Adaptive Neural Control for Robotic Manipulators With Output Constraints and Uncertainties

This paper investigates adaptive neural control methods for robotic manipulators, subject to uncertain plant dynamics and constraints on the joint position. The barrier Lyapunov function is employed to guarantee that the joint constraints are not violated, in which the Moore-Penrose pseudo-inverse t...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 29; no. 11; pp. 5554 - 5564
Main Authors Zhang, Shuang, Dong, Yiting, Ouyang, Yuncheng, Yin, Zhao, Peng, Kaixiang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2018.2803827

Cover

Loading…
Abstract This paper investigates adaptive neural control methods for robotic manipulators, subject to uncertain plant dynamics and constraints on the joint position. The barrier Lyapunov function is employed to guarantee that the joint constraints are not violated, in which the Moore-Penrose pseudo-inverse term is used in the control design. To handle the unmodeled dynamics, the neural network (NN) is adopted to approximate the uncertain dynamics. The NN control based on full-state feedback for robots is proposed when all states of the closed loop are known. Subsequently, only the robot joint is measurable in practice; output feedback control is designed with a high-gain observer to estimate unmeasurable states. Through the Lyapunov stability analysis, system stability is achieved with the proposed control, and the system output achieves convergence without violation of the joint constraints. Simulation is conducted to approve the feasibility and superiority of the proposed NN control.
AbstractList This paper investigates adaptive neural control methods for robotic manipulators, subject to uncertain plant dynamics and constraints on the joint position. The barrier Lyapunov function is employed to guarantee that the joint constraints are not violated, in which the Moore-Penrose pseudo-inverse term is used in the control design. To handle the unmodeled dynamics, the neural network (NN) is adopted to approximate the uncertain dynamics. The NN control based on full-state feedback for robots is proposed when all states of the closed loop are known. Subsequently, only the robot joint is measurable in practice; output feedback control is designed with a high-gain observer to estimate unmeasurable states. Through the Lyapunov stability analysis, system stability is achieved with the proposed control, and the system output achieves convergence without violation of the joint constraints. Simulation is conducted to approve the feasibility and superiority of the proposed NN control.
This paper investigates adaptive neural control methods for robotic manipulators, subject to uncertain plant dynamics and constraints on the joint position. The barrier Lyapunov function is employed to guarantee that the joint constraints are not violated, in which the Moore-Penrose pseudo-inverse term is used in the control design. To handle the unmodeled dynamics, the neural network (NN) is adopted to approximate the uncertain dynamics. The NN control based on full-state feedback for robots is proposed when all states of the closed loop are known. Subsequently, only the robot joint is measurable in practice; output feedback control is designed with a high-gain observer to estimate unmeasurable states. Through the Lyapunov stability analysis, system stability is achieved with the proposed control, and the system output achieves convergence without violation of the joint constraints. Simulation is conducted to approve the feasibility and superiority of the proposed NN control.This paper investigates adaptive neural control methods for robotic manipulators, subject to uncertain plant dynamics and constraints on the joint position. The barrier Lyapunov function is employed to guarantee that the joint constraints are not violated, in which the Moore-Penrose pseudo-inverse term is used in the control design. To handle the unmodeled dynamics, the neural network (NN) is adopted to approximate the uncertain dynamics. The NN control based on full-state feedback for robots is proposed when all states of the closed loop are known. Subsequently, only the robot joint is measurable in practice; output feedback control is designed with a high-gain observer to estimate unmeasurable states. Through the Lyapunov stability analysis, system stability is achieved with the proposed control, and the system output achieves convergence without violation of the joint constraints. Simulation is conducted to approve the feasibility and superiority of the proposed NN control.
Author Yin, Zhao
Zhang, Shuang
Peng, Kaixiang
Ouyang, Yuncheng
Dong, Yiting
Author_xml – sequence: 1
  givenname: Shuang
  orcidid: 0000-0002-8314-9286
  surname: Zhang
  fullname: Zhang, Shuang
  email: zhangshuang.ac@gmail.com
  organization: School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China
– sequence: 2
  givenname: Yiting
  orcidid: 0000-0003-4018-4177
  surname: Dong
  fullname: Dong, Yiting
  organization: Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA
– sequence: 3
  givenname: Yuncheng
  surname: Ouyang
  fullname: Ouyang, Yuncheng
  organization: School of Automation Engineering and Center for Robotics, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 4
  givenname: Zhao
  surname: Yin
  fullname: Yin, Zhao
  organization: School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China
– sequence: 5
  givenname: Kaixiang
  orcidid: 0000-0001-8314-3047
  surname: Peng
  fullname: Peng, Kaixiang
  organization: School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29994076$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtr3DAURkVIadI0fyCBIOimm5nqYeuxDENfMJ1AHrRkI2T7mih4JEeSC_33lTuTLLKoNnqdc7nc7x069MEDQmeULCkl-tPtZrO-WTJC1ZIpwhWTB-iYUcEWjCt1-HKWv47QaUqPpCxBalHpt-iIaa0rIsUxur_s7Jjdb8AbmKId8Cr4HMOA-xDxdWhCdi3-Yb0bp8HmEBP-6fIDvpryOOUZTjla53PC1nf4zrcQ83x3kN6jN70dEpzu9xN09-Xz7erbYn319fvqcr1oeU3zQteqqhSovq4EKEUtBQmy7bvyRGRTfm3DNW0aWtkKtKp7pUVpvqu5lj1p-Qn6uKs7xvA0Qcpm61ILw2A9hCkZRoTiFVWCFvTDK_QxTNGX7gyjjGqhCJWFuthTU7OFzozRbW38Y56nVgC1A9oYUorQm9Zlm908OusGQ4mZMzL_MjJzRmafUVHZK_W5-n-l853kAOBFUJwSwiX_C43DnCw
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_TNNLS_2024_3354936
crossref_primary_10_1177_09596518221092865
crossref_primary_10_1109_TMECH_2020_2997801
crossref_primary_10_1109_TMECH_2023_3283507
crossref_primary_10_1109_TSMC_2019_2944900
crossref_primary_10_1016_j_amc_2018_05_060
crossref_primary_10_1109_TSMC_2020_3034757
crossref_primary_10_1049_iet_cta_2020_0165
crossref_primary_10_1088_1757_899X_1116_1_012141
crossref_primary_10_1080_00207179_2020_1866212
crossref_primary_10_1109_TASE_2020_2983225
crossref_primary_10_1109_TCYB_2021_3100764
crossref_primary_10_1016_j_neucom_2024_128265
crossref_primary_10_1109_ACCESS_2021_3122010
crossref_primary_10_1007_s11071_021_06909_y
crossref_primary_10_1109_ACCESS_2020_2968925
crossref_primary_10_3390_math11030600
crossref_primary_10_1109_ACCESS_2022_3161134
crossref_primary_10_1002_oca_3207
crossref_primary_10_1002_rnc_5929
crossref_primary_10_1109_TIE_2020_2991997
crossref_primary_10_1007_s00521_023_09281_7
crossref_primary_10_1016_j_ejcon_2021_12_004
crossref_primary_10_1109_TII_2023_3299077
crossref_primary_10_1109_TSMC_2018_2836390
crossref_primary_10_1016_j_neucom_2019_09_028
crossref_primary_10_1016_j_jfranklin_2018_10_023
crossref_primary_10_1109_TCYB_2018_2808321
crossref_primary_10_1109_TVT_2024_3461669
crossref_primary_10_1016_j_chaos_2024_114814
crossref_primary_10_1017_S0263574722001138
crossref_primary_10_1109_TSMC_2022_3147384
crossref_primary_10_1016_j_neucom_2020_05_057
crossref_primary_10_1108_COMPEL_03_2020_0127
crossref_primary_10_1109_TCYB_2022_3158702
crossref_primary_10_1109_ACCESS_2020_2968574
crossref_primary_10_1007_s11227_024_06601_z
crossref_primary_10_1016_j_chaos_2024_115691
crossref_primary_10_1016_j_jfranklin_2018_11_028
crossref_primary_10_1016_j_jprocont_2020_03_004
crossref_primary_10_1007_s12206_022_0504_0
crossref_primary_10_1109_TNNLS_2019_2910580
crossref_primary_10_1002_rnc_6498
crossref_primary_10_1016_j_oceaneng_2024_118207
crossref_primary_10_3389_fnbot_2022_913748
crossref_primary_10_1016_j_isatra_2021_02_029
crossref_primary_10_1016_j_asoc_2020_106304
crossref_primary_10_1002_rnc_4852
crossref_primary_10_1007_s11071_020_05569_8
crossref_primary_10_1016_j_apor_2019_101981
crossref_primary_10_1109_TSMC_2018_2882822
crossref_primary_10_1007_s12555_020_0031_7
crossref_primary_10_1007_s12204_022_2460_3
crossref_primary_10_1016_j_jfranklin_2022_04_025
crossref_primary_10_1016_j_autcon_2021_103845
crossref_primary_10_1007_s40815_023_01460_x
crossref_primary_10_1109_TFUZZ_2022_3194373
crossref_primary_10_1109_TCYB_2020_3022535
crossref_primary_10_3390_aerospace9070332
crossref_primary_10_3390_s21134261
crossref_primary_10_1109_TSMC_2022_3212988
crossref_primary_10_1088_1361_6641_ad9946
crossref_primary_10_1007_s40998_022_00521_5
crossref_primary_10_1007_s11071_025_11008_3
crossref_primary_10_1109_ACCESS_2020_3043247
crossref_primary_10_1177_01423312221093152
crossref_primary_10_1049_iet_cta_2019_0652
crossref_primary_10_1016_j_neucom_2019_03_043
crossref_primary_10_1109_ACCESS_2018_2805800
crossref_primary_10_1109_TSMC_2019_2963072
crossref_primary_10_1109_LCSYS_2019_2919814
crossref_primary_10_1007_s11071_018_4351_6
crossref_primary_10_1002_rnc_6432
crossref_primary_10_3390_jmse12091545
crossref_primary_10_1109_TNNLS_2019_2934734
crossref_primary_10_1109_TIE_2019_2941136
crossref_primary_10_1109_JAS_2024_124224
crossref_primary_10_1002_rnc_4913
crossref_primary_10_1016_j_amc_2023_128412
crossref_primary_10_1109_TFUZZ_2020_2969909
crossref_primary_10_1002_rnc_7624
crossref_primary_10_1049_cth2_12120
crossref_primary_10_1002_rnc_4915
crossref_primary_10_1109_TASE_2023_3320873
crossref_primary_10_3390_math11132925
crossref_primary_10_1109_TNNLS_2018_2828813
crossref_primary_10_1007_s12555_020_0423_8
crossref_primary_10_1016_j_isatra_2022_04_027
crossref_primary_10_3390_math11234841
crossref_primary_10_3390_s19112555
crossref_primary_10_1016_j_asr_2025_01_061
crossref_primary_10_1016_j_jfranklin_2024_01_027
crossref_primary_10_1109_TIE_2020_3016271
crossref_primary_10_1016_j_neucom_2018_05_061
crossref_primary_10_1109_TFUZZ_2018_2833028
crossref_primary_10_1007_s41315_020_00159_8
crossref_primary_10_1177_00202940221106123
crossref_primary_10_1109_JAS_2023_123882
crossref_primary_10_1109_ACCESS_2020_2966639
crossref_primary_10_1109_ACCESS_2019_2891724
crossref_primary_10_1109_TCYB_2019_2940276
crossref_primary_10_3934_math_2024019
crossref_primary_10_1016_j_jfranklin_2023_04_014
crossref_primary_10_1109_TNNLS_2018_2876685
crossref_primary_10_1109_TCYB_2020_3045786
crossref_primary_10_1109_ACCESS_2023_3314344
crossref_primary_10_1049_cth2_12155
crossref_primary_10_1016_j_oceaneng_2021_110303
crossref_primary_10_1016_j_asoc_2021_108142
crossref_primary_10_1109_JAS_2021_1003937
crossref_primary_10_1016_j_matcom_2020_12_030
crossref_primary_10_1109_TIE_2020_3026297
crossref_primary_10_3390_act11090259
crossref_primary_10_1016_j_isatra_2022_09_030
crossref_primary_10_1002_rnc_6679
crossref_primary_10_1016_j_neucom_2020_03_033
crossref_primary_10_1109_TCYB_2021_3079129
crossref_primary_10_1109_TNNLS_2019_2897847
crossref_primary_10_1016_j_ifacol_2022_07_306
crossref_primary_10_1109_TNNLS_2021_3051946
crossref_primary_10_1016_j_isatra_2024_08_028
crossref_primary_10_1007_s11432_019_2761_y
crossref_primary_10_1109_TSMC_2021_3062077
crossref_primary_10_3934_mbe_2023810
crossref_primary_10_1016_j_ast_2021_107055
crossref_primary_10_1007_s10846_021_01377_3
crossref_primary_10_1016_j_ymssp_2020_106869
crossref_primary_10_1109_TSMC_2019_2933050
crossref_primary_10_1002_acs_3362
crossref_primary_10_1049_iet_cta_2018_6030
crossref_primary_10_1109_TCYB_2020_2965657
crossref_primary_10_1109_TSMC_2020_2975232
crossref_primary_10_1109_ACCESS_2023_3338376
crossref_primary_10_1177_1729881420924610
crossref_primary_10_3390_math11194033
crossref_primary_10_1109_TMECH_2020_3037215
crossref_primary_10_1109_TMECH_2020_3033530
crossref_primary_10_1016_j_ejcon_2023_100885
crossref_primary_10_1016_j_neucom_2018_09_032
crossref_primary_10_1109_TSMC_2019_2912900
crossref_primary_10_3390_electronics12214548
crossref_primary_10_1007_s10846_019_01008_y
crossref_primary_10_1109_TNNLS_2019_2923241
crossref_primary_10_1109_ACCESS_2019_2950211
crossref_primary_10_1109_TCYB_2020_3006206
crossref_primary_10_1109_TSMC_2019_2944999
crossref_primary_10_1177_09544062231181830
crossref_primary_10_1109_ACCESS_2018_2877206
crossref_primary_10_1016_j_oceaneng_2024_117078
crossref_primary_10_1109_TII_2018_2818120
crossref_primary_10_1109_ACCESS_2020_3030805
crossref_primary_10_1109_TSMC_2018_2855170
crossref_primary_10_1002_asjc_1821
crossref_primary_10_1002_rnc_6982
crossref_primary_10_1007_s40815_024_01820_1
crossref_primary_10_1109_TIE_2019_2912781
crossref_primary_10_1109_ACCESS_2021_3069916
crossref_primary_10_1017_S026357472200176X
crossref_primary_10_3390_math11122756
crossref_primary_10_1002_oca_2662
crossref_primary_10_1007_s10483_024_3191_6
crossref_primary_10_1109_TNNLS_2020_3007509
crossref_primary_10_1080_00207721_2023_2213230
crossref_primary_10_1631_FITEE_2300679
crossref_primary_10_1109_TSMC_2018_2843523
crossref_primary_10_1093_jcde_qwaa035
crossref_primary_10_1109_ACCESS_2018_2863037
crossref_primary_10_1109_ACCESS_2019_2902386
crossref_primary_10_1016_j_isatra_2023_07_004
crossref_primary_10_1109_TCYB_2021_3064865
crossref_primary_10_1109_ACCESS_2023_3253575
crossref_primary_10_3390_pr11092785
crossref_primary_10_1177_09596518221080249
crossref_primary_10_1007_s11071_024_10208_7
crossref_primary_10_3233_JIFS_233056
crossref_primary_10_1109_ACCESS_2019_2937908
crossref_primary_10_1177_0142331220979262
crossref_primary_10_1016_j_neucom_2019_07_104
crossref_primary_10_1109_TCYB_2021_3063729
crossref_primary_10_1109_TNNLS_2023_3265321
crossref_primary_10_1007_s42235_022_00268_z
crossref_primary_10_1109_TCYB_2019_2921254
crossref_primary_10_1002_rnc_4885
crossref_primary_10_1016_j_isatra_2022_02_013
crossref_primary_10_59782_aai_v1i3_327
crossref_primary_10_1109_TSMC_2020_3018756
crossref_primary_10_1016_j_neucom_2020_10_012
crossref_primary_10_1049_cth2_12416
crossref_primary_10_1155_2019_2386435
crossref_primary_10_1080_00207721_2024_2370301
crossref_primary_10_1002_rnc_7920
crossref_primary_10_1016_j_jfranklin_2022_11_027
crossref_primary_10_1155_2018_2763210
crossref_primary_10_1002_rnc_7122
crossref_primary_10_1109_TCST_2020_2971957
crossref_primary_10_1177_01423312241296968
crossref_primary_10_1109_TSMC_2019_2901277
crossref_primary_10_3390_mi12070799
crossref_primary_10_1109_ACCESS_2022_3210550
crossref_primary_10_1177_09596518221100087
crossref_primary_10_1002_ese3_399
crossref_primary_10_1155_2018_6457354
crossref_primary_10_1109_TASE_2020_3043480
crossref_primary_10_1109_TCYB_2020_3021069
crossref_primary_10_1109_TSMC_2018_2870999
crossref_primary_10_1016_j_oceaneng_2019_01_020
crossref_primary_10_1109_TCYB_2020_2998837
crossref_primary_10_1002_rnc_6143
crossref_primary_10_1007_s42452_020_2236_z
crossref_primary_10_1108_AA_12_2018_0264
crossref_primary_10_1109_TSMC_2018_2882734
crossref_primary_10_1007_s11071_019_05139_7
crossref_primary_10_1007_s11071_024_10846_x
crossref_primary_10_1109_ACCESS_2019_2949594
crossref_primary_10_1007_s00521_023_09264_8
crossref_primary_10_1098_rsta_2020_0373
crossref_primary_10_1016_j_isatra_2021_04_001
crossref_primary_10_1098_rsta_2020_0372
crossref_primary_10_1155_2018_7928495
crossref_primary_10_1088_1757_899X_1104_1_012001
crossref_primary_10_1109_TIE_2020_2989711
crossref_primary_10_1109_TNNLS_2020_3006850
crossref_primary_10_1109_JSEN_2022_3220246
crossref_primary_10_1016_j_jfranklin_2022_11_009
crossref_primary_10_1109_TCYB_2018_2838573
crossref_primary_10_1007_s11071_022_07686_y
crossref_primary_10_1115_1_4055291
crossref_primary_10_1109_TII_2020_2977051
crossref_primary_10_1109_TMECH_2022_3201261
crossref_primary_10_1007_s11071_023_08509_4
crossref_primary_10_1016_j_neucom_2023_126694
crossref_primary_10_1016_j_isatra_2023_08_004
crossref_primary_10_1109_TSMC_2019_2947453
crossref_primary_10_1109_ACCESS_2020_2979795
crossref_primary_10_1109_TSMC_2020_3005433
crossref_primary_10_3934_math_20231164
crossref_primary_10_1007_s11432_019_2764_1
crossref_primary_10_1007_s11432_019_2741_6
crossref_primary_10_1002_rnc_7011
crossref_primary_10_1108_IR_10_2020_0231
Cites_doi 10.1109/TRO.2015.2419873
10.1109/TCST.2013.2286194
10.1109/72.80202
10.1016/j.ins.2015.07.059
10.1080/00207179008934141
10.1109/TII.2016.2612646
10.1109/TNNLS.2014.2305717
10.1109/72.478390
10.1109/TMECH.2017.2721553
10.1002/rnc.3361
10.1109/TNNLS.2014.2335749
10.1109/TSMCB.2012.2198813
10.1109/TNN.2010.2047115
10.1080/00207179.2011.642309
10.1109/TNN.2003.811712
10.1109/TRO.2011.2158251
10.1109/TNNLS.2014.2302477
10.1109/JAS.2017.7510604
10.1109/TSMCB.2006.888661
10.1109/TMECH.2011.2181977
10.1109/TIE.2016.2520906
10.1016/j.ijhydene.2016.09.203
10.1109/TCYB.2017.2720801
10.1109/TNNLS.2017.2673865
10.1109/TSMC.2016.2562506
10.1109/TCST.2012.2183676
10.1109/TIE.2015.2504553
10.1049/iet-cta.2011.0011
10.1016/j.automatica.2011.08.044
10.1016/j.automatica.2014.02.037
10.1109/TNN.2011.2146788
10.1016/j.jfranklin.2014.12.002
10.1109/TSMC.2016.2557223
10.1109/TAC.1987.1104543
10.1016/j.conengprac.2014.12.003
10.1142/3774
10.1109/TAC.2009.2023963
10.1016/j.automatica.2011.01.025
10.1109/TCYB.2014.2329495
10.1016/j.automatica.2007.07.012
10.1016/j.automatica.2008.11.017
10.1016/j.mechatronics.2005.10.002
10.1109/TNNLS.2014.2302475
10.1016/j.renene.2014.03.070
10.1016/j.automatica.2015.10.036
10.1016/S0005-1098(99)00098-9
10.1016/j.renene.2014.02.028
10.1049/iet-cta.2016.1540
10.1109/3477.809035
10.1109/TSMC.2015.2420037
10.1109/TNNLS.2013.2257843
10.1109/TCYB.2016.2573837
10.1016/j.automatica.2015.12.026
10.1109/TCYB.2014.2329931
10.1109/72.485674
10.1109/TNN.2009.2027233
10.1109/TNNLS.2013.2242486
10.1109/TCYB.2013.2262935
10.1109/TSMC.2015.2426131
10.1109/TSMCB.2009.2034073
10.1109/TCST.2013.2271036
10.1109/TRO.2007.892229
10.1109/TNNLS.2014.2330336
10.1109/TIE.2016.2585080
10.1109/TSMCB.2012.2189003
10.1109/TII.2012.2205584
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2018.2803827
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 5564
ExternalDocumentID 29994076
10_1109_TNNLS_2018_2803827
8310037
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Fundamental Research Funds for the China Central Universities of USTB
  grantid: FRF-BD-17-002A
– fundername: National Basic Research Program of China (973 Program)
  grantid: 2014CB744206
– fundername: National Natural Science Foundation of China
  grantid: 61473033
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-958448e8f546e881a1e7e7cfde8f07b584ab391bb14a4e985f896407d5397f0c3
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Fri Jul 11 11:40:45 EDT 2025
Mon Jun 30 06:29:38 EDT 2025
Thu Jan 02 22:59:41 EST 2025
Tue Jul 01 00:27:26 EDT 2025
Thu Apr 24 22:51:26 EDT 2025
Wed Aug 27 02:52:48 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-958448e8f546e881a1e7e7cfde8f07b584ab391bb14a4e985f896407d5397f0c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4018-4177
0000-0002-8314-9286
0000-0001-8314-3047
PMID 29994076
PQID 2121968017
PQPubID 85436
PageCount 11
ParticipantIDs pubmed_primary_29994076
proquest_miscellaneous_2068341861
ieee_primary_8310037
proquest_journals_2121968017
crossref_citationtrail_10_1109_TNNLS_2018_2803827
crossref_primary_10_1109_TNNLS_2018_2803827
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref59
ref15
ref58
ref14
ref52
ref55
ref54
ref10
lewis (ref61) 1999
ref17
ref16
ren (ref31) 2010; 21
ref19
ref18
ref50
ref46
ref45
ref48
ref41
ref44
ref43
ge (ref33) 2001
ref49
sun (ref42) 2009; 54
ref8
ref7
ref4
ref3
ref6
ref5
ioannou (ref73) 1996
ge (ref70) 1998
ref40
dong (ref22) 0
slotine (ref71) 1991
ref35
ref34
ref37
ref36
liu (ref56) 2014; 25
ref75
ref74
ref30
ref2
ref1
ref39
ref38
he (ref11) 0
dai (ref47) 2014; 25
he (ref9) 2016; 66
ref72
ref24
ref67
ref23
tang (ref32) 2014
ref26
ref69
ref25
ref64
ref20
ref63
ref66
ref65
ref21
guo (ref12) 0
ref28
ref27
zhang (ref68) 2013
ref29
hou (ref53) 2010; 40
ref60
ref62
liu (ref51) 2011; 22
References_xml – ident: ref20
  doi: 10.1109/TRO.2015.2419873
– ident: ref19
  doi: 10.1109/TCST.2013.2286194
– ident: ref34
  doi: 10.1109/72.80202
– ident: ref10
  doi: 10.1016/j.ins.2015.07.059
– year: 0
  ident: ref12
  article-title: A grouping particle swarm optimizer with personal-best-position guidance for large scale optimization
  publication-title: IEEE/ACM Trans Comput Biol Bioinf
– ident: ref75
  doi: 10.1080/00207179008934141
– ident: ref38
  doi: 10.1109/TII.2016.2612646
– volume: 25
  start-page: 2129
  year: 2014
  ident: ref56
  article-title: Adaptive neural control for a class of nonlinear time-varying delay systems with unknown hysteresis
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2014.2305717
– ident: ref35
  doi: 10.1109/72.478390
– ident: ref6
  doi: 10.1109/TMECH.2017.2721553
– ident: ref8
  doi: 10.1002/rnc.3361
– ident: ref37
  doi: 10.1109/TNNLS.2014.2335749
– ident: ref18
  doi: 10.1109/TSMCB.2012.2198813
– volume: 21
  start-page: 1339
  year: 2010
  ident: ref31
  article-title: Adaptive neural control for output feedback nonlinear systems using a barrier Lyapunov function
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2010.2047115
– start-page: 2279
  year: 2014
  ident: ref32
  article-title: Adaptive neural network control of uncertain state-constrained nonlinear systems
  publication-title: Proc 19th IFAC World Congr
– ident: ref17
  doi: 10.1080/00207179.2011.642309
– ident: ref69
  doi: 10.1109/TNN.2003.811712
– ident: ref15
  doi: 10.1109/TRO.2011.2158251
– ident: ref41
  doi: 10.1109/TNNLS.2014.2302477
– year: 1991
  ident: ref71
  publication-title: Applied nonlinear control
– ident: ref45
  doi: 10.1109/JAS.2017.7510604
– ident: ref23
  doi: 10.1109/TSMCB.2006.888661
– ident: ref27
  doi: 10.1109/TMECH.2011.2181977
– ident: ref1
  doi: 10.1109/TIE.2016.2520906
– ident: ref3
  doi: 10.1016/j.ijhydene.2016.09.203
– ident: ref46
  doi: 10.1109/TCYB.2017.2720801
– ident: ref54
  doi: 10.1109/TNNLS.2017.2673865
– ident: ref44
  doi: 10.1109/TSMC.2016.2562506
– ident: ref67
  doi: 10.1109/TCST.2012.2183676
– ident: ref36
  doi: 10.1109/TIE.2015.2504553
– ident: ref65
  doi: 10.1049/iet-cta.2011.0011
– ident: ref29
  doi: 10.1016/j.automatica.2011.08.044
– ident: ref5
  doi: 10.1016/j.automatica.2014.02.037
– volume: 22
  start-page: 1162
  year: 2011
  ident: ref51
  article-title: Adaptive neural output feedback tracking control for a class of uncertain discrete-time nonlinear systems
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2011.2146788
– ident: ref2
  doi: 10.1016/j.jfranklin.2014.12.002
– ident: ref55
  doi: 10.1109/TSMC.2016.2557223
– year: 1999
  ident: ref61
  publication-title: Neural Network Control of Robot Manipulators and Non-Linear Systems
– year: 0
  ident: ref11
  article-title: PDE model-based boundary control design for a flexible robotic manipulator with input backlash
  publication-title: IEEE Trans Control Syst Technol
– ident: ref72
  doi: 10.1109/TAC.1987.1104543
– ident: ref7
  doi: 10.1016/j.conengprac.2014.12.003
– year: 1998
  ident: ref70
  publication-title: Adaptive Neural Network Control of Robotic Manipulators
  doi: 10.1142/3774
– volume: 54
  start-page: 1972
  year: 2009
  ident: ref42
  article-title: An analysis of a neural dynamical approach to solving optimization problems
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2009.2023963
– ident: ref30
  doi: 10.1016/j.automatica.2011.01.025
– ident: ref63
  doi: 10.1109/TCYB.2014.2329495
– ident: ref25
  doi: 10.1016/j.automatica.2007.07.012
– ident: ref28
  doi: 10.1016/j.automatica.2008.11.017
– ident: ref24
  doi: 10.1016/j.mechatronics.2005.10.002
– ident: ref50
  doi: 10.1109/TNNLS.2014.2302475
– ident: ref13
  doi: 10.1016/j.renene.2014.03.070
– year: 0
  ident: ref22
  article-title: UDE-based variable impedance control of uncertain robot systems
  publication-title: IEEE Trans Syst Man Cybern Syst
– ident: ref57
  doi: 10.1016/j.automatica.2015.10.036
– ident: ref74
  doi: 10.1016/S0005-1098(99)00098-9
– ident: ref14
  doi: 10.1016/j.renene.2014.02.028
– ident: ref21
  doi: 10.1049/iet-cta.2016.1540
– year: 1996
  ident: ref73
  publication-title: Robust Adaptive Control
– ident: ref40
  doi: 10.1109/3477.809035
– ident: ref58
  doi: 10.1109/TSMC.2015.2420037
– volume: 25
  start-page: 111
  year: 2014
  ident: ref47
  article-title: Dynamic learning from adaptive neural network control of a class of nonaffine nonlinear systems
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2257843
– ident: ref39
  doi: 10.1109/TCYB.2016.2573837
– volume: 66
  start-page: 146
  year: 2016
  ident: ref9
  article-title: Cooperative control of a nonuniform gantry crane with constrained tension
  publication-title: Automatica
  doi: 10.1016/j.automatica.2015.12.026
– ident: ref59
  doi: 10.1109/TCYB.2014.2329931
– ident: ref62
  doi: 10.1109/72.485674
– ident: ref49
  doi: 10.1109/TNN.2009.2027233
– ident: ref60
  doi: 10.1109/TNNLS.2013.2242486
– year: 2001
  ident: ref33
  publication-title: Stable Adaptive Neural Network Control
– ident: ref64
  doi: 10.1109/TCYB.2013.2262935
– ident: ref48
  doi: 10.1109/TSMC.2015.2426131
– start-page: 51
  year: 2013
  ident: ref68
  article-title: Approximation-based control of an uncertain robot with output constraints
  publication-title: Proc 3rd IFAC Int Conf Intell Control Autom Sci
– volume: 40
  start-page: 1075
  year: 2010
  ident: ref53
  article-title: Multicriteria optimization for coordination of redundant robots using a dual neural network
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2009.2034073
– ident: ref43
  doi: 10.1109/TCST.2013.2271036
– ident: ref16
  doi: 10.1109/TRO.2007.892229
– ident: ref52
  doi: 10.1109/TNNLS.2014.2330336
– ident: ref4
  doi: 10.1109/TIE.2016.2585080
– ident: ref26
  doi: 10.1109/TSMCB.2012.2189003
– ident: ref66
  doi: 10.1109/TII.2012.2205584
SSID ssj0000605649
Score 2.647569
Snippet This paper investigates adaptive neural control methods for robotic manipulators, subject to uncertain plant dynamics and constraints on the joint position....
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5554
SubjectTerms Adaptive control
Artificial neural networks
barrier Lyapunov function (BLF)
Computer simulation
Constraint modelling
constraints
Control design
Control methods
Control stability
Feasibility studies
Feedback
Feedback control
Liapunov functions
Manipulator dynamics
Manipulators
Neural networks
neural networks (NNs)
Output feedback
robot
Robot arms
Robots
Stability analysis
State feedback
Systems stability
Uncertainty
Title Adaptive Neural Control for Robotic Manipulators With Output Constraints and Uncertainties
URI https://ieeexplore.ieee.org/document/8310037
https://www.ncbi.nlm.nih.gov/pubmed/29994076
https://www.proquest.com/docview/2121968017
https://www.proquest.com/docview/2068341861
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PfVCCy2wUJCRuEG2dh6OfawqqqpitxJ01RWXyI4dUYGSqptc-uuZcR6qUEG9RfHYcfLZmc_2PAA-Co2go-KL4krZKE2ciJDV-6jSpZGZRUZvab9jsZTnq_Rina234PPkC-O9D8Znfk6X4SzfNWVHW2XHlBSLJ_k2bOPCrffVmvZTOPJyGdhuLGQcxUm-Hn1kuD6-Wi6_fidDLjWndEyKksg80EMhscq_OWbQNWd7sBh72ZuY_Jp3rZ2X938FcHzqa-zDs4F0spN-lDyHLV-_gL0xoQMb5vcB_Dhx5pb-f4xidmCN096QnSGzZd8a22B9tjD1TUj61dxt2PVN-5Nddi02RMKbkHGi3TBTO7bCNoO9AcVsPYTV2Zer0_NoSL4QlUkm2kgjM0mVV1WWSq-UMMLnPi8rh7d4brHU2EQLa0VqUq9VVilNh4IuQ4ZT8TJ5CTt1U_vXwEqJpM4ryQ0ipFDYZU64mMtK5KZyfAZihKIoh8jk1N3fRVihcF0E-AqCrxjgm8Gnqc5tH5fjv9IHBMMkOSAwg6MR8WKYupsCdTn-lVBxY_GHqRgnHZ2kmNo3HcpwqVD9Kylm8KofKVPbqN81fgf55vFnvoVd6lnvzngEO-1d598hr2nt-zCg_wBVlvJD
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5ROLSXAqWlW6B1pd7aLHYejn1ECLRtdxeJ7qqrXiI7dgSiShCbXPj1jJ2HUNWi3qJ47Dj5bM8Xex4An5hE0FHxBWEhdBBHhgXI6m1QyFzxRCOj126_Yzbnk2X8bZWsNuDL4AtjrfXGZ3bsLv1Zvqnyxm2VHbukWDRKn8EW6v2Etd5aw44KRWbOPd8NGQ-DMEpXvZcMlceL-Xz6w5lyibFLyCRcGplHmsinVvk3y_Ta5nwbZn0_WyOTm3FT63F-_0cIx_99kR142dFOctKOk13YsOUr2O5TOpBuhu_BrxOjbt0KSFzUDqxx2pqyE-S25LLSFdYnM1Ve-7Rf1d2a_Lyur8hFU2NDTnjtc07Ua6JKQ5bYprc4cFFbX8Py_GxxOgm69AtBHiWsDiRyk1hYUSQxt0IwxWxq07wweIumGkuVjiTTmsUqtlIkhZDuWNAkyHEKmkdvYLOsSvsWSM6R1lnBqUKEBAqbxDATUl6wVBWGjoD1UGR5F5vcdfd35v9RqMw8fJmDL-vgG8Hnoc5tG5njSek9B8Mg2SEwgsMe8aybvOsMtTmuS6i6sfjjUIzTzp2lqNJWDcpQLpAACM5GsN-OlKFt1PASvwN_9_dnfoDnk8Vsmk2_zr8fwAvXy9a58RA267vGHiHLqfV7P7gfAB1q9Yw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Neural+Control+for+Robotic+Manipulators+With+Output+Constraints+and+Uncertainties&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zhang%2C+Shuang&rft.au=Dong%2C+Yiting&rft.au=Ouyang%2C+Yuncheng&rft.au=Yin%2C+Zhao&rft.date=2018-11-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=29&rft.issue=11&rft.spage=5554&rft.epage=5564&rft_id=info:doi/10.1109%2FTNNLS.2018.2803827&rft.externalDocID=8310037
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon