A Dynamic Event-Triggered Approach to Recursive Filtering for Complex Networks With Switching Topologies Subject to Random Sensor Failures
This article deals with the recursive filtering issue for a class of nonlinear complex networks (CNs) with switching topologies, random sensor failures and dynamic event-triggered mechanisms. A Markov chain is utilized to characterize the switching behavior of the network topology. The phenomenon of...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 31; no. 10; pp. 4381 - 4388 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article deals with the recursive filtering issue for a class of nonlinear complex networks (CNs) with switching topologies, random sensor failures and dynamic event-triggered mechanisms. A Markov chain is utilized to characterize the switching behavior of the network topology. The phenomenon of sensor failures occurs in a random way governed by a set of stochastic variables obeying certain probability distributions. In order to save communication cost, a dynamic event-triggered transmission protocol is introduced into the transmission channel from the sensors to the recursive filters. The objective of the addressed problem is to design a set of dynamic event-triggered filters for the underlying CN with a certain guaranteed upper bound (on the filtering error covariance) that is then locally minimized. By employing the induction method, an upper bound is first obtained on the filtering error covariance and subsequently minimized by properly designing the filter parameters. Finally, a simulation example is provided to demonstrate the effectiveness of the proposed filtering scheme. |
---|---|
AbstractList | This article deals with the recursive filtering issue for a class of nonlinear complex networks (CNs) with switching topologies, random sensor failures and dynamic event-triggered mechanisms. A Markov chain is utilized to characterize the switching behavior of the network topology. The phenomenon of sensor failures occurs in a random way governed by a set of stochastic variables obeying certain probability distributions. In order to save communication cost, a dynamic event-triggered transmission protocol is introduced into the transmission channel from the sensors to the recursive filters. The objective of the addressed problem is to design a set of dynamic event-triggered filters for the underlying CN with a certain guaranteed upper bound (on the filtering error covariance) that is then locally minimized. By employing the induction method, an upper bound is first obtained on the filtering error covariance and subsequently minimized by properly designing the filter parameters. Finally, a simulation example is provided to demonstrate the effectiveness of the proposed filtering scheme.This article deals with the recursive filtering issue for a class of nonlinear complex networks (CNs) with switching topologies, random sensor failures and dynamic event-triggered mechanisms. A Markov chain is utilized to characterize the switching behavior of the network topology. The phenomenon of sensor failures occurs in a random way governed by a set of stochastic variables obeying certain probability distributions. In order to save communication cost, a dynamic event-triggered transmission protocol is introduced into the transmission channel from the sensors to the recursive filters. The objective of the addressed problem is to design a set of dynamic event-triggered filters for the underlying CN with a certain guaranteed upper bound (on the filtering error covariance) that is then locally minimized. By employing the induction method, an upper bound is first obtained on the filtering error covariance and subsequently minimized by properly designing the filter parameters. Finally, a simulation example is provided to demonstrate the effectiveness of the proposed filtering scheme. This article deals with the recursive filtering issue for a class of nonlinear complex networks (CNs) with switching topologies, random sensor failures and dynamic event-triggered mechanisms. A Markov chain is utilized to characterize the switching behavior of the network topology. The phenomenon of sensor failures occurs in a random way governed by a set of stochastic variables obeying certain probability distributions. In order to save communication cost, a dynamic event-triggered transmission protocol is introduced into the transmission channel from the sensors to the recursive filters. The objective of the addressed problem is to design a set of dynamic event-triggered filters for the underlying CN with a certain guaranteed upper bound (on the filtering error covariance) that is then locally minimized. By employing the induction method, an upper bound is first obtained on the filtering error covariance and subsequently minimized by properly designing the filter parameters. Finally, a simulation example is provided to demonstrate the effectiveness of the proposed filtering scheme. |
Author | Li, Nan Sheng, Weiguo Li, Qi Wang, Zidong |
Author_xml | – sequence: 1 givenname: Qi surname: Li fullname: Li, Qi organization: Institute of Service Engineering, Hangzhou Normal University, Hangzhou, China – sequence: 2 givenname: Zidong orcidid: 0000-0002-9576-7401 surname: Wang fullname: Wang, Zidong email: zidong.wang@brunel.ac.uk organization: Department of Computer Science, Brunel University London, London, U.K – sequence: 3 givenname: Nan surname: Li fullname: Li, Nan organization: School of Information Science and Technology, Donghua University, Shanghai, China – sequence: 4 givenname: Weiguo surname: Sheng fullname: Sheng, Weiguo email: weiguouk@hotmail.com organization: Institute of Service Engineering, Hangzhou Normal University, Hangzhou, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31831444$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtvEzEUhS1UREvpHwAJWWLDZoIf87CXUWgAKQoSCYLdyOO5kzjM2FPb09K_wK9m8iCLLvDGXnzn-Nx7XqIL6ywg9JqSCaVEflgvl4vVhBEqJ0xmVKbiGbpiNGcJ40JcnN_Fz0t0E8KOjCcnWZ7KF-iSU8FpmqZX6M8Uf3y0qjMa396Djcnam80GPNR42vfeKb3F0eFvoAcfzD3guWkjeGM3uHEez1zXt_AbLyE-OP8r4B8mbvHqwUS93TNr17vWbQwEvBqqHeh4cFO2dh1egQ2jx1yZdvAQXqHnjWoD3Jzua_R9fruefU4WXz99mU0XieYZjYmUEhSpSUWbRigpFedZIzWvRJFTlVayYVWWZ01BdJ3JAqBimmQpV0SIqio0v0bvj77jeHcDhFh2JmhoW2XBDaFknBeEUCbEiL57gu7c4O2YrmRpKjkZw6Qj9fZEDVUHddl70yn_WP7b8giwI6C9C8FDc0YoKfdtloc2y32b5anNUSSeiLSJKhpnox839n_pm6PUAMD5L3HIy_hfKESuAA |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1109_TNSE_2023_3309293 crossref_primary_10_1002_acs_3568 crossref_primary_10_1016_j_epsr_2023_109417 crossref_primary_10_1016_j_jfranklin_2024_106838 crossref_primary_10_1002_rnc_6228 crossref_primary_10_1080_00207721_2023_2210131 crossref_primary_10_1109_JSYST_2021_3124082 crossref_primary_10_1109_TNNLS_2020_3027252 crossref_primary_10_1016_j_neucom_2022_10_063 crossref_primary_10_1016_j_automatica_2021_109784 crossref_primary_10_1080_00207721_2021_1929554 crossref_primary_10_1016_j_inffus_2021_06_006 crossref_primary_10_1109_TCYB_2020_3021556 crossref_primary_10_1016_j_ins_2024_121851 crossref_primary_10_1109_TCYB_2022_3152859 crossref_primary_10_1177_01423312221126233 crossref_primary_10_1109_TCYB_2021_3049461 crossref_primary_10_1109_TCYB_2021_3071746 crossref_primary_10_1016_j_automatica_2022_110762 crossref_primary_10_1080_21642583_2021_1975321 crossref_primary_10_1109_TSMC_2023_3326823 crossref_primary_10_1016_j_cnsns_2025_108663 crossref_primary_10_1109_TSMC_2024_3378693 crossref_primary_10_1109_TCST_2022_3175315 crossref_primary_10_1002_mma_9144 crossref_primary_10_1109_TSP_2020_3048245 crossref_primary_10_1109_TNNLS_2020_3027467 crossref_primary_10_1016_j_amc_2022_127413 crossref_primary_10_1109_TNNLS_2021_3105409 crossref_primary_10_1109_TSIPN_2020_3039395 crossref_primary_10_1109_JAS_2024_124338 crossref_primary_10_1109_TCST_2022_3180942 crossref_primary_10_1016_j_neucom_2021_05_052 crossref_primary_10_1109_JSYST_2024_3357901 crossref_primary_10_1109_TSMC_2021_3098025 crossref_primary_10_1109_TSP_2020_3042947 crossref_primary_10_1109_TSMC_2022_3163394 crossref_primary_10_3390_math12182957 crossref_primary_10_1109_TNSE_2021_3137320 crossref_primary_10_1109_TSIPN_2021_3074882 crossref_primary_10_1109_TNNLS_2021_3070797 crossref_primary_10_1109_TSMC_2022_3221641 crossref_primary_10_1109_TSIPN_2023_3341410 crossref_primary_10_1109_TNNLS_2023_3308192 crossref_primary_10_1016_j_automatica_2021_109847 crossref_primary_10_53941_ijndi_2024_100023 crossref_primary_10_1109_JAS_2022_105581 crossref_primary_10_1109_TSMC_2021_3050370 crossref_primary_10_1016_j_neucom_2021_07_069 crossref_primary_10_1016_j_jfranklin_2022_01_033 crossref_primary_10_1002_rnc_5368 crossref_primary_10_1002_rnc_6732 crossref_primary_10_1016_j_neucom_2021_03_081 crossref_primary_10_1109_JAS_2023_123957 crossref_primary_10_1109_TCYB_2022_3222628 crossref_primary_10_1016_j_measurement_2021_110197 crossref_primary_10_1016_j_neucom_2022_05_063 crossref_primary_10_1016_j_cnsns_2023_107528 crossref_primary_10_1016_j_cnsns_2022_106618 crossref_primary_10_1080_00207721_2021_1995528 crossref_primary_10_1109_TSP_2020_3042951 crossref_primary_10_1109_TCSI_2023_3329638 crossref_primary_10_1007_s12559_021_09894_x crossref_primary_10_1016_j_neucom_2021_04_043 crossref_primary_10_1155_2020_5825341 crossref_primary_10_1016_j_jfranklin_2024_107251 crossref_primary_10_1109_ACCESS_2020_3046522 crossref_primary_10_1109_TNSE_2021_3058220 crossref_primary_10_1016_j_jfranklin_2022_05_026 crossref_primary_10_1109_JAS_2022_105572 crossref_primary_10_1109_TNSE_2021_3076113 crossref_primary_10_1016_j_inffus_2023_02_032 crossref_primary_10_1016_j_neucom_2022_07_052 crossref_primary_10_1109_TNSE_2024_3384509 crossref_primary_10_1109_JAS_2021_1003826 |
Cites_doi | 10.1109/TNNLS.2018.2790982 10.1126/science.aad9029 10.1109/TNNLS.2018.2839020 10.1109/TCYB.2017.2653242 10.1002/rnc.1537 10.1109/TCYB.2018.2818941 10.1109/TAC.2006.872760 10.1109/TSMC.2019.2899366 10.1002/rnc.1811 10.1109/TAC.2014.2366855 10.1109/TCYB.2019.2921733 10.1109/TAC.2012.2206694 10.1016/j.amc.2017.09.048 10.1109/TNNLS.2018.2812098 10.1109/TCYB.2018.2877161 10.1109/TCYB.2019.2918760 10.1109/TNNLS.2018.2854841 10.1109/TNNLS.2018.2885723 10.1109/TCYB.2017.2740309 10.1016/j.jfranklin.2018.04.029 10.1016/S0165-1684(97)00126-6 10.1016/j.physrep.2005.10.009 10.1016/j.amc.2019.01.067 10.1109/TAC.2019.2910167 10.1002/rnc.4535 10.1016/j.automatica.2019.01.020 10.1109/TNNLS.2019.2927595 10.1103/PhysRevLett.86.5632 10.1109/TETCI.2018.2829906 10.1111/j.1749-6632.2010.05888.x 10.1523/JNEUROSCI.2874-10.2010 10.1109/TSMC.2017.2720121 10.1109/TSMC.2017.2704278 10.1016/j.physa.2016.06.113 10.1109/TSMC.2018.2874508 10.1109/TAC.2015.2390554 10.1016/j.ins.2019.08.063 10.1109/TNN.2009.2014160 10.1109/TAC.2017.2691303 10.1109/23.589532 10.1016/j.automatica.2018.03.031 10.1016/j.physd.2006.09.012 10.1109/TAC.2017.2707520 10.1109/TAC.2012.2183190 10.1016/j.automatica.2006.11.014 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2019.2951948 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 4388 |
ExternalDocumentID | 31831444 10_1109_TNNLS_2019_2951948 8930992 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Zhejiang Provincial Natural Science Foundation of China grantid: LQ20F030014 funderid: 10.13039/501100004731 – fundername: Alexander von Humboldt Foundation of Germany funderid: 10.13039/100005156 – fundername: National Natural Science Foundation of China grantid: 61873082; 61873148; 61703093; 61933007; 61573316 funderid: 10.13039/501100001809 – fundername: Royal Society of the U.K. funderid: 10.13039/501100000288 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c351t-999ea0d0b1ff8a99a335f9c3b8761a4b9f2b565f70cd597eeb2c0543a088bb7c3 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Fri Jul 11 08:30:44 EDT 2025 Sun Jun 29 16:04:43 EDT 2025 Thu Apr 03 06:59:10 EDT 2025 Thu Apr 24 23:11:10 EDT 2025 Tue Jul 01 00:27:32 EDT 2025 Wed Aug 27 02:31:19 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-999ea0d0b1ff8a99a335f9c3b8761a4b9f2b565f70cd597eeb2c0543a088bb7c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9576-7401 |
PMID | 31831444 |
PQID | 2449309994 |
PQPubID | 85436 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2337001288 crossref_primary_10_1109_TNNLS_2019_2951948 proquest_journals_2449309994 pubmed_primary_31831444 crossref_citationtrail_10_1109_TNNLS_2019_2951948 ieee_primary_8930992 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref39 ref17 ref38 ref16 ref19 ref18 trabelsi (ref29) 2018 ref46 ref24 ref45 ref23 ref48 ref26 ref47 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref7 ref9 ref4 dong (ref8) 2018; 29 ref3 ref6 ref5 ref40 testolin (ref27) 2018 |
References_xml | – ident: ref39 doi: 10.1109/TNNLS.2018.2790982 – year: 2018 ident: ref29 article-title: Deep complex networks publication-title: arXiv 1705 09792 [cs] – ident: ref2 doi: 10.1126/science.aad9029 – ident: ref31 doi: 10.1109/TNNLS.2018.2839020 – ident: ref15 doi: 10.1109/TCYB.2017.2653242 – ident: ref37 doi: 10.1002/rnc.1537 – ident: ref13 doi: 10.1109/TCYB.2018.2818941 – ident: ref47 doi: 10.1109/TAC.2006.872760 – ident: ref6 doi: 10.1109/TSMC.2019.2899366 – ident: ref28 doi: 10.1002/rnc.1811 – ident: ref9 doi: 10.1109/TAC.2014.2366855 – ident: ref35 doi: 10.1109/TCYB.2019.2921733 – ident: ref44 doi: 10.1109/TAC.2012.2206694 – year: 2018 ident: ref27 article-title: Deep learning systems as complex networks publication-title: arXiv 1809 10941 – ident: ref1 doi: 10.1016/j.amc.2017.09.048 – ident: ref11 doi: 10.1109/TNNLS.2018.2812098 – ident: ref38 doi: 10.1109/TCYB.2018.2877161 – ident: ref10 doi: 10.1109/TCYB.2019.2918760 – volume: 29 start-page: 2757 year: 2018 ident: ref8 article-title: Variance-constrained state estimation for complex networks with randomly varying topologies publication-title: IEEE Trans Neural Netw Learn Syst – ident: ref7 doi: 10.1109/TNNLS.2018.2854841 – ident: ref32 doi: 10.1109/TNNLS.2018.2885723 – ident: ref33 doi: 10.1109/TCYB.2017.2740309 – ident: ref17 doi: 10.1016/j.jfranklin.2018.04.029 – ident: ref23 doi: 10.1016/S0165-1684(97)00126-6 – ident: ref4 doi: 10.1016/j.physrep.2005.10.009 – ident: ref25 doi: 10.1016/j.amc.2019.01.067 – ident: ref48 doi: 10.1109/TAC.2019.2910167 – ident: ref21 doi: 10.1002/rnc.4535 – ident: ref16 doi: 10.1016/j.automatica.2019.01.020 – ident: ref34 doi: 10.1109/TNNLS.2019.2927595 – ident: ref3 doi: 10.1103/PhysRevLett.86.5632 – ident: ref12 doi: 10.1109/TETCI.2018.2829906 – ident: ref26 doi: 10.1111/j.1749-6632.2010.05888.x – ident: ref30 doi: 10.1523/JNEUROSCI.2874-10.2010 – ident: ref20 doi: 10.1109/TSMC.2017.2720121 – ident: ref43 doi: 10.1109/TSMC.2017.2704278 – ident: ref5 doi: 10.1016/j.physa.2016.06.113 – ident: ref46 doi: 10.1109/TSMC.2018.2874508 – ident: ref19 doi: 10.1109/TAC.2015.2390554 – ident: ref14 doi: 10.1016/j.ins.2019.08.063 – ident: ref45 doi: 10.1109/TNN.2009.2014160 – ident: ref41 doi: 10.1109/TAC.2017.2691303 – ident: ref24 doi: 10.1109/23.589532 – ident: ref18 doi: 10.1016/j.automatica.2018.03.031 – ident: ref22 doi: 10.1016/j.physd.2006.09.012 – ident: ref36 doi: 10.1109/TAC.2017.2707520 – ident: ref42 doi: 10.1109/TAC.2012.2183190 – ident: ref40 doi: 10.1016/j.automatica.2006.11.014 |
SSID | ssj0000605649 |
Score | 2.582228 |
Snippet | This article deals with the recursive filtering issue for a class of nonlinear complex networks (CNs) with switching topologies, random sensor failures and... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4381 |
SubjectTerms | Complex networks Complex networks (CNs) Covariance dynamic event-triggered mechanisms (ETMs) Dynamic scheduling Failure Filters Heuristic algorithms IIR filters Markov chains Markov processes Network topologies recursive filtering Recursive methods sensor failures Sensors Stochasticity Switches Switching switching topologies Topology Upper bounds |
Title | A Dynamic Event-Triggered Approach to Recursive Filtering for Complex Networks With Switching Topologies Subject to Random Sensor Failures |
URI | https://ieeexplore.ieee.org/document/8930992 https://www.ncbi.nlm.nih.gov/pubmed/31831444 https://www.proquest.com/docview/2449309994 https://www.proquest.com/docview/2337001288 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nj9MwEB0te-LCAstHYUFG4gbuJrGTxscKtlohtgfaFb1FtmOzFUuCaCoQP4FfzYydRAgB4lY17rTV2DPv2c8zAM8Rr0lf-4LbQksurcq5FonnxtUyF87KWPHmYlmcX8o3m3xzAC_HuzDOuSA-c1N6Gc7y69buaavsFHMrAhoMuDeQuMW7WuN-SoK4vAhoN0uLjGdithnuyCTqdL1cvl2RkEtNM8QUitr9_JKHQmOVv2PMkGsWR3Ax_MooMfk43Xdmar__VsDxf__GbbjVg042j7PkDhy45i4cDQ0dWL--j-HHnL2OHerZGekg-Rq5-wfq5snmfe1x1rXsHe3Rk-ydLbZ02I7ZjyH2ZWTw2n1jyygt37H32-6Krb5uuyDYZOvYkAG5OcN4RRtAwZpu6vYTWyGfRhsLvSWh_O4eXC7O1q_Oed-sgVuRpx1HoOl0Uicm9b7USmkhcq-sMBhuUy2N8plB8Ohnia2RxDhk9BbhotAY5oyZWXEfDpu2cQ-B5RbfQN5eEvgoC288Js28tFravNZpOYF0cF1l-0rm1FDjugqMJlFVcHdF7q56d0_gxfiZz7GOxz9HH5PbxpG9xyZwMsyQql_quwrxUXiq5ASejY9xkdLJi25cu8cxQszCoSVafhBn1mibgiqyWvnoz9_5GG5mRPGDfvAEDrsve_cEcVBnnoYF8BM51QUc |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELam7QFe2GD8KBtgJN4gXRI7afxYwaoCbR5oJvoW2Y4NFVsy0VRD_An81dzZSYQQIN6qxr22Ovvu--zPd4S8ALzGbWXTQKeSB1yLJJAstIEyFU-Y0dxXvFnm6fyCv1sn6z3yargLY4xx4jMzxpfuLL9q9A63ys4gtwKggYB7AHk_ifxtrWFHJQRknjq8G0dpHMRssu5vyYTirMjzxQqlXGIcA6oQ2PDnl0zkWqv8HWW6bDM7JMv-d3qRyZfxrlVj_f23Eo7_-0eOyJ0OdtKpnyd3yZ6p75HDvqUD7Vb4MfkxpW98j3p6jkrIoAD2_gn7edJpV32ctg39gLv0KHynsw0et0P-o4B-KRq8NN9o7sXlW_px036mq5tN6ySbtPAtGYCdU4hYuAXkrMm6aq7oChg12JjJDUrlt_fJxey8eD0PunYNgWZJ1AYANY0Mq1BF1mZSCMlYYoVmCgJuJLkSNlYAH-0k1BXQGAOcXgNgZBICnVITzR6Q_bqpzSNCEw1vAHPPEH5kqVUW0maSacl1UskoG5God12pu1rm2FLjsnScJhSlc3eJ7i47d4_Iy-Ez176Sxz9HH6PbhpGdx0bktJ8hZbfYtyUgJPdU8BF5PjyGZYpnL7I2zQ7GMDZxx5Zg-aGfWYNtDKvAa_njP3_nM3JrXiwX5eJt_v6E3I6R8Ds14SnZb7_uzBNARa166hbDT_bHCGU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Dynamic+Event-Triggered+Approach+to+Recursive+Filtering+for+Complex+Networks+With+Switching+Topologies+Subject+to+Random+Sensor+Failures&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Li%2C+Qi&rft.au=Wang%2C+Zidong&rft.au=Li%2C+Nan&rft.au=Sheng%2C+Weiguo&rft.date=2020-10-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=31&rft.issue=10&rft.spage=4381&rft.epage=4388&rft_id=info:doi/10.1109%2FTNNLS.2019.2951948&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2019_2951948 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |