Reinforcement Learning-Based Optimal Stabilization for Unknown Nonlinear Systems Subject to Inputs With Uncertain Constraints

This article presents a novel reinforcement learning strategy that addresses an optimal stabilizing problem for unknown nonlinear systems subject to uncertain input constraints. The control algorithm is composed of two parts, i.e., online learning optimal control for the nominal system and feedforwa...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 31; no. 10; pp. 4330 - 4340
Main Authors Zhao, Bo, Liu, Derong, Luo, Chaomin
Format Journal Article
LanguageEnglish
Published United States IEEE 01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article presents a novel reinforcement learning strategy that addresses an optimal stabilizing problem for unknown nonlinear systems subject to uncertain input constraints. The control algorithm is composed of two parts, i.e., online learning optimal control for the nominal system and feedforward neural networks (NNs) compensation for handling uncertain input constraints, which are considered as the saturation nonlinearities. Integrating the input-output data and recurrent NN, a Luenberger observer is established to approximate the unknown system dynamics. For nominal systems without input constraints, the online learning optimal control policy is derived by solving Hamilton-Jacobi-Bellman equation via a critic NN alone. By transforming the uncertain input constraints to saturation nonlinearities, the uncertain input constraints can be compensated by employing a feedforward NN compensator. The convergence of the closed-loop system is guaranteed to be uniformly ultimately bounded by using the Lyapunov stability analysis. Finally, the effectiveness of the developed stabilization scheme is illustrated by simulation studies.
AbstractList This article presents a novel reinforcement learning strategy that addresses an optimal stabilizing problem for unknown nonlinear systems subject to uncertain input constraints. The control algorithm is composed of two parts, i.e., online learning optimal control for the nominal system and feedforward neural networks (NNs) compensation for handling uncertain input constraints, which are considered as the saturation nonlinearities. Integrating the input-output data and recurrent NN, a Luenberger observer is established to approximate the unknown system dynamics. For nominal systems without input constraints, the online learning optimal control policy is derived by solving Hamilton-Jacobi-Bellman equation via a critic NN alone. By transforming the uncertain input constraints to saturation nonlinearities, the uncertain input constraints can be compensated by employing a feedforward NN compensator. The convergence of the closed-loop system is guaranteed to be uniformly ultimately bounded by using the Lyapunov stability analysis. Finally, the effectiveness of the developed stabilization scheme is illustrated by simulation studies.
This article presents a novel reinforcement learning strategy that addresses an optimal stabilizing problem for unknown nonlinear systems subject to uncertain input constraints. The control algorithm is composed of two parts, i.e., online learning optimal control for the nominal system and feedforward neural networks (NNs) compensation for handling uncertain input constraints, which are considered as the saturation nonlinearities. Integrating the input-output data and recurrent NN, a Luenberger observer is established to approximate the unknown system dynamics. For nominal systems without input constraints, the online learning optimal control policy is derived by solving Hamilton-Jacobi-Bellman equation via a critic NN alone. By transforming the uncertain input constraints to saturation nonlinearities, the uncertain input constraints can be compensated by employing a feedforward NN compensator. The convergence of the closed-loop system is guaranteed to be uniformly ultimately bounded by using the Lyapunov stability analysis. Finally, the effectiveness of the developed stabilization scheme is illustrated by simulation studies.This article presents a novel reinforcement learning strategy that addresses an optimal stabilizing problem for unknown nonlinear systems subject to uncertain input constraints. The control algorithm is composed of two parts, i.e., online learning optimal control for the nominal system and feedforward neural networks (NNs) compensation for handling uncertain input constraints, which are considered as the saturation nonlinearities. Integrating the input-output data and recurrent NN, a Luenberger observer is established to approximate the unknown system dynamics. For nominal systems without input constraints, the online learning optimal control policy is derived by solving Hamilton-Jacobi-Bellman equation via a critic NN alone. By transforming the uncertain input constraints to saturation nonlinearities, the uncertain input constraints can be compensated by employing a feedforward NN compensator. The convergence of the closed-loop system is guaranteed to be uniformly ultimately bounded by using the Lyapunov stability analysis. Finally, the effectiveness of the developed stabilization scheme is illustrated by simulation studies.
Author Zhao, Bo
Luo, Chaomin
Liu, Derong
Author_xml – sequence: 1
  givenname: Bo
  orcidid: 0000-0002-7684-7342
  surname: Zhao
  fullname: Zhao, Bo
  email: zhaobo@bnu.edu.cn
  organization: School of Systems Science, Beijing Normal University, Beijing, China
– sequence: 2
  givenname: Derong
  orcidid: 0000-0003-3715-4778
  surname: Liu
  fullname: Liu, Derong
  email: derong@gdut.edu.cn
  organization: School of Automation, Guangdong University of Technology, Guangzhou, China
– sequence: 3
  givenname: Chaomin
  orcidid: 0000-0002-7578-3631
  surname: Luo
  fullname: Luo, Chaomin
  email: chaomin.luo@ece.msstate.edu
  organization: Department of Electrical and Computer Engineering, Mississippi State University, Mississippi State, MS, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31899437$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9rFDEYh4NUbK39AgoS8NLLrPk3k-Soi9XCsgW3RW8hM_uOZp1JtkkGqeB3N9vd9tCDuSSQ53lJfr-X6MgHDwi9pmRGKdHvr5fLxWrGCNUzpmuhFX-GThhtWMW4UkePZ_n9GJ2ltCFlNaRuhH6BjjlVWgsuT9Dfr-B8H2IHI_iMF2Cjd_5H9dEmWOOrbXajHfAq29YN7o_NLnhccHzjf_nw2-Nl8IPzxcKru5RhTHg1tRvoMs4BX_rtlBP-5vLPInQQs3Uez4NPOZZTTq_Q894OCc4O-ym6ufh0Pf9SLa4-X84_LKqO1zRXGmTX1FxbJdqeENpKImpbq5rxTknJJWPlvpG9VLbXrbW90pavpQZb97a1_BSd7-duY7idIGUzutTBMFgPYUqGcc4bokooBX33BN2EKfryOsOE0JwSIUSh3h6oqR1hbbax5BTvzEOwBVB7oIshpQi96Vy-j2_39cFQYnY1mvsaza5Gc6ixqOyJ-jD9v9KbveQA4FFQWggma_4PiZKp8Q
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_TSMC_2021_3105663
crossref_primary_10_1109_TSMC_2021_3071968
crossref_primary_10_1109_TSMC_2023_3298065
crossref_primary_10_1109_TITS_2024_3520328
crossref_primary_10_1109_TSMC_2023_3329848
crossref_primary_10_1016_j_oceaneng_2024_119031
crossref_primary_10_3934_mmc_2023016
crossref_primary_10_1016_j_engappai_2024_108033
crossref_primary_10_3390_e24070889
crossref_primary_10_1007_s11071_023_08419_5
crossref_primary_10_1016_j_neunet_2021_08_012
crossref_primary_10_1002_rnc_5802
crossref_primary_10_1007_s00521_023_09253_x
crossref_primary_10_1109_TNNLS_2022_3224065
crossref_primary_10_1016_j_ejcon_2025_101219
crossref_primary_10_1109_TETCI_2024_3451335
crossref_primary_10_1109_TCYB_2022_3175650
crossref_primary_10_31763_ijrcs_v3i2_997
crossref_primary_10_1016_j_neucom_2022_06_110
crossref_primary_10_1007_s40747_021_00364_3
crossref_primary_10_1002_rnc_7710
crossref_primary_10_1109_TFUZZ_2024_3426510
crossref_primary_10_1016_j_ejcon_2025_101201
crossref_primary_10_1109_TCYB_2023_3251653
crossref_primary_10_1016_j_conengprac_2023_105805
crossref_primary_10_1109_TCST_2022_3227502
crossref_primary_10_1109_TCSI_2021_3121809
crossref_primary_10_1109_TFUZZ_2024_3352590
crossref_primary_10_1109_TSMC_2024_3368026
crossref_primary_10_1109_TNNLS_2022_3177461
crossref_primary_10_1002_rnc_7622
crossref_primary_10_1016_j_robot_2022_104116
crossref_primary_10_1109_TSMC_2020_3042876
crossref_primary_10_1002_rnc_7220
crossref_primary_10_1016_j_neucom_2021_11_002
crossref_primary_10_1002_acs_3832
crossref_primary_10_1109_TIE_2023_3301537
crossref_primary_10_1016_j_neunet_2022_08_010
crossref_primary_10_1016_j_neucom_2022_09_119
crossref_primary_10_1002_rnc_5708
crossref_primary_10_1016_j_neucom_2023_126529
crossref_primary_10_1109_TCYB_2021_3103820
crossref_primary_10_1007_s12555_021_0674_z
crossref_primary_10_1007_s40747_021_00367_0
crossref_primary_10_1109_ACCESS_2020_3040185
crossref_primary_10_1109_TSMC_2024_3449343
crossref_primary_10_1109_JAS_2023_123603
crossref_primary_10_1109_TSMC_2024_3392756
crossref_primary_10_1016_j_neunet_2023_05_001
crossref_primary_10_1007_s11071_022_07603_3
crossref_primary_10_1109_TCYB_2022_3192871
crossref_primary_10_1109_TCYB_2022_3179302
crossref_primary_10_1109_TASE_2023_3322028
crossref_primary_10_1007_s40747_021_00359_0
crossref_primary_10_1016_j_neucom_2023_126964
crossref_primary_10_3390_buildings15060841
crossref_primary_10_1088_1361_6501_ad50f8
crossref_primary_10_1109_TNNLS_2022_3230200
crossref_primary_10_1109_JAS_2024_124227
crossref_primary_10_1002_rnc_6550
crossref_primary_10_3390_aerospace11020149
crossref_primary_10_1007_s10489_024_05631_7
crossref_primary_10_1109_TCSI_2023_3246001
crossref_primary_10_1109_TNNLS_2022_3171828
crossref_primary_10_1109_TNNLS_2022_3224029
crossref_primary_10_1109_TSMC_2023_3342854
crossref_primary_10_1002_oca_3001
crossref_primary_10_1109_TASE_2024_3468614
crossref_primary_10_1016_j_ifacol_2021_04_199
crossref_primary_10_1002_oca_2794
crossref_primary_10_1007_s11071_023_09075_5
crossref_primary_10_1109_TSMC_2023_3247466
crossref_primary_10_1007_s10462_021_10045_9
crossref_primary_10_1109_TSMC_2023_3287480
crossref_primary_10_1016_j_neucom_2024_127421
crossref_primary_10_1016_j_neunet_2020_09_020
crossref_primary_10_3390_app132111923
crossref_primary_10_1109_TNNLS_2022_3172126
crossref_primary_10_1016_j_ins_2024_121782
crossref_primary_10_1007_s12555_023_0460_1
crossref_primary_10_3390_s23177510
crossref_primary_10_1016_j_neucom_2021_01_116
crossref_primary_10_1109_TSMC_2023_3331150
crossref_primary_10_1002_oca_2735
crossref_primary_10_1016_j_isatra_2022_12_003
crossref_primary_10_1016_j_neucom_2023_126502
crossref_primary_10_1016_j_eswa_2023_122944
crossref_primary_10_1109_TCYB_2024_3438288
crossref_primary_10_3934_mbe_2022430
crossref_primary_10_1007_s40747_024_01550_9
crossref_primary_10_1002_rnc_6334
crossref_primary_10_1109_TII_2024_3435512
crossref_primary_10_1109_TCYB_2022_3164977
crossref_primary_10_1109_TNNLS_2024_3379207
crossref_primary_10_1002_oca_3020
crossref_primary_10_1109_TIV_2022_3153352
crossref_primary_10_1109_JSEN_2023_3299329
crossref_primary_10_1109_TFUZZ_2023_3256441
crossref_primary_10_1002_acs_3510
crossref_primary_10_1109_TFUZZ_2023_3273566
crossref_primary_10_3390_a16090404
crossref_primary_10_1016_j_neucom_2023_126973
crossref_primary_10_1049_cth2_12023
Cites_doi 10.1016/j.neunet.2015.08.007
10.1109/TASE.2014.2303139
10.1109/TSMCB.2008.926614
10.1109/TIE.2017.2674633
10.1080/00207721.2017.1296982
10.1016/j.ins.2016.12.016
10.1109/TNN.2005.863416
10.1016/j.neucom.2010.07.005
10.1016/j.ins.2015.09.001
10.1049/iet-cta.2015.1105
10.1109/TASE.2014.2300532
10.1016/j.conengprac.2016.07.014
10.1613/jair.301
10.1109/TNN.2011.2172628
10.1109/TSMCB.2006.883869
10.1109/TCYB.2015.2417170
10.1016/j.ins.2012.07.006
10.1109/TNNLS.2015.2409301
10.1007/s10462-017-9603-1
10.1007/s10462-017-9548-4
10.1109/TNN.2009.2027233
10.1109/TNN.2011.2160968
10.1109/TNNLS.2015.2461452
10.1109/JAS.2017.7510322
10.1016/j.automatica.2014.10.056
10.1109/JAS.2017.7510739
10.1109/TIE.2016.2597763
10.1007/s11071-015-2324-6
10.1109/TSMCB.2004.840124
10.1016/j.neucom.2016.11.041
10.1109/72.914523
10.1016/j.automatica.2014.05.011
10.1016/j.ins.2016.07.051
10.1109/TNN.2008.2000204
10.1109/TNNLS.2016.2586303
10.1109/TNNLS.2013.2280013
10.1016/j.automatica.2016.05.008
10.1080/00207179.2013.848292
10.1109/JAS.2016.7510262
10.1109/TNNLS.2012.2227339
10.1007/s11432-015-5462-z
10.1002/oca.2146
10.1007/978-3-319-50815-3
10.1109/TNNLS.2015.2472974
10.1109/TIE.2019.2914571
10.1049/iet-cta.2016.1383
10.1109/TNNLS.2013.2276571
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2019.2954983
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 4340
ExternalDocumentID 31899437
10_1109_TNNLS_2019_2954983
8944275
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: State Key Laboratory of Synthetical Automation for Process Industries
  grantid: 2019-KF-23-03
  funderid: 10.13039/501100011248
– fundername: Early Career Development Award of SKLMCCS
  grantid: 20180201
– fundername: National Natural Science Foundation of China
  grantid: 61973330; 61603387; 61773075; 61533017; U1501251
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 2019NTST25
  funderid: 10.13039/501100012226
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-9e7c6539a84bf001b7045a58523c8773722c6567f78af9baaf89a3d79ea5faba3
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Fri Jul 11 03:51:01 EDT 2025
Mon Jun 30 06:19:49 EDT 2025
Thu Apr 03 06:53:44 EDT 2025
Tue Jul 01 00:27:32 EDT 2025
Thu Apr 24 23:07:43 EDT 2025
Wed Aug 27 02:31:19 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-9e7c6539a84bf001b7045a58523c8773722c6567f78af9baaf89a3d79ea5faba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7578-3631
0000-0003-3715-4778
0000-0002-7684-7342
PMID 31899437
PQID 2449310444
PQPubID 85436
PageCount 11
ParticipantIDs pubmed_primary_31899437
crossref_citationtrail_10_1109_TNNLS_2019_2954983
ieee_primary_8944275
proquest_miscellaneous_2333608899
proquest_journals_2449310444
crossref_primary_10_1109_TNNLS_2019_2954983
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
werbos (ref3) 1992
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
bellman (ref2) 1957
References_xml – ident: ref35
  doi: 10.1016/j.neunet.2015.08.007
– ident: ref31
  doi: 10.1109/TASE.2014.2303139
– ident: ref5
  doi: 10.1109/TSMCB.2008.926614
– ident: ref20
  doi: 10.1109/TIE.2017.2674633
– ident: ref10
  doi: 10.1080/00207721.2017.1296982
– ident: ref49
  doi: 10.1016/j.ins.2016.12.016
– ident: ref28
  doi: 10.1109/TNN.2005.863416
– ident: ref23
  doi: 10.1016/j.neucom.2010.07.005
– ident: ref45
  doi: 10.1016/j.ins.2015.09.001
– ident: ref25
  doi: 10.1049/iet-cta.2015.1105
– ident: ref34
  doi: 10.1109/TASE.2014.2300532
– ident: ref44
  doi: 10.1016/j.conengprac.2016.07.014
– ident: ref7
  doi: 10.1613/jair.301
– ident: ref22
  doi: 10.1109/TNN.2011.2172628
– ident: ref36
  doi: 10.1109/TSMCB.2006.883869
– ident: ref27
  doi: 10.1109/TCYB.2015.2417170
– ident: ref18
  doi: 10.1016/j.ins.2012.07.006
– ident: ref41
  doi: 10.1109/TNNLS.2015.2409301
– ident: ref12
  doi: 10.1007/s10462-017-9603-1
– ident: ref15
  doi: 10.1007/s10462-017-9548-4
– ident: ref47
  doi: 10.1109/TNN.2009.2027233
– ident: ref16
  doi: 10.1109/TNN.2011.2160968
– ident: ref11
  doi: 10.1109/TNNLS.2015.2461452
– ident: ref40
  doi: 10.1109/JAS.2017.7510322
– ident: ref48
  doi: 10.1016/j.automatica.2014.10.056
– ident: ref42
  doi: 10.1109/JAS.2017.7510739
– ident: ref33
  doi: 10.1109/TIE.2016.2597763
– year: 1957
  ident: ref2
  publication-title: Dynamic Programming
– ident: ref24
  doi: 10.1007/s11071-015-2324-6
– ident: ref26
  doi: 10.1109/TSMCB.2004.840124
– ident: ref38
  doi: 10.1016/j.neucom.2016.11.041
– ident: ref6
  doi: 10.1109/72.914523
– ident: ref9
  doi: 10.1016/j.automatica.2014.05.011
– ident: ref46
  doi: 10.1016/j.ins.2016.07.051
– ident: ref30
  doi: 10.1109/TNN.2008.2000204
– ident: ref29
  doi: 10.1109/TNNLS.2016.2586303
– ident: ref13
  doi: 10.1109/TNNLS.2013.2280013
– ident: ref21
  doi: 10.1016/j.automatica.2016.05.008
– ident: ref8
  doi: 10.1080/00207179.2013.848292
– ident: ref43
  doi: 10.1109/JAS.2016.7510262
– ident: ref32
  doi: 10.1109/TNNLS.2012.2227339
– ident: ref17
  doi: 10.1007/s11432-015-5462-z
– ident: ref39
  doi: 10.1002/oca.2146
– ident: ref4
  doi: 10.1007/978-3-319-50815-3
– ident: ref19
  doi: 10.1109/TNNLS.2015.2472974
– ident: ref1
  doi: 10.1109/TIE.2019.2914571
– year: 1992
  ident: ref3
  article-title: Approximate dynamic programming for real-time control and neural modeling
  publication-title: Handbook of Intelligent Control Neural Fuzzy and Adaptive Approaches
– ident: ref14
  doi: 10.1049/iet-cta.2016.1383
– ident: ref37
  doi: 10.1109/TNNLS.2013.2276571
SSID ssj0000605649
Score 2.62061
Snippet This article presents a novel reinforcement learning strategy that addresses an optimal stabilizing problem for unknown nonlinear systems subject to uncertain...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4330
SubjectTerms Actuators
Adaptive dynamic programming (ADP)
Algorithms
Artificial neural networks
Control algorithms
Control theory
Distance learning
Feedback control
Feedforward control
Feedforward systems
Learning
Machine learning
Neural networks
neural networks (NNs)
Nonlinear systems
Observers
Optimal control
Reinforcement
reinforcement learning (RL)
Saturation
Stability analysis
System dynamics
uncertain input constraints
unknown nonlinear systems
Title Reinforcement Learning-Based Optimal Stabilization for Unknown Nonlinear Systems Subject to Inputs With Uncertain Constraints
URI https://ieeexplore.ieee.org/document/8944275
https://www.ncbi.nlm.nih.gov/pubmed/31899437
https://www.proquest.com/docview/2449310444
https://www.proquest.com/docview/2333608899
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PXGhhfJIKchI3CDbxPbG9hEQVUGwSNAVe4ts7xgQkEVs9oLEf2dsJ5FAgLhFsj12NGPP5_E8AB6Q2jCVXke7RuNKydW8NKTnS229DrWwwmcH2UVzsZQvVvPVHjyaYmEQMTmf4Sx-prf89cbvoqnsTBsZqe3DPl3ccqzWZE-pCJc3Ce3yuuElF2o1xshU5uxysXj5NjpymVl62NLiFz2UCqv8HWMmXXN-CK_GVWYXk0-zXe9m_vtvCRz_9zeO4OoAOtnjLCXXYA-763A4FnRgw_4-hh9vMCVS9clmyIbcq-_LJ6Tq1uw1nS5fiAzh0-hRm-M3GXVnyy6a5jq2yHk3LJHMidAZnUvR0MP6DXve0Wxb9u5j_4EG-OyKwGLB0FSmot_egOX5s8unF-VQn6H0Yl73pUHlY2Zbq6ULpO6cInxo6f7BicMq1r_h1N6ooLQNxlkbtLFirQzaebDOiptw0G06vA0Mg8bGYaMqF2Soa2ccBqsQTZA6cF5APXKr9UPy8ri4z226xFSmTRxuI4fbgcMFPJzGfM2pO_7Z-zhyauo5MKmA01Eo2mF3b1uCRIZgsZSygPtTM-3L-NhiO9zsqI8Qook-ZKaAW1mYJtp0jhojhTr585x34AqPt_rkMngKB_23Hd4l6NO7e0nmfwInWQD-
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Nj9MwEB0tywEuLLB8BBYwEpxQuomdxPaBA1-rli1Bglb0lrVTm10BKaKpEEj8E_4K_42xnUQCAbeVuFWKM4ncl5nn8fMMwD0MGzIRS5fXKHScUZ7HEuN8LFQtbMoUq4NAtizG8-z5Il9swffhLIwxxovPzMj99Hv5y1W9camyfSEzZ62TUB6aL59xgbZ-OHmK_-Z9Sg-ezZ6M466HQFyzPG1jaXjtqq8qkWmLLllz5DAKOTLFt-CuRwvF6wW3XCgrtVJWSMWWXBqVW6UVQ7tn4CzyjJyG02FDBifBlUDh-TVNCxpTxhf9qZxE7s_KcvraScfkyG-lCfZL5POtXP7Oan10O9iBH_28BFHLu9Gm1aP6628lI__XibsIFzpaTR6F7-ASbJnmMuz0LStI58F24dsr40vF1j4rSrrqsm_jxxjMl-Ql-s8PaAYZuNMMhxOqBIeTeeOSjw0pQ2URhSZDqXeCntelski7IpMGn7Ymb07aY7yhDmIL4lqi-kYc7foKzE9lEq7CdrNqzHUgxgpTaFPwRNvMpqmW2ljFjZE2E5bSCNIeHVXdlWd3L_e-8su0RFYeUZVDVNUhKoIHwz0fQ3GSf47edcgYRnagiGCvB2HV-a91haRPIvHPsiyCu8Nl9DxuO0k1ZrXBMYyxwqnkZATXAngH2xgppMwYv_HnZ96Bc-PZi2k1nZSHN-E8dTkML5Dcg-3208bcQqLX6tv-eyNwdNo4_QlBKl5r
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reinforcement+Learning-Based+Optimal+Stabilization+for+Unknown+Nonlinear+Systems+Subject+to+Inputs+With+Uncertain+Constraints&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zhao%2C+Bo&rft.au=Liu%2C+Derong&rft.au=Luo%2C+Chaomin&rft.date=2020-10-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=31&rft.issue=10&rft.spage=4330&rft.epage=4340&rft_id=info:doi/10.1109%2FTNNLS.2019.2954983&rft.externalDocID=8944275
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon