Efficient CSP Algorithm With Spatio-Temporal Filtering for Motor Imagery Classification

Common spatial pattern (CSP) is an efficient algorithm widely used in feature extraction of EEG-based motor imagery classification. Traditional CSP depends only on spatial filtering, that aims to maximize or minimize the ratio of variances of filtered EEG signals in different classes. Recent advance...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 28; no. 4; pp. 1006 - 1016
Main Authors Jiang, Aimin, Shang, Jing, Liu, Xiaofeng, Tang, Yibin, Kwan, Hon Keung, Zhu, Yanping
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1534-4320
1558-0210
1558-0210
DOI10.1109/TNSRE.2020.2979464

Cover

Loading…
Abstract Common spatial pattern (CSP) is an efficient algorithm widely used in feature extraction of EEG-based motor imagery classification. Traditional CSP depends only on spatial filtering, that aims to maximize or minimize the ratio of variances of filtered EEG signals in different classes. Recent advances of CSP approaches show that temporal filtering is also preferable to extract discriminative features. In view of this perspective, a novel spatio-temporal filtering strategy is proposed in this paper. To improve computational efficiency and alleviate the overfitting issue frequently encountered in the case of small sample size, the same temporal filter is designed by EEG signals of the same class and shared by all the spatial channels. Spatial and temporal filters can be updated alternatively in practice. Furthermore, each of the resulting designs can still be cast as a CSP problem and tackled efficiently by the eigenvalue decomposition. To alleviate the adverse effects of outliers or noisy EEG channels, sparse spatial or temporal filters can also be achieved by incorporating an l 1 -norm-based regularization term in our CSP problem. The regularized spatial or temporal filter design is iteratively reformulated as a CSP problem via the reweighting technique. Two sets of motor imagery EEG data of BCI competitions are used in our experiments to verify the effectiveness of the proposed algorithm.
AbstractList Common spatial pattern (CSP) is an efficient algorithm widely used in feature extraction of EEG-based motor imagery classification. Traditional CSP depends only on spatial filtering, that aims to maximize or minimize the ratio of variances of filtered EEG signals in different classes. Recent advances of CSP approaches show that temporal filtering is also preferable to extract discriminative features. In view of this perspective, a novel spatio-temporal filtering strategy is proposed in this paper. To improve computational efficiency and alleviate the overfitting issue frequently encountered in the case of small sample size, the same temporal filter is designed by EEG signals of the same class and shared by all the spatial channels. Spatial and temporal filters can be updated alternatively in practice. Furthermore, each of the resulting designs can still be cast as a CSP problem and tackled efficiently by the eigenvalue decomposition. To alleviate the adverse effects of outliers or noisy EEG channels, sparse spatial or temporal filters can also be achieved by incorporating an [Formula Omitted]-norm-based regularization term in our CSP problem. The regularized spatial or temporal filter design is iteratively reformulated as a CSP problem via the reweighting technique. Two sets of motor imagery EEG data of BCI competitions are used in our experiments to verify the effectiveness of the proposed algorithm.
Common spatial pattern (CSP) is an efficient algorithm widely used in feature extraction of EEG-based motor imagery classification. Traditional CSP depends only on spatial filtering, that aims to maximize or minimize the ratio of variances of filtered EEG signals in different classes. Recent advances of CSP approaches show that temporal filtering is also preferable to extract discriminative features. In view of this perspective, a novel spatio-temporal filtering strategy is proposed in this paper. To improve computational efficiency and alleviate the overfitting issue frequently encountered in the case of small sample size, the same temporal filter is designed by EEG signals of the same class and shared by all the spatial channels. Spatial and temporal filters can be updated alternatively in practice. Furthermore, each of the resulting designs can still be cast as a CSP problem and tackled efficiently by the eigenvalue decomposition. To alleviate the adverse effects of outliers or noisy EEG channels, sparse spatial or temporal filters can also be achieved by incorporating an l 1 -norm-based regularization term in our CSP problem. The regularized spatial or temporal filter design is iteratively reformulated as a CSP problem via the reweighting technique. Two sets of motor imagery EEG data of BCI competitions are used in our experiments to verify the effectiveness of the proposed algorithm.
Common spatial pattern (CSP) is an efficient algorithm widely used in feature extraction of EEG-based motor imagery classification. Traditional CSP depends only on spatial filtering, that aims to maximize or minimize the ratio of variances of filtered EEG signals in different classes. Recent advances of CSP approaches show that temporal filtering is also preferable to extract discriminative features. In view of this perspective, a novel spatio-temporal filtering strategy is proposed in this paper. To improve computational efficiency and alleviate the overfitting issue frequently encountered in the case of small sample size, the same temporal filter is designed by EEG signals of the same class and shared by all the spatial channels. Spatial and temporal filters can be updated alternatively in practice. Furthermore, each of the resulting designs can still be cast as a CSP problem and tackled efficiently by the eigenvalue decomposition. To alleviate the adverse effects of outliers or noisy EEG channels, sparse spatial or temporal filters can also be achieved by incorporating an l1 -norm-based regularization term in our CSP problem. The regularized spatial or temporal filter design is iteratively reformulated as a CSP problem via the reweighting technique. Two sets of motor imagery EEG data of BCI competitions are used in our experiments to verify the effectiveness of the proposed algorithm.Common spatial pattern (CSP) is an efficient algorithm widely used in feature extraction of EEG-based motor imagery classification. Traditional CSP depends only on spatial filtering, that aims to maximize or minimize the ratio of variances of filtered EEG signals in different classes. Recent advances of CSP approaches show that temporal filtering is also preferable to extract discriminative features. In view of this perspective, a novel spatio-temporal filtering strategy is proposed in this paper. To improve computational efficiency and alleviate the overfitting issue frequently encountered in the case of small sample size, the same temporal filter is designed by EEG signals of the same class and shared by all the spatial channels. Spatial and temporal filters can be updated alternatively in practice. Furthermore, each of the resulting designs can still be cast as a CSP problem and tackled efficiently by the eigenvalue decomposition. To alleviate the adverse effects of outliers or noisy EEG channels, sparse spatial or temporal filters can also be achieved by incorporating an l1 -norm-based regularization term in our CSP problem. The regularized spatial or temporal filter design is iteratively reformulated as a CSP problem via the reweighting technique. Two sets of motor imagery EEG data of BCI competitions are used in our experiments to verify the effectiveness of the proposed algorithm.
Common spatial pattern (CSP) is an efficient algorithm widely used in feature extraction of EEG-based motor imagery classification. Traditional CSP depends only on spatial filtering, that aims to maximize or minimize the ratio of variances of filtered EEG signals in different classes. Recent advances of CSP approaches show that temporal filtering is also preferable to extract discriminative features. In view of this perspective, a novel spatio-temporal filtering strategy is proposed in this paper. To improve computational efficiency and alleviate the overfitting issue frequently encountered in the case of small sample size, the same temporal filter is designed by EEG signals of the same class and shared by all the spatial channels. Spatial and temporal filters can be updated alternatively in practice. Furthermore, each of the resulting designs can still be cast as a CSP problem and tackled efficiently by the eigenvalue decomposition. To alleviate the adverse effects of outliers or noisy EEG channels, sparse spatial or temporal filters can also be achieved by incorporating an l -norm-based regularization term in our CSP problem. The regularized spatial or temporal filter design is iteratively reformulated as a CSP problem via the reweighting technique. Two sets of motor imagery EEG data of BCI competitions are used in our experiments to verify the effectiveness of the proposed algorithm.
Author Shang, Jing
Zhu, Yanping
Jiang, Aimin
Kwan, Hon Keung
Liu, Xiaofeng
Tang, Yibin
Author_xml – sequence: 1
  givenname: Aimin
  orcidid: 0000-0002-9181-934X
  surname: Jiang
  fullname: Jiang, Aimin
  email: jiangam@hhuc.edu.cn
  organization: College of Internet of Things Engineering, Hohai University, Changzhou, China
– sequence: 2
  givenname: Jing
  surname: Shang
  fullname: Shang, Jing
  email: shangj@hhu.edu.cn
  organization: College of Internet of Things Engineering, Hohai University, Changzhou, China
– sequence: 3
  givenname: Xiaofeng
  surname: Liu
  fullname: Liu, Xiaofeng
  email: liuxf@hhuc.edu.cn
  organization: College of Internet of Things Engineering, Hohai University, Changzhou, China
– sequence: 4
  givenname: Yibin
  orcidid: 0000-0001-7053-7581
  surname: Tang
  fullname: Tang, Yibin
  email: tangyb@hhuc.edu.cn
  organization: College of Internet of Things Engineering, Hohai University, Changzhou, China
– sequence: 5
  givenname: Hon Keung
  orcidid: 0000-0003-0173-1625
  surname: Kwan
  fullname: Kwan, Hon Keung
  email: kwan1@uwindsor.ca
  organization: Department of Electrical and Computer Engineering, University of Windsor, Windsor, ON, Canada
– sequence: 6
  givenname: Yanping
  orcidid: 0000-0002-8107-0101
  surname: Zhu
  fullname: Zhu, Yanping
  email: zhuyanping@cczu.edu.cn
  organization: School of Information Science and Engineering, Changzhou University, Changzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32149648$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtvEzEURi3Uij7gD4CERmLTzYTr19heVlFKK_WBSFCXljO5Dq5mxsGeLPrvcZqURRdsrr0455OvvzNyNMQBCflEYUIpmG-L-_nP2YQBgwkzyohGvCOnVEpdA6NwtLtzUQvO4ISc5fwEQFUj1XtywhkVphH6lDzOvA9twGGspvMf1WW3jimMv_vqscxqvnFjiPUC-01MrquuQjdiCsO68jFVd3Es86Z3a0zP1bRzOYcStlOGD-TYuy7jx8N5Tn5dzRbT6_r24fvN9PK2brmkY62RyaVUxgs0GvQS0IBcNqo12svGNR4oc4w7vWo9k1TTFaISbOVbRwXTgp-Ti33uJsU_W8yj7UNusevcgHGbLeNKSlBKQkG_vkGf4jYN5XWF0poCpQ0r1JcDtV32uLKbFHqXnu3rlxVA74E2xZwTetuG8WXnMbnQWQp21459acfu2rGHdorK3qiv6f-VPu-lgIj_BANMUw78L1xAmWQ
CODEN ITNSB3
CitedBy_id crossref_primary_10_3389_fninf_2022_952474
crossref_primary_10_1109_TNSRE_2023_3255233
crossref_primary_10_1109_TNSRE_2021_3049998
crossref_primary_10_1016_j_eswa_2024_123239
crossref_primary_10_3390_diagnostics12112607
crossref_primary_10_1109_TIM_2022_3193407
crossref_primary_10_1109_TNSRE_2022_3198434
crossref_primary_10_1016_j_asoc_2024_112087
crossref_primary_10_1007_s12204_022_2486_6
crossref_primary_10_1088_1741_2552_ad4914
crossref_primary_10_1109_THMS_2022_3168421
crossref_primary_10_1016_j_bspc_2022_103857
crossref_primary_10_1109_TIM_2024_3366285
crossref_primary_10_1016_j_neucom_2025_129410
crossref_primary_10_1109_TBCAS_2021_3137290
crossref_primary_10_3389_fnhum_2023_1243750
crossref_primary_10_1007_s00521_021_06716_x
crossref_primary_10_1109_TNSRE_2025_3529991
crossref_primary_10_1109_TETCI_2023_3301385
crossref_primary_10_1049_2024_5596468
crossref_primary_10_1142_S0219467823500535
crossref_primary_10_1016_j_bspc_2025_107570
crossref_primary_10_2139_ssrn_3993055
crossref_primary_10_3390_s25030610
crossref_primary_10_1007_s00521_023_09090_y
crossref_primary_10_1109_JBHI_2024_3357995
crossref_primary_10_1007_s11760_023_02986_1
crossref_primary_10_3389_fnins_2023_1113593
crossref_primary_10_1016_j_bspc_2021_102485
crossref_primary_10_1016_j_bspc_2022_103825
crossref_primary_10_1109_TNSRE_2022_3217298
crossref_primary_10_1007_s10489_021_02622_w
crossref_primary_10_1109_TNSRE_2022_3173724
crossref_primary_10_1109_TNSRE_2021_3059429
crossref_primary_10_3389_fnrgo_2023_1080200
crossref_primary_10_1007_s11517_023_02840_z
crossref_primary_10_1109_JBHI_2024_3496757
Cites_doi 10.1109/TBME.2010.2082539
10.1109/TNSRE.2016.2587939
10.1007/978-3-319-26561-2_5
10.1109/TNSRE.2016.2601240
10.1109/ICASSP.2017.7952286
10.1109/MSP.2008.4408441
10.1109/TBME.2011.2172210
10.1109/TBME.2011.2131142
10.1093/acprof:oso/9780195388855.001.0001
10.5755/j01.itc.46.2.17528
10.1109/LSP.2018.2823683
10.1109/ICDSP.2018.8631618
10.1109/MC.2008.431
10.1145/1941487.1941506
10.1109/MSP.2003.1166626
10.1002/9780470511923
10.1109/TBME.2005.851521
10.1186/1743-0003-7-60
10.1109/TCSI.2014.2354771
10.1023/A:1009715923555
10.1109/TNSRE.2018.2876129
10.1109/TSP.2012.2199316
10.1109/86.895946
10.1088/1741-2552/aab2f2
10.1109/TSP.2009.2036471
10.1109/TNSRE.2006.875642
10.1109/TNSRE.2003.814456
10.1109/TNNLS.2015.2402694
10.1109/5.939829
10.1109/TBME.2006.883649
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TNSRE.2020.2979464
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 1016
ExternalDocumentID 32149648
10_1109_TNSRE_2020_2979464
9028130
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Key Development Program of Jiangsu Province of China
  grantid: BE2017071; BE2017647; BE2018004-04
– fundername: Fundamental Research Funds for the Central Universities of China
  grantid: 2018B23014; 2018B47114
  funderid: 10.13039/501100012226
– fundername: National Nature Science Foundation of China
  grantid: 61471157; 61772090; 61701471; 61801055
  funderid: 10.13039/501100001809
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c351t-8e25b579f4e9808b0e905b67c98f56a6f012a23a8dcf25181dee742dfca142843
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Fri Jul 11 02:38:01 EDT 2025
Mon Jul 14 07:51:20 EDT 2025
Wed Feb 19 02:30:05 EST 2025
Tue Jul 01 00:43:20 EDT 2025
Thu Apr 24 22:52:09 EDT 2025
Wed Aug 27 02:51:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-8e25b579f4e9808b0e905b67c98f56a6f012a23a8dcf25181dee742dfca142843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8107-0101
0000-0002-9181-934X
0000-0003-0173-1625
0000-0001-7053-7581
PMID 32149648
PQID 2388101162
PQPubID 85423
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TNSRE_2020_2979464
crossref_primary_10_1109_TNSRE_2020_2979464
proquest_journals_2388101162
pubmed_primary_32149648
proquest_miscellaneous_2375507750
ieee_primary_9028130
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref15
ref14
ref33
ref11
ref32
ref10
ref2
ref1
ref17
ref16
ref19
leeb (ref30) 2008
ref24
ref23
ref26
bishop (ref28) 2006
ref25
ref20
ref22
ref21
wang (ref27) 2015; 1
duda (ref31) 2012
yong (ref18) 2008
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref16
  doi: 10.1109/TBME.2010.2082539
– ident: ref22
  doi: 10.1109/TNSRE.2016.2587939
– ident: ref25
  doi: 10.1007/978-3-319-26561-2_5
– ident: ref23
  doi: 10.1109/TNSRE.2016.2601240
– ident: ref19
  doi: 10.1109/ICASSP.2017.7952286
– year: 2008
  ident: ref30
  article-title: BCI competition 2008-Graz data set A
– ident: ref10
  doi: 10.1109/MSP.2008.4408441
– start-page: 417
  year: 2008
  ident: ref18
  article-title: Sparse spatial filter optimization for EEG channel reduction in brain-computer interface
  publication-title: Proc IEEE Int Conf Acoust Speech Signal Process
– ident: ref21
  doi: 10.1109/TBME.2011.2172210
– ident: ref17
  doi: 10.1109/TBME.2011.2131142
– ident: ref2
  doi: 10.1093/acprof:oso/9780195388855.001.0001
– ident: ref26
  doi: 10.5755/j01.itc.46.2.17528
– ident: ref12
  doi: 10.1109/LSP.2018.2823683
– ident: ref20
  doi: 10.1109/ICDSP.2018.8631618
– ident: ref3
  doi: 10.1109/MC.2008.431
– volume: 1
  start-page: 1
  year: 2015
  ident: ref27
  article-title: Encoding time series as images for visual inspection and classification using tiled convolutional neural networks
  publication-title: Proc 29th AAAI Conf Artif Intell
– ident: ref1
  doi: 10.1145/1941487.1941506
– ident: ref4
  doi: 10.1109/MSP.2003.1166626
– ident: ref7
  doi: 10.1002/9780470511923
– ident: ref13
  doi: 10.1109/TBME.2005.851521
– year: 2012
  ident: ref31
  publication-title: Pattern Classification
– ident: ref5
  doi: 10.1186/1743-0003-7-60
– ident: ref35
  doi: 10.1109/TCSI.2014.2354771
– ident: ref32
  doi: 10.1023/A:1009715923555
– ident: ref24
  doi: 10.1109/TNSRE.2018.2876129
– ident: ref34
  doi: 10.1109/TSP.2012.2199316
– ident: ref11
  doi: 10.1109/86.895946
– ident: ref9
  doi: 10.1088/1741-2552/aab2f2
– year: 2006
  ident: ref28
  publication-title: Pattern Recognition and Machine Learning
– ident: ref33
  doi: 10.1109/TSP.2009.2036471
– ident: ref29
  doi: 10.1109/TNSRE.2006.875642
– ident: ref8
  doi: 10.1109/TNSRE.2003.814456
– ident: ref14
  doi: 10.1109/TNNLS.2015.2402694
– ident: ref6
  doi: 10.1109/5.939829
– ident: ref15
  doi: 10.1109/TBME.2006.883649
SSID ssj0017657
Score 2.4892979
Snippet Common spatial pattern (CSP) is an efficient algorithm widely used in feature extraction of EEG-based motor imagery classification. Traditional CSP depends...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1006
SubjectTerms Algorithms
Alternative optimization scheme
Brain-computer interfaces
brain–computer interface (BCI)
Channels
Classification
Classification algorithms
common spatial pattern (CSP)
Computer applications
Covariance matrices
Design
EEG
Eigenvalues
Eigenvalues and eigenfunctions
electroencephalograph (EEG)
Electroencephalography
Feature extraction
Filter design (mathematics)
Filters
generalized eigenvalue decomposition
Image classification
Mental task performance
motor imagery
Optimization
Outliers (statistics)
Regularization
reweighting technique
sparsity
Spatial filtering
spatio-temporal filters
ℓ₁ norm
Title Efficient CSP Algorithm With Spatio-Temporal Filtering for Motor Imagery Classification
URI https://ieeexplore.ieee.org/document/9028130
https://www.ncbi.nlm.nih.gov/pubmed/32149648
https://www.proquest.com/docview/2388101162
https://www.proquest.com/docview/2375507750
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PXHhVR6BgowEXCBb52XHx6raVUHaCnW3am-Rk4xLxXZTtdkD_HpmnIcKAsQlihRn4mTG8Yxn_H0AbyOFRie5pdgEXZhq50LLbO55JDHO0MSVX4ecH6uj0_TzeXa-BR_HvTCI6IvPcMKnPpdfN9WGl8r2GWmE_rnbsE2BW7dXa8wYaOVRPWkAp2GaxHLYICPN_vJ4cTKlUDCWk9gwoDqT8TBBj1FM-3NnPvIEK3_3Nf2cM3sA86G3XanJt8mmLSfVj9-AHP_3dR7C_d75FAedtTyCLVw_hnd3gYbFskMZEO_FyS8Y3rtwNvVoEyRSHC6-iIPVRXNz2X69Emd0FAsvIVx2SFcrMbvkNDzNi4K8YjFvKLQXn64YMOO78EScXKLkJT-B09l0eXgU9rQMYZVkURvmpMQy08alaHKZlxKNzEqlK5O7TFnlaM6zcWLzunLkPZFDjEgBeO0qy_BuafIUdtbNGp-DQObndBmqkkxCltq6Ko9cRh_F1bXWNoBoUE5R9e_L1Bmrwscu0hRetwXrtuh1G8CH8Z7rDrHjn613WTFjy14nAewNNlD0g_q2IO-G4dAiFQfwZrxMw5FzLHaNzYbbaEaIIz8sgGed7YyyB5N78ednvoR73LOuLGgPdtqbDb4ij6ctX3tT_wl_-vnF
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoALFAol0IKRgAtkm6cdH6tqV1vorlA3VXuLHMeGiu0GlewBfn1nnIdaBIhLFCmO42TG8Yxn5vsA3oTcSBFnCn0TY_1EWOsrYnPPwsBEqZGRdvuQszmfniYfz9PzDfgw1MIYY1zymRnRqYvlV7Ve01bZPiGN4D_3DtxNqRi3rdYaYgaCO1xPnMKJn8RR0JfIBHI_ny9OxugMRsEokgSpTnQ8RNEjORH_3FiRHMXK361Nt-pMHsKsH2-bbPJttG7Kkf71G5Tj_77QFjzozE920OrLI9gwq8fw9ibUMMtbnAH2jp3cQvHehrOxw5vALtnh4jM7WH6pry6ar5fsDI9s4Xrw8xbraskmFxSIx5WRoV3MZjU69-zokiAzfjJHxUlJSq7nJ3A6GeeHU78jZvB1nIaNn6EYy1RImxiZBVkZGBmkJRdaZjbliltc9VQUq6zSFu0nNImNQRe8sloRwFsSP4XNVb0yz4AZYui0qeElKkVQCmV1FtoUP4qtKiGUB2EvnEJ370vkGcvCeS-BLJxsC5Jt0cnWg_fDPd9bzI5_tt4mwQwtO5l4sNvrQNFN6x8F2jcEiBbyyIPXw2WckBRlUStTr6mNIIw4tMQ82Gl1Z-i7V7nnf37mK7g3zWfHxfHR_NMLuE-jbJOEdmGzuVqbPbR_mvKlU_trqQb9DQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+CSP+Algorithm+With+Spatio-Temporal+Filtering+for+Motor+Imagery+Classification&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Jiang%2C+Aimin&rft.au=Shang%2C+Jing&rft.au=Liu%2C+Xiaofeng&rft.au=Tang%2C+Yibin&rft.date=2020-04-01&rft.issn=1534-4320&rft.eissn=1558-0210&rft.volume=28&rft.issue=4&rft.spage=1006&rft.epage=1016&rft_id=info:doi/10.1109%2FTNSRE.2020.2979464&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSRE_2020_2979464
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon