Benchmarking Single-Image Reflection Removal Algorithms

Reflection removal has been discussed for more than decades. This paper aims to provide the analysis for different reflection properties and factors that influence image formation, an up-to-date taxonomy for existing methods, a benchmark dataset, and the unified benchmarking evaluations for state-of...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 45; no. 2; pp. 1424 - 1441
Main Authors Wan, Renjie, Shi, Boxin, Li, Haoliang, Hong, Yuchen, Duan, Ling-Yu, Kot, Alex C.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0162-8828
1939-3539
2160-9292
1939-3539
DOI10.1109/TPAMI.2022.3168560

Cover

Loading…
Abstract Reflection removal has been discussed for more than decades. This paper aims to provide the analysis for different reflection properties and factors that influence image formation, an up-to-date taxonomy for existing methods, a benchmark dataset, and the unified benchmarking evaluations for state-of-the-art (especially learning-based) methods. Specifically, this paper presents a SIngle-image Reflection Removal Plus dataset "SIR<inline-formula><tex-math notation="LaTeX">^{2+}</tex-math> <mml:math><mml:msup><mml:mrow/><mml:mrow><mml:mn>2</mml:mn><mml:mo>+</mml:mo></mml:mrow></mml:msup></mml:math><inline-graphic xlink:href="wan-ieq1-3168560.gif"/> </inline-formula> " with the new consideration for in-the-wild scenarios and glass with diverse color and unplanar shapes. We further perform quantitative and visual quality comparisons for state-of-the-art single-image reflection removal algorithms. Open problems for improving reflection removal algorithms are discussed at the end. Our dataset and follow-up update can be found at https://reflectionremoval.github.io/sir2data/ .
AbstractList Reflection removal has been discussed for more than decades. This paper aims to provide the analysis for different reflection properties and factors that influence image formation, an up-to-date taxonomy for existing methods, a benchmark dataset, and the unified benchmarking evaluations for state-of-the-art (especially learning-based) methods. Specifically, this paper presents a SIngle-image Reflection Removal Plus dataset "SIR " with the new consideration for in-the-wild scenarios and glass with diverse color and unplanar shapes. We further perform quantitative and visual quality comparisons for state-of-the-art single-image reflection removal algorithms. Open problems for improving reflection removal algorithms are discussed at the end. Our dataset and follow-up update can be found at https://reflectionremoval.github.io/sir2data/.
Reflection removal has been discussed for more than decades. This paper aims to provide the analysis for different reflection properties and factors that influence image formation, an up-to-date taxonomy for existing methods, a benchmark dataset, and the unified benchmarking evaluations for state-of-the-art (especially learning-based) methods. Specifically, this paper presents a SIngle-image Reflection Removal Plus dataset "SIR<inline-formula><tex-math notation="LaTeX">^{2+}</tex-math> <mml:math><mml:msup><mml:mrow/><mml:mrow><mml:mn>2</mml:mn><mml:mo>+</mml:mo></mml:mrow></mml:msup></mml:math><inline-graphic xlink:href="wan-ieq1-3168560.gif"/> </inline-formula> " with the new consideration for in-the-wild scenarios and glass with diverse color and unplanar shapes. We further perform quantitative and visual quality comparisons for state-of-the-art single-image reflection removal algorithms. Open problems for improving reflection removal algorithms are discussed at the end. Our dataset and follow-up update can be found at https://reflectionremoval.github.io/sir2data/ .
Reflection removal has been discussed for more than decades. This paper aims to provide the analysis for different reflection properties and factors that influence image formation, an up-to-date taxonomy for existing methods, a benchmark dataset, and the unified benchmarking evaluations for state-of-the-art (especially learning-based) methods. Specifically, this paper presents a SIngle-image Reflection Removal Plus dataset "SIR 2+ " with the new consideration for in-the-wild scenarios and glass with diverse color and unplanar shapes. We further perform quantitative and visual quality comparisons for state-of-the-art single-image reflection removal algorithms. Open problems for improving reflection removal algorithms are discussed at the end. Our dataset and follow-up update can be found at https://reflectionremoval.github.io/sir2data/.Reflection removal has been discussed for more than decades. This paper aims to provide the analysis for different reflection properties and factors that influence image formation, an up-to-date taxonomy for existing methods, a benchmark dataset, and the unified benchmarking evaluations for state-of-the-art (especially learning-based) methods. Specifically, this paper presents a SIngle-image Reflection Removal Plus dataset "SIR 2+ " with the new consideration for in-the-wild scenarios and glass with diverse color and unplanar shapes. We further perform quantitative and visual quality comparisons for state-of-the-art single-image reflection removal algorithms. Open problems for improving reflection removal algorithms are discussed at the end. Our dataset and follow-up update can be found at https://reflectionremoval.github.io/sir2data/.
Reflection removal has been discussed for more than decades. This paper aims to provide the analysis for different reflection properties and factors that influence image formation, an up-to-date taxonomy for existing methods, a benchmark dataset, and the unified benchmarking evaluations for state-of-the-art (especially learning-based) methods. Specifically, this paper presents a SIngle-image Reflection Removal Plus dataset “SIR[Formula Omitted] ” with the new consideration for in-the-wild scenarios and glass with diverse color and unplanar shapes. We further perform quantitative and visual quality comparisons for state-of-the-art single-image reflection removal algorithms. Open problems for improving reflection removal algorithms are discussed at the end. Our dataset and follow-up update can be found at https://reflectionremoval.github.io/sir2data/ .
Author Duan, Ling-Yu
Kot, Alex C.
Shi, Boxin
Wan, Renjie
Li, Haoliang
Hong, Yuchen
Author_xml – sequence: 1
  givenname: Renjie
  orcidid: 0000-0002-0161-0367
  surname: Wan
  fullname: Wan, Renjie
  email: renjiewan@hkbu.edu.hk
  organization: Department of Computer Science, Hong Kong Baptist University, Hong Kong SAR, China
– sequence: 2
  givenname: Boxin
  orcidid: 0000-0001-6749-0364
  surname: Shi
  fullname: Shi, Boxin
  email: shiboxin@pku.edu.cn
  organization: National Engineering Research Center of Visual Technology, School of Computer Science, Peking University, Beijing, China
– sequence: 3
  givenname: Haoliang
  orcidid: 0000-0002-8723-8112
  surname: Li
  fullname: Li, Haoliang
  email: haoliali@cityu.edu.hk
  organization: Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China
– sequence: 4
  givenname: Yuchen
  orcidid: 0000-0003-2772-217X
  surname: Hong
  fullname: Hong, Yuchen
  email: yuchenhong.cn@gmail.com
  organization: National Engineering Research Center of Visual Technology, School of Computer Science, Peking University, Beijing, China
– sequence: 5
  givenname: Ling-Yu
  orcidid: 0000-0002-4491-2023
  surname: Duan
  fullname: Duan, Ling-Yu
  email: lingyu@pku.edu.cn
  organization: National Engineering Research Center of Visual Technology, School of Computer Science, Peking University, Beijing, China
– sequence: 6
  givenname: Alex C.
  orcidid: 0000-0001-6262-8125
  surname: Kot
  fullname: Kot, Alex C.
  email: eackot@ntu.edu.sg
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35439129$$D View this record in MEDLINE/PubMed
BookMark eNp9kEtPAyEQx4nR2Pr4ApqYJl68bGVgF5ZjNT6aaDQ-zoTC0G7dhy5bE7-91FYPPXgYhsPvzwy_PbJdNzUScgR0CEDV-cvj6H48ZJSxIQeRZ4JukT4DQRPFFNsmfQqCJXnO8h7ZC2FOKaQZ5bukx7OUK2CqT-QF1nZWmfatqKeD53iUmIwrM8XBE_oSbVc0dbxWzacpB6Ny2rRFN6vCAdnxpgx4uO775PX66uXyNrl7uBlfju4SyzPoEkWdMEI5qxzSdAKIkFrunZlQAcplXlqZ5d6A914yOTEgjcM0U8rljirL98nZ6t33tvlYYOh0VQSLZWlqbBZBM5GxPBbwiJ5uoPNm0dZxO82kAC5T4CxSJ2tqManQ6fe2iL__0r9KIsBWgG2bEFr0fwhQvfSuf7zrpXe99h5D-UbIFp1ZuutaU5T_R49X0QIR_2YpKSiA5N8HSI7h
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1109_TCSVT_2024_3405576
crossref_primary_10_1007_s11263_024_02240_2
crossref_primary_10_1049_ipr2_13165
crossref_primary_10_1109_ACCESS_2024_3474032
crossref_primary_10_1007_s11263_024_02073_z
crossref_primary_10_1109_ACCESS_2024_3461782
crossref_primary_10_1109_TETCI_2024_3359063
crossref_primary_10_1109_TMM_2023_3330107
crossref_primary_10_1109_TPAMI_2023_3314972
crossref_primary_10_1109_TCSVT_2024_3471875
crossref_primary_10_1109_TPAMI_2023_3286429
crossref_primary_10_1109_TIP_2023_3347915
crossref_primary_10_1109_TMM_2023_3338413
crossref_primary_10_1109_TCE_2023_3303475
crossref_primary_10_52589_AJSTE_GWXJPEN4
crossref_primary_10_1109_LSP_2024_3456006
crossref_primary_10_1109_TIP_2023_3301332
crossref_primary_10_1109_TCSVT_2024_3403932
Cites_doi 10.1109/TPAMI.2013.45
10.1109/CVPR.2019.00837
10.1109/WACV48630.2021.00208
10.1109/CVPR42600.2020.01422
10.1109/CVPR42600.2020.00182
10.1109/CVPR.2018.00502
10.1145/1073204.1073269
10.1109/LSP.2014.2327071
10.1109/TPAMI.2007.1106
10.1109/ICIP.2015.7351139
10.7863/jum.1984.3.2.49
10.1109/ICCV.2017.351
10.1145/2964284.2967264
10.1109/CVPR.2014.281
10.1109/CVPR.2017.300
10.1007/978-3-540-24673-2_27
10.1109/ICCV48922.2021.00497
10.1109/CVPR.2019.00389
10.1109/ISCAS.2017.8050813
10.1109/TIP.2003.819861
10.1109/WACV.2009.5403036
10.1109/ISCAS.2013.6572002
10.1109/CVPR42600.2020.00362
10.1007/s11263-020-01372-5
10.1109/ICCV.2017.423
10.1109/CVPR.2008.4587768
10.1109/ICCV.2011.6126315
10.1145/2766940
10.1109/ICCV.1998.710848
10.1109/CVPR.2015.7298939
10.1109/TIP.2018.2849880
10.1109/ICIP.2016.7532311
10.1109/TIP.2018.2880510
10.1109/TIP.2006.881959
10.1109/CVPR42600.2020.00214
10.1109/CVPR.2017.618
10.1109/CVPR46437.2021.00767
10.1109/ACCESS.2019.2947266
10.1117/12.2320377
10.1016/j.jaad.2005.11.1082
10.1109/ICME.2017.8019527
10.1007/978-3-030-01261-8_6
10.1109/CVPR.2016.157
10.1109/CVPR.2018.00577
10.1007/978-3-319-54187-7_9
10.1109/TCI.2019.2899320
10.1109/CVPR42600.2020.00247
10.1109/CVPR.2017.190
10.1364/OE.18.024461
10.1109/CVPR46437.2021.01457
10.1109/TPAMI.2019.2921574
10.1109/CVPR.2006.106
10.1145/3510821
10.1007/s10489-022-04391-6
10.1007/978-3-319-10602-1_48
10.1109/ICCV.2005.216
10.1109/TPAMI.2011.87
10.1103/PhysRevLett.126.174301
10.1109/CVPR.2018.00503
10.1109/CVPR.2019.00256
10.1007/s11263-006-0029-5
10.1109/CVPR.2014.346
10.1109/ICIP.2005.1530235
10.1007/978-3-642-15567-3_27
10.1007/978-3-030-01219-9_40
10.1109/CVPR.1999.786949
10.1109/ICME.2019.00222
10.1109/CVPR46437.2021.01319
10.1109/CVPRW56347.2022.00343
10.1109/TCI.2018.2860465
10.1109/CVPR.2019.00165
10.1109/ICCV.2013.302
10.1007/s11263-019-01276-z
10.1111/j.1151-2916.1955.tb14581.x
10.1109/ICCV.2017.244
10.1007/978-3-642-57769-7
10.1109/MSP.2008.930649
10.1109/TIP.2018.2808768
10.1109/CVPR.2019.00833
10.1109/TIP.2007.915548
10.1109/CVPR.2018.00068
10.1109/TPAMI.2020.3020554
10.1109/TPAMI.1987.4767940
10.1117/12.2083105
10.1109/ICCV.1999.790305
10.1109/TIP.2019.2923559
10.1109/ICCV.2019.00253
10.1109/CVPR.2000.855826
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2022.3168560
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 1441
ExternalDocumentID 35439129
10_1109_TPAMI_2022_3168560
9760117
Genre orig-research
Journal Article
GrantInformation_xml – fundername: HKBU
  grantid: 11.41.4541.179390
– fundername: PKU-NTU Joint Research Institute
– fundername: CityU New Research Initiatives/Infrastructure
  grantid: APRC 9610528
– fundername: National Natural Science Foundation of China
  grantid: 62136001; 62088102; 61872012
  funderid: 10.13039/501100001809
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
5VS
9M8
AAYOK
ABFSI
ADRHT
AETEA
AETIX
AGSQL
AI.
AIBXA
ALLEH
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
RIG
RNI
RZB
VH1
XJT
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c351t-90d6a69dc9de04b1ee14c3fdab0619d5f7c758fa1fff727ba17ade4599d8d09c3
IEDL.DBID RIE
ISSN 0162-8828
1939-3539
IngestDate Fri Jul 11 07:06:18 EDT 2025
Mon Jun 30 06:51:07 EDT 2025
Thu Apr 03 07:03:20 EDT 2025
Tue Jul 01 01:43:03 EDT 2025
Thu Apr 24 23:03:56 EDT 2025
Wed Aug 27 02:54:13 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-90d6a69dc9de04b1ee14c3fdab0619d5f7c758fa1fff727ba17ade4599d8d09c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0161-0367
0000-0002-4491-2023
0000-0002-8723-8112
0000-0001-6262-8125
0000-0001-6749-0364
0000-0003-2772-217X
PMID 35439129
PQID 2761374132
PQPubID 85458
PageCount 18
ParticipantIDs pubmed_primary_35439129
crossref_primary_10_1109_TPAMI_2022_3168560
proquest_journals_2761374132
crossref_citationtrail_10_1109_TPAMI_2022_3168560
proquest_miscellaneous_2652865213
ieee_primary_9760117
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
ref51
ref50
ref46
ref48
ref47
ref42
ref41
ref43
ref49
Wang (ref84) 2015
ref8
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref36
ref31
Lee (ref37) 2018
ref30
ref33
Simonyan (ref69) 2014
ref32
ref39
ref38
Fan (ref44) 2020
ref24
ref23
ref26
ref25
ref20
ref22
ref21
Chi (ref68) 2018
ref28
ref27
ref29
ref13
ref12
ref15
ref14
ref97
ref96
ref11
ref10
ref98
ref17
ref16
ref19
ref18
ref93
ref92
ref95
ref94
ref91
ref90
ref89
ref86
ref85
ref88
ref87
ref82
ref81
Lyu (ref7)
ref83
ref80
Fischer (ref74) 2015
ref79
ref78
ref75
ref77
ref76
ref2
ref1
ref71
ref70
ref73
ref72
Kim (ref45) 2019
ref67
ref64
ref63
ref66
ref65
ref60
ref62
ref61
References_xml – ident: ref89
  doi: 10.1109/TPAMI.2013.45
– ident: ref14
  doi: 10.1109/CVPR.2019.00837
– ident: ref47
  doi: 10.1109/WACV48630.2021.00208
– ident: ref52
  doi: 10.1109/CVPR42600.2020.01422
– ident: ref21
  doi: 10.1109/CVPR42600.2020.00182
– ident: ref39
  doi: 10.1109/CVPR.2018.00502
– ident: ref81
  doi: 10.1145/1073204.1073269
– ident: ref55
  doi: 10.1109/LSP.2014.2327071
– ident: ref9
  doi: 10.1109/TPAMI.2007.1106
– ident: ref61
  doi: 10.1109/ICIP.2015.7351139
– year: 2015
  ident: ref74
  article-title: FlowNet: Learning optical flow with convolutional networks
– ident: ref29
  doi: 10.7863/jum.1984.3.2.49
– ident: ref12
  doi: 10.1109/ICCV.2017.351
– ident: ref56
  doi: 10.1145/2964284.2967264
– ident: ref62
  doi: 10.1109/CVPR.2014.281
– ident: ref40
  doi: 10.1109/CVPR.2017.300
– ident: ref20
  doi: 10.1007/978-3-540-24673-2_27
– ident: ref49
  doi: 10.1109/ICCV48922.2021.00497
– ident: ref42
  doi: 10.1109/CVPR.2019.00389
– ident: ref85
  doi: 10.1109/ISCAS.2017.8050813
– ident: ref91
  doi: 10.1109/TIP.2003.819861
– ident: ref31
  doi: 10.1109/WACV.2009.5403036
– ident: ref54
  doi: 10.1109/ISCAS.2013.6572002
– ident: ref19
  doi: 10.1109/CVPR42600.2020.00362
– ident: ref2
  doi: 10.1007/s11263-020-01372-5
– ident: ref17
  doi: 10.1109/ICCV.2017.423
– year: 2014
  ident: ref69
  article-title: Very deep convolutional networks for large-scale image recognition
– ident: ref76
  doi: 10.1109/CVPR.2008.4587768
– ident: ref3
  doi: 10.1109/ICCV.2011.6126315
– ident: ref16
  doi: 10.1145/2766940
– ident: ref83
  doi: 10.1109/ICCV.1998.710848
– ident: ref1
  doi: 10.1109/CVPR.2015.7298939
– ident: ref64
  doi: 10.1109/TIP.2018.2849880
– ident: ref11
  doi: 10.1109/ICIP.2016.7532311
– ident: ref87
  doi: 10.1109/TIP.2018.2880510
– start-page: 14 532
  volume-title: Proc. 33rd Int. Conf. Neural Inf. Process. Syst.
  ident: ref7
  article-title: Reflection separation using a pair of unpolarized and polarized images
– ident: ref93
  doi: 10.1109/TIP.2006.881959
– ident: ref97
  doi: 10.1109/CVPR42600.2020.00214
– ident: ref59
  doi: 10.1109/CVPR.2017.618
– ident: ref51
  doi: 10.1109/CVPR46437.2021.00767
– ident: ref67
  doi: 10.1109/ACCESS.2019.2947266
– ident: ref27
  doi: 10.1117/12.2320377
– ident: ref25
  doi: 10.1016/j.jaad.2005.11.1082
– ident: ref33
  doi: 10.1109/ICME.2017.8019527
– ident: ref8
  doi: 10.1007/978-3-030-01261-8_6
– year: 2019
  ident: ref45
  article-title: Single image reflection removal with physically-based rendering
– ident: ref63
  doi: 10.1109/CVPR.2016.157
– ident: ref94
  doi: 10.1109/CVPR.2018.00577
– ident: ref36
  doi: 10.1007/978-3-319-54187-7_9
– year: 2018
  ident: ref68
  article-title: Single image reflection removal using deep encoder-decoder network
– ident: ref30
  doi: 10.1109/TCI.2019.2899320
– ident: ref23
  doi: 10.1109/CVPR42600.2020.00247
– ident: ref77
  doi: 10.1109/TPAMI.2013.45
– ident: ref32
  doi: 10.1109/CVPR.2017.190
– ident: ref28
  doi: 10.1364/OE.18.024461
– ident: ref53
  doi: 10.1109/CVPR46437.2021.01457
– ident: ref13
  doi: 10.1109/TPAMI.2019.2921574
– ident: ref80
  doi: 10.1109/CVPR.2006.106
– ident: ref46
  doi: 10.1145/3510821
– ident: ref48
  doi: 10.1007/s10489-022-04391-6
– ident: ref71
  doi: 10.1007/978-3-319-10602-1_48
– ident: ref78
  doi: 10.1109/ICCV.2005.216
– ident: ref60
  doi: 10.1109/TPAMI.2011.87
– ident: ref96
  doi: 10.1103/PhysRevLett.126.174301
– ident: ref15
  doi: 10.1109/CVPR.2018.00503
– ident: ref66
  doi: 10.1109/CVPR.2019.00256
– ident: ref4
  doi: 10.1007/s11263-006-0029-5
– year: 2020
  ident: ref44
  article-title: Deep reflection prior
– ident: ref10
  doi: 10.1109/CVPR.2014.346
– year: 2015
  ident: ref84
  article-title: Automatic layer separation using light field imaging
– ident: ref79
  doi: 10.1109/ICIP.2005.1530235
– ident: ref98
  doi: 10.1007/978-3-642-15567-3_27
– ident: ref70
  doi: 10.1007/978-3-030-01219-9_40
– ident: ref5
  doi: 10.1109/CVPR.1999.786949
– ident: ref43
  doi: 10.1109/ICME.2019.00222
– ident: ref50
  doi: 10.1109/CVPR46437.2021.01319
– ident: ref90
  doi: 10.1109/CVPRW56347.2022.00343
– ident: ref86
  doi: 10.1109/TCI.2018.2860465
– ident: ref65
  doi: 10.1109/CVPR.2019.00165
– ident: ref57
  doi: 10.1109/ICCV.2013.302
– ident: ref82
  doi: 10.1007/s11263-019-01276-z
– ident: ref22
  doi: 10.1111/j.1151-2916.1955.tb14581.x
– ident: ref38
  doi: 10.1109/ICCV.2017.244
– ident: ref24
  doi: 10.1007/978-3-642-57769-7
– ident: ref92
  doi: 10.1109/MSP.2008.930649
– ident: ref34
  doi: 10.1109/TIP.2018.2808768
– year: 2018
  ident: ref37
  article-title: Generative single image reflection separation
– ident: ref75
  doi: 10.1109/CVPR.1999.786949
– ident: ref35
  doi: 10.1109/CVPR.2019.00833
– ident: ref72
  doi: 10.1109/TIP.2007.915548
– ident: ref18
  doi: 10.1109/CVPR.2018.00068
– ident: ref95
  doi: 10.1109/TPAMI.2020.3020554
– ident: ref26
  doi: 10.1109/TPAMI.1987.4767940
– ident: ref88
  doi: 10.1117/12.2083105
– ident: ref6
  doi: 10.1109/ICCV.1999.790305
– ident: ref58
  doi: 10.1109/TIP.2019.2923559
– ident: ref41
  doi: 10.1109/ICCV.2019.00253
– ident: ref73
  doi: 10.1109/CVPR.2000.855826
SSID ssj0014503
Score 2.5226796
Snippet Reflection removal has been discussed for more than decades. This paper aims to provide the analysis for different reflection properties and factors that...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1424
SubjectTerms Algorithms
benchmark dataset
Benchmark testing
Benchmarks
Cameras
Datasets
Deep learning
Glass
Image quality
Mathematical models
Reflection
Reflection removal
Reflectivity
State-of-the-art reviews
Taxonomy
Title Benchmarking Single-Image Reflection Removal Algorithms
URI https://ieeexplore.ieee.org/document/9760117
https://www.ncbi.nlm.nih.gov/pubmed/35439129
https://www.proquest.com/docview/2761374132
https://www.proquest.com/docview/2652865213
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LTtwwcAQcEByA8miXQhWk3kqWOHGS9ZEiECAtQi1I3CI_xlB1N0GQ5cDXM3YeVFWLuCRO4jiOPeOZ8bwAvlqtTJxnUagQRchNJEM1IsGVWykl0lKpvNf7-CI7vebnN-nNHOz3vjCI6I3PcOiKXpdvKj1zW2UHwhlwsHwe5klwa3y1eo0BT30WZOJgCMNJjOgcZCJxcHV5OD4jUTCOhy5NE9H4JVhMUudz6jnLV3rkE6z8n9f0NOdkFcZdbxtTk9_DWa2G-vmvQI7v_Z01WGmZz-CwgZYPMIflOqx2iR2CFs_XYfmPKIUbkH-nu3dT6XfVg590mGB4NqWFKPiBduJtuUoqTqsn1_jktnr4Vd9NHzfh-uT46ug0bPMthDpJWR2KyGQyE0YLgxFXDJFxnVgjFRF9YVKba5IurGTWWmJ7lGS5NMhTIczIREInW7BQViV-goCuRKyUdUpBLgWtZFyZEZ0RR1nEkwGwbtQL3QYjdzkxJoUXSiJR-Ekr3KQV7aQN4Fv_zn0TiuPN2htuxPua7WAPYKeb3KLF1seCgJUlxFol8QD2-seEZ055IkusZlQnS50Tb8yo7x8boOjb7mBp-9_f_AxLLkl9Y-u9Awv1wwx3iZWp1RcPwy-N3exG
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1dT9RAcIKYID6IAuIpakl4wx7ddtvePqKR3ClHiB4Jb81-zIrxriXQ88Ff7-z2A2PA-NJu2-12uzuzM7PzBbBvtTJxnkWhQhQhN5EM1YgEV26llEhLpfJe79PTbHzOP12kFyvwrveFQURvfIZDV_S6fFPppdsqOxTOgIPlD-Bh6pxxG2-tXmfAU58HmXgYwnESJDoXmUgczs6OphMSBuN46BI1EZVfh7UkdV6nnre8pUg-xcr93KanOscbMO362xib_BguazXUv_4K5fi_P_QUnrTsZ3DUwMszWMFyEza61A5Bi-mb8PiPOIVbkL-nu5cL6ffVg690mGM4WdBSFHxBO_fWXCUVF9VP1_j8W3X9vb5c3GzD-fHH2Ydx2GZcCHWSsjoUkclkJowWBiOuGCLjOrFGKiL7wqQ21yRfWMmstcT4KMlyaZCnQpiRiYROnsNqWZX4AgK6ErFS1qkFuRS0lnFlRnRGHGURTwbAulEvdBuO3GXFmBdeLIlE4SetcJNWtJM2gIP-nasmGMc_a2-5Ee9rtoM9gN1ucosWX28KAleWEHOVxAPY6x8Tpjn1iSyxWlKdLHVuvDGjvu80QNG33cHSy7u_-RYejWfTk-Jkcvr5Fay7lPWN5fcurNbXS3xNjE2t3nh4_g0It--O
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benchmarking+Single-Image+Reflection+Removal+Algorithms&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Wan%2C+Renjie&rft.au=Shi%2C+Boxin&rft.au=Li%2C+Haoliang&rft.au=Hong%2C+Yuchen&rft.date=2023-02-01&rft.pub=IEEE&rft.issn=0162-8828&rft.volume=45&rft.issue=2&rft.spage=1424&rft.epage=1441&rft_id=info:doi/10.1109%2FTPAMI.2022.3168560&rft_id=info%3Apmid%2F35439129&rft.externalDocID=9760117
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon