Synchronization of Complex Dynamical Networks Subject to Noisy Sampling Interval and Packet Loss

This article focuses on the sampled-data synchronization issue for a class of complex dynamical networks (CDNs) subject to noisy sampling intervals and successive packet losses. The sampling intervals are subject to noisy perturbations, and categorical distribution is used to characterize the sampli...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 33; no. 8; pp. 3216 - 3226
Main Authors Hu, Zhipei, Ren, Hongru, Shi, Peng
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article focuses on the sampled-data synchronization issue for a class of complex dynamical networks (CDNs) subject to noisy sampling intervals and successive packet losses. The sampling intervals are subject to noisy perturbations, and categorical distribution is used to characterize the sampling errors of noisy sampling intervals. By means of the input delay approach, the CDN under consideration is first converted into a delay system with delayed input subject to dual randomness and probability distribution characteristic. To verify the probability distribution characteristic of the delayed input, a novel characterization method is proposed, which is not the same as that of some existing literature. Based on this, a unified framework is then established. By recurring to the techniques of stochastic analysis, a probability-distribution-dependent controller is designed to guarantee the mean-square exponential synchronization of the error dynamical network. Subsequently, a special model is considered where only the lower and upper bounds of delayed input are utilized. Finally, to verify the analysis results and testify the effectiveness and superiority of the designed synchronization algorithm, a numerical example and an example using Chua's circuit are given.
AbstractList This article focuses on the sampled-data synchronization issue for a class of complex dynamical networks (CDNs) subject to noisy sampling intervals and successive packet losses. The sampling intervals are subject to noisy perturbations, and categorical distribution is used to characterize the sampling errors of noisy sampling intervals. By means of the input delay approach, the CDN under consideration is first converted into a delay system with delayed input subject to dual randomness and probability distribution characteristic. To verify the probability distribution characteristic of the delayed input, a novel characterization method is proposed, which is not the same as that of some existing literature. Based on this, a unified framework is then established. By recurring to the techniques of stochastic analysis, a probability-distribution-dependent controller is designed to guarantee the mean-square exponential synchronization of the error dynamical network. Subsequently, a special model is considered where only the lower and upper bounds of delayed input are utilized. Finally, to verify the analysis results and testify the effectiveness and superiority of the designed synchronization algorithm, a numerical example and an example using Chua's circuit are given.
This article focuses on the sampled-data synchronization issue for a class of complex dynamical networks (CDNs) subject to noisy sampling intervals and successive packet losses. The sampling intervals are subject to noisy perturbations, and categorical distribution is used to characterize the sampling errors of noisy sampling intervals. By means of the input delay approach, the CDN under consideration is first converted into a delay system with delayed input subject to dual randomness and probability distribution characteristic. To verify the probability distribution characteristic of the delayed input, a novel characterization method is proposed, which is not the same as that of some existing literature. Based on this, a unified framework is then established. By recurring to the techniques of stochastic analysis, a probability-distribution-dependent controller is designed to guarantee the mean-square exponential synchronization of the error dynamical network. Subsequently, a special model is considered where only the lower and upper bounds of delayed input are utilized. Finally, to verify the analysis results and testify the effectiveness and superiority of the designed synchronization algorithm, a numerical example and an example using Chua's circuit are given.This article focuses on the sampled-data synchronization issue for a class of complex dynamical networks (CDNs) subject to noisy sampling intervals and successive packet losses. The sampling intervals are subject to noisy perturbations, and categorical distribution is used to characterize the sampling errors of noisy sampling intervals. By means of the input delay approach, the CDN under consideration is first converted into a delay system with delayed input subject to dual randomness and probability distribution characteristic. To verify the probability distribution characteristic of the delayed input, a novel characterization method is proposed, which is not the same as that of some existing literature. Based on this, a unified framework is then established. By recurring to the techniques of stochastic analysis, a probability-distribution-dependent controller is designed to guarantee the mean-square exponential synchronization of the error dynamical network. Subsequently, a special model is considered where only the lower and upper bounds of delayed input are utilized. Finally, to verify the analysis results and testify the effectiveness and superiority of the designed synchronization algorithm, a numerical example and an example using Chua's circuit are given.
Author Shi, Peng
Ren, Hongru
Hu, Zhipei
Author_xml – sequence: 1
  givenname: Zhipei
  orcidid: 0000-0001-6494-8608
  surname: Hu
  fullname: Hu, Zhipei
  email: huzhipei5374@126.com
  organization: Department of Electronic and Information Engineering, College of Engineering, Shantou University, Shantou, China
– sequence: 2
  givenname: Hongru
  orcidid: 0000-0002-2524-4533
  surname: Ren
  fullname: Ren, Hongru
  email: renhongru2019@gdut.edu.cn
  organization: School of Automation and the Guangdong Province Key Laboratory of Intelligent Decision and Cooperative Control, Guangdong University of Technology, Guangzhou, China
– sequence: 3
  givenname: Peng
  orcidid: 0000-0001-8218-586X
  surname: Shi
  fullname: Shi, Peng
  email: peng.shi@adelaide.edu.au
  organization: School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33481722$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1vEzEQhi1UREvpHwAJWeLCJWH8tWsfUaBQKQpIKRI343W84HRjp7aXEn49bpP20ANz8RyeZzSe9zk6CjE4hF4SmBIC6t3lYjFfTilQMmUgCAj6BJ1Q0tAJZVIePfTt92N0lvMaajUgGq6eoWPGuCQtpSfox3IX7K8Ug_9rio8Bxx7P4mY7uD_4wy6YjbdmwAtXbmK6yng5dmtnCy4RL6LPO7w0lfXhJ74IxaXflTVhhb8ae-UKnsecX6CnvRmyOzu8p-jb-cfL2efJ_Muni9n7-cQyQcpEGdlQ3limFIhecil47zoiescbQqGlAjqAtu247RU4pQQQQVbCKqAAlrFT9HY_d5vi9ehy0RufrRsGE1wcs6ZcAhWKKVHRN4_QdRxTqNtp2qhWNIpLWanXB2rsNm6lt8lvTNrp-9tVQO4Bm-o_k-u19eXuiCUZP2gC-jYpfZeUvk1KH5KqKn2k3k__r_RqL3nn3IOg6j6cSPYPnBWcaw
CODEN ITNNAL
CitedBy_id crossref_primary_10_1080_00207721_2024_2437672
crossref_primary_10_1109_TNNLS_2022_3167139
crossref_primary_10_1109_TCSII_2021_3079354
crossref_primary_10_1109_TAC_2024_3422090
crossref_primary_10_1109_TNNLS_2023_3304515
crossref_primary_10_1002_rnc_7163
crossref_primary_10_1109_TCNS_2024_3488515
crossref_primary_10_3934_mbe_2023144
crossref_primary_10_1007_s00034_022_02059_7
crossref_primary_10_1109_ACCESS_2023_3270280
crossref_primary_10_1002_rnc_6512
crossref_primary_10_1109_JSYST_2023_3333823
crossref_primary_10_1109_TSMC_2023_3341441
crossref_primary_10_1049_cth2_12676
crossref_primary_10_3390_math12060917
crossref_primary_10_1109_TSMC_2022_3212018
crossref_primary_10_1109_TSMC_2024_3509629
crossref_primary_10_1002_acs_3713
crossref_primary_10_1109_TSMC_2024_3502677
crossref_primary_10_1109_TAC_2023_3282849
crossref_primary_10_1016_j_neunet_2023_02_031
crossref_primary_10_14232_ejqtde_2022_1_49
crossref_primary_10_1109_TCNS_2022_3158817
crossref_primary_10_1115_1_4066121
crossref_primary_10_1016_j_automatica_2022_110806
crossref_primary_10_1016_j_jfranklin_2021_08_015
crossref_primary_10_1109_TCNS_2022_3141696
crossref_primary_10_1002_rnc_5490
crossref_primary_10_1080_00207721_2024_2328776
crossref_primary_10_1016_j_jfranklin_2024_106684
crossref_primary_10_1007_s40815_024_01880_3
crossref_primary_10_1109_TCYB_2022_3233065
Cites_doi 10.1109/TNNLS.2016.2515080
10.1109/TSMCA.2009.2019875
10.1109/TSP.2012.2190599
10.1016/j.amc.2015.03.033
10.1109/TNNLS.2016.2614709
10.1109/9.827351
10.1109/TSMCB.2011.2163797
10.1109/TCSI.2003.818611
10.1109/TNNLS.2013.2253122
10.1002/rnc.2779
10.1109/TAC.2017.2685083
10.1109/TSMC.2016.2563393
10.1109/TAC.2017.2676986
10.1016/j.jfranklin.2019.12.010
10.1109/TNNLS.2015.2412676
10.1002/rnc.3302
10.1109/TPWRS.2015.2485272
10.1016/j.automatica.2015.10.005
10.1002/rnc.3559
10.1016/j.automatica.2009.03.004
10.1016/j.amc.2018.11.017
10.1109/TIE.2019.2928241
10.1016/j.automatica.2018.04.047
10.1016/j.neunet.2013.05.001
10.1007/s10957-011-9917-0
10.1109/TNNLS.2019.2928039
10.1016/j.jfranklin.2017.04.016
10.1016/j.amc.2018.10.088
10.1016/j.automatica.2008.02.028
10.1109/TAC.2012.2190179
10.1038/30918
10.1002/rnc.3087
10.1109/TSMC.2017.2781234
10.1109/TIFS.2014.2299404
10.1109/TSMCB.2008.2007496
10.1016/j.physa.2015.03.065
10.1080/00207721.2014.919426
10.1109/TNNLS.2018.2869375
10.1038/35065725
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2021.3051052
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed

Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 3226
ExternalDocumentID 33481722
10_1109_TNNLS_2021_3051052
9334418
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62003204; 62003093
  funderid: 10.13039/501100001809
– fundername: Shantou University Scientific Research Foundation for Talents
  grantid: NTF19031
  funderid: 10.13039/100009047
– fundername: Australian Research Council
  grantid: DP170102644
  funderid: 10.13039/501100000923
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-9a86246c39905f84854feb15fe461207250b0077b4cf90e9950151d5c90200c33
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Fri Jul 11 09:01:21 EDT 2025
Mon Jun 30 04:13:46 EDT 2025
Thu Jan 02 22:56:24 EST 2025
Tue Jul 01 00:27:37 EDT 2025
Thu Apr 24 23:09:08 EDT 2025
Wed Aug 27 02:23:36 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-9a86246c39905f84854feb15fe461207250b0077b4cf90e9950151d5c90200c33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6494-8608
0000-0002-2524-4533
0000-0001-8218-586X
PMID 33481722
PQID 2697569488
PQPubID 85436
PageCount 11
ParticipantIDs pubmed_primary_33481722
crossref_citationtrail_10_1109_TNNLS_2021_3051052
crossref_primary_10_1109_TNNLS_2021_3051052
ieee_primary_9334418
proquest_miscellaneous_2480259395
proquest_journals_2697569488
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref34
ref37
ref15
ref36
ref14
ref31
ref33
ref11
ref32
ref10
su (ref13) 2015; 259
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
tirandaz (ref7) 2018; 9
hu (ref28) 2020
huang (ref9) 2020; 16
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref21
ref43
yue (ref29) 2009; 39
ref27
ref8
ref4
ref3
wu (ref12) 2013; 24
ref6
yue (ref30) 2009; 39
ref5
murphy (ref35) 2012
ref40
References_xml – ident: ref6
  doi: 10.1109/TNNLS.2016.2515080
– volume: 39
  start-page: 939
  year: 2009
  ident: ref29
  article-title: Stabilization of systems with probabilistic interval input delays and its applications to networked control systems
  publication-title: IEEE Trans Syst Man Cybern A Syst Humans
  doi: 10.1109/TSMCA.2009.2019875
– ident: ref23
  doi: 10.1109/TSP.2012.2190599
– volume: 259
  start-page: 931
  year: 2015
  ident: ref13
  article-title: Mixed ${H}_\infty$ /passive synchronization for complex dynamical networks with sampled-data control
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2015.03.033
– ident: ref14
  doi: 10.1109/TNNLS.2016.2614709
– ident: ref36
  doi: 10.1109/9.827351
– ident: ref22
  doi: 10.1109/TSMCB.2011.2163797
– ident: ref3
  doi: 10.1109/TCSI.2003.818611
– volume: 24
  start-page: 1177
  year: 2013
  ident: ref12
  article-title: Sampled-data exponential synchronization of complex dynamical networks with time-varying coupling delay
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2253122
– year: 2020
  ident: ref28
  article-title: Synchronization of stochastic complex dynamical networks subject to consecutive packet dropouts
  publication-title: IEEE Trans Cybern
– ident: ref39
  doi: 10.1002/rnc.2779
– volume: 16
  start-page: 123
  year: 2020
  ident: ref9
  article-title: $L_{2}$ - $L_\infty$ filtering for networked switched systems with multiple packet dropouts via random switched Lyapunov function
  publication-title: Int J Innov Comput Inf Control
– ident: ref21
  doi: 10.1109/TAC.2017.2685083
– ident: ref24
  doi: 10.1109/TSMC.2016.2563393
– ident: ref26
  doi: 10.1109/TAC.2017.2676986
– ident: ref19
  doi: 10.1016/j.jfranklin.2019.12.010
– ident: ref5
  doi: 10.1109/TNNLS.2015.2412676
– ident: ref38
  doi: 10.1002/rnc.3302
– ident: ref31
  doi: 10.1109/TPWRS.2015.2485272
– ident: ref20
  doi: 10.1016/j.automatica.2015.10.005
– year: 2012
  ident: ref35
  publication-title: Machine Learning A Probabilistic Perspective
– ident: ref25
  doi: 10.1002/rnc.3559
– ident: ref40
  doi: 10.1016/j.automatica.2009.03.004
– ident: ref8
  doi: 10.1016/j.amc.2018.11.017
– ident: ref11
  doi: 10.1109/TIE.2019.2928241
– ident: ref43
  doi: 10.1016/j.automatica.2018.04.047
– ident: ref41
  doi: 10.1016/j.neunet.2013.05.001
– ident: ref33
  doi: 10.1007/s10957-011-9917-0
– ident: ref17
  doi: 10.1109/TNNLS.2019.2928039
– ident: ref27
  doi: 10.1016/j.jfranklin.2017.04.016
– ident: ref16
  doi: 10.1016/j.amc.2018.10.088
– ident: ref18
  doi: 10.1016/j.automatica.2008.02.028
– ident: ref42
  doi: 10.1109/TAC.2012.2190179
– volume: 9
  start-page: 11
  year: 2018
  ident: ref7
  article-title: Master-slave synchronization of zhang and lorenz chaotic systems with uncertain parameters, an active nonlinear feedback controller
  publication-title: ICIC Exp Lett B Appl Int J Res Surv
– ident: ref1
  doi: 10.1038/30918
– ident: ref32
  doi: 10.1002/rnc.3087
– ident: ref15
  doi: 10.1109/TSMC.2017.2781234
– ident: ref4
  doi: 10.1109/TIFS.2014.2299404
– volume: 39
  start-page: 503
  year: 2009
  ident: ref30
  article-title: Delay-distribution-dependent stability and stabilization of T-S fuzzy systems with probabilistic interval delay
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2008.2007496
– ident: ref37
  doi: 10.1016/j.physa.2015.03.065
– ident: ref34
  doi: 10.1080/00207721.2014.919426
– ident: ref10
  doi: 10.1109/TNNLS.2018.2869375
– ident: ref2
  doi: 10.1038/35065725
SSID ssj0000605649
Score 2.5465603
Snippet This article focuses on the sampled-data synchronization issue for a class of complex dynamical networks (CDNs) subject to noisy sampling intervals and...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3216
SubjectTerms Algorithms
Circuits
Complex dynamical networks (CDNs)
Control systems design
Delays
Intervals
Noise measurement
noisy sampling interval
Packet loss
Perturbation
Perturbation methods
Probability distribution
Randomness
Sampling
Sampling error
Stochasticity
successive packet losses
Synchronism
Synchronization
synchronization control
Upper bound
Upper bounds
Title Synchronization of Complex Dynamical Networks Subject to Noisy Sampling Interval and Packet Loss
URI https://ieeexplore.ieee.org/document/9334418
https://www.ncbi.nlm.nih.gov/pubmed/33481722
https://www.proquest.com/docview/2697569488
https://www.proquest.com/docview/2480259395
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT90wDLeAE5cxxjY62JRJ3EYfbZq0zRENEJqgmvRAerfOSVOEQO201yfB_vo56Yc0tCFulZp-2nF-dvyzAQ5EhJKjxRArMoFCkJ-CtZChNYT1hdZKWMd3vizS82vxbSEXa3A4cWGstT75zM7cod_Lr1qzcqGyI3K-afXO12GdHLeeqzXFUyLC5alHuzxOeciTbDFyZCJ1dFUUF3PyBnk8S5waStfFxpNQM87_WpJ8j5X_w02_7JxtweX4wn22yd1s1emZ-f2kluNLv-g1vBrwJzvuFWYb1mzzBrbG3g5smOo78GP-2BhfOLfnabK2Zm7UvX1gJ30Xe7pN0SeRLxnZHxfQYV3LivZ2-cjm6FLVmxvmQ46kzgybin1HMhodu6Df8Bauz06vvp6HQzeG0CQy7kKFjkuSGkI0kaxzkUtRk6GXtRWEkqKMsJR2xYG0MLWKrFKSkEZcSaMIkUYmSd7BRtM2dheYEhnmNRcaEUWsM03AQdfSIOYVR64CiEeBlGYoVe46ZtyX3mWJVOnlWTp5loM8A_gyXfOzL9Tx7OgdJ4xp5CCHAPZHuZfDXF6WPFWZTBVZugA-T6dpFrqtFWxsu6IxIifwqBIlA3jf68t071HNPvz7mXuwyR2lwicV7sNG92tlPxLQ6fQnr-F_APaM9eI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoALLZRHoICRuEG2iWMn8REVqgV2I6TdSnsLY8dBVasEsVmJ8usZOw8JBIhbpEyeM575ZjwPgJciQsnRYogVqUAhyE_BWsjQGsL6QmslrKt3Xhbp_Fx82MjNHryeamGstT75zM7cod_Lr1qzc6GyE3K-yXrnN-Am2X0Z99VaU0QlImSeerzL45SHPMk2Y5VMpE7WRbFYkT_I41niBFG6OTa-DDXj_Bej5Kes_B1wesNzdgDL8ZX7fJPL2a7TM_Pjt26O__tNh3BnQKDsTS8yd2HPNvfgYJzuwIbFfgSfV9eN8a1z-0pN1tbMUV3Z7-xtP8eeblP0aeRbRhrIhXRY17KivdhesxW6ZPXmC_NBRxJohk3FPiGpjY4t6Dfch_Ozd-vTeTjMYwhNIuMuVOiqSVJDmCaSdS5yKWpS9bK2gnBSlBGa0q49kBamVpFVShLWiCtpFGHSyCTJA9hv2sY-AqZEhnnNhUZEEetME3TQtTSIecWRqwDikSGlGZqVu5kZV6V3WiJVen6Wjp_lwM8AXk3XfO1bdfyT-sgxY6Ic-BDA8cj3cljN25KnKpOpIl0XwIvpNK1Dt7mCjW13RCNygo8qUTKAh728TPcexezxn5_5HG7N18tFuXhffHwCt7krsPAphsew333b2acEezr9zEv7T_HJ-Ss
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synchronization+of+Complex+Dynamical+Networks+Subject+to+Noisy+Sampling+Interval+and+Packet+Loss&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Hu%2C+Zhipei&rft.au=Ren%2C+Hongru&rft.au=Shi%2C+Peng&rft.date=2022-08-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=33&rft.issue=8&rft.spage=3216&rft.epage=3226&rft_id=info:doi/10.1109%2FTNNLS.2021.3051052&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2021_3051052
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon