Adaptive Neural Control for Robotic Manipulators With Output Constraints and Uncertainties
This paper investigates adaptive neural control methods for robotic manipulators, subject to uncertain plant dynamics and constraints on the joint position. The barrier Lyapunov function is employed to guarantee that the joint constraints are not violated, in which the Moore-Penrose pseudo-inverse t...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 29; no. 11; pp. 5554 - 5564 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.11.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2162-237X 2162-2388 2162-2388 |
DOI | 10.1109/TNNLS.2018.2803827 |
Cover
Loading…
Abstract | This paper investigates adaptive neural control methods for robotic manipulators, subject to uncertain plant dynamics and constraints on the joint position. The barrier Lyapunov function is employed to guarantee that the joint constraints are not violated, in which the Moore-Penrose pseudo-inverse term is used in the control design. To handle the unmodeled dynamics, the neural network (NN) is adopted to approximate the uncertain dynamics. The NN control based on full-state feedback for robots is proposed when all states of the closed loop are known. Subsequently, only the robot joint is measurable in practice; output feedback control is designed with a high-gain observer to estimate unmeasurable states. Through the Lyapunov stability analysis, system stability is achieved with the proposed control, and the system output achieves convergence without violation of the joint constraints. Simulation is conducted to approve the feasibility and superiority of the proposed NN control. |
---|---|
AbstractList | This paper investigates adaptive neural control methods for robotic manipulators, subject to uncertain plant dynamics and constraints on the joint position. The barrier Lyapunov function is employed to guarantee that the joint constraints are not violated, in which the Moore-Penrose pseudo-inverse term is used in the control design. To handle the unmodeled dynamics, the neural network (NN) is adopted to approximate the uncertain dynamics. The NN control based on full-state feedback for robots is proposed when all states of the closed loop are known. Subsequently, only the robot joint is measurable in practice; output feedback control is designed with a high-gain observer to estimate unmeasurable states. Through the Lyapunov stability analysis, system stability is achieved with the proposed control, and the system output achieves convergence without violation of the joint constraints. Simulation is conducted to approve the feasibility and superiority of the proposed NN control. This paper investigates adaptive neural control methods for robotic manipulators, subject to uncertain plant dynamics and constraints on the joint position. The barrier Lyapunov function is employed to guarantee that the joint constraints are not violated, in which the Moore-Penrose pseudo-inverse term is used in the control design. To handle the unmodeled dynamics, the neural network (NN) is adopted to approximate the uncertain dynamics. The NN control based on full-state feedback for robots is proposed when all states of the closed loop are known. Subsequently, only the robot joint is measurable in practice; output feedback control is designed with a high-gain observer to estimate unmeasurable states. Through the Lyapunov stability analysis, system stability is achieved with the proposed control, and the system output achieves convergence without violation of the joint constraints. Simulation is conducted to approve the feasibility and superiority of the proposed NN control.This paper investigates adaptive neural control methods for robotic manipulators, subject to uncertain plant dynamics and constraints on the joint position. The barrier Lyapunov function is employed to guarantee that the joint constraints are not violated, in which the Moore-Penrose pseudo-inverse term is used in the control design. To handle the unmodeled dynamics, the neural network (NN) is adopted to approximate the uncertain dynamics. The NN control based on full-state feedback for robots is proposed when all states of the closed loop are known. Subsequently, only the robot joint is measurable in practice; output feedback control is designed with a high-gain observer to estimate unmeasurable states. Through the Lyapunov stability analysis, system stability is achieved with the proposed control, and the system output achieves convergence without violation of the joint constraints. Simulation is conducted to approve the feasibility and superiority of the proposed NN control. |
Author | Yin, Zhao Zhang, Shuang Peng, Kaixiang Ouyang, Yuncheng Dong, Yiting |
Author_xml | – sequence: 1 givenname: Shuang orcidid: 0000-0002-8314-9286 surname: Zhang fullname: Zhang, Shuang email: zhangshuang.ac@gmail.com organization: School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China – sequence: 2 givenname: Yiting orcidid: 0000-0003-4018-4177 surname: Dong fullname: Dong, Yiting organization: Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA – sequence: 3 givenname: Yuncheng surname: Ouyang fullname: Ouyang, Yuncheng organization: School of Automation Engineering and Center for Robotics, University of Electronic Science and Technology of China, Chengdu, China – sequence: 4 givenname: Zhao surname: Yin fullname: Yin, Zhao organization: School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China – sequence: 5 givenname: Kaixiang orcidid: 0000-0001-8314-3047 surname: Peng fullname: Peng, Kaixiang organization: School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29994076$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtr3DAURkVIadI0fyCBIOimm5nqYeuxDENfMJ1AHrRkI2T7mih4JEeSC_33lTuTLLKoNnqdc7nc7x069MEDQmeULCkl-tPtZrO-WTJC1ZIpwhWTB-iYUcEWjCt1-HKWv47QaUqPpCxBalHpt-iIaa0rIsUxur_s7Jjdb8AbmKId8Cr4HMOA-xDxdWhCdi3-Yb0bp8HmEBP-6fIDvpryOOUZTjla53PC1nf4zrcQ83x3kN6jN70dEpzu9xN09-Xz7erbYn319fvqcr1oeU3zQteqqhSovq4EKEUtBQmy7bvyRGRTfm3DNW0aWtkKtKp7pUVpvqu5lj1p-Qn6uKs7xvA0Qcpm61ILw2A9hCkZRoTiFVWCFvTDK_QxTNGX7gyjjGqhCJWFuthTU7OFzozRbW38Y56nVgC1A9oYUorQm9Zlm908OusGQ4mZMzL_MjJzRmafUVHZK_W5-n-l853kAOBFUJwSwiX_C43DnCw |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1109_TNNLS_2024_3354936 crossref_primary_10_1177_09596518221092865 crossref_primary_10_1109_TMECH_2020_2997801 crossref_primary_10_1109_TMECH_2023_3283507 crossref_primary_10_1109_TSMC_2019_2944900 crossref_primary_10_1016_j_amc_2018_05_060 crossref_primary_10_1109_TSMC_2020_3034757 crossref_primary_10_1049_iet_cta_2020_0165 crossref_primary_10_1088_1757_899X_1116_1_012141 crossref_primary_10_1080_00207179_2020_1866212 crossref_primary_10_1109_TASE_2020_2983225 crossref_primary_10_1109_TCYB_2021_3100764 crossref_primary_10_1016_j_neucom_2024_128265 crossref_primary_10_1109_ACCESS_2021_3122010 crossref_primary_10_1007_s11071_021_06909_y crossref_primary_10_1109_ACCESS_2020_2968925 crossref_primary_10_3390_math11030600 crossref_primary_10_1109_ACCESS_2022_3161134 crossref_primary_10_1002_oca_3207 crossref_primary_10_1002_rnc_5929 crossref_primary_10_1109_TIE_2020_2991997 crossref_primary_10_1007_s00521_023_09281_7 crossref_primary_10_1016_j_ejcon_2021_12_004 crossref_primary_10_1109_TII_2023_3299077 crossref_primary_10_1109_TSMC_2018_2836390 crossref_primary_10_1016_j_neucom_2019_09_028 crossref_primary_10_1016_j_jfranklin_2018_10_023 crossref_primary_10_1109_TCYB_2018_2808321 crossref_primary_10_1109_TVT_2024_3461669 crossref_primary_10_1016_j_chaos_2024_114814 crossref_primary_10_1017_S0263574722001138 crossref_primary_10_1109_TSMC_2022_3147384 crossref_primary_10_1016_j_neucom_2020_05_057 crossref_primary_10_1108_COMPEL_03_2020_0127 crossref_primary_10_1109_TCYB_2022_3158702 crossref_primary_10_1109_ACCESS_2020_2968574 crossref_primary_10_1007_s11227_024_06601_z crossref_primary_10_1016_j_chaos_2024_115691 crossref_primary_10_1016_j_jfranklin_2018_11_028 crossref_primary_10_1016_j_jprocont_2020_03_004 crossref_primary_10_1007_s12206_022_0504_0 crossref_primary_10_1109_TNNLS_2019_2910580 crossref_primary_10_1002_rnc_6498 crossref_primary_10_1016_j_oceaneng_2024_118207 crossref_primary_10_3389_fnbot_2022_913748 crossref_primary_10_1016_j_isatra_2021_02_029 crossref_primary_10_1016_j_asoc_2020_106304 crossref_primary_10_1002_rnc_4852 crossref_primary_10_1007_s11071_020_05569_8 crossref_primary_10_1016_j_apor_2019_101981 crossref_primary_10_1109_TSMC_2018_2882822 crossref_primary_10_1007_s12555_020_0031_7 crossref_primary_10_1007_s12204_022_2460_3 crossref_primary_10_1016_j_jfranklin_2022_04_025 crossref_primary_10_1016_j_autcon_2021_103845 crossref_primary_10_1007_s40815_023_01460_x crossref_primary_10_1109_TFUZZ_2022_3194373 crossref_primary_10_1109_TCYB_2020_3022535 crossref_primary_10_3390_aerospace9070332 crossref_primary_10_3390_s21134261 crossref_primary_10_1109_TSMC_2022_3212988 crossref_primary_10_1088_1361_6641_ad9946 crossref_primary_10_1007_s40998_022_00521_5 crossref_primary_10_1007_s11071_025_11008_3 crossref_primary_10_1109_ACCESS_2020_3043247 crossref_primary_10_1177_01423312221093152 crossref_primary_10_1049_iet_cta_2019_0652 crossref_primary_10_1016_j_neucom_2019_03_043 crossref_primary_10_1109_ACCESS_2018_2805800 crossref_primary_10_1109_TSMC_2019_2963072 crossref_primary_10_1109_LCSYS_2019_2919814 crossref_primary_10_1007_s11071_018_4351_6 crossref_primary_10_1002_rnc_6432 crossref_primary_10_3390_jmse12091545 crossref_primary_10_1109_TNNLS_2019_2934734 crossref_primary_10_1109_TIE_2019_2941136 crossref_primary_10_1109_JAS_2024_124224 crossref_primary_10_1002_rnc_4913 crossref_primary_10_1016_j_amc_2023_128412 crossref_primary_10_1109_TFUZZ_2020_2969909 crossref_primary_10_1002_rnc_7624 crossref_primary_10_1049_cth2_12120 crossref_primary_10_1002_rnc_4915 crossref_primary_10_1109_TASE_2023_3320873 crossref_primary_10_3390_math11132925 crossref_primary_10_1109_TNNLS_2018_2828813 crossref_primary_10_1007_s12555_020_0423_8 crossref_primary_10_1016_j_isatra_2022_04_027 crossref_primary_10_3390_math11234841 crossref_primary_10_3390_s19112555 crossref_primary_10_1016_j_asr_2025_01_061 crossref_primary_10_1016_j_jfranklin_2024_01_027 crossref_primary_10_1109_TIE_2020_3016271 crossref_primary_10_1016_j_neucom_2018_05_061 crossref_primary_10_1109_TFUZZ_2018_2833028 crossref_primary_10_1007_s41315_020_00159_8 crossref_primary_10_1177_00202940221106123 crossref_primary_10_1109_JAS_2023_123882 crossref_primary_10_1109_ACCESS_2020_2966639 crossref_primary_10_1109_ACCESS_2019_2891724 crossref_primary_10_1109_TCYB_2019_2940276 crossref_primary_10_3934_math_2024019 crossref_primary_10_1016_j_jfranklin_2023_04_014 crossref_primary_10_1109_TNNLS_2018_2876685 crossref_primary_10_1109_TCYB_2020_3045786 crossref_primary_10_1109_ACCESS_2023_3314344 crossref_primary_10_1049_cth2_12155 crossref_primary_10_1016_j_oceaneng_2021_110303 crossref_primary_10_1016_j_asoc_2021_108142 crossref_primary_10_1109_JAS_2021_1003937 crossref_primary_10_1016_j_matcom_2020_12_030 crossref_primary_10_1109_TIE_2020_3026297 crossref_primary_10_3390_act11090259 crossref_primary_10_1016_j_isatra_2022_09_030 crossref_primary_10_1002_rnc_6679 crossref_primary_10_1016_j_neucom_2020_03_033 crossref_primary_10_1109_TCYB_2021_3079129 crossref_primary_10_1109_TNNLS_2019_2897847 crossref_primary_10_1016_j_ifacol_2022_07_306 crossref_primary_10_1109_TNNLS_2021_3051946 crossref_primary_10_1016_j_isatra_2024_08_028 crossref_primary_10_1007_s11432_019_2761_y crossref_primary_10_1109_TSMC_2021_3062077 crossref_primary_10_3934_mbe_2023810 crossref_primary_10_1016_j_ast_2021_107055 crossref_primary_10_1007_s10846_021_01377_3 crossref_primary_10_1016_j_ymssp_2020_106869 crossref_primary_10_1109_TSMC_2019_2933050 crossref_primary_10_1002_acs_3362 crossref_primary_10_1049_iet_cta_2018_6030 crossref_primary_10_1109_TCYB_2020_2965657 crossref_primary_10_1109_TSMC_2020_2975232 crossref_primary_10_1109_ACCESS_2023_3338376 crossref_primary_10_1177_1729881420924610 crossref_primary_10_3390_math11194033 crossref_primary_10_1109_TMECH_2020_3037215 crossref_primary_10_1109_TMECH_2020_3033530 crossref_primary_10_1016_j_ejcon_2023_100885 crossref_primary_10_1016_j_neucom_2018_09_032 crossref_primary_10_1109_TSMC_2019_2912900 crossref_primary_10_3390_electronics12214548 crossref_primary_10_1007_s10846_019_01008_y crossref_primary_10_1109_TNNLS_2019_2923241 crossref_primary_10_1109_ACCESS_2019_2950211 crossref_primary_10_1109_TCYB_2020_3006206 crossref_primary_10_1109_TSMC_2019_2944999 crossref_primary_10_1177_09544062231181830 crossref_primary_10_1109_ACCESS_2018_2877206 crossref_primary_10_1016_j_oceaneng_2024_117078 crossref_primary_10_1109_TII_2018_2818120 crossref_primary_10_1109_ACCESS_2020_3030805 crossref_primary_10_1109_TSMC_2018_2855170 crossref_primary_10_1002_asjc_1821 crossref_primary_10_1002_rnc_6982 crossref_primary_10_1007_s40815_024_01820_1 crossref_primary_10_1109_TIE_2019_2912781 crossref_primary_10_1109_ACCESS_2021_3069916 crossref_primary_10_1017_S026357472200176X crossref_primary_10_3390_math11122756 crossref_primary_10_1002_oca_2662 crossref_primary_10_1007_s10483_024_3191_6 crossref_primary_10_1109_TNNLS_2020_3007509 crossref_primary_10_1080_00207721_2023_2213230 crossref_primary_10_1631_FITEE_2300679 crossref_primary_10_1109_TSMC_2018_2843523 crossref_primary_10_1093_jcde_qwaa035 crossref_primary_10_1109_ACCESS_2018_2863037 crossref_primary_10_1109_ACCESS_2019_2902386 crossref_primary_10_1016_j_isatra_2023_07_004 crossref_primary_10_1109_TCYB_2021_3064865 crossref_primary_10_1109_ACCESS_2023_3253575 crossref_primary_10_3390_pr11092785 crossref_primary_10_1177_09596518221080249 crossref_primary_10_1007_s11071_024_10208_7 crossref_primary_10_3233_JIFS_233056 crossref_primary_10_1109_ACCESS_2019_2937908 crossref_primary_10_1177_0142331220979262 crossref_primary_10_1016_j_neucom_2019_07_104 crossref_primary_10_1109_TCYB_2021_3063729 crossref_primary_10_1109_TNNLS_2023_3265321 crossref_primary_10_1007_s42235_022_00268_z crossref_primary_10_1109_TCYB_2019_2921254 crossref_primary_10_1002_rnc_4885 crossref_primary_10_1016_j_isatra_2022_02_013 crossref_primary_10_59782_aai_v1i3_327 crossref_primary_10_1109_TSMC_2020_3018756 crossref_primary_10_1016_j_neucom_2020_10_012 crossref_primary_10_1049_cth2_12416 crossref_primary_10_1155_2019_2386435 crossref_primary_10_1080_00207721_2024_2370301 crossref_primary_10_1002_rnc_7920 crossref_primary_10_1016_j_jfranklin_2022_11_027 crossref_primary_10_1155_2018_2763210 crossref_primary_10_1002_rnc_7122 crossref_primary_10_1109_TCST_2020_2971957 crossref_primary_10_1177_01423312241296968 crossref_primary_10_1109_TSMC_2019_2901277 crossref_primary_10_3390_mi12070799 crossref_primary_10_1109_ACCESS_2022_3210550 crossref_primary_10_1177_09596518221100087 crossref_primary_10_1002_ese3_399 crossref_primary_10_1155_2018_6457354 crossref_primary_10_1109_TASE_2020_3043480 crossref_primary_10_1109_TCYB_2020_3021069 crossref_primary_10_1109_TSMC_2018_2870999 crossref_primary_10_1016_j_oceaneng_2019_01_020 crossref_primary_10_1109_TCYB_2020_2998837 crossref_primary_10_1002_rnc_6143 crossref_primary_10_1007_s42452_020_2236_z crossref_primary_10_1108_AA_12_2018_0264 crossref_primary_10_1109_TSMC_2018_2882734 crossref_primary_10_1007_s11071_019_05139_7 crossref_primary_10_1007_s11071_024_10846_x crossref_primary_10_1109_ACCESS_2019_2949594 crossref_primary_10_1007_s00521_023_09264_8 crossref_primary_10_1098_rsta_2020_0373 crossref_primary_10_1016_j_isatra_2021_04_001 crossref_primary_10_1098_rsta_2020_0372 crossref_primary_10_1155_2018_7928495 crossref_primary_10_1088_1757_899X_1104_1_012001 crossref_primary_10_1109_TIE_2020_2989711 crossref_primary_10_1109_TNNLS_2020_3006850 crossref_primary_10_1109_JSEN_2022_3220246 crossref_primary_10_1016_j_jfranklin_2022_11_009 crossref_primary_10_1109_TCYB_2018_2838573 crossref_primary_10_1007_s11071_022_07686_y crossref_primary_10_1115_1_4055291 crossref_primary_10_1109_TII_2020_2977051 crossref_primary_10_1109_TMECH_2022_3201261 crossref_primary_10_1007_s11071_023_08509_4 crossref_primary_10_1016_j_neucom_2023_126694 crossref_primary_10_1016_j_isatra_2023_08_004 crossref_primary_10_1109_TSMC_2019_2947453 crossref_primary_10_1109_ACCESS_2020_2979795 crossref_primary_10_1109_TSMC_2020_3005433 crossref_primary_10_3934_math_20231164 crossref_primary_10_1007_s11432_019_2764_1 crossref_primary_10_1007_s11432_019_2741_6 crossref_primary_10_1002_rnc_7011 crossref_primary_10_1108_IR_10_2020_0231 |
Cites_doi | 10.1109/TRO.2015.2419873 10.1109/TCST.2013.2286194 10.1109/72.80202 10.1016/j.ins.2015.07.059 10.1080/00207179008934141 10.1109/TII.2016.2612646 10.1109/TNNLS.2014.2305717 10.1109/72.478390 10.1109/TMECH.2017.2721553 10.1002/rnc.3361 10.1109/TNNLS.2014.2335749 10.1109/TSMCB.2012.2198813 10.1109/TNN.2010.2047115 10.1080/00207179.2011.642309 10.1109/TNN.2003.811712 10.1109/TRO.2011.2158251 10.1109/TNNLS.2014.2302477 10.1109/JAS.2017.7510604 10.1109/TSMCB.2006.888661 10.1109/TMECH.2011.2181977 10.1109/TIE.2016.2520906 10.1016/j.ijhydene.2016.09.203 10.1109/TCYB.2017.2720801 10.1109/TNNLS.2017.2673865 10.1109/TSMC.2016.2562506 10.1109/TCST.2012.2183676 10.1109/TIE.2015.2504553 10.1049/iet-cta.2011.0011 10.1016/j.automatica.2011.08.044 10.1016/j.automatica.2014.02.037 10.1109/TNN.2011.2146788 10.1016/j.jfranklin.2014.12.002 10.1109/TSMC.2016.2557223 10.1109/TAC.1987.1104543 10.1016/j.conengprac.2014.12.003 10.1142/3774 10.1109/TAC.2009.2023963 10.1016/j.automatica.2011.01.025 10.1109/TCYB.2014.2329495 10.1016/j.automatica.2007.07.012 10.1016/j.automatica.2008.11.017 10.1016/j.mechatronics.2005.10.002 10.1109/TNNLS.2014.2302475 10.1016/j.renene.2014.03.070 10.1016/j.automatica.2015.10.036 10.1016/S0005-1098(99)00098-9 10.1016/j.renene.2014.02.028 10.1049/iet-cta.2016.1540 10.1109/3477.809035 10.1109/TSMC.2015.2420037 10.1109/TNNLS.2013.2257843 10.1109/TCYB.2016.2573837 10.1016/j.automatica.2015.12.026 10.1109/TCYB.2014.2329931 10.1109/72.485674 10.1109/TNN.2009.2027233 10.1109/TNNLS.2013.2242486 10.1109/TCYB.2013.2262935 10.1109/TSMC.2015.2426131 10.1109/TSMCB.2009.2034073 10.1109/TCST.2013.2271036 10.1109/TRO.2007.892229 10.1109/TNNLS.2014.2330336 10.1109/TIE.2016.2585080 10.1109/TSMCB.2012.2189003 10.1109/TII.2012.2205584 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2018.2803827 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 5564 |
ExternalDocumentID | 29994076 10_1109_TNNLS_2018_2803827 8310037 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Fundamental Research Funds for the China Central Universities of USTB grantid: FRF-BD-17-002A – fundername: National Basic Research Program of China (973 Program) grantid: 2014CB744206 – fundername: National Natural Science Foundation of China grantid: 61473033 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c351t-958448e8f546e881a1e7e7cfde8f07b584ab391bb14a4e985f896407d5397f0c3 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Fri Jul 11 11:40:45 EDT 2025 Mon Jun 30 06:29:38 EDT 2025 Thu Jan 02 22:59:41 EST 2025 Tue Jul 01 00:27:26 EDT 2025 Thu Apr 24 22:51:26 EDT 2025 Wed Aug 27 02:52:48 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-958448e8f546e881a1e7e7cfde8f07b584ab391bb14a4e985f896407d5397f0c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4018-4177 0000-0002-8314-9286 0000-0001-8314-3047 |
PMID | 29994076 |
PQID | 2121968017 |
PQPubID | 85436 |
PageCount | 11 |
ParticipantIDs | pubmed_primary_29994076 proquest_miscellaneous_2068341861 ieee_primary_8310037 proquest_journals_2121968017 crossref_citationtrail_10_1109_TNNLS_2018_2803827 crossref_primary_10_1109_TNNLS_2018_2803827 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-01 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref59 ref15 ref58 ref14 ref52 ref55 ref54 ref10 lewis (ref61) 1999 ref17 ref16 ren (ref31) 2010; 21 ref19 ref18 ref50 ref46 ref45 ref48 ref41 ref44 ref43 ge (ref33) 2001 ref49 sun (ref42) 2009; 54 ref8 ref7 ref4 ref3 ref6 ref5 ioannou (ref73) 1996 ge (ref70) 1998 ref40 dong (ref22) 0 slotine (ref71) 1991 ref35 ref34 ref37 ref36 liu (ref56) 2014; 25 ref75 ref74 ref30 ref2 ref1 ref39 ref38 he (ref11) 0 dai (ref47) 2014; 25 he (ref9) 2016; 66 ref72 ref24 ref67 ref23 tang (ref32) 2014 ref26 ref69 ref25 ref64 ref20 ref63 ref66 ref65 ref21 guo (ref12) 0 ref28 ref27 zhang (ref68) 2013 ref29 hou (ref53) 2010; 40 ref60 ref62 liu (ref51) 2011; 22 |
References_xml | – ident: ref20 doi: 10.1109/TRO.2015.2419873 – ident: ref19 doi: 10.1109/TCST.2013.2286194 – ident: ref34 doi: 10.1109/72.80202 – ident: ref10 doi: 10.1016/j.ins.2015.07.059 – year: 0 ident: ref12 article-title: A grouping particle swarm optimizer with personal-best-position guidance for large scale optimization publication-title: IEEE/ACM Trans Comput Biol Bioinf – ident: ref75 doi: 10.1080/00207179008934141 – ident: ref38 doi: 10.1109/TII.2016.2612646 – volume: 25 start-page: 2129 year: 2014 ident: ref56 article-title: Adaptive neural control for a class of nonlinear time-varying delay systems with unknown hysteresis publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2014.2305717 – ident: ref35 doi: 10.1109/72.478390 – ident: ref6 doi: 10.1109/TMECH.2017.2721553 – ident: ref8 doi: 10.1002/rnc.3361 – ident: ref37 doi: 10.1109/TNNLS.2014.2335749 – ident: ref18 doi: 10.1109/TSMCB.2012.2198813 – volume: 21 start-page: 1339 year: 2010 ident: ref31 article-title: Adaptive neural control for output feedback nonlinear systems using a barrier Lyapunov function publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2010.2047115 – start-page: 2279 year: 2014 ident: ref32 article-title: Adaptive neural network control of uncertain state-constrained nonlinear systems publication-title: Proc 19th IFAC World Congr – ident: ref17 doi: 10.1080/00207179.2011.642309 – ident: ref69 doi: 10.1109/TNN.2003.811712 – ident: ref15 doi: 10.1109/TRO.2011.2158251 – ident: ref41 doi: 10.1109/TNNLS.2014.2302477 – year: 1991 ident: ref71 publication-title: Applied nonlinear control – ident: ref45 doi: 10.1109/JAS.2017.7510604 – ident: ref23 doi: 10.1109/TSMCB.2006.888661 – ident: ref27 doi: 10.1109/TMECH.2011.2181977 – ident: ref1 doi: 10.1109/TIE.2016.2520906 – ident: ref3 doi: 10.1016/j.ijhydene.2016.09.203 – ident: ref46 doi: 10.1109/TCYB.2017.2720801 – ident: ref54 doi: 10.1109/TNNLS.2017.2673865 – ident: ref44 doi: 10.1109/TSMC.2016.2562506 – ident: ref67 doi: 10.1109/TCST.2012.2183676 – ident: ref36 doi: 10.1109/TIE.2015.2504553 – ident: ref65 doi: 10.1049/iet-cta.2011.0011 – ident: ref29 doi: 10.1016/j.automatica.2011.08.044 – ident: ref5 doi: 10.1016/j.automatica.2014.02.037 – volume: 22 start-page: 1162 year: 2011 ident: ref51 article-title: Adaptive neural output feedback tracking control for a class of uncertain discrete-time nonlinear systems publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2011.2146788 – ident: ref2 doi: 10.1016/j.jfranklin.2014.12.002 – ident: ref55 doi: 10.1109/TSMC.2016.2557223 – year: 1999 ident: ref61 publication-title: Neural Network Control of Robot Manipulators and Non-Linear Systems – year: 0 ident: ref11 article-title: PDE model-based boundary control design for a flexible robotic manipulator with input backlash publication-title: IEEE Trans Control Syst Technol – ident: ref72 doi: 10.1109/TAC.1987.1104543 – ident: ref7 doi: 10.1016/j.conengprac.2014.12.003 – year: 1998 ident: ref70 publication-title: Adaptive Neural Network Control of Robotic Manipulators doi: 10.1142/3774 – volume: 54 start-page: 1972 year: 2009 ident: ref42 article-title: An analysis of a neural dynamical approach to solving optimization problems publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.2009.2023963 – ident: ref30 doi: 10.1016/j.automatica.2011.01.025 – ident: ref63 doi: 10.1109/TCYB.2014.2329495 – ident: ref25 doi: 10.1016/j.automatica.2007.07.012 – ident: ref28 doi: 10.1016/j.automatica.2008.11.017 – ident: ref24 doi: 10.1016/j.mechatronics.2005.10.002 – ident: ref50 doi: 10.1109/TNNLS.2014.2302475 – ident: ref13 doi: 10.1016/j.renene.2014.03.070 – year: 0 ident: ref22 article-title: UDE-based variable impedance control of uncertain robot systems publication-title: IEEE Trans Syst Man Cybern Syst – ident: ref57 doi: 10.1016/j.automatica.2015.10.036 – ident: ref74 doi: 10.1016/S0005-1098(99)00098-9 – ident: ref14 doi: 10.1016/j.renene.2014.02.028 – ident: ref21 doi: 10.1049/iet-cta.2016.1540 – year: 1996 ident: ref73 publication-title: Robust Adaptive Control – ident: ref40 doi: 10.1109/3477.809035 – ident: ref58 doi: 10.1109/TSMC.2015.2420037 – volume: 25 start-page: 111 year: 2014 ident: ref47 article-title: Dynamic learning from adaptive neural network control of a class of nonaffine nonlinear systems publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2013.2257843 – ident: ref39 doi: 10.1109/TCYB.2016.2573837 – volume: 66 start-page: 146 year: 2016 ident: ref9 article-title: Cooperative control of a nonuniform gantry crane with constrained tension publication-title: Automatica doi: 10.1016/j.automatica.2015.12.026 – ident: ref59 doi: 10.1109/TCYB.2014.2329931 – ident: ref62 doi: 10.1109/72.485674 – ident: ref49 doi: 10.1109/TNN.2009.2027233 – ident: ref60 doi: 10.1109/TNNLS.2013.2242486 – year: 2001 ident: ref33 publication-title: Stable Adaptive Neural Network Control – ident: ref64 doi: 10.1109/TCYB.2013.2262935 – ident: ref48 doi: 10.1109/TSMC.2015.2426131 – start-page: 51 year: 2013 ident: ref68 article-title: Approximation-based control of an uncertain robot with output constraints publication-title: Proc 3rd IFAC Int Conf Intell Control Autom Sci – volume: 40 start-page: 1075 year: 2010 ident: ref53 article-title: Multicriteria optimization for coordination of redundant robots using a dual neural network publication-title: IEEE Trans Syst Man Cybern B Cybern doi: 10.1109/TSMCB.2009.2034073 – ident: ref43 doi: 10.1109/TCST.2013.2271036 – ident: ref16 doi: 10.1109/TRO.2007.892229 – ident: ref52 doi: 10.1109/TNNLS.2014.2330336 – ident: ref4 doi: 10.1109/TIE.2016.2585080 – ident: ref26 doi: 10.1109/TSMCB.2012.2189003 – ident: ref66 doi: 10.1109/TII.2012.2205584 |
SSID | ssj0000605649 |
Score | 2.647569 |
Snippet | This paper investigates adaptive neural control methods for robotic manipulators, subject to uncertain plant dynamics and constraints on the joint position.... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5554 |
SubjectTerms | Adaptive control Artificial neural networks barrier Lyapunov function (BLF) Computer simulation Constraint modelling constraints Control design Control methods Control stability Feasibility studies Feedback Feedback control Liapunov functions Manipulator dynamics Manipulators Neural networks neural networks (NNs) Output feedback robot Robot arms Robots Stability analysis State feedback Systems stability Uncertainty |
Title | Adaptive Neural Control for Robotic Manipulators With Output Constraints and Uncertainties |
URI | https://ieeexplore.ieee.org/document/8310037 https://www.ncbi.nlm.nih.gov/pubmed/29994076 https://www.proquest.com/docview/2121968017 https://www.proquest.com/docview/2068341861 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PfVCCy2wUJCRuEG2dh6OfawqqqpitxJ01RWXyI4dUYGSqptc-uuZcR6qUEG9RfHYcfLZmc_2PAA-Co2go-KL4krZKE2ciJDV-6jSpZGZRUZvab9jsZTnq_Rina234PPkC-O9D8Znfk6X4SzfNWVHW2XHlBSLJ_k2bOPCrffVmvZTOPJyGdhuLGQcxUm-Hn1kuD6-Wi6_fidDLjWndEyKksg80EMhscq_OWbQNWd7sBh72ZuY_Jp3rZ2X938FcHzqa-zDs4F0spN-lDyHLV-_gL0xoQMb5vcB_Dhx5pb-f4xidmCN096QnSGzZd8a22B9tjD1TUj61dxt2PVN-5Nddi02RMKbkHGi3TBTO7bCNoO9AcVsPYTV2Zer0_NoSL4QlUkm2kgjM0mVV1WWSq-UMMLnPi8rh7d4brHU2EQLa0VqUq9VVilNh4IuQ4ZT8TJ5CTt1U_vXwEqJpM4ryQ0ipFDYZU64mMtK5KZyfAZihKIoh8jk1N3fRVihcF0E-AqCrxjgm8Gnqc5tH5fjv9IHBMMkOSAwg6MR8WKYupsCdTn-lVBxY_GHqRgnHZ2kmNo3HcpwqVD9Kylm8KofKVPbqN81fgf55vFnvoVd6lnvzngEO-1d598hr2nt-zCg_wBVlvJD |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5ROLSXAqWlW6B1pd7aLHYejn1ECLRtdxeJ7qqrXiI7dgSiShCbXPj1jJ2HUNWi3qJ47Dj5bM8Xex4An5hE0FHxBWEhdBBHhgXI6m1QyFzxRCOj126_Yzbnk2X8bZWsNuDL4AtjrfXGZ3bsLv1Zvqnyxm2VHbukWDRKn8EW6v2Etd5aw44KRWbOPd8NGQ-DMEpXvZcMlceL-Xz6w5lyibFLyCRcGplHmsinVvk3y_Ta5nwbZn0_WyOTm3FT63F-_0cIx_99kR142dFOctKOk13YsOUr2O5TOpBuhu_BrxOjbt0KSFzUDqxx2pqyE-S25LLSFdYnM1Ve-7Rf1d2a_Lyur8hFU2NDTnjtc07Ua6JKQ5bYprc4cFFbX8Py_GxxOgm69AtBHiWsDiRyk1hYUSQxt0IwxWxq07wweIumGkuVjiTTmsUqtlIkhZDuWNAkyHEKmkdvYLOsSvsWSM6R1lnBqUKEBAqbxDATUl6wVBWGjoD1UGR5F5vcdfd35v9RqMw8fJmDL-vgG8Hnoc5tG5njSek9B8Mg2SEwgsMe8aybvOsMtTmuS6i6sfjjUIzTzp2lqNJWDcpQLpAACM5GsN-OlKFt1PASvwN_9_dnfoDnk8Vsmk2_zr8fwAvXy9a58RA267vGHiHLqfV7P7gfAB1q9Yw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Neural+Control+for+Robotic+Manipulators+With+Output+Constraints+and+Uncertainties&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zhang%2C+Shuang&rft.au=Dong%2C+Yiting&rft.au=Ouyang%2C+Yuncheng&rft.au=Yin%2C+Zhao&rft.date=2018-11-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=29&rft.issue=11&rft.spage=5554&rft.epage=5564&rft_id=info:doi/10.1109%2FTNNLS.2018.2803827&rft.externalDocID=8310037 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |