Reinforcement Learning-Based Optimal Stabilization for Unknown Nonlinear Systems Subject to Inputs With Uncertain Constraints
This article presents a novel reinforcement learning strategy that addresses an optimal stabilizing problem for unknown nonlinear systems subject to uncertain input constraints. The control algorithm is composed of two parts, i.e., online learning optimal control for the nominal system and feedforwa...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 31; no. 10; pp. 4330 - 4340 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article presents a novel reinforcement learning strategy that addresses an optimal stabilizing problem for unknown nonlinear systems subject to uncertain input constraints. The control algorithm is composed of two parts, i.e., online learning optimal control for the nominal system and feedforward neural networks (NNs) compensation for handling uncertain input constraints, which are considered as the saturation nonlinearities. Integrating the input-output data and recurrent NN, a Luenberger observer is established to approximate the unknown system dynamics. For nominal systems without input constraints, the online learning optimal control policy is derived by solving Hamilton-Jacobi-Bellman equation via a critic NN alone. By transforming the uncertain input constraints to saturation nonlinearities, the uncertain input constraints can be compensated by employing a feedforward NN compensator. The convergence of the closed-loop system is guaranteed to be uniformly ultimately bounded by using the Lyapunov stability analysis. Finally, the effectiveness of the developed stabilization scheme is illustrated by simulation studies. |
---|---|
AbstractList | This article presents a novel reinforcement learning strategy that addresses an optimal stabilizing problem for unknown nonlinear systems subject to uncertain input constraints. The control algorithm is composed of two parts, i.e., online learning optimal control for the nominal system and feedforward neural networks (NNs) compensation for handling uncertain input constraints, which are considered as the saturation nonlinearities. Integrating the input-output data and recurrent NN, a Luenberger observer is established to approximate the unknown system dynamics. For nominal systems without input constraints, the online learning optimal control policy is derived by solving Hamilton-Jacobi-Bellman equation via a critic NN alone. By transforming the uncertain input constraints to saturation nonlinearities, the uncertain input constraints can be compensated by employing a feedforward NN compensator. The convergence of the closed-loop system is guaranteed to be uniformly ultimately bounded by using the Lyapunov stability analysis. Finally, the effectiveness of the developed stabilization scheme is illustrated by simulation studies. This article presents a novel reinforcement learning strategy that addresses an optimal stabilizing problem for unknown nonlinear systems subject to uncertain input constraints. The control algorithm is composed of two parts, i.e., online learning optimal control for the nominal system and feedforward neural networks (NNs) compensation for handling uncertain input constraints, which are considered as the saturation nonlinearities. Integrating the input-output data and recurrent NN, a Luenberger observer is established to approximate the unknown system dynamics. For nominal systems without input constraints, the online learning optimal control policy is derived by solving Hamilton-Jacobi-Bellman equation via a critic NN alone. By transforming the uncertain input constraints to saturation nonlinearities, the uncertain input constraints can be compensated by employing a feedforward NN compensator. The convergence of the closed-loop system is guaranteed to be uniformly ultimately bounded by using the Lyapunov stability analysis. Finally, the effectiveness of the developed stabilization scheme is illustrated by simulation studies.This article presents a novel reinforcement learning strategy that addresses an optimal stabilizing problem for unknown nonlinear systems subject to uncertain input constraints. The control algorithm is composed of two parts, i.e., online learning optimal control for the nominal system and feedforward neural networks (NNs) compensation for handling uncertain input constraints, which are considered as the saturation nonlinearities. Integrating the input-output data and recurrent NN, a Luenberger observer is established to approximate the unknown system dynamics. For nominal systems without input constraints, the online learning optimal control policy is derived by solving Hamilton-Jacobi-Bellman equation via a critic NN alone. By transforming the uncertain input constraints to saturation nonlinearities, the uncertain input constraints can be compensated by employing a feedforward NN compensator. The convergence of the closed-loop system is guaranteed to be uniformly ultimately bounded by using the Lyapunov stability analysis. Finally, the effectiveness of the developed stabilization scheme is illustrated by simulation studies. |
Author | Zhao, Bo Luo, Chaomin Liu, Derong |
Author_xml | – sequence: 1 givenname: Bo orcidid: 0000-0002-7684-7342 surname: Zhao fullname: Zhao, Bo email: zhaobo@bnu.edu.cn organization: School of Systems Science, Beijing Normal University, Beijing, China – sequence: 2 givenname: Derong orcidid: 0000-0003-3715-4778 surname: Liu fullname: Liu, Derong email: derong@gdut.edu.cn organization: School of Automation, Guangdong University of Technology, Guangzhou, China – sequence: 3 givenname: Chaomin orcidid: 0000-0002-7578-3631 surname: Luo fullname: Luo, Chaomin email: chaomin.luo@ece.msstate.edu organization: Department of Electrical and Computer Engineering, Mississippi State University, Mississippi State, MS, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31899437$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9rFDEYh4NUbK39AgoS8NLLrPk3k-Soi9XCsgW3RW8hM_uOZp1JtkkGqeB3N9vd9tCDuSSQ53lJfr-X6MgHDwi9pmRGKdHvr5fLxWrGCNUzpmuhFX-GThhtWMW4UkePZ_n9GJ2ltCFlNaRuhH6BjjlVWgsuT9Dfr-B8H2IHI_iMF2Cjd_5H9dEmWOOrbXajHfAq29YN7o_NLnhccHzjf_nw2-Nl8IPzxcKru5RhTHg1tRvoMs4BX_rtlBP-5vLPInQQs3Uez4NPOZZTTq_Q894OCc4O-ym6ufh0Pf9SLa4-X84_LKqO1zRXGmTX1FxbJdqeENpKImpbq5rxTknJJWPlvpG9VLbXrbW90pavpQZb97a1_BSd7-duY7idIGUzutTBMFgPYUqGcc4bokooBX33BN2EKfryOsOE0JwSIUSh3h6oqR1hbbax5BTvzEOwBVB7oIshpQi96Vy-j2_39cFQYnY1mvsaza5Gc6ixqOyJ-jD9v9KbveQA4FFQWggma_4PiZKp8Q |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1109_TSMC_2021_3105663 crossref_primary_10_1109_TSMC_2021_3071968 crossref_primary_10_1109_TSMC_2023_3298065 crossref_primary_10_1109_TITS_2024_3520328 crossref_primary_10_1109_TSMC_2023_3329848 crossref_primary_10_1016_j_oceaneng_2024_119031 crossref_primary_10_3934_mmc_2023016 crossref_primary_10_1016_j_engappai_2024_108033 crossref_primary_10_3390_e24070889 crossref_primary_10_1007_s11071_023_08419_5 crossref_primary_10_1016_j_neunet_2021_08_012 crossref_primary_10_1002_rnc_5802 crossref_primary_10_1007_s00521_023_09253_x crossref_primary_10_1109_TNNLS_2022_3224065 crossref_primary_10_1016_j_ejcon_2025_101219 crossref_primary_10_1109_TETCI_2024_3451335 crossref_primary_10_1109_TCYB_2022_3175650 crossref_primary_10_31763_ijrcs_v3i2_997 crossref_primary_10_1016_j_neucom_2022_06_110 crossref_primary_10_1007_s40747_021_00364_3 crossref_primary_10_1002_rnc_7710 crossref_primary_10_1109_TFUZZ_2024_3426510 crossref_primary_10_1016_j_ejcon_2025_101201 crossref_primary_10_1109_TCYB_2023_3251653 crossref_primary_10_1016_j_conengprac_2023_105805 crossref_primary_10_1109_TCST_2022_3227502 crossref_primary_10_1109_TCSI_2021_3121809 crossref_primary_10_1109_TFUZZ_2024_3352590 crossref_primary_10_1109_TSMC_2024_3368026 crossref_primary_10_1109_TNNLS_2022_3177461 crossref_primary_10_1002_rnc_7622 crossref_primary_10_1016_j_robot_2022_104116 crossref_primary_10_1109_TSMC_2020_3042876 crossref_primary_10_1002_rnc_7220 crossref_primary_10_1016_j_neucom_2021_11_002 crossref_primary_10_1002_acs_3832 crossref_primary_10_1109_TIE_2023_3301537 crossref_primary_10_1016_j_neunet_2022_08_010 crossref_primary_10_1016_j_neucom_2022_09_119 crossref_primary_10_1002_rnc_5708 crossref_primary_10_1016_j_neucom_2023_126529 crossref_primary_10_1109_TCYB_2021_3103820 crossref_primary_10_1007_s12555_021_0674_z crossref_primary_10_1007_s40747_021_00367_0 crossref_primary_10_1109_ACCESS_2020_3040185 crossref_primary_10_1109_TSMC_2024_3449343 crossref_primary_10_1109_JAS_2023_123603 crossref_primary_10_1109_TSMC_2024_3392756 crossref_primary_10_1016_j_neunet_2023_05_001 crossref_primary_10_1007_s11071_022_07603_3 crossref_primary_10_1109_TCYB_2022_3192871 crossref_primary_10_1109_TCYB_2022_3179302 crossref_primary_10_1109_TASE_2023_3322028 crossref_primary_10_1007_s40747_021_00359_0 crossref_primary_10_1016_j_neucom_2023_126964 crossref_primary_10_3390_buildings15060841 crossref_primary_10_1088_1361_6501_ad50f8 crossref_primary_10_1109_TNNLS_2022_3230200 crossref_primary_10_1109_JAS_2024_124227 crossref_primary_10_1002_rnc_6550 crossref_primary_10_3390_aerospace11020149 crossref_primary_10_1007_s10489_024_05631_7 crossref_primary_10_1109_TCSI_2023_3246001 crossref_primary_10_1109_TNNLS_2022_3171828 crossref_primary_10_1109_TNNLS_2022_3224029 crossref_primary_10_1109_TSMC_2023_3342854 crossref_primary_10_1002_oca_3001 crossref_primary_10_1109_TASE_2024_3468614 crossref_primary_10_1016_j_ifacol_2021_04_199 crossref_primary_10_1002_oca_2794 crossref_primary_10_1007_s11071_023_09075_5 crossref_primary_10_1109_TSMC_2023_3247466 crossref_primary_10_1007_s10462_021_10045_9 crossref_primary_10_1109_TSMC_2023_3287480 crossref_primary_10_1016_j_neucom_2024_127421 crossref_primary_10_1016_j_neunet_2020_09_020 crossref_primary_10_3390_app132111923 crossref_primary_10_1109_TNNLS_2022_3172126 crossref_primary_10_1016_j_ins_2024_121782 crossref_primary_10_1007_s12555_023_0460_1 crossref_primary_10_3390_s23177510 crossref_primary_10_1016_j_neucom_2021_01_116 crossref_primary_10_1109_TSMC_2023_3331150 crossref_primary_10_1002_oca_2735 crossref_primary_10_1016_j_isatra_2022_12_003 crossref_primary_10_1016_j_neucom_2023_126502 crossref_primary_10_1016_j_eswa_2023_122944 crossref_primary_10_1109_TCYB_2024_3438288 crossref_primary_10_3934_mbe_2022430 crossref_primary_10_1007_s40747_024_01550_9 crossref_primary_10_1002_rnc_6334 crossref_primary_10_1109_TII_2024_3435512 crossref_primary_10_1109_TCYB_2022_3164977 crossref_primary_10_1109_TNNLS_2024_3379207 crossref_primary_10_1002_oca_3020 crossref_primary_10_1109_TIV_2022_3153352 crossref_primary_10_1109_JSEN_2023_3299329 crossref_primary_10_1109_TFUZZ_2023_3256441 crossref_primary_10_1002_acs_3510 crossref_primary_10_1109_TFUZZ_2023_3273566 crossref_primary_10_3390_a16090404 crossref_primary_10_1016_j_neucom_2023_126973 crossref_primary_10_1049_cth2_12023 |
Cites_doi | 10.1016/j.neunet.2015.08.007 10.1109/TASE.2014.2303139 10.1109/TSMCB.2008.926614 10.1109/TIE.2017.2674633 10.1080/00207721.2017.1296982 10.1016/j.ins.2016.12.016 10.1109/TNN.2005.863416 10.1016/j.neucom.2010.07.005 10.1016/j.ins.2015.09.001 10.1049/iet-cta.2015.1105 10.1109/TASE.2014.2300532 10.1016/j.conengprac.2016.07.014 10.1613/jair.301 10.1109/TNN.2011.2172628 10.1109/TSMCB.2006.883869 10.1109/TCYB.2015.2417170 10.1016/j.ins.2012.07.006 10.1109/TNNLS.2015.2409301 10.1007/s10462-017-9603-1 10.1007/s10462-017-9548-4 10.1109/TNN.2009.2027233 10.1109/TNN.2011.2160968 10.1109/TNNLS.2015.2461452 10.1109/JAS.2017.7510322 10.1016/j.automatica.2014.10.056 10.1109/JAS.2017.7510739 10.1109/TIE.2016.2597763 10.1007/s11071-015-2324-6 10.1109/TSMCB.2004.840124 10.1016/j.neucom.2016.11.041 10.1109/72.914523 10.1016/j.automatica.2014.05.011 10.1016/j.ins.2016.07.051 10.1109/TNN.2008.2000204 10.1109/TNNLS.2016.2586303 10.1109/TNNLS.2013.2280013 10.1016/j.automatica.2016.05.008 10.1080/00207179.2013.848292 10.1109/JAS.2016.7510262 10.1109/TNNLS.2012.2227339 10.1007/s11432-015-5462-z 10.1002/oca.2146 10.1007/978-3-319-50815-3 10.1109/TNNLS.2015.2472974 10.1109/TIE.2019.2914571 10.1049/iet-cta.2016.1383 10.1109/TNNLS.2013.2276571 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2019.2954983 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 4340 |
ExternalDocumentID | 31899437 10_1109_TNNLS_2019_2954983 8944275 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: State Key Laboratory of Synthetical Automation for Process Industries grantid: 2019-KF-23-03 funderid: 10.13039/501100011248 – fundername: Early Career Development Award of SKLMCCS grantid: 20180201 – fundername: National Natural Science Foundation of China grantid: 61973330; 61603387; 61773075; 61533017; U1501251 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities grantid: 2019NTST25 funderid: 10.13039/501100012226 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c351t-9e7c6539a84bf001b7045a58523c8773722c6567f78af9baaf89a3d79ea5faba3 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Fri Jul 11 03:51:01 EDT 2025 Mon Jun 30 06:19:49 EDT 2025 Thu Apr 03 06:53:44 EDT 2025 Tue Jul 01 00:27:32 EDT 2025 Thu Apr 24 23:07:43 EDT 2025 Wed Aug 27 02:31:19 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-9e7c6539a84bf001b7045a58523c8773722c6567f78af9baaf89a3d79ea5faba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7578-3631 0000-0003-3715-4778 0000-0002-7684-7342 |
PMID | 31899437 |
PQID | 2449310444 |
PQPubID | 85436 |
PageCount | 11 |
ParticipantIDs | pubmed_primary_31899437 crossref_citationtrail_10_1109_TNNLS_2019_2954983 ieee_primary_8944275 proquest_miscellaneous_2333608899 proquest_journals_2449310444 crossref_primary_10_1109_TNNLS_2019_2954983 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 werbos (ref3) 1992 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 bellman (ref2) 1957 |
References_xml | – ident: ref35 doi: 10.1016/j.neunet.2015.08.007 – ident: ref31 doi: 10.1109/TASE.2014.2303139 – ident: ref5 doi: 10.1109/TSMCB.2008.926614 – ident: ref20 doi: 10.1109/TIE.2017.2674633 – ident: ref10 doi: 10.1080/00207721.2017.1296982 – ident: ref49 doi: 10.1016/j.ins.2016.12.016 – ident: ref28 doi: 10.1109/TNN.2005.863416 – ident: ref23 doi: 10.1016/j.neucom.2010.07.005 – ident: ref45 doi: 10.1016/j.ins.2015.09.001 – ident: ref25 doi: 10.1049/iet-cta.2015.1105 – ident: ref34 doi: 10.1109/TASE.2014.2300532 – ident: ref44 doi: 10.1016/j.conengprac.2016.07.014 – ident: ref7 doi: 10.1613/jair.301 – ident: ref22 doi: 10.1109/TNN.2011.2172628 – ident: ref36 doi: 10.1109/TSMCB.2006.883869 – ident: ref27 doi: 10.1109/TCYB.2015.2417170 – ident: ref18 doi: 10.1016/j.ins.2012.07.006 – ident: ref41 doi: 10.1109/TNNLS.2015.2409301 – ident: ref12 doi: 10.1007/s10462-017-9603-1 – ident: ref15 doi: 10.1007/s10462-017-9548-4 – ident: ref47 doi: 10.1109/TNN.2009.2027233 – ident: ref16 doi: 10.1109/TNN.2011.2160968 – ident: ref11 doi: 10.1109/TNNLS.2015.2461452 – ident: ref40 doi: 10.1109/JAS.2017.7510322 – ident: ref48 doi: 10.1016/j.automatica.2014.10.056 – ident: ref42 doi: 10.1109/JAS.2017.7510739 – ident: ref33 doi: 10.1109/TIE.2016.2597763 – year: 1957 ident: ref2 publication-title: Dynamic Programming – ident: ref24 doi: 10.1007/s11071-015-2324-6 – ident: ref26 doi: 10.1109/TSMCB.2004.840124 – ident: ref38 doi: 10.1016/j.neucom.2016.11.041 – ident: ref6 doi: 10.1109/72.914523 – ident: ref9 doi: 10.1016/j.automatica.2014.05.011 – ident: ref46 doi: 10.1016/j.ins.2016.07.051 – ident: ref30 doi: 10.1109/TNN.2008.2000204 – ident: ref29 doi: 10.1109/TNNLS.2016.2586303 – ident: ref13 doi: 10.1109/TNNLS.2013.2280013 – ident: ref21 doi: 10.1016/j.automatica.2016.05.008 – ident: ref8 doi: 10.1080/00207179.2013.848292 – ident: ref43 doi: 10.1109/JAS.2016.7510262 – ident: ref32 doi: 10.1109/TNNLS.2012.2227339 – ident: ref17 doi: 10.1007/s11432-015-5462-z – ident: ref39 doi: 10.1002/oca.2146 – ident: ref4 doi: 10.1007/978-3-319-50815-3 – ident: ref19 doi: 10.1109/TNNLS.2015.2472974 – ident: ref1 doi: 10.1109/TIE.2019.2914571 – year: 1992 ident: ref3 article-title: Approximate dynamic programming for real-time control and neural modeling publication-title: Handbook of Intelligent Control Neural Fuzzy and Adaptive Approaches – ident: ref14 doi: 10.1049/iet-cta.2016.1383 – ident: ref37 doi: 10.1109/TNNLS.2013.2276571 |
SSID | ssj0000605649 |
Score | 2.62061 |
Snippet | This article presents a novel reinforcement learning strategy that addresses an optimal stabilizing problem for unknown nonlinear systems subject to uncertain... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4330 |
SubjectTerms | Actuators Adaptive dynamic programming (ADP) Algorithms Artificial neural networks Control algorithms Control theory Distance learning Feedback control Feedforward control Feedforward systems Learning Machine learning Neural networks neural networks (NNs) Nonlinear systems Observers Optimal control Reinforcement reinforcement learning (RL) Saturation Stability analysis System dynamics uncertain input constraints unknown nonlinear systems |
Title | Reinforcement Learning-Based Optimal Stabilization for Unknown Nonlinear Systems Subject to Inputs With Uncertain Constraints |
URI | https://ieeexplore.ieee.org/document/8944275 https://www.ncbi.nlm.nih.gov/pubmed/31899437 https://www.proquest.com/docview/2449310444 https://www.proquest.com/docview/2333608899 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PXGhhfJIKchI3CDbxPbG9hEQVUGwSNAVe4ts7xgQkEVs9oLEf2dsJ5FAgLhFsj12NGPP5_E8AB6Q2jCVXke7RuNKydW8NKTnS229DrWwwmcH2UVzsZQvVvPVHjyaYmEQMTmf4Sx-prf89cbvoqnsTBsZqe3DPl3ccqzWZE-pCJc3Ce3yuuElF2o1xshU5uxysXj5NjpymVl62NLiFz2UCqv8HWMmXXN-CK_GVWYXk0-zXe9m_vtvCRz_9zeO4OoAOtnjLCXXYA-763A4FnRgw_4-hh9vMCVS9clmyIbcq-_LJ6Tq1uw1nS5fiAzh0-hRm-M3GXVnyy6a5jq2yHk3LJHMidAZnUvR0MP6DXve0Wxb9u5j_4EG-OyKwGLB0FSmot_egOX5s8unF-VQn6H0Yl73pUHlY2Zbq6ULpO6cInxo6f7BicMq1r_h1N6ooLQNxlkbtLFirQzaebDOiptw0G06vA0Mg8bGYaMqF2Soa2ccBqsQTZA6cF5APXKr9UPy8ri4z226xFSmTRxuI4fbgcMFPJzGfM2pO_7Z-zhyauo5MKmA01Eo2mF3b1uCRIZgsZSygPtTM-3L-NhiO9zsqI8Qook-ZKaAW1mYJtp0jhojhTr585x34AqPt_rkMngKB_23Hd4l6NO7e0nmfwInWQD- |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Nj9MwEB0tywEuLLB8BBYwEpxQuomdxPaBA1-rli1Bglb0lrVTm10BKaKpEEj8E_4K_42xnUQCAbeVuFWKM4ncl5nn8fMMwD0MGzIRS5fXKHScUZ7HEuN8LFQtbMoUq4NAtizG8-z5Il9swffhLIwxxovPzMj99Hv5y1W9camyfSEzZ62TUB6aL59xgbZ-OHmK_-Z9Sg-ezZ6M466HQFyzPG1jaXjtqq8qkWmLLllz5DAKOTLFt-CuRwvF6wW3XCgrtVJWSMWWXBqVW6UVQ7tn4CzyjJyG02FDBifBlUDh-TVNCxpTxhf9qZxE7s_KcvraScfkyG-lCfZL5POtXP7Oan10O9iBH_28BFHLu9Gm1aP6628lI__XibsIFzpaTR6F7-ASbJnmMuz0LStI58F24dsr40vF1j4rSrrqsm_jxxjMl-Ql-s8PaAYZuNMMhxOqBIeTeeOSjw0pQ2URhSZDqXeCntelski7IpMGn7Ymb07aY7yhDmIL4lqi-kYc7foKzE9lEq7CdrNqzHUgxgpTaFPwRNvMpqmW2ljFjZE2E5bSCNIeHVXdlWd3L_e-8su0RFYeUZVDVNUhKoIHwz0fQ3GSf47edcgYRnagiGCvB2HV-a91haRPIvHPsiyCu8Nl9DxuO0k1ZrXBMYyxwqnkZATXAngH2xgppMwYv_HnZ96Bc-PZi2k1nZSHN-E8dTkML5Dcg-3208bcQqLX6tv-eyNwdNo4_QlBKl5r |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reinforcement+Learning-Based+Optimal+Stabilization+for+Unknown+Nonlinear+Systems+Subject+to+Inputs+With+Uncertain+Constraints&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zhao%2C+Bo&rft.au=Liu%2C+Derong&rft.au=Luo%2C+Chaomin&rft.date=2020-10-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=31&rft.issue=10&rft.spage=4330&rft.epage=4340&rft_id=info:doi/10.1109%2FTNNLS.2019.2954983&rft.externalDocID=8944275 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |