A Dynamic Event-Triggered Approach to Recursive Filtering for Complex Networks With Switching Topologies Subject to Random Sensor Failures

This article deals with the recursive filtering issue for a class of nonlinear complex networks (CNs) with switching topologies, random sensor failures and dynamic event-triggered mechanisms. A Markov chain is utilized to characterize the switching behavior of the network topology. The phenomenon of...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 31; no. 10; pp. 4381 - 4388
Main Authors Li, Qi, Wang, Zidong, Li, Nan, Sheng, Weiguo
Format Journal Article
LanguageEnglish
Published United States IEEE 01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article deals with the recursive filtering issue for a class of nonlinear complex networks (CNs) with switching topologies, random sensor failures and dynamic event-triggered mechanisms. A Markov chain is utilized to characterize the switching behavior of the network topology. The phenomenon of sensor failures occurs in a random way governed by a set of stochastic variables obeying certain probability distributions. In order to save communication cost, a dynamic event-triggered transmission protocol is introduced into the transmission channel from the sensors to the recursive filters. The objective of the addressed problem is to design a set of dynamic event-triggered filters for the underlying CN with a certain guaranteed upper bound (on the filtering error covariance) that is then locally minimized. By employing the induction method, an upper bound is first obtained on the filtering error covariance and subsequently minimized by properly designing the filter parameters. Finally, a simulation example is provided to demonstrate the effectiveness of the proposed filtering scheme.
AbstractList This article deals with the recursive filtering issue for a class of nonlinear complex networks (CNs) with switching topologies, random sensor failures and dynamic event-triggered mechanisms. A Markov chain is utilized to characterize the switching behavior of the network topology. The phenomenon of sensor failures occurs in a random way governed by a set of stochastic variables obeying certain probability distributions. In order to save communication cost, a dynamic event-triggered transmission protocol is introduced into the transmission channel from the sensors to the recursive filters. The objective of the addressed problem is to design a set of dynamic event-triggered filters for the underlying CN with a certain guaranteed upper bound (on the filtering error covariance) that is then locally minimized. By employing the induction method, an upper bound is first obtained on the filtering error covariance and subsequently minimized by properly designing the filter parameters. Finally, a simulation example is provided to demonstrate the effectiveness of the proposed filtering scheme.This article deals with the recursive filtering issue for a class of nonlinear complex networks (CNs) with switching topologies, random sensor failures and dynamic event-triggered mechanisms. A Markov chain is utilized to characterize the switching behavior of the network topology. The phenomenon of sensor failures occurs in a random way governed by a set of stochastic variables obeying certain probability distributions. In order to save communication cost, a dynamic event-triggered transmission protocol is introduced into the transmission channel from the sensors to the recursive filters. The objective of the addressed problem is to design a set of dynamic event-triggered filters for the underlying CN with a certain guaranteed upper bound (on the filtering error covariance) that is then locally minimized. By employing the induction method, an upper bound is first obtained on the filtering error covariance and subsequently minimized by properly designing the filter parameters. Finally, a simulation example is provided to demonstrate the effectiveness of the proposed filtering scheme.
This article deals with the recursive filtering issue for a class of nonlinear complex networks (CNs) with switching topologies, random sensor failures and dynamic event-triggered mechanisms. A Markov chain is utilized to characterize the switching behavior of the network topology. The phenomenon of sensor failures occurs in a random way governed by a set of stochastic variables obeying certain probability distributions. In order to save communication cost, a dynamic event-triggered transmission protocol is introduced into the transmission channel from the sensors to the recursive filters. The objective of the addressed problem is to design a set of dynamic event-triggered filters for the underlying CN with a certain guaranteed upper bound (on the filtering error covariance) that is then locally minimized. By employing the induction method, an upper bound is first obtained on the filtering error covariance and subsequently minimized by properly designing the filter parameters. Finally, a simulation example is provided to demonstrate the effectiveness of the proposed filtering scheme.
Author Li, Nan
Sheng, Weiguo
Li, Qi
Wang, Zidong
Author_xml – sequence: 1
  givenname: Qi
  surname: Li
  fullname: Li, Qi
  organization: Institute of Service Engineering, Hangzhou Normal University, Hangzhou, China
– sequence: 2
  givenname: Zidong
  orcidid: 0000-0002-9576-7401
  surname: Wang
  fullname: Wang, Zidong
  email: zidong.wang@brunel.ac.uk
  organization: Department of Computer Science, Brunel University London, London, U.K
– sequence: 3
  givenname: Nan
  surname: Li
  fullname: Li, Nan
  organization: School of Information Science and Technology, Donghua University, Shanghai, China
– sequence: 4
  givenname: Weiguo
  surname: Sheng
  fullname: Sheng, Weiguo
  email: weiguouk@hotmail.com
  organization: Institute of Service Engineering, Hangzhou Normal University, Hangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31831444$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtvEzEUhS1UREvpHwAJWWLDZoIf87CXUWgAKQoSCYLdyOO5kzjM2FPb09K_wK9m8iCLLvDGXnzn-Nx7XqIL6ywg9JqSCaVEflgvl4vVhBEqJ0xmVKbiGbpiNGcJ40JcnN_Fz0t0E8KOjCcnWZ7KF-iSU8FpmqZX6M8Uf3y0qjMa396Djcnam80GPNR42vfeKb3F0eFvoAcfzD3guWkjeGM3uHEez1zXt_AbLyE-OP8r4B8mbvHqwUS93TNr17vWbQwEvBqqHeh4cFO2dh1egQ2jx1yZdvAQXqHnjWoD3Jzua_R9fruefU4WXz99mU0XieYZjYmUEhSpSUWbRigpFedZIzWvRJFTlVayYVWWZ01BdJ3JAqBimmQpV0SIqio0v0bvj77jeHcDhFh2JmhoW2XBDaFknBeEUCbEiL57gu7c4O2YrmRpKjkZw6Qj9fZEDVUHddl70yn_WP7b8giwI6C9C8FDc0YoKfdtloc2y32b5anNUSSeiLSJKhpnox839n_pm6PUAMD5L3HIy_hfKESuAA
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_TNSE_2023_3309293
crossref_primary_10_1002_acs_3568
crossref_primary_10_1016_j_epsr_2023_109417
crossref_primary_10_1016_j_jfranklin_2024_106838
crossref_primary_10_1002_rnc_6228
crossref_primary_10_1080_00207721_2023_2210131
crossref_primary_10_1109_JSYST_2021_3124082
crossref_primary_10_1109_TNNLS_2020_3027252
crossref_primary_10_1016_j_neucom_2022_10_063
crossref_primary_10_1016_j_automatica_2021_109784
crossref_primary_10_1080_00207721_2021_1929554
crossref_primary_10_1016_j_inffus_2021_06_006
crossref_primary_10_1109_TCYB_2020_3021556
crossref_primary_10_1016_j_ins_2024_121851
crossref_primary_10_1109_TCYB_2022_3152859
crossref_primary_10_1177_01423312221126233
crossref_primary_10_1109_TCYB_2021_3049461
crossref_primary_10_1109_TCYB_2021_3071746
crossref_primary_10_1016_j_automatica_2022_110762
crossref_primary_10_1080_21642583_2021_1975321
crossref_primary_10_1109_TSMC_2023_3326823
crossref_primary_10_1016_j_cnsns_2025_108663
crossref_primary_10_1109_TSMC_2024_3378693
crossref_primary_10_1109_TCST_2022_3175315
crossref_primary_10_1002_mma_9144
crossref_primary_10_1109_TSP_2020_3048245
crossref_primary_10_1109_TNNLS_2020_3027467
crossref_primary_10_1016_j_amc_2022_127413
crossref_primary_10_1109_TNNLS_2021_3105409
crossref_primary_10_1109_TSIPN_2020_3039395
crossref_primary_10_1109_JAS_2024_124338
crossref_primary_10_1109_TCST_2022_3180942
crossref_primary_10_1016_j_neucom_2021_05_052
crossref_primary_10_1109_JSYST_2024_3357901
crossref_primary_10_1109_TSMC_2021_3098025
crossref_primary_10_1109_TSP_2020_3042947
crossref_primary_10_1109_TSMC_2022_3163394
crossref_primary_10_3390_math12182957
crossref_primary_10_1109_TNSE_2021_3137320
crossref_primary_10_1109_TSIPN_2021_3074882
crossref_primary_10_1109_TNNLS_2021_3070797
crossref_primary_10_1109_TSMC_2022_3221641
crossref_primary_10_1109_TSIPN_2023_3341410
crossref_primary_10_1109_TNNLS_2023_3308192
crossref_primary_10_1016_j_automatica_2021_109847
crossref_primary_10_53941_ijndi_2024_100023
crossref_primary_10_1109_JAS_2022_105581
crossref_primary_10_1109_TSMC_2021_3050370
crossref_primary_10_1016_j_neucom_2021_07_069
crossref_primary_10_1016_j_jfranklin_2022_01_033
crossref_primary_10_1002_rnc_5368
crossref_primary_10_1002_rnc_6732
crossref_primary_10_1016_j_neucom_2021_03_081
crossref_primary_10_1109_JAS_2023_123957
crossref_primary_10_1109_TCYB_2022_3222628
crossref_primary_10_1016_j_measurement_2021_110197
crossref_primary_10_1016_j_neucom_2022_05_063
crossref_primary_10_1016_j_cnsns_2023_107528
crossref_primary_10_1016_j_cnsns_2022_106618
crossref_primary_10_1080_00207721_2021_1995528
crossref_primary_10_1109_TSP_2020_3042951
crossref_primary_10_1109_TCSI_2023_3329638
crossref_primary_10_1007_s12559_021_09894_x
crossref_primary_10_1016_j_neucom_2021_04_043
crossref_primary_10_1155_2020_5825341
crossref_primary_10_1016_j_jfranklin_2024_107251
crossref_primary_10_1109_ACCESS_2020_3046522
crossref_primary_10_1109_TNSE_2021_3058220
crossref_primary_10_1016_j_jfranklin_2022_05_026
crossref_primary_10_1109_JAS_2022_105572
crossref_primary_10_1109_TNSE_2021_3076113
crossref_primary_10_1016_j_inffus_2023_02_032
crossref_primary_10_1016_j_neucom_2022_07_052
crossref_primary_10_1109_TNSE_2024_3384509
crossref_primary_10_1109_JAS_2021_1003826
Cites_doi 10.1109/TNNLS.2018.2790982
10.1126/science.aad9029
10.1109/TNNLS.2018.2839020
10.1109/TCYB.2017.2653242
10.1002/rnc.1537
10.1109/TCYB.2018.2818941
10.1109/TAC.2006.872760
10.1109/TSMC.2019.2899366
10.1002/rnc.1811
10.1109/TAC.2014.2366855
10.1109/TCYB.2019.2921733
10.1109/TAC.2012.2206694
10.1016/j.amc.2017.09.048
10.1109/TNNLS.2018.2812098
10.1109/TCYB.2018.2877161
10.1109/TCYB.2019.2918760
10.1109/TNNLS.2018.2854841
10.1109/TNNLS.2018.2885723
10.1109/TCYB.2017.2740309
10.1016/j.jfranklin.2018.04.029
10.1016/S0165-1684(97)00126-6
10.1016/j.physrep.2005.10.009
10.1016/j.amc.2019.01.067
10.1109/TAC.2019.2910167
10.1002/rnc.4535
10.1016/j.automatica.2019.01.020
10.1109/TNNLS.2019.2927595
10.1103/PhysRevLett.86.5632
10.1109/TETCI.2018.2829906
10.1111/j.1749-6632.2010.05888.x
10.1523/JNEUROSCI.2874-10.2010
10.1109/TSMC.2017.2720121
10.1109/TSMC.2017.2704278
10.1016/j.physa.2016.06.113
10.1109/TSMC.2018.2874508
10.1109/TAC.2015.2390554
10.1016/j.ins.2019.08.063
10.1109/TNN.2009.2014160
10.1109/TAC.2017.2691303
10.1109/23.589532
10.1016/j.automatica.2018.03.031
10.1016/j.physd.2006.09.012
10.1109/TAC.2017.2707520
10.1109/TAC.2012.2183190
10.1016/j.automatica.2006.11.014
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2019.2951948
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 4388
ExternalDocumentID 31831444
10_1109_TNNLS_2019_2951948
8930992
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Zhejiang Provincial Natural Science Foundation of China
  grantid: LQ20F030014
  funderid: 10.13039/501100004731
– fundername: Alexander von Humboldt Foundation of Germany
  funderid: 10.13039/100005156
– fundername: National Natural Science Foundation of China
  grantid: 61873082; 61873148; 61703093; 61933007; 61573316
  funderid: 10.13039/501100001809
– fundername: Royal Society of the U.K.
  funderid: 10.13039/501100000288
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-999ea0d0b1ff8a99a335f9c3b8761a4b9f2b565f70cd597eeb2c0543a088bb7c3
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Fri Jul 11 08:30:44 EDT 2025
Sun Jun 29 16:04:43 EDT 2025
Thu Apr 03 06:59:10 EDT 2025
Thu Apr 24 23:11:10 EDT 2025
Tue Jul 01 00:27:32 EDT 2025
Wed Aug 27 02:31:19 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-999ea0d0b1ff8a99a335f9c3b8761a4b9f2b565f70cd597eeb2c0543a088bb7c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9576-7401
PMID 31831444
PQID 2449309994
PQPubID 85436
PageCount 8
ParticipantIDs proquest_miscellaneous_2337001288
crossref_primary_10_1109_TNNLS_2019_2951948
proquest_journals_2449309994
pubmed_primary_31831444
crossref_citationtrail_10_1109_TNNLS_2019_2951948
ieee_primary_8930992
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
trabelsi (ref29) 2018
ref46
ref24
ref45
ref23
ref48
ref26
ref47
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref7
ref9
ref4
dong (ref8) 2018; 29
ref3
ref6
ref5
ref40
testolin (ref27) 2018
References_xml – ident: ref39
  doi: 10.1109/TNNLS.2018.2790982
– year: 2018
  ident: ref29
  article-title: Deep complex networks
  publication-title: arXiv 1705 09792 [cs]
– ident: ref2
  doi: 10.1126/science.aad9029
– ident: ref31
  doi: 10.1109/TNNLS.2018.2839020
– ident: ref15
  doi: 10.1109/TCYB.2017.2653242
– ident: ref37
  doi: 10.1002/rnc.1537
– ident: ref13
  doi: 10.1109/TCYB.2018.2818941
– ident: ref47
  doi: 10.1109/TAC.2006.872760
– ident: ref6
  doi: 10.1109/TSMC.2019.2899366
– ident: ref28
  doi: 10.1002/rnc.1811
– ident: ref9
  doi: 10.1109/TAC.2014.2366855
– ident: ref35
  doi: 10.1109/TCYB.2019.2921733
– ident: ref44
  doi: 10.1109/TAC.2012.2206694
– year: 2018
  ident: ref27
  article-title: Deep learning systems as complex networks
  publication-title: arXiv 1809 10941
– ident: ref1
  doi: 10.1016/j.amc.2017.09.048
– ident: ref11
  doi: 10.1109/TNNLS.2018.2812098
– ident: ref38
  doi: 10.1109/TCYB.2018.2877161
– ident: ref10
  doi: 10.1109/TCYB.2019.2918760
– volume: 29
  start-page: 2757
  year: 2018
  ident: ref8
  article-title: Variance-constrained state estimation for complex networks with randomly varying topologies
  publication-title: IEEE Trans Neural Netw Learn Syst
– ident: ref7
  doi: 10.1109/TNNLS.2018.2854841
– ident: ref32
  doi: 10.1109/TNNLS.2018.2885723
– ident: ref33
  doi: 10.1109/TCYB.2017.2740309
– ident: ref17
  doi: 10.1016/j.jfranklin.2018.04.029
– ident: ref23
  doi: 10.1016/S0165-1684(97)00126-6
– ident: ref4
  doi: 10.1016/j.physrep.2005.10.009
– ident: ref25
  doi: 10.1016/j.amc.2019.01.067
– ident: ref48
  doi: 10.1109/TAC.2019.2910167
– ident: ref21
  doi: 10.1002/rnc.4535
– ident: ref16
  doi: 10.1016/j.automatica.2019.01.020
– ident: ref34
  doi: 10.1109/TNNLS.2019.2927595
– ident: ref3
  doi: 10.1103/PhysRevLett.86.5632
– ident: ref12
  doi: 10.1109/TETCI.2018.2829906
– ident: ref26
  doi: 10.1111/j.1749-6632.2010.05888.x
– ident: ref30
  doi: 10.1523/JNEUROSCI.2874-10.2010
– ident: ref20
  doi: 10.1109/TSMC.2017.2720121
– ident: ref43
  doi: 10.1109/TSMC.2017.2704278
– ident: ref5
  doi: 10.1016/j.physa.2016.06.113
– ident: ref46
  doi: 10.1109/TSMC.2018.2874508
– ident: ref19
  doi: 10.1109/TAC.2015.2390554
– ident: ref14
  doi: 10.1016/j.ins.2019.08.063
– ident: ref45
  doi: 10.1109/TNN.2009.2014160
– ident: ref41
  doi: 10.1109/TAC.2017.2691303
– ident: ref24
  doi: 10.1109/23.589532
– ident: ref18
  doi: 10.1016/j.automatica.2018.03.031
– ident: ref22
  doi: 10.1016/j.physd.2006.09.012
– ident: ref36
  doi: 10.1109/TAC.2017.2707520
– ident: ref42
  doi: 10.1109/TAC.2012.2183190
– ident: ref40
  doi: 10.1016/j.automatica.2006.11.014
SSID ssj0000605649
Score 2.582228
Snippet This article deals with the recursive filtering issue for a class of nonlinear complex networks (CNs) with switching topologies, random sensor failures and...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4381
SubjectTerms Complex networks
Complex networks (CNs)
Covariance
dynamic event-triggered mechanisms (ETMs)
Dynamic scheduling
Failure
Filters
Heuristic algorithms
IIR filters
Markov chains
Markov processes
Network topologies
recursive filtering
Recursive methods
sensor failures
Sensors
Stochasticity
Switches
Switching
switching topologies
Topology
Upper bounds
Title A Dynamic Event-Triggered Approach to Recursive Filtering for Complex Networks With Switching Topologies Subject to Random Sensor Failures
URI https://ieeexplore.ieee.org/document/8930992
https://www.ncbi.nlm.nih.gov/pubmed/31831444
https://www.proquest.com/docview/2449309994
https://www.proquest.com/docview/2337001288
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nj9MwEB0te-LCAstHYUFG4gbuJrGTxscKtlohtgfaFb1FtmOzFUuCaCoQP4FfzYydRAgB4lY17rTV2DPv2c8zAM8Rr0lf-4LbQksurcq5FonnxtUyF87KWPHmYlmcX8o3m3xzAC_HuzDOuSA-c1N6Gc7y69buaavsFHMrAhoMuDeQuMW7WuN-SoK4vAhoN0uLjGdithnuyCTqdL1cvl2RkEtNM8QUitr9_JKHQmOVv2PMkGsWR3Ax_MooMfk43Xdmar__VsDxf__GbbjVg042j7PkDhy45i4cDQ0dWL--j-HHnL2OHerZGekg-Rq5-wfq5snmfe1x1rXsHe3Rk-ydLbZ02I7ZjyH2ZWTw2n1jyygt37H32-6Krb5uuyDYZOvYkAG5OcN4RRtAwZpu6vYTWyGfRhsLvSWh_O4eXC7O1q_Oed-sgVuRpx1HoOl0Uicm9b7USmkhcq-sMBhuUy2N8plB8Ohnia2RxDhk9BbhotAY5oyZWXEfDpu2cQ-B5RbfQN5eEvgoC288Js28tFravNZpOYF0cF1l-0rm1FDjugqMJlFVcHdF7q56d0_gxfiZz7GOxz9HH5PbxpG9xyZwMsyQql_quwrxUXiq5ASejY9xkdLJi25cu8cxQszCoSVafhBn1mibgiqyWvnoz9_5GG5mRPGDfvAEDrsve_cEcVBnnoYF8BM51QUc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELam7QFe2GD8KBtgJN4gXRI7afxYwaoCbR5oJvoW2Y4NFVsy0VRD_An81dzZSYQQIN6qxr22Ovvu--zPd4S8ALzGbWXTQKeSB1yLJJAstIEyFU-Y0dxXvFnm6fyCv1sn6z3yargLY4xx4jMzxpfuLL9q9A63ys4gtwKggYB7AHk_ifxtrWFHJQRknjq8G0dpHMRssu5vyYTirMjzxQqlXGIcA6oQ2PDnl0zkWqv8HWW6bDM7JMv-d3qRyZfxrlVj_f23Eo7_-0eOyJ0OdtKpnyd3yZ6p75HDvqUD7Vb4MfkxpW98j3p6jkrIoAD2_gn7edJpV32ctg39gLv0KHynsw0et0P-o4B-KRq8NN9o7sXlW_px036mq5tN6ySbtPAtGYCdU4hYuAXkrMm6aq7oChg12JjJDUrlt_fJxey8eD0PunYNgWZJ1AYANY0Mq1BF1mZSCMlYYoVmCgJuJLkSNlYAH-0k1BXQGAOcXgNgZBICnVITzR6Q_bqpzSNCEw1vAHPPEH5kqVUW0maSacl1UskoG5God12pu1rm2FLjsnScJhSlc3eJ7i47d4_Iy-Ez176Sxz9HH6PbhpGdx0bktJ8hZbfYtyUgJPdU8BF5PjyGZYpnL7I2zQ7GMDZxx5Zg-aGfWYNtDKvAa_njP3_nM3JrXiwX5eJt_v6E3I6R8Ds14SnZb7_uzBNARa166hbDT_bHCGU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Dynamic+Event-Triggered+Approach+to+Recursive+Filtering+for+Complex+Networks+With+Switching+Topologies+Subject+to+Random+Sensor+Failures&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Li%2C+Qi&rft.au=Wang%2C+Zidong&rft.au=Li%2C+Nan&rft.au=Sheng%2C+Weiguo&rft.date=2020-10-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=31&rft.issue=10&rft.spage=4381&rft.epage=4388&rft_id=info:doi/10.1109%2FTNNLS.2019.2951948&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2019_2951948
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon