1016/j.biocontrol.2018.07.017_b0015) 2007; 46 Ramamoorthy (10.1016/j.biocontrol.2018.07.017_b0150) 2001; 20 Casals (10.1016/j.biocontrol.2018.07.017_b0030) 2010; 128 Dean (10.1016/j.biocontrol.2018.07.017_b0035) 2012; 13 Lim (10.1016/j.biocontrol.2018.07.017_b0095) 2017; 33 Nam (10.1016/j.biocontrol.2018.07.017_b0120) 2009; 19 Poppe (10.1016/j.biocontrol.2018.07.017_b0145) 2003; 109 Sun (10.1016/j.biocontrol.2018.07.017_b0180) 2017; 143 Tayal (10.1016/j.biocontrol.2018.07.017_b0190) 2017; 7 Tjamos (10.1016/j.biocontrol.2018.07.017_b0195) 2005; 18 Wang (10.1016/j.biocontrol.2018.07.017_b0215) 2013; 14 Zhan (10.1016/j.biocontrol.2018.07.017_b0225) 2011; 54 Lian (10.1016/j.biocontrol.2018.07.017_b0090) 2017; 1 Liu (10.1016/j.biocontrol.2018.07.017_b0100) 2010; 51 Jiang (10.1016/j.biocontrol.2018.07.017_b0060) 2016; 7 Meziane (10.1016/j.biocontrol.2018.07.017_b0110) 2006; 39 Dukare (10.1016/j.biocontrol.2018.07.017_b0040) 2018; 2 Van Wees (10.1016/j.biocontrol.2018.07.017_b0205) 2008; 11 Gao (10.1016/j.biocontrol.2018.07.017_b0045) 2018; 13 Jarvis (10.1016/j.biocontrol.2018.07.017_b0055) 1979; 72 Taqarort (10.1016/j.biocontrol.2018.07.017_b0185) 2008; 24 Bargabus (10.1016/j.biocontrol.2018.07.017_b0010) 2013; 16 Niu (10.1016/j.biocontrol.2018.07.017_b0125) 2011; 24 Jiang (10.1016/j.biocontrol.2018.07.017_b0065) 2016; 67 Jiang (10.1016/j.biocontrol.2018.07.017_b0070) 2015; 170 Hahn (10.1016/j.biocontrol.2018.07.017_b0050) 2014; 7 Meng (10.1016/j.biocontrol.2018.07.017_b0105) 2016; 98 Williamson (10.1016/j.biocontrol.2018.07.017_b0220) 2007; 8 Kapat (10.1016/j.biocontrol.2018.07.017_b0080) 1998; 102 Kanjanamaneesathian (10.1016/j.biocontrol.2018.07.017_b0075) 2013; 66 Spadaro (10.1016/j.biocontrol.2018.07.017_b0175) 2010; 56 Niu (10.1016/j.biocontrol.2018.07.017_b0130) 2012; 22 Bus (10.1016/j.biocontrol.2018.07.017_b0020) 1991; 75 Spadaro (10.1016/j.biocontrol.2018.07.017_b0170) 2016; 47 Robinson (10.1016/j.biocontrol.2018.07.017_b0155) 1989; 93 Lazar (10.1016/j.biocontrol.2018.07.017_b0085) 2008; 46 Mills (10.1016/j.biocontrol.2018.07.017_b0115) 2004; 34 Van Loon (10.1016/j.biocontrol.2018.07.017_b0200) 1998; 36 Pandey (10.1016/j.biocontrol.2018.07.017_b0135) 1982; 89 Cai (10.1016/j.biocontrol.2018.07.017_b0025) 2017; 196 Saravanakumar (10.1016/j.biocontrol.2018.07.017_b0160) 2008; 49 Banani (10.1016/j.biocontrol.2018.07.017_b0005) 2018; 7 Voisard (10.1016/j.biocontrol.2018.07.017_b0210) 1989; 8 |
References_xml | – volume: 75 start-page: 1098 year: 1991 end-page: 1100 ident: b0020 article-title: Occurrence of publication-title: Plant Dis. – volume: 51 start-page: 30 year: 2010 end-page: 35 ident: b0100 article-title: Biological control of postharvest sour rot of citrus by two antagonistic yeasts publication-title: Lett. Appl. Mcrobiol. – volume: 13 year: 2018 ident: b0045 article-title: Inhibitory effect and possible mechanism of a publication-title: PLoS One – volume: 34 start-page: 341 year: 2004 end-page: 350 ident: b0115 article-title: Effect of salt compounds on mycelial growth, sporulation and spore germination of various potatoes pathogens publication-title: Postharvest Biol. Tec. – volume: 89 start-page: 344 year: 1982 end-page: 349 ident: b0135 article-title: Fungitoxic and phytotoxic properties of the essential oil of publication-title: J. Plant Dis. Protect. – volume: 7 start-page: 11 year: 2018 ident: b0005 article-title: Thyme and savory essential oil efficacy and induction of resistance against publication-title: Foods – volume: 20 start-page: 1 year: 2001 end-page: 11 ident: b0150 article-title: Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases publication-title: Crop Protect. – volume: 128 start-page: 51 year: 2010 end-page: 63 ident: b0030 article-title: Combination of hot water, publication-title: Eur. J. Plant Pathol. – volume: 18 start-page: 555 year: 2005 end-page: 561 ident: b0195 article-title: Induction of resistance to publication-title: Mol. Plant Microbe In. – volume: 196 start-page: 89 year: 2017 end-page: 94 ident: b0025 article-title: Genomic and metabolic traits endow publication-title: Microbiol. Res. – volume: 13 start-page: 414 year: 2012 end-page: 430 ident: b0035 article-title: The Top 10 fungal pathogens in molecular plant pathology publication-title: Mol. Plant Pathol – volume: 33 start-page: 488 year: 2017 end-page: 498 ident: b0095 article-title: Diffusible and volatile antifungal compounds produced by an antagonistic publication-title: Plant Pathol. J. – volume: 102 start-page: 1017 year: 1998 end-page: 1024 ident: b0080 article-title: Biosynthesis of pathogenicity hydrolytic enzymes by publication-title: Mycol. Res. – volume: 56 start-page: 128 year: 2010 end-page: 137 ident: b0175 article-title: Effect of culture media and pH on the biomass production and biocontrol efficacy of a publication-title: Can. J. Microbiol. – volume: 11 start-page: 443 year: 2008 end-page: 448 ident: b0205 article-title: Plant immune responses triggered by beneficial microbes publication-title: Curr. Opin. Plant Biol. – volume: 143 start-page: 191 year: 2017 end-page: 198 ident: b0180 article-title: Control efficiency and expressions of resistance genes in tomato plants treated with ε-poly-l-lysine against publication-title: Pestic. Biochem. Phys. – volume: 46 start-page: 688 year: 2008 end-page: 692 ident: b0085 article-title: Antifungal effect of gaseous nitric oxide on mycelium growth, sporulation and spore germination of the postharvest horticulture pathogens, publication-title: Lett. Appl. Microbiol. – volume: 98 start-page: 18 year: 2016 end-page: 26 ident: b0105 article-title: Effects of publication-title: Biol. Control – volume: 4 start-page: 535 year: 2002 end-page: 544 ident: b0140 article-title: Signalling in rhizobacteria-induced systemic resistance in publication-title: Plant Biology – volume: 7 start-page: 133 year: 2014 end-page: 141 ident: b0050 article-title: The rising threat of fungicide resistance in plant pathogenic fungi: publication-title: J. Biol. Chem. – volume: 39 start-page: 125 year: 2006 end-page: 133 ident: b0110 article-title: Control of green and blue mould on orange fruit by publication-title: Postharvest Biol. Tec – volume: 24 start-page: 3031 year: 2008 end-page: 3038 ident: b0185 article-title: Screening and identification of epiphytic yeasts with potential for biological control of green mold of citrus fruits publication-title: World J. Microb. Biot. – volume: 14 start-page: 131 year: 2013 end-page: 144 ident: b0215 article-title: , encoding a group I WRKY transcription factor of publication-title: Mol. Plant Pathol. – volume: 19 start-page: 520 year: 2009 end-page: 524 ident: b0120 article-title: Biological control of strawberry publication-title: J. Microbiol. Biotechn. – volume: 24 start-page: 533 year: 2011 end-page: 542 ident: b0125 article-title: The plant growth-promoting rhizobacterium publication-title: Mol. Plant Microbe In. – volume: 46 start-page: 128 year: 2007 end-page: 135 ident: b0015 article-title: In vitro and in situ study of postharvest apple blue mold biocontrol by publication-title: Postharvest Biol. Technol. – volume: 170 start-page: 95 year: 2015 end-page: 104 ident: b0070 article-title: Study on screening and antagonistic mechanisms of publication-title: Microbio.l Res. – volume: 72 start-page: 525 year: 1979 ident: b0055 article-title: and publication-title: Trans. British. Mycol. Soc. – volume: 22 start-page: 991 year: 2012 end-page: 1004 ident: b0130 article-title: The plant growth-promoting rhizobacterium publication-title: Biocontrol Sci. Techn. – volume: 36 start-page: 453 year: 1998 end-page: 483 ident: b0200 article-title: Systemic resistance induced by rhizosphere bacteria publication-title: Annu. Rev. Phytopathol. – volume: 8 start-page: 351 year: 1989 end-page: 358 ident: b0210 article-title: Cyanide production by publication-title: EMBO J. – volume: 93 start-page: 214 year: 1989 end-page: 222 ident: b0155 article-title: Autoinhibition of germination and growth in publication-title: Mycol. Res. – volume: 56 start-page: 209 year: 2011 end-page: 216 ident: b0230 article-title: A screening strategy of fungal biocontrol agents towards publication-title: Biol. Control – volume: 10 start-page: 1159 year: 2017 end-page: 1173 ident: b0165 article-title: Jasmonic acid oxidase 2 hydroxylates jasmonic acid and represses basal defense and resistance responses against publication-title: Mol. Plant – volume: 49 start-page: 121 year: 2008 end-page: 128 ident: b0160 article-title: strain MACH1 out competes publication-title: Postharvest Biol. Tec. – volume: 16 start-page: 1145 year: 2013 end-page: 1153 ident: b0010 article-title: Oxidative burst elicited by publication-title: Mol. Plant Microbe In. – volume: 67 start-page: 157 year: 2016 end-page: 174 ident: b0065 article-title: Transcription factors WRKY70 and WRKY11 served as key regulators in rhizobacterium publication-title: J. Exp. Bot. – volume: 1 start-page: 1 year: 2017 end-page: 11 ident: b0090 article-title: The Biocontrol Efficacy of publication-title: BioMed. Res. Int. – volume: 109 start-page: 963 year: 2003 end-page: 973 ident: b0145 article-title: Modes of action of publication-title: Eur. J. Plant Pathol. – volume: 7 start-page: 1201 year: 2017 ident: b0190 article-title: A publication-title: Sci. Rep. – volume: 7 start-page: 1 year: 2016 end-page: 16 ident: b0060 article-title: AR156 extracellular polysaccharides served as a novel micro-associated molecular pattern to induced systemic immunity to publication-title: Front. Microbiol. – volume: 54 start-page: 10 year: 2011 end-page: 17 ident: b0225 article-title: Screening of freezedried protective agents for the formulation of biocontrol strains, publication-title: Lett. Appl. Microbiol. – volume: 66 start-page: 229 year: 2013 end-page: 234 ident: b0075 article-title: Application of a suspension concentrate formulation of publication-title: New Zealand Plant Protect. – volume: 8 start-page: 561 year: 2007 end-page: 580 ident: b0220 article-title: : the cause of grey mould disease publication-title: Mol. Plant Pathol. – volume: 2 start-page: 1 year: 2018 end-page: 16 ident: b0040 article-title: Exploitation of microbial antagonists for the control of postharvest diseases of fruits: a review publication-title: Crit. Rev. Food Sci. – volume: 47 start-page: 39 year: 2016 end-page: 49 ident: b0170 article-title: Development of biocontrol products for postharvest diseases of fruit: the importance of elucidating the mechanisms of action of yeast antagonists publication-title: Trends Food Sci. Tec. – volume: 7 start-page: 133 year: 2014 ident: 10.1016/j.biocontrol.2018.07.017_b0050 article-title: The rising threat of fungicide resistance in plant pathogenic fungi: Botrytis as a case study publication-title: J. Biol. Chem. doi: 10.1007/s12154-014-0113-1 – volume: 66 start-page: 229 year: 2013 ident: 10.1016/j.biocontrol.2018.07.017_b0075 article-title: Application of a suspension concentrate formulation of Bacillus velezensis to control root rot of hydroponically-grown vegetables publication-title: New Zealand Plant Protect. doi: 10.30843/nzpp.2013.66.5556 – volume: 13 start-page: 414 year: 2012 ident: 10.1016/j.biocontrol.2018.07.017_b0035 article-title: The Top 10 fungal pathogens in molecular plant pathology publication-title: Mol. Plant Pathol. doi: 10.1111/j.1364-3703.2011.00783.x – volume: 7 start-page: 1 year: 2016 ident: 10.1016/j.biocontrol.2018.07.017_b0060 article-title: Bacillus cereus AR156 extracellular polysaccharides served as a novel micro-associated molecular pattern to induced systemic immunity to Pst DC3000 in Arabidopsis publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.00664 – volume: 67 start-page: 157 year: 2016 ident: 10.1016/j.biocontrol.2018.07.017_b0065 article-title: Transcription factors WRKY70 and WRKY11 served as key regulators in rhizobacterium Bacillus cereus AR156-induced systemic resistance to Pseudomonas syringae pv. tomato DC3000 in Arabidopsis publication-title: J. Exp. Bot. doi: 10.1093/jxb/erv445 – volume: 98 start-page: 18 year: 2016 ident: 10.1016/j.biocontrol.2018.07.017_b0105 article-title: Effects of Bacillus velezensis strain BAC03 in promoting plant growth publication-title: Biol. Control doi: 10.1016/j.biocontrol.2016.03.010 – volume: 33 start-page: 488 year: 2017 ident: 10.1016/j.biocontrol.2018.07.017_b0095 article-title: Diffusible and volatile antifungal compounds produced by an antagonistic Bacillus velezensis g341 against various phytopathogenic fungi publication-title: Plant Pathol. J. doi: 10.5423/PPJ.OA.04.2017.0073 – volume: 16 start-page: 1145 year: 2013 ident: 10.1016/j.biocontrol.2018.07.017_b0010 article-title: Oxidative burst elicited by Bacillus mycoides isolate Bac J: a biological control agent, occurs independently of hypersensitive cell death in sugar beet publication-title: Mol. Plant Microbe In. doi: 10.1094/MPMI.2003.16.12.1145 – volume: 46 start-page: 688 year: 2008 ident: 10.1016/j.biocontrol.2018.07.017_b0085 article-title: Antifungal effect of gaseous nitric oxide on mycelium growth, sporulation and spore germination of the postharvest horticulture pathogens, Aspergillus niger, Monilinia fructicola and Penicillium italicum publication-title: Lett. Appl. Microbiol. doi: 10.1111/j.1472-765X.2008.02373.x – volume: 49 start-page: 121 year: 2008 ident: 10.1016/j.biocontrol.2018.07.017_b0160 article-title: Metschnikowia pulcherrima strain MACH1 out competes Botrytis cinerea, Alternaria alternata and Penicillium expansum in apples through iron depletion publication-title: Postharvest Biol. Tec. doi: 10.1016/j.postharvbio.2007.11.006 – volume: 11 start-page: 443 year: 2008 ident: 10.1016/j.biocontrol.2018.07.017_b0205 article-title: Plant immune responses triggered by beneficial microbes publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2008.05.005 – volume: 24 start-page: 533 year: 2011 ident: 10.1016/j.biocontrol.2018.07.017_b0125 article-title: The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways publication-title: Mol. Plant Microbe In. doi: 10.1094/MPMI-09-10-0213 – volume: 22 start-page: 991 year: 2012 ident: 10.1016/j.biocontrol.2018.07.017_b0130 article-title: The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces resistance in tomato with induction and priming of defence response publication-title: Biocontrol Sci. Techn. doi: 10.1080/09583157.2012.706595 – volume: 19 start-page: 520 year: 2009 ident: 10.1016/j.biocontrol.2018.07.017_b0120 article-title: Biological control of strawberry Fusarium wilt caused by Fusarium oxysporum f. sp. fragariae using Bacillus velezensis BS87 and RK1 formulation publication-title: J. Microbiol. Biotechn. doi: 10.4014/jmb.0805.333 – volume: 143 start-page: 191 year: 2017 ident: 10.1016/j.biocontrol.2018.07.017_b0180 article-title: Control efficiency and expressions of resistance genes in tomato plants treated with ε-poly-l-lysine against Botrytis cinerea publication-title: Pestic. Biochem. Phys. doi: 10.1016/j.pestbp.2017.07.007 – volume: 54 start-page: 10 year: 2011 ident: 10.1016/j.biocontrol.2018.07.017_b0225 article-title: Screening of freezedried protective agents for the formulation of biocontrol strains, Bacillus cereus AR156, Burkholderia vietnamiensis B418 and Pantoea agglomerans 2Re40 publication-title: Lett. Appl. Microbiol. doi: 10.1111/j.1472-765X.2011.03165.x – volume: 8 start-page: 351 year: 1989 ident: 10.1016/j.biocontrol.2018.07.017_b0210 article-title: Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions publication-title: EMBO J. doi: 10.1002/j.1460-2075.1989.tb03384.x – volume: 51 start-page: 30 year: 2010 ident: 10.1016/j.biocontrol.2018.07.017_b0100 article-title: Biological control of postharvest sour rot of citrus by two antagonistic yeasts publication-title: Lett. Appl. Mcrobiol. – volume: 2 start-page: 1 year: 2018 ident: 10.1016/j.biocontrol.2018.07.017_b0040 article-title: Exploitation of microbial antagonists for the control of postharvest diseases of fruits: a review publication-title: Crit. Rev. Food Sci. – volume: 39 start-page: 125 year: 2006 ident: 10.1016/j.biocontrol.2018.07.017_b0110 article-title: Control of green and blue mould on orange fruit by Serratia plymuthica strains IC14 and IC1270 and putative modes of action publication-title: Postharvest Biol. Tec. doi: 10.1016/j.postharvbio.2005.10.007 – volume: 196 start-page: 89 year: 2017 ident: 10.1016/j.biocontrol.2018.07.017_b0025 article-title: Genomic and metabolic traits endow Bacillus velezensis CC09 with a potential biocontrol agent in control of wheat powdery mildew disease publication-title: Microbiol. Res. doi: 10.1016/j.micres.2016.12.007 – volume: 72 start-page: 525 year: 1979 ident: 10.1016/j.biocontrol.2018.07.017_b0055 article-title: Botryotinia and Botrytis species: taxonomy, physiology and pathogenicity publication-title: Trans. British. Mycol. Soc. – volume: 56 start-page: 209 year: 2011 ident: 10.1016/j.biocontrol.2018.07.017_b0230 article-title: A screening strategy of fungal biocontrol agents towards Verticillium wilt of cotton publication-title: Biol. Control doi: 10.1016/j.biocontrol.2010.11.010 – volume: 34 start-page: 341 year: 2004 ident: 10.1016/j.biocontrol.2018.07.017_b0115 article-title: Effect of salt compounds on mycelial growth, sporulation and spore germination of various potatoes pathogens publication-title: Postharvest Biol. Tec. doi: 10.1016/j.postharvbio.2004.05.022 – volume: 10 start-page: 1159 year: 2017 ident: 10.1016/j.biocontrol.2018.07.017_b0165 article-title: Jasmonic acid oxidase 2 hydroxylates jasmonic acid and represses basal defense and resistance responses against Botrytis cinerea infection publication-title: Mol. Plant doi: 10.1016/j.molp.2017.07.010 – volume: 36 start-page: 453 year: 1998 ident: 10.1016/j.biocontrol.2018.07.017_b0200 article-title: Systemic resistance induced by rhizosphere bacteria publication-title: Annu. Rev. Phytopathol. doi: 10.1146/annurev.phyto.36.1.453 – volume: 109 start-page: 963 year: 2003 ident: 10.1016/j.biocontrol.2018.07.017_b0145 article-title: Modes of action of Pantoea agglomerans CPA-2, an antagonist of postharvest pathogens on fruits publication-title: Eur. J. Plant Pathol. doi: 10.1023/B:EJPP.0000003747.41051.9f – volume: 75 start-page: 1098 year: 1991 ident: 10.1016/j.biocontrol.2018.07.017_b0020 article-title: Occurrence of Penicillium digitatum and P. italicum resistant to benomyl, thiabendazole, and imazalil on citrus fruit from different geographic origins publication-title: Plant Dis. doi: 10.1094/PD-75-1098 – volume: 89 start-page: 344 year: 1982 ident: 10.1016/j.biocontrol.2018.07.017_b0135 article-title: Fungitoxic and phytotoxic properties of the essential oil of Hyptis suaveolens publication-title: J. Plant Dis. Protect. – volume: 93 start-page: 214 year: 1989 ident: 10.1016/j.biocontrol.2018.07.017_b0155 article-title: Autoinhibition of germination and growth in Geotrichum candidum publication-title: Mycol. Res. doi: 10.1016/S0953-7562(89)80120-0 – volume: 102 start-page: 1017 year: 1998 ident: 10.1016/j.biocontrol.2018.07.017_b0080 article-title: Biosynthesis of pathogenicity hydrolytic enzymes by Botrytis cinerea during infection of bean leaves and in vitro publication-title: Mycol. Res. doi: 10.1017/S0953756297006023 – volume: 128 start-page: 51 year: 2010 ident: 10.1016/j.biocontrol.2018.07.017_b0030 article-title: Combination of hot water, Bacillus subtilis CPA-8 and sodium bicarbonate treatments to control postharvest brown rot on peaches and nectarines publication-title: Eur. J. Plant Pathol. doi: 10.1007/s10658-010-9628-7 – volume: 7 start-page: 1201 year: 2017 ident: 10.1016/j.biocontrol.2018.07.017_b0190 article-title: A Botrytis cinerea KLP-7 kinesin acts as a virulence determinant during plant infection publication-title: Sci. Rep. doi: 10.1038/s41598-017-09409-5 – volume: 7 start-page: 11 year: 2018 ident: 10.1016/j.biocontrol.2018.07.017_b0005 article-title: Thyme and savory essential oil efficacy and induction of resistance against botrytis cinerea through priming of defense responses in apple publication-title: Foods doi: 10.3390/foods7020011 – volume: 24 start-page: 3031 year: 2008 ident: 10.1016/j.biocontrol.2018.07.017_b0185 article-title: Screening and identification of epiphytic yeasts with potential for biological control of green mold of citrus fruits publication-title: World J. Microb. Biot. doi: 10.1007/s11274-008-9849-5 – volume: 14 start-page: 131 year: 2013 ident: 10.1016/j.biocontrol.2018.07.017_b0215 article-title: CaWRKY58, encoding a group I WRKY transcription factor of Capsicum annuum, negatively regulates resistance to Ralstonia solanacearum infection publication-title: Mol. Plant Pathol. doi: 10.1111/j.1364-3703.2012.00836.x – volume: 170 start-page: 95 year: 2015 ident: 10.1016/j.biocontrol.2018.07.017_b0070 article-title: Study on screening and antagonistic mechanisms of Bacillus amyloliquefaciens, 54 against bacterial fruit blotch (BFB) caused by Acidovorax avenae, subsp. citrulli publication-title: Microbio.l Res. doi: 10.1016/j.micres.2014.08.009 – volume: 20 start-page: 1 year: 2001 ident: 10.1016/j.biocontrol.2018.07.017_b0150 article-title: Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases publication-title: Crop Protect. doi: 10.1016/S0261-2194(00)00056-9 – volume: 18 start-page: 555 year: 2005 ident: 10.1016/j.biocontrol.2018.07.017_b0195 article-title: Induction of resistance to Verticillium dahliae in Arabidopsis thaliana by the biocontrol agent K-165 and pathogenesis-related proteins gene expression publication-title: Mol. Plant Microbe In. doi: 10.1094/MPMI-18-0555 – volume: 13 year: 2018 ident: 10.1016/j.biocontrol.2018.07.017_b0045 article-title: Inhibitory effect and possible mechanism of a Pseudomonas strain QBA5 against gray mold on tomato leaves and fruits caused by Botrytis cinerea publication-title: PLoS One – volume: 4 start-page: 535 year: 2002 ident: 10.1016/j.biocontrol.2018.07.017_b0140 article-title: Signalling in rhizobacteria-induced systemic resistance in Arabidopsis thaliana publication-title: Plant Biology doi: 10.1055/s-2002-35441 – volume: 8 start-page: 561 year: 2007 ident: 10.1016/j.biocontrol.2018.07.017_b0220 article-title: Botrytis cinerea: the cause of grey mould disease publication-title: Mol. Plant Pathol. doi: 10.1111/j.1364-3703.2007.00417.x – volume: 47 start-page: 39 year: 2016 ident: 10.1016/j.biocontrol.2018.07.017_b0170 article-title: Development of biocontrol products for postharvest diseases of fruit: the importance of elucidating the mechanisms of action of yeast antagonists publication-title: Trends Food Sci. Tec. doi: 10.1016/j.tifs.2015.11.003 – volume: 46 start-page: 128 year: 2007 ident: 10.1016/j.biocontrol.2018.07.017_b0015 article-title: In vitro and in situ study of postharvest apple blue mold biocontrol by Aureobasidium pullulans: evidence for the involvement of competition for nutrients publication-title: Postharvest Biol. Technol. doi: 10.1016/j.postharvbio.2007.05.005 – volume: 1 start-page: 1 year: 2017 ident: 10.1016/j.biocontrol.2018.07.017_b0090 article-title: The Biocontrol Efficacy of Streptomyces pratensis LMM15 on Botrytis cinerea in Tomato publication-title: BioMed. Res. Int. doi: 10.1155/2017/9486794 – volume: 56 start-page: 128 year: 2010 ident: 10.1016/j.biocontrol.2018.07.017_b0175 article-title: Effect of culture media and pH on the biomass production and biocontrol efficacy of a Metschnikowia pulcherrima strain to be used as a biofungicide for postharvest disease control publication-title: Can. J. Microbiol. doi: 10.1139/W09-117 |
SSID | ssj0011470 |
Score | 2.5747354 |
Snippet | [Display omitted]
•B. velezensis could be potential BCAs used to control pepper gray mold disease.•It could suppress the mycelium growth and spore formation of... Plant gray mold disease caused by necrotrophic pathogen Botrytis cinerea, has been a serious threat to many important crops. It is urgent and necessary to seek... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 147 |
SubjectTerms | Bacillus velezensis Biological control biological control agents Botrytis cinerea crop production crops disease control enzyme activity gray mold hydrogen peroxide immunity Induced systemic resistance leaves pathogenesis-related proteins pathogens pepper Pepper seedlings screening secondary metabolites spores volatile organic compounds |
Title | Bacillus velezensis, a potential and efficient biocontrol agent in control of pepper gray mold caused by Botrytis cinerea |
URI | https://dx.doi.org/10.1016/j.biocontrol.2018.07.017 https://www.proquest.com/docview/2131861610 |
Volume | 126 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9VAEF9KRdCDaFWsH2UFj8aXvN3XJHh6fVieX0XUQm_LfsyWlGcSkrxDeujf7kyyaVE8FDyFLEyy2dnM_GB_8xvG3kCcmcQmRGq3LpIwF1EmRI4OAeFBCx87qkb-enK4PpWfzhZnO2w11cIQrTLE_jGmD9E6jMzCas7qopj9SAitUzrPBAFfisNSprTL311d0zwQ7qdBkYCUKKUMbJ6R42WKKjDCieSVDTKeQ-uyf6aov4L1kIGOH7IHATry5Ti7R2wHyj12f3neBPkM2GN3x9aS_WPWH2lbbDbbllNniUuiqbdvueZ11RE_CJ-jS8dhEJDAAX4zR66p2ooXJZ8GKs9rqGto-Hmje_6r2jhu9bYFx03Pj6qu6bui5XREjxD0CTs9_vBztY5Cm4XIikXSRRohmRHCeUQPxiBcAJkLa1OA3GBeMwuPIMQY54U0eYYILfYLnztcUARrOtPiKdstqxKeMZ76zGqXCtA5yHlstMmFR4BobC7QEdk-S6eVVTZokFMrjI2ayGYX6uZ7FflExalCn-yz5NqyHnU4bmHzfnKe-mNPKUwXt7B-Pflb4S9H5yi6hGrbqnmCgfAQoXL8_L_e8ILdo7uxsvEl2-2aLbxCiNOZg2EPH7A7y9X3L9_o-vHz-uQ3VYsBOw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWqrRBwQFBAtHwZiSPRJuukScRpW1FtabsXWqk3yx_jKmhJoiR7SH89M4nTCsShEldHdpwZZ-ZJfvOGsc8QZjoyEZHajQ1iWIggEyJHh4BwoIQLLVUjX6wPV1fx9-vkeocdT7UwRKv0sX-M6UO09iNzb815XRTzHxGhdUrnmSDgi3F4l9SpkhnbXZ6erdZ3lwlRnHpRAhKjjGNP6BlpXrqoPCmceF7ZoOQ5dC_7Z5b6K14PSejkOXvm0SNfjht8wXag3GNPlzeNV9CAPfZo7C7Zv2T9kTLFZrNtOTWXuCWmevuFK15XHVGEcB1VWg6DhgQO8Ps9ckUFV7wo-TRQOV5DXUPDbxrV81_VxnKjti1Yrnt-VHVN3xUtp1t6RKGv2NXJt8vjVeA7LQRGJFEXKERlWgjrEEBojYgB4lwYkwLkGlObThziEK2tE7HOMwRpoUtcbtGgiNdUpsRrNiurEt4wnrrMKJsKUDnEi1ArnQuHGFGbXKAjsn2WTpaVxsuQUzeMjZz4Zj_l_fdK8okMU4k-2WfR3cx6lOJ4wJyvk_PkH8dKYsZ4wOxPk78l_nV0laJKqLatXEQYCw8RLYcH__WGj-zx6vLiXJ6frs_esif0ZCx0fMdmXbOF94h4Ov3Bn-jfBl8CVw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bacillus+velezensis%2C+a+potential+and+efficient+biocontrol+agent+in+control+of+pepper+gray+mold+caused+by+Botrytis+cinerea&rft.jtitle=Biological+control&rft.au=Jiang%2C+Chun-Hao&rft.au=Liao%2C+Meng-Jie&rft.au=Wang%2C+Hong-Kai&rft.au=Zheng%2C+Ming-Zi&rft.date=2018-11-01&rft.issn=1049-9644&rft.volume=126+p.147-157&rft.spage=147&rft.epage=157&rft_id=info:doi/10.1016%2Fj.biocontrol.2018.07.017&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1049-9644&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1049-9644&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1049-9644&client=summon |