Efficient CSP Algorithm With Spatio-Temporal Filtering for Motor Imagery Classification
Common spatial pattern (CSP) is an efficient algorithm widely used in feature extraction of EEG-based motor imagery classification. Traditional CSP depends only on spatial filtering, that aims to maximize or minimize the ratio of variances of filtered EEG signals in different classes. Recent advance...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 28; no. 4; pp. 1006 - 1016 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1534-4320 1558-0210 1558-0210 |
DOI | 10.1109/TNSRE.2020.2979464 |
Cover
Loading…
Abstract | Common spatial pattern (CSP) is an efficient algorithm widely used in feature extraction of EEG-based motor imagery classification. Traditional CSP depends only on spatial filtering, that aims to maximize or minimize the ratio of variances of filtered EEG signals in different classes. Recent advances of CSP approaches show that temporal filtering is also preferable to extract discriminative features. In view of this perspective, a novel spatio-temporal filtering strategy is proposed in this paper. To improve computational efficiency and alleviate the overfitting issue frequently encountered in the case of small sample size, the same temporal filter is designed by EEG signals of the same class and shared by all the spatial channels. Spatial and temporal filters can be updated alternatively in practice. Furthermore, each of the resulting designs can still be cast as a CSP problem and tackled efficiently by the eigenvalue decomposition. To alleviate the adverse effects of outliers or noisy EEG channels, sparse spatial or temporal filters can also be achieved by incorporating an l 1 -norm-based regularization term in our CSP problem. The regularized spatial or temporal filter design is iteratively reformulated as a CSP problem via the reweighting technique. Two sets of motor imagery EEG data of BCI competitions are used in our experiments to verify the effectiveness of the proposed algorithm. |
---|---|
AbstractList | Common spatial pattern (CSP) is an efficient algorithm widely used in feature extraction of EEG-based motor imagery classification. Traditional CSP depends only on spatial filtering, that aims to maximize or minimize the ratio of variances of filtered EEG signals in different classes. Recent advances of CSP approaches show that temporal filtering is also preferable to extract discriminative features. In view of this perspective, a novel spatio-temporal filtering strategy is proposed in this paper. To improve computational efficiency and alleviate the overfitting issue frequently encountered in the case of small sample size, the same temporal filter is designed by EEG signals of the same class and shared by all the spatial channels. Spatial and temporal filters can be updated alternatively in practice. Furthermore, each of the resulting designs can still be cast as a CSP problem and tackled efficiently by the eigenvalue decomposition. To alleviate the adverse effects of outliers or noisy EEG channels, sparse spatial or temporal filters can also be achieved by incorporating an [Formula Omitted]-norm-based regularization term in our CSP problem. The regularized spatial or temporal filter design is iteratively reformulated as a CSP problem via the reweighting technique. Two sets of motor imagery EEG data of BCI competitions are used in our experiments to verify the effectiveness of the proposed algorithm. Common spatial pattern (CSP) is an efficient algorithm widely used in feature extraction of EEG-based motor imagery classification. Traditional CSP depends only on spatial filtering, that aims to maximize or minimize the ratio of variances of filtered EEG signals in different classes. Recent advances of CSP approaches show that temporal filtering is also preferable to extract discriminative features. In view of this perspective, a novel spatio-temporal filtering strategy is proposed in this paper. To improve computational efficiency and alleviate the overfitting issue frequently encountered in the case of small sample size, the same temporal filter is designed by EEG signals of the same class and shared by all the spatial channels. Spatial and temporal filters can be updated alternatively in practice. Furthermore, each of the resulting designs can still be cast as a CSP problem and tackled efficiently by the eigenvalue decomposition. To alleviate the adverse effects of outliers or noisy EEG channels, sparse spatial or temporal filters can also be achieved by incorporating an l 1 -norm-based regularization term in our CSP problem. The regularized spatial or temporal filter design is iteratively reformulated as a CSP problem via the reweighting technique. Two sets of motor imagery EEG data of BCI competitions are used in our experiments to verify the effectiveness of the proposed algorithm. Common spatial pattern (CSP) is an efficient algorithm widely used in feature extraction of EEG-based motor imagery classification. Traditional CSP depends only on spatial filtering, that aims to maximize or minimize the ratio of variances of filtered EEG signals in different classes. Recent advances of CSP approaches show that temporal filtering is also preferable to extract discriminative features. In view of this perspective, a novel spatio-temporal filtering strategy is proposed in this paper. To improve computational efficiency and alleviate the overfitting issue frequently encountered in the case of small sample size, the same temporal filter is designed by EEG signals of the same class and shared by all the spatial channels. Spatial and temporal filters can be updated alternatively in practice. Furthermore, each of the resulting designs can still be cast as a CSP problem and tackled efficiently by the eigenvalue decomposition. To alleviate the adverse effects of outliers or noisy EEG channels, sparse spatial or temporal filters can also be achieved by incorporating an l1 -norm-based regularization term in our CSP problem. The regularized spatial or temporal filter design is iteratively reformulated as a CSP problem via the reweighting technique. Two sets of motor imagery EEG data of BCI competitions are used in our experiments to verify the effectiveness of the proposed algorithm.Common spatial pattern (CSP) is an efficient algorithm widely used in feature extraction of EEG-based motor imagery classification. Traditional CSP depends only on spatial filtering, that aims to maximize or minimize the ratio of variances of filtered EEG signals in different classes. Recent advances of CSP approaches show that temporal filtering is also preferable to extract discriminative features. In view of this perspective, a novel spatio-temporal filtering strategy is proposed in this paper. To improve computational efficiency and alleviate the overfitting issue frequently encountered in the case of small sample size, the same temporal filter is designed by EEG signals of the same class and shared by all the spatial channels. Spatial and temporal filters can be updated alternatively in practice. Furthermore, each of the resulting designs can still be cast as a CSP problem and tackled efficiently by the eigenvalue decomposition. To alleviate the adverse effects of outliers or noisy EEG channels, sparse spatial or temporal filters can also be achieved by incorporating an l1 -norm-based regularization term in our CSP problem. The regularized spatial or temporal filter design is iteratively reformulated as a CSP problem via the reweighting technique. Two sets of motor imagery EEG data of BCI competitions are used in our experiments to verify the effectiveness of the proposed algorithm. Common spatial pattern (CSP) is an efficient algorithm widely used in feature extraction of EEG-based motor imagery classification. Traditional CSP depends only on spatial filtering, that aims to maximize or minimize the ratio of variances of filtered EEG signals in different classes. Recent advances of CSP approaches show that temporal filtering is also preferable to extract discriminative features. In view of this perspective, a novel spatio-temporal filtering strategy is proposed in this paper. To improve computational efficiency and alleviate the overfitting issue frequently encountered in the case of small sample size, the same temporal filter is designed by EEG signals of the same class and shared by all the spatial channels. Spatial and temporal filters can be updated alternatively in practice. Furthermore, each of the resulting designs can still be cast as a CSP problem and tackled efficiently by the eigenvalue decomposition. To alleviate the adverse effects of outliers or noisy EEG channels, sparse spatial or temporal filters can also be achieved by incorporating an l -norm-based regularization term in our CSP problem. The regularized spatial or temporal filter design is iteratively reformulated as a CSP problem via the reweighting technique. Two sets of motor imagery EEG data of BCI competitions are used in our experiments to verify the effectiveness of the proposed algorithm. |
Author | Shang, Jing Zhu, Yanping Jiang, Aimin Kwan, Hon Keung Liu, Xiaofeng Tang, Yibin |
Author_xml | – sequence: 1 givenname: Aimin orcidid: 0000-0002-9181-934X surname: Jiang fullname: Jiang, Aimin email: jiangam@hhuc.edu.cn organization: College of Internet of Things Engineering, Hohai University, Changzhou, China – sequence: 2 givenname: Jing surname: Shang fullname: Shang, Jing email: shangj@hhu.edu.cn organization: College of Internet of Things Engineering, Hohai University, Changzhou, China – sequence: 3 givenname: Xiaofeng surname: Liu fullname: Liu, Xiaofeng email: liuxf@hhuc.edu.cn organization: College of Internet of Things Engineering, Hohai University, Changzhou, China – sequence: 4 givenname: Yibin orcidid: 0000-0001-7053-7581 surname: Tang fullname: Tang, Yibin email: tangyb@hhuc.edu.cn organization: College of Internet of Things Engineering, Hohai University, Changzhou, China – sequence: 5 givenname: Hon Keung orcidid: 0000-0003-0173-1625 surname: Kwan fullname: Kwan, Hon Keung email: kwan1@uwindsor.ca organization: Department of Electrical and Computer Engineering, University of Windsor, Windsor, ON, Canada – sequence: 6 givenname: Yanping orcidid: 0000-0002-8107-0101 surname: Zhu fullname: Zhu, Yanping email: zhuyanping@cczu.edu.cn organization: School of Information Science and Engineering, Changzhou University, Changzhou, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32149648$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtvEzEURi3Uij7gD4CERmLTzYTr19heVlFKK_WBSFCXljO5Dq5mxsGeLPrvcZqURRdsrr0455OvvzNyNMQBCflEYUIpmG-L-_nP2YQBgwkzyohGvCOnVEpdA6NwtLtzUQvO4ISc5fwEQFUj1XtywhkVphH6lDzOvA9twGGspvMf1WW3jimMv_vqscxqvnFjiPUC-01MrquuQjdiCsO68jFVd3Es86Z3a0zP1bRzOYcStlOGD-TYuy7jx8N5Tn5dzRbT6_r24fvN9PK2brmkY62RyaVUxgs0GvQS0IBcNqo12svGNR4oc4w7vWo9k1TTFaISbOVbRwXTgp-Ti33uJsU_W8yj7UNusevcgHGbLeNKSlBKQkG_vkGf4jYN5XWF0poCpQ0r1JcDtV32uLKbFHqXnu3rlxVA74E2xZwTetuG8WXnMbnQWQp21459acfu2rGHdorK3qiv6f-VPu-lgIj_BANMUw78L1xAmWQ |
CODEN | ITNSB3 |
CitedBy_id | crossref_primary_10_3389_fninf_2022_952474 crossref_primary_10_1109_TNSRE_2023_3255233 crossref_primary_10_1109_TNSRE_2021_3049998 crossref_primary_10_1016_j_eswa_2024_123239 crossref_primary_10_3390_diagnostics12112607 crossref_primary_10_1109_TIM_2022_3193407 crossref_primary_10_1109_TNSRE_2022_3198434 crossref_primary_10_1016_j_asoc_2024_112087 crossref_primary_10_1007_s12204_022_2486_6 crossref_primary_10_1088_1741_2552_ad4914 crossref_primary_10_1109_THMS_2022_3168421 crossref_primary_10_1016_j_bspc_2022_103857 crossref_primary_10_1109_TIM_2024_3366285 crossref_primary_10_1016_j_neucom_2025_129410 crossref_primary_10_1109_TBCAS_2021_3137290 crossref_primary_10_3389_fnhum_2023_1243750 crossref_primary_10_1007_s00521_021_06716_x crossref_primary_10_1109_TNSRE_2025_3529991 crossref_primary_10_1109_TETCI_2023_3301385 crossref_primary_10_1049_2024_5596468 crossref_primary_10_1142_S0219467823500535 crossref_primary_10_1016_j_bspc_2025_107570 crossref_primary_10_2139_ssrn_3993055 crossref_primary_10_3390_s25030610 crossref_primary_10_1007_s00521_023_09090_y crossref_primary_10_1109_JBHI_2024_3357995 crossref_primary_10_1007_s11760_023_02986_1 crossref_primary_10_3389_fnins_2023_1113593 crossref_primary_10_1016_j_bspc_2021_102485 crossref_primary_10_1016_j_bspc_2022_103825 crossref_primary_10_1109_TNSRE_2022_3217298 crossref_primary_10_1007_s10489_021_02622_w crossref_primary_10_1109_TNSRE_2022_3173724 crossref_primary_10_1109_TNSRE_2021_3059429 crossref_primary_10_3389_fnrgo_2023_1080200 crossref_primary_10_1007_s11517_023_02840_z crossref_primary_10_1109_JBHI_2024_3496757 |
Cites_doi | 10.1109/TBME.2010.2082539 10.1109/TNSRE.2016.2587939 10.1007/978-3-319-26561-2_5 10.1109/TNSRE.2016.2601240 10.1109/ICASSP.2017.7952286 10.1109/MSP.2008.4408441 10.1109/TBME.2011.2172210 10.1109/TBME.2011.2131142 10.1093/acprof:oso/9780195388855.001.0001 10.5755/j01.itc.46.2.17528 10.1109/LSP.2018.2823683 10.1109/ICDSP.2018.8631618 10.1109/MC.2008.431 10.1145/1941487.1941506 10.1109/MSP.2003.1166626 10.1002/9780470511923 10.1109/TBME.2005.851521 10.1186/1743-0003-7-60 10.1109/TCSI.2014.2354771 10.1023/A:1009715923555 10.1109/TNSRE.2018.2876129 10.1109/TSP.2012.2199316 10.1109/86.895946 10.1088/1741-2552/aab2f2 10.1109/TSP.2009.2036471 10.1109/TNSRE.2006.875642 10.1109/TNSRE.2003.814456 10.1109/TNNLS.2015.2402694 10.1109/5.939829 10.1109/TBME.2006.883649 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/TNSRE.2020.2979464 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 1016 |
ExternalDocumentID | 32149648 10_1109_TNSRE_2020_2979464 9028130 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Key Development Program of Jiangsu Province of China grantid: BE2017071; BE2017647; BE2018004-04 – fundername: Fundamental Research Funds for the Central Universities of China grantid: 2018B23014; 2018B47114 funderid: 10.13039/501100012226 – fundername: National Nature Science Foundation of China grantid: 61471157; 61772090; 61701471; 61801055 funderid: 10.13039/501100001809 |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c351t-8e25b579f4e9808b0e905b67c98f56a6f012a23a8dcf25181dee742dfca142843 |
IEDL.DBID | RIE |
ISSN | 1534-4320 1558-0210 |
IngestDate | Fri Jul 11 02:38:01 EDT 2025 Mon Jul 14 07:51:20 EDT 2025 Wed Feb 19 02:30:05 EST 2025 Tue Jul 01 00:43:20 EDT 2025 Thu Apr 24 22:52:09 EDT 2025 Wed Aug 27 02:51:13 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-8e25b579f4e9808b0e905b67c98f56a6f012a23a8dcf25181dee742dfca142843 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8107-0101 0000-0002-9181-934X 0000-0003-0173-1625 0000-0001-7053-7581 |
PMID | 32149648 |
PQID | 2388101162 |
PQPubID | 85423 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1109_TNSRE_2020_2979464 crossref_primary_10_1109_TNSRE_2020_2979464 proquest_journals_2388101162 pubmed_primary_32149648 proquest_miscellaneous_2375507750 ieee_primary_9028130 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref15 ref14 ref33 ref11 ref32 ref10 ref2 ref1 ref17 ref16 ref19 leeb (ref30) 2008 ref24 ref23 ref26 bishop (ref28) 2006 ref25 ref20 ref22 ref21 wang (ref27) 2015; 1 duda (ref31) 2012 yong (ref18) 2008 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref16 doi: 10.1109/TBME.2010.2082539 – ident: ref22 doi: 10.1109/TNSRE.2016.2587939 – ident: ref25 doi: 10.1007/978-3-319-26561-2_5 – ident: ref23 doi: 10.1109/TNSRE.2016.2601240 – ident: ref19 doi: 10.1109/ICASSP.2017.7952286 – year: 2008 ident: ref30 article-title: BCI competition 2008-Graz data set A – ident: ref10 doi: 10.1109/MSP.2008.4408441 – start-page: 417 year: 2008 ident: ref18 article-title: Sparse spatial filter optimization for EEG channel reduction in brain-computer interface publication-title: Proc IEEE Int Conf Acoust Speech Signal Process – ident: ref21 doi: 10.1109/TBME.2011.2172210 – ident: ref17 doi: 10.1109/TBME.2011.2131142 – ident: ref2 doi: 10.1093/acprof:oso/9780195388855.001.0001 – ident: ref26 doi: 10.5755/j01.itc.46.2.17528 – ident: ref12 doi: 10.1109/LSP.2018.2823683 – ident: ref20 doi: 10.1109/ICDSP.2018.8631618 – ident: ref3 doi: 10.1109/MC.2008.431 – volume: 1 start-page: 1 year: 2015 ident: ref27 article-title: Encoding time series as images for visual inspection and classification using tiled convolutional neural networks publication-title: Proc 29th AAAI Conf Artif Intell – ident: ref1 doi: 10.1145/1941487.1941506 – ident: ref4 doi: 10.1109/MSP.2003.1166626 – ident: ref7 doi: 10.1002/9780470511923 – ident: ref13 doi: 10.1109/TBME.2005.851521 – year: 2012 ident: ref31 publication-title: Pattern Classification – ident: ref5 doi: 10.1186/1743-0003-7-60 – ident: ref35 doi: 10.1109/TCSI.2014.2354771 – ident: ref32 doi: 10.1023/A:1009715923555 – ident: ref24 doi: 10.1109/TNSRE.2018.2876129 – ident: ref34 doi: 10.1109/TSP.2012.2199316 – ident: ref11 doi: 10.1109/86.895946 – ident: ref9 doi: 10.1088/1741-2552/aab2f2 – year: 2006 ident: ref28 publication-title: Pattern Recognition and Machine Learning – ident: ref33 doi: 10.1109/TSP.2009.2036471 – ident: ref29 doi: 10.1109/TNSRE.2006.875642 – ident: ref8 doi: 10.1109/TNSRE.2003.814456 – ident: ref14 doi: 10.1109/TNNLS.2015.2402694 – ident: ref6 doi: 10.1109/5.939829 – ident: ref15 doi: 10.1109/TBME.2006.883649 |
SSID | ssj0017657 |
Score | 2.4892979 |
Snippet | Common spatial pattern (CSP) is an efficient algorithm widely used in feature extraction of EEG-based motor imagery classification. Traditional CSP depends... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1006 |
SubjectTerms | Algorithms Alternative optimization scheme Brain-computer interfaces brain–computer interface (BCI) Channels Classification Classification algorithms common spatial pattern (CSP) Computer applications Covariance matrices Design EEG Eigenvalues Eigenvalues and eigenfunctions electroencephalograph (EEG) Electroencephalography Feature extraction Filter design (mathematics) Filters generalized eigenvalue decomposition Image classification Mental task performance motor imagery Optimization Outliers (statistics) Regularization reweighting technique sparsity Spatial filtering spatio-temporal filters ℓ₁ norm |
Title | Efficient CSP Algorithm With Spatio-Temporal Filtering for Motor Imagery Classification |
URI | https://ieeexplore.ieee.org/document/9028130 https://www.ncbi.nlm.nih.gov/pubmed/32149648 https://www.proquest.com/docview/2388101162 https://www.proquest.com/docview/2375507750 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PXHhVR6BgowEXCBb52XHx6raVUHaCnW3am-Rk4xLxXZTtdkD_HpmnIcKAsQlihRn4mTG8Yxn_H0AbyOFRie5pdgEXZhq50LLbO55JDHO0MSVX4ecH6uj0_TzeXa-BR_HvTCI6IvPcMKnPpdfN9WGl8r2GWmE_rnbsE2BW7dXa8wYaOVRPWkAp2GaxHLYICPN_vJ4cTKlUDCWk9gwoDqT8TBBj1FM-3NnPvIEK3_3Nf2cM3sA86G3XanJt8mmLSfVj9-AHP_3dR7C_d75FAedtTyCLVw_hnd3gYbFskMZEO_FyS8Y3rtwNvVoEyRSHC6-iIPVRXNz2X69Emd0FAsvIVx2SFcrMbvkNDzNi4K8YjFvKLQXn64YMOO78EScXKLkJT-B09l0eXgU9rQMYZVkURvmpMQy08alaHKZlxKNzEqlK5O7TFnlaM6zcWLzunLkPZFDjEgBeO0qy_BuafIUdtbNGp-DQObndBmqkkxCltq6Ko9cRh_F1bXWNoBoUE5R9e_L1Bmrwscu0hRetwXrtuh1G8CH8Z7rDrHjn613WTFjy14nAewNNlD0g_q2IO-G4dAiFQfwZrxMw5FzLHaNzYbbaEaIIz8sgGed7YyyB5N78ednvoR73LOuLGgPdtqbDb4ij6ctX3tT_wl_-vnF |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoALFAol0IKRgAtkm6cdH6tqV1vorlA3VXuLHMeGiu0GlewBfn1nnIdaBIhLFCmO42TG8Yxn5vsA3oTcSBFnCn0TY_1EWOsrYnPPwsBEqZGRdvuQszmfniYfz9PzDfgw1MIYY1zymRnRqYvlV7Ve01bZPiGN4D_3DtxNqRi3rdYaYgaCO1xPnMKJn8RR0JfIBHI_ny9OxugMRsEokgSpTnQ8RNEjORH_3FiRHMXK361Nt-pMHsKsH2-bbPJttG7Kkf71G5Tj_77QFjzozE920OrLI9gwq8fw9ibUMMtbnAH2jp3cQvHehrOxw5vALtnh4jM7WH6pry6ar5fsDI9s4Xrw8xbraskmFxSIx5WRoV3MZjU69-zokiAzfjJHxUlJSq7nJ3A6GeeHU78jZvB1nIaNn6EYy1RImxiZBVkZGBmkJRdaZjbliltc9VQUq6zSFu0nNImNQRe8sloRwFsSP4XNVb0yz4AZYui0qeElKkVQCmV1FtoUP4qtKiGUB2EvnEJ370vkGcvCeS-BLJxsC5Jt0cnWg_fDPd9bzI5_tt4mwQwtO5l4sNvrQNFN6x8F2jcEiBbyyIPXw2WckBRlUStTr6mNIIw4tMQ82Gl1Z-i7V7nnf37mK7g3zWfHxfHR_NMLuE-jbJOEdmGzuVqbPbR_mvKlU_trqQb9DQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+CSP+Algorithm+With+Spatio-Temporal+Filtering+for+Motor+Imagery+Classification&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Jiang%2C+Aimin&rft.au=Shang%2C+Jing&rft.au=Liu%2C+Xiaofeng&rft.au=Tang%2C+Yibin&rft.date=2020-04-01&rft.issn=1534-4320&rft.eissn=1558-0210&rft.volume=28&rft.issue=4&rft.spage=1006&rft.epage=1016&rft_id=info:doi/10.1109%2FTNSRE.2020.2979464&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSRE_2020_2979464 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |